
On Repetition Languages
Orna Kupferman
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

Ofer Leshkowitz
School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel
ofer.leshkowitz@mail.huji.ac.il

Abstract
A regular language R of finite words induces three repetition languages of infinite words: the language
lim(R), which contains words with infinitely many prefixes in R, the language ∞R, which contains
words with infinitely many disjoint subwords in R, and the language Rω, which contains infinite
concatenations of words in R. Specifying behaviors, the three repetition languages provide three
different ways of turning a specification of a finite behavior into an infinite one. We study the
expressive power required for recognizing repetition languages, in particular whether they can always
be recognized by a deterministic Büchi word automaton (DBW), the blow up in going from an
automaton for R to automata for the repetition languages, and the complexity of related decision
problems. For lim R and ∞R, most of these problems have already been studied or are easy. We focus
on Rω. Its study involves some new and interesting results about additional repetition languages, in
particular R#, which contains exactly all words with unboundedly many concatenations of words in
R. We show that Rω is DBW-recognizable iff R# is ω-regular iff R# = Rω, and there are languages
for which these criteria do not hold. Thus, Rω need not be DBW-recognizable. In addition, when
exists, the construction of a DBW for Rω may involve a 2O(n log n) blow-up, and deciding whether Rω

is DBW-recognizable, for R given by a nondeterministic automaton, is PSPACE-complete. Finally,
we lift the difference between R# and Rω to automata on finite words and study a variant of
Büchi automata where a word is accepted if (possibly different) runs on it visit accepting states
unboundedly many times.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Büchi automata, Expressive power, Succinctness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.59

Related Version A full version of the paper is available at http://www.cs.huji.ac.il/~ornak/
publications/mfcs20a.pdf.

Acknowledgements We thank Michael Kaminski for asking us whether Rω is DBW-recognizable for
every regular language R.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s, and were the key to
the solution of several fundamental decision problems in mathematics and logic [6, 14, 17].
Today, automata on infinite objects are used for specification, verification, and synthesis of
nonterminating systems. The automata-theoretic approach reduces questions about systems
and their specifications to questions about automata [11, 22], and is at the heart of many
algorithms and tools. Industrial-strength property-specification languages such as the IEEE
1850 Standard for Property Specification Language (PSL) [7] include regular expressions
and/or automata, making specification and verification tools that are based on automata
even more essential and popular.

© Orna Kupferman and Ofer Leshkowitz;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 59; pp. 59:1–59:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:orna@cs.huji.ac.il
mailto:ofer.leshkowitz@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs.MFCS.2020.59
http://www.cs.huji.ac.il/~ornak/publications/mfcs20a.pdf
http://www.cs.huji.ac.il/~ornak/publications/mfcs20a.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


59:2 On Repetition Languages

One way to classify an automaton is by the type of its branching mode, namely whether
it is deterministic, in which case it has a single run on each input word, or nondeterministic,
in which case it may have several runs, and the input word is accepted if at least one of them
is accepting. A run of an automaton on finite words is accepting if it ends in an accepting
state. A run of an automaton on infinite words does not have a final state, and acceptance is
determined with respect to the set of states visited infinitely often during the run. Another
way to classify an automaton on infinite words is the class of its acceptance condition. For
example, in Büchi automata, some of the states are designated as accepting states, and a
run is accepting iff it visits states from the accepting set infinitely often [6].

The different classes of automata have different expressive power. For example, unlike
automata on finite words, where deterministic and nondeterministic automata have the
same expressive power, deterministic Büchi automata (DBWs) are strictly less expressive
than nondeterministic Büchi automata (NBWs). That is, there exists a language L over
infinite words such that L can be recognized by an NBW but cannot be recognized by a
DBW. The different classes also differ in their succinctness. For example, while translating
a nondeterministic automaton on finite words (NFW) into a deterministic one (DFW) is
always possible, the translation may involve an exponential blow-up [19].

There has been extensive research on expressiveness and succinctness of automata on
infinite words [21, 9]. Beyond the theoretical interest, the research has received further
motivation with the realization that many algorithms, like synthesis and probabilistic model
checking, need to operate on deterministic automata [5, 4], as well as the discovery that
many natural specifications correspond to DBWs. In particular, it is shown in [10] that given
a linear temporal logic (LTL) formula ψ, there is an alternation-free µ-calculus (AFMC)
formula equivalent to ∀ψ iff ψ can be recognized by a DBW. Since AFMC is as expressive as
weak alternating automata and the weak monadic second-order theory of trees [18, 16, 3],
this relates DBWs also with them.

Proving that NBWs are more expressive than DBWs, Landweber characterized languages
that are DBW-recognizable as these that are the limit of some regular language on finite
words. Formally, for an alphabet Σ and a language R ⊆ Σ∗, we define lim(R) as the set of
infinite words in Σω that have infinitely many prefixes in R. For example, if R = (0 + 1)∗ · 0,
namely the set of finite words over {0, 1} that end with a 0, then lim(R) = ((0 + 1)∗ · 0)ω,
namely the set of words with infinitely many 0’s. On the other hand, we cannot point to a
language R such that lim(R) is the set of all words with only finitely many 0’s. Landweber
proved that a language L ⊆ Σω is DBW-recognizable iff there is a regular language R such
that L = lim(R) [12].

Beyond the limit operator, another natural way to obtain a language of infinite words
from a language R of finite words is to require the words in R to repeat infinitely often. This
actually induces two “repetition languages”. The first is ∞R, where w ∈ ∞R iff w contains
infinitely many disjoint subwords in R. Formally, ∞R = {Σ∗ · w1 · Σ∗ · w2 · Σ∗ · w3 · · · :
wi ∈ R for all i ≥ 1 }. The second is Rω, where w ∈ Rω iff w is an infinite concatenation
of words in R. Formally, Rω = {w1 · w2 · w3 · · · : wi ∈ R for all i ≥ 1}. For example, for
the language R = (0 + 1)∗ · 0 above, we have lim(R) = ∞R = Rω = ((0 + 1)∗ · 0)ω. In
order to see that the three repetition languages may be different, consider the language
R = 0·(0+1)∗ ·0, namely of all words that start and end with 0. Now, lim(R) = 0·((0+1)∗ ·0)ω,
∞R = ((0 + 1)∗ · 0)ω, and Rω = 0 · ((0 + 1)∗ · 0 · 0)ω. When specifying on-going behaviors,
the three repetition languages induce three different ways for turning a finite behavior into
an infinite one. For example, if R = call · true∗ · return describes a sequence of events that
starts with a call and ends with a return, then limR describes behaviors that start with a
call followed by infinitely many returns, ∞R behaviors with infinitely many calls and returns,
and Rω behaviors with infinitely many successive calls and returns.



O. Kupferman and O. Leshkowitz 59:3

In this paper we study expressiveness, succinctness, and complexity of repetition languages.
We start with expressiveness, where we examine which of the repetition languages are ω-
regular, and for those that are ω-regular, whether they are also DBW-recognizable. By [12],
for lim(R) the answer is positive – it is DBW-recognizable for all regular languages R. For a
finite regular language R, we show that Rω = lim(R∗), implying a positive answer too. Our
main result is a negative answer in the general Rω case: we point to a regular language R
such that Rω is not DBW-recognizable. In order to find such a language, we study repetition
languages in general, and introduce the language R# = {w ∈ Σω : for all i ≥ 1 there exists
a prefix of w in Ri}, namely the language of exactly all words with unboundedly many
concatenations of words in R. As detailed below, R# is strongly related to Rω and turns
out to be also strongly related to our question. We show that when R# is ω-regular, then
R# = Rω, in which case, by Landweber’s characterization of DBW-recognizable languages
as countable intersections of open sets in the product topology over Σω, both are DBW-
recognizable. In other words, we show (Theorem 5) that R# is ω-regular iff R# = Rω iff Rω

is DBW-recognizable.
The above characterization enables us to point to a language R that does not satisfy the

three criteria (Theorem 9). In short, R = $ + (0 · {0, 1, $}∗ · 1). It is easy to see that for every
word w ∈ Rω, if w contains infinitely many 1’s, then w contains infinitely many 0’s. Hence,
the word w = 011$1$$1$$$1$$$$ · · · = 0 ·

∏∞
k=0 1$k is not in Rω, yet for all i ≥ 1, its prefix

0 ·
∏i

k=0 1$k = (0 · (
∏i−1

k=0 1$k) · 1) · $i is in Ri, and so w ∈ R#. It follows that w ∈ R# \Rω,
which by our characterization implies that Rω is not DBW-recognizable. We also study the
problem of deciding, given an NFW A, whether L(A)ω is DBW-recognizable, and show that
it is PSPACE-complete. We lift the difference between R# and Rω to automata on finite
words and define the #-language of a Büchi automaton A as the set of words w such that
for all i ≥ 1, there is a run of A on w that visits the set of accepting states at least i times.
We show that the #-language of A is ω-regular iff the #-language of A coincides with its
ω-regular language, iff L(A) is DBW-recognizable.

We continue and study the size of automata for the repetition languages. We consider the
cases R is given by a DFW or an NFW, and the automaton for the repetition language is a
DBW or an NBW. By [12], going from a DFW for R to a DBW for lim(R) involves no blow
up – we only have to view the DFW as a Büchi automaton. We show that the cases of ∞R
and Rω are more complicated, and involve a 2O(n) and a 2O(n log n) blow-up, respectively.
Beyond the relevancy to our study, the family of languages we use is a new witness to the
known lower bound for NBW determinization [13]. The succinctness analysis for the cases
the automata for the repetition languages are nondeterministic are much easier, as we show
that, except for the case of lim(R), simple constructions with no blow-ups are possible, even
when we start with an NFW for R. For the case of lim(R), going from an NFW for R to an
NBW for lim(R) is not trivial and the best known upper bound is O(n3) [2]. Our results are
summarized in Section 7.

Due to lack of space, some proofs are omitted and can be found in the full version, in the
authors’ URLs.

2 Preliminaries

2.1 Automata
An alphabet Σ is a finite set of letters. A word over Σ is a finite or infinite sequence
w = σ1, σ2, σ3, · · · of letters from Σ. We use |w| to denote the length of w, with |w| =∞ for
an infinite word w. For 1 ≤ i ≤ |w|, we use w[i] to denote σi, that is, the i-th letter in w,

MFCS 2020



59:4 On Repetition Languages

and for 1 ≤ i ≤ j ≤ |w|, we use w[i, j] to denote the infix σi, σi+1, · · · , σj of w. We use Σ∗
and Σω to denote the set of all finite and infinite words over Σ, respectively. For two words
x ∈ Σ∗ and y ∈ Σ∗ ∪Σω, we use x · y to denote the concatenation of x and y. We say that x
is a prefix of a w, denoted x ≺ w, if there is 1 ≤ i ≤ |w| such that x = w[1, i]. Equivalently,
if x 6= ε, and there is y ∈ Σ∗ ∪ Σω, such that x · y = w. Thus, y = [i+ 1, |w|], and we call it
a suffix of w. Note that we do not consider the empty word ε as a prefix of a word.

A nondeterministic automaton is A = 〈Σ, Q, δ,Q0, α〉, where Σ is a finite input alphabet,
Q is a finite set of states, δ : Q× Σ→ 2Q is a transition function, Q0 ⊆ Q is a set of initial
states, and α ⊆ Q is an acceptance condition. Intuitively, δ(q, σ) is the set of states A may
move to when reading the letter σ from state q. Formally, a run of A on a word w is the
function r : {i ∈ N0 : 0 ≤ i ≤ |w|} → Q, such that r(0) ∈ Q0, i.e., the run starts from an
initial state, and for all i ≥ 0, we have that r(i+ 1) ∈ δ(r(i), σi+1), i.e., the run obeys the
transition function. Note that as A may have several initial states and the transition function
may specify several possible successor states, the automaton A may have several runs on w.
If |Q0| = 1 and for all q ∈ Q and σ ∈ Σ, it holds that |δ(q, σ)| = 1, then A has a single run
on w, and we say that A is deterministic. We sometimes refer to a run r also as a sequence
of states; that is, r = r(0), r(1), . . . ∈ Q|w|+1.

When A runs on finite words, the run r is finite, and it is accepting iff it ends in an
accepting state, thus r(|w|) ∈ α. When A runs on infinite words, acceptance depends
on the set inf(r), of the states that r visits infinitely often. Formally inf(r) = {q ∈ Q :
for infinitely many i ∈ N, we have that r(i) = q}. As Q is finite, the set inf(r) is guaranteed
not to be empty. In Büchi automata, the run r is accepting iff inf(r) ∩ α 6= ∅. Otherwise, r
is rejecting. The automaton A accepts a word w if there exists an accepting run r of A on w.
The language of A, denoted L(A), is the set of words that A accepts. We also say that A
recognizes L(A).

We use three letter acronyms in {D,N}×{F,B}×{W} to denote classes of word automata.
The first letter indicates whether the automaton is deterministic or nondeterministic, and
the second letter indicates whether it is an automaton on finite words or a Büchi automaton
on infinite words. For example, DBW is a deterministic Büchi automaton.

Throughout the paper, we use R and L to represent languages of finite and infinite words,
respectively. A language R ⊆ Σ∗ is finite if |R| < ω, where |R| is the cardinality of R as
a set. A language R ⊆ Σ∗ is regular if there is an NFW that recognizes R. Likewise, a
language L ⊆ Σω is ω-regular if there is an NBW that recognizes L. We sometimes refer
to the three-letter acronyms as describing sets of languages, thus NBW is also the set of
ω-regular languages, and DBW is its subset of languages recognizable by DBW.

2.2 Repetition languages
Consider a language R ⊆ Σ∗, and assume ε /∈ R. We refer to R as the base language and
define the following repetition languages of words induced by R. We start with languages of
finite words:
1. For i ≥ 0, we define Ri = {w1 · w2 · · ·wi : wj ∈ R for all 1 ≤ j ≤ i}.
2. R∗ =

⋃
i≥0 R

i.
3. R+ =

⋃
i≥1 R

i.
We continue with languages of infinite words:
3. lim(R) = {w ∈ Σω : w[1, i] ∈ R for infinitely many i’s}.
4. ∞R = {Σ∗ · w1 · Σ∗ · w2 · Σ∗ · w3 · · · : wi ∈ R for all i ≥ 1 }.
5. Rω = {w1 · w2 · w3 · · · : wi ∈ R for all i ≥ 1}.
6. R# = {w ∈ Σω : for all i ≥ 1 there exists j ≥ 1 such that w[1, j] ∈ Ri}.



O. Kupferman and O. Leshkowitz 59:5

Thus, Ri, R∗, R+, and Rω are the standard bounded, finite, finite and positive, and
infinite concatenation operators. Then, lim(R) contains exactly all infinite words with
infinitely many prefixes in R, and∞R contains exactly all infinite words with infinitely many
disjoint infixes in R. Finally, R# contains exactly all words with prefixes with unboundedly
many concatenations of words in R. The language R# may seem equivalent to Rω, and the
difference between Rω and R# is in fact one of our main results.

I Example 1. Let R = (0 + 1)∗ · 0. Then, lim(R) =∞R = Rω = R# =∞0.
Now, let R = {0n · 1m, 1n · 0m : 0 ≤ m ≤ n}. While R is not regular, we have that

lim(R) = {0ω, 1ω} and ∞(R) = Rω = R# = {0, 1}ω are in DBW.
Finally, for all R ⊆ Σ∗, we have Rω ⊆ lim(R∗) and Rω ⊆ ∞R. Thus, Rω ⊆ lim(R∗)∩∞R.

One may suspect that Rω = lim(R∗)∩∞R. As a counterexample, consider R = 0 · (0 + 1)∗ ·0.
Then, Rω = 0 · ((0 + 1)∗ · 0 · 0)ω, lim(R∗) = 0 · ((0 + 1)∗ · 0)ω, and ∞R = ((0 + 1)∗ · 0)ω =∞0.
Thus, the word 0 · (1 · 0)ω is in lim(R∗) ∩ (∞R) but is not in Rω. J

As another warm up, we state the following lemma, which would be helpful in the sequel.

I Lemma 2. Consider languages R ⊆ Σ∗ and P ⊂ Σω such that ε /∈ R. If P ⊆ R · P , then
P ⊆ Rω.

Proof. Consider a word w0 ∈ P . Since P ⊆ R · P , then w0 = x1 · w1, for some x1 ∈ R
and w1 ∈ P . Have defined x1, . . . , xi ∈ R and wi ∈ P , such that w0 = x1 · · ·xi · wi, we can
continue and define xi+1 ∈ R and wi+1 ∈ P such that wi = xi+1 · wi+1. Overall, we have
defined {xi}∞i=1 ⊆ R such that w0 = x1 · x2 · x3 · · · . Hence, w0 ∈ Rω, and we are done. J

Note that if ε ∈ R, then P ⊆ R · P trivially holds for all P ⊆ Σω, whereas possibly
P 6⊆ Rω. Also, if ε ∈ R, then ∞R, Rω, and R# as defined above include also finite words,
in particular ε is a member of all of those languages. In order to circumvent the technical
issues that the above entails, for R ⊆ Σ∗ such that ε ∈ R, we define ∞R = ∞(R \ {ε}),
Rω = (R \ {ε})ω, and R# = (R \ {ε})#, and accordingly assume, throughout the paper, that
ε /∈ R.

We conclude the preliminaries with the case the base language R is finite. As we shall
see, then Rω = R# = lim(R∗), implying that they are all in DBW.

I Theorem 3. For every finite language R ⊆ Σ∗, we have that Rω = R# = lim(R∗).

Proof. Consider a finite language R ⊆ Σ∗. We prove that Rω ⊆ lim(R∗) ⊆ R# ⊆ Rω. First,
it is easy to see, regardless of R being finite, that Rω ⊆ lim(R∗).

We prove that lim(R∗) ⊆ R#. Clearly Rn+1 · Σω ⊆ Rn · Σω, and thus we only need to
show that for all w ∈ lim(R∗), we have that w ∈ Rn · Σω for infinitely many n’s. Since R is
finite, there exists some k ≥ 1 such that for all x ∈ R, we have that |x| ≤ k. It follows that
for all x ∈ R∗, if |x| ≥ m · k, then x ∈ Rn for some n ≥ m. Consider some word w ∈ lim(R∗).
By definition, w has infinitely many prefixes in R∗, thus for all m ≥ 1, there exists a prefix
x ∈ R∗ of w such that |x| ≥ m ·k. Hence, x ∈ Rn for some n ≥ m, implying that w ∈ Rn ·Σω

for infinitely many n’s, and we are done.
It is left to prove that R# ⊆ Rω. Consider a word w ∈ R#. Intending to use König’s

Lemma, we build a tree with set of nodes V = {(x, i) : x ≺ w and x ∈ Ri}. Since w ∈ R#,
the set V is infinite. As the parent of a node (x, i + 1) ∈ V , we set some (y, i) ∈ V that
satisfies x = y · z for some z ∈ R. Since x ∈ Ri+1, such a prefix y exists. Note that there
might be several y’s and only a single (y, i) is chosen to be the parent of (x, i+ 1). Observe
that all nodes (x, i) are connected to (ε, 0) by a single path of length i, and thus we have

MFCS 2020



59:6 On Repetition Languages

defined an infinite tree above V . The out degree of each node is bounded by |R| < ∞.
Hence, by König’s Lemma, the tree has an infinite path π = 〈(ε, 0), (x1, 1), (x2, 2), . . .〉. By
construction, for all i ≥ 0 there exists some yi such that xi+1 = xi · yi and yi ∈ R. It follows
that w = y1 · y2 · · · , and hence w ∈ Rω, and we are done. J

For every regular language R ⊆ Σ∗, the language R∗ is regular. Hence, by [12], the
language lim(R∗) is in DBW, and so Theorem 3 implies the following.

I Corollary 4. For every finite language R ⊆ Σ∗, we have that Rω and R# are in DBW.

As we shall see in Section 3, the case of an infinite base language R is much more difficult.

3 Expressiveness

In this section we examine which of the repetition languages are ω-regular, and for these
that are ω-regular, whether they are also DBW-recognizable. Note that going in the other
direction need not be possible. For example, the language L = 0 · 1ω is DBW-recognizable,
but there is no regular language R such that L = ∞R, L = R#, or L = Rω. By [12], a
language L ⊆ Σω is in DBW iff there exists a regular language R ⊆ Σ∗ such that L = lim(R).
In particular, this means that for every R ⊆ Σ∗ regular, we have that lim(R) ∈ DBW. We
study this question for ∞R, Rω, and R#.

It is well known that for every regular language R, the language Rω is ω-regular. This
follows, for example, from the translation of ω-regular expressions to NBWs. Studying
whether Rω is always DBW-recognizable is much harder, and is our main result:

I Theorem 5. For all regular languages R ⊆ Σ∗, the following are equivalent.
(1) Rω = R#.
(2) Rω is in DBW.
(3) R# is ω-regular.

The proof of Theorem 5 is partitioned into Lemmas 6, 7, and 8.

I Lemma 6. [(1) → (2) and (3)] If Rω = R#, then Rω is in DBW and R# is ω-regular.

Proof. By Landweber’s Theorem [12], an ω-regular language L is in DBW iff L is a countable
intersection of open sets in the product topology over Σω, induced by the discrete topology
over Σ. Specifically, the topology that is induced by the basis B = {Nx : x ∈ Σ∗}, where
Nx = x · Σω. That is, A ⊆ Σω is an open set in the product topology if there is a B ⊆ Σ∗
such that A = ∪x∈BNx = B · Σω. Equivalently, the topology induced by the metric
d : Σω × Σω → R≥0, defined d(x, y) = 1

2n , where n is the first position that x and y differ,
and d(x, y) = 0, if x = y. That is, A ⊆ Σω is an open set if for all x ∈ A there exists γ > 0
such that {y : d(x, y) < γ} ⊆ A.

As discussed above, an open set is a set of the form K · Σω for some K ⊆ Σ∗. Thus,
Landweber’s Theorem states that an ω-regular language L is in DBW iff there exists {Ki}i∈N,
Ki ⊆ Σ∗, such that L =

⋂
i Ki · Σω. By definition, the language R# fulfills the topological

condition in Landweber’s Theorem. Hence, if R# is ω-regular, then R# is in DBW.
Since R is regular, the language Rω is ω-regular. Thus, R# = Rω is ω-regular, and by

the above, both are also in DBW. J

I Lemma 7. [(2) → (1)] If Rω is in DBW , then Rω = R#.



O. Kupferman and O. Leshkowitz 59:7

Proof. Since, by definition, Rω ⊆ R#, we only have to prove that R# ⊆ Rω. Assume that
A = 〈Σ, Q, q0, δ, α〉 is a DBW for Rω. Let n = |Q|. Consider a word w ∈ R#, and let
r : N → Q be the run of A on w. Let t be a position from which r is contained in inf(r),
i.e., for all t′ ≥ t, we have that r(t′) ∈ inf(r). Let w = w1 · w2 · · ·wt+n · y be a partition of
w to words such that for all 1 ≤ j ≤ t + n, we have that wj ∈ R. Since w ∈ R#, such a
partition exists. Let qj = r(|w1 · · ·wj |), i.e., qj is the state A reaches when reading the prefix
w1 · · ·wj . Observe that since there are only n states, there must exist indices j1 and j2 such
that t ≤ j1 < j2 ≤ t+ n and qj1 = qj2 .

Consider the word w′ = w1 · w2 · · ·wj1 · (wj1+1 · · ·wj2)ω, and let r′ be the run of A on
w′. Since all the words wj are in R, then w′ ∈ Rω, and so inf(r′) ∩ α 6= ∅. Moreover,
since |w1 · · ·wj1 | ≥ t and wj1+1 · · ·wj2 closes a cycle from qj1 , then inf(r′) ⊆ inf(r). Hence,
inf(r) ∩ α 6= ∅. Thus, the run of A on w is accepting, and so w ∈ Rω. J

I Lemma 8. [(3) → (1)] If R# is ω-regular, then Rω = R#.

Proof. Since, by definition, Rω ⊆ R#, we only have to prove that R# ⊆ Rω. Let R ⊆ Σ∗ be
such that R# is ω-regular. Then, as Rω is ω-regular, so is K = R# \Rω. Let A be an NBW
for K. Assume by way of contradiction that L(A) 6= ∅. There exist some accepting state q
that is reachable from both an initial state by a path labeled with some u ∈ Σ∗, and from
itself by a cycle labeled with some v ∈ Σ∗. Thus, the word w = u.vω is a lasso-shaped word
in L(A). Let x be a prefix of w with x ∈ R|u|+|v|, and let x = y0.y1...y|v| be a partition of x
such that y0 ∈ R|u| and yi ∈ R for all i > 0. Note that |y0| ≥ |u|, thus for i > 0, the yi’s are
nonempty subwords of {v}+. For 0 ≤ i ≤ |v|, let ki be the position in v that is reached after
reading y0.y1...yi. I.e., ki = j, for 0 ≤ j ≤ |v| − 1, such that y0...yi = u.vt.v[1, j] for some
t ≥ 0. For example, if y0 = u.v, then k0 = 0, and if y0.y1 = u.v.v.v[1, 2], then k1 = 2. Since
0 ≤ ki ≤ |v| − 1 for all 0 ≤ i ≤ |v|, there are indices i and j such that i < j, and ki = kj .
Therefore, there exist t1, t2 ≥ 0 such that the following hold:
1. z1 = y0...yi = u.vt1 .v[1, ki] ∈ R+, and
2. z2 = yi+1...yj = v[ki + 1, |v|].vt2 .v[1, kj ] = v[ki + 1, |v|].vt2 .v[1, ki] ∈ R+.
Clearly, z1.(z2)ω ∈ Rω. Also, (z2)ω = v[ki + 1, |v|].vω, thus z1.(z2)ω = u.vω = w. Thus,
w ∈ Rω, contradicting the assumption that L(A) = R# \ Rω. Hence, L(A) = ∅; thus
R# ⊆ Rω. J

This completes the proof of Theorem 5. We now show that the theorem is not trivial, thus
there is a language R that does not satisfy the three criteria in the theorem, in particular
the criteria about DBW, which is our main interest.

I Theorem 9. There exists a regular language R ⊆ Σ∗, such that Rω is not in DBW.

Proof. We define the regular language R ⊆ {0, 1, $}∗ by the regular expression R = ($ + 0 ·
{0, 1, $}∗ · 1). It is easy to see that for every word w ∈ Rω, if w contains infinitely many 1’s,
then w contains infinitely many 0’s. Indeed, the only way to have only finitely many 1’s in a
word in Rω is to have an infinite tail of $’s. Hence, the word

w = 011$1$$1$$$1$$$$1$$$$$ . . . = 0 ·
∞∏

i=0
1$i

is not in Rω. We prove that w ∈ R#. For n ∈ N, consider the word wn = 0 ·
∏n

i=0 1$i =
(0 · (

∏n−1
i=0 1$i) · 1) · $n. It is easy to see that wn ∈ Rn+1. Since all of the wn’s are prefixes of

w, it follows that w ∈ R#.
Thus, w ∈ R# \Rω, implying that R# 6= Rω. Then, by Theorem 5, we have that Rω is

not in DBW, and we are done. J

MFCS 2020



59:8 On Repetition Languages

I Corollary 10. For every regular language R ⊆ Σ∗, we have that Rω is ω-regular. Yet, Rω

need not be in DBW, and R# need not be ω-regular.

We continue to ∞R, showing it is an easy special case of Rω. Given a regular language
R ⊆ Σ∗, let P = Σ∗ · R. It is easy to see that ∞R = Pω. As we argue below, the special
form of P implies it satisfies all the three criteria in Theorem 5:

I Theorem 11. For every regular language R ⊆ Σ∗, we have that (Σ∗ ·R)# = (Σ∗ ·R)ω.

Proof. Let P = Σ∗ ·R. We prove that P# ⊆ P · P#. By Lemma 2, the latter implies that
P# = Pω. Consider a word w ∈ P#, and let x0 ≺ w be a word of minimal length such
that x0 ∈ P . Let w′ ∈ Σω be such that w = x0 · w′. We prove that w′ ∈ P#, implying
that w ∈ P · P#. For all i ≥ 1, let xi · yi ≺ w, with xi ∈ P and yi ∈ P i. Note that by the
minimality of x0, it holds that x0 ≺ xi for all i ≥ 1. Now, for all i ≥ 1, let zi ∈ Σ∗ be the
suffix of xi, with xi = x0 · zi, and consider ui = zi · yi ≺ w′. Observe that for all i ≥ 1 we
have ui ∈ Σ∗ · P i = (Σ∗ ·R) · P i−1 = P i. Hence, w′ ∈ P#. J

I Corollary 12. For every regular language R ⊆ Σ∗, the language ∞R is in DBW.

4 Complexity

In this section we study the complexity of deciding, given an NFW A, whether L(A)ω is
DBW-recognizable. We first describe a simple linear translation of an NFW for R to an
NBW for Rω.

I Theorem 13. For every NFA A with n states, there exists an NBW A′ with O(n) states
such that L(A′) = L(A)ω.

Proof. First observe that if A is simple, thus it has a single initial state that is also the only
accepting state, then the language of A, when viewed as an NBW, is L(A)ω. Given a NFW
A with n states, we can construct a simple NFW A′ with n+ 1 states that recognizes L(A)∗.
Thus, the language of A′ when viewed as an NBW is (L(A)∗)ω = L(A)ω. In the full version,
we give the complete construction. J

I Theorem 14. Consider an NFA A. Deciding whether L(A)ω is DBW-recognizable is
PSPACE-complete.

Proof. We start with the upper bound. As described in the proof of Theorem 13, given
an NFW A with n states, we can construct an NBW for L(A)ω with n+ 1 states. By [10],
deciding whether the language of a given NBW is DBW-recognizable can be done in PSPACE.
Hence, membership in PSPACE for our result follows.

For the lower bound, we describe a logspace reduction from the universality problem
for NFWs, proved to be PSPACE-hard in [15]. For two alphabets Σ1 and Σ2, and two
words w1 ∈ Σω

1 and w2 ∈ Σω
2 , let w1 ⊕ w2 ∈ (Σ1 × Σ2)ω be the word obtained by merging

w1 and w2. Formally, if w1 = σ1
1 · σ1

2 · σ1
3 · · · and w2 = σ2

1 · σ2
2 · σ2

3 · · · , then w1 ⊕ w2 =
〈σ1

1 , σ
2
1〉 · 〈σ1

2 , σ
2
2〉 · 〈σ1

3 , σ
2
3〉 · · · . We use the operator ⊕ also for merging two finite words

w1 ∈ Σ∗1 and w2 ∈ Σ∗1 of the same length. Note that then, |w1 ⊕ w2| = |w1| = |w2|.
Consider an NFW A over some alphabet Σ, and assume ⊥ /∈ Σ. Consider the language

R = $∗ + 0 · {0, 1, $}∗ · 1. Note that R is similar to the language used in the proof of
Theorem 9 – here we include in R words in $∗. This does not change R# or Rω, and the
word 0 ·

∏∞
i=0 1 · $i is in R# \Rω, witnessing that Rω is not DBW-recognizable.



O. Kupferman and O. Leshkowitz 59:9

We define the language RA over the alphabet (Σ ∪ {⊥})× {0, 1, $} as follows.

RA = {(w1 · ⊥)⊕ w2 : w1 ∈ L(A) or w2 ∈ R} .

Note that since NFWs for R and for (Σ∪{⊥})∗ · ⊥ are of a fixed size, the size of an NFW
for RA is linear in the size of A and it can be constructed from A in logspace. We prove that
L(A) = Σ∗ iff Rω

A ∈ DBW. First, observe that if L(A) = Σ∗, then Rω
A = (∞⊥)⊕ {0, 1, $}ω,

and so Rω
A ∈ DBW. For the other direction, assume that L(A) 6= Σ∗, and consider a word

x ∈ Σ∗ \ L(A). Let wx = (x · ⊥)ω. Observe that for every partition y1 · y2 · y3 · · · of wx into
subwords with yi ∈ (Σ ∪ {⊥})∗ · ⊥, for all i ≥ 1, it must be that yi /∈ L(A) · ⊥ for all i ≥ 1.
It follows that for every w ∈ {0, 1, $}ω, if wx ⊕ w ∈ Rω

A, then w ∈ Rω.
Let m = |x ·⊥|, and consider the word w = 0m ·

∏∞
i=0 1m ·$im, obtained from 0 ·

∏∞
i=0 1 ·$i

by replacing each letter σ ∈ {0, 1, $} by the word σm. Using the same arguments used in the
proof of Theorem 9, we have that w 6∈ Rω. Hence, wx ⊕ w /∈ Rω

A.
We prove that wx ⊕ w ∈ R#

A. Note that wx ⊕ w = (x · ⊥)ω ⊕ 0m ·
∏∞

i=0 1m · $im =
((x ·⊥)⊕0m) ·

∏∞
i=0((x ·⊥)⊕1m) ·((x ·⊥)⊕$m)i. For all j ≥ 1, we have ((x ·⊥)⊕$m)j) ∈ Rj

A,
and ((x · ⊥) ⊕ 0m) · (

∏j−1
i=0 ((x · ⊥) ⊕ 1m) · ((x · ⊥) ⊕ $m)i) · ((x · ⊥) ⊕ 1m) ∈ RA. Hence,

yj = ((x · ⊥)⊕ 0m) ·
∏j

i=0((x · ⊥)⊕ 1m) · ((x · ⊥)⊕ $m)i ∈ Rj+1
A . Since yj ≺ wx ⊕ w, for all

j ≥ 1, we conclude that wx ⊕ w ∈ R#
A.

Thus, wx ⊕ w ∈ R#
A \Rω

A, and so, by Theorem 5, we have that Rω
A /∈ DBW. J

5 Succinctness

In this section we study the blow-up in going from an automaton for R to automata for
lim(R), ∞R, and Rω. Note that, by Theorem 5, a DBW for Rω is also a DBW for R#, and
thus we do not consider R# explicitly.

Studying succinctness, we also refer to the Rabin acceptance condition. There, α =
{〈G1, B1〉 , . . . , 〈Gk, Bk〉} ⊆ 2Q × 2Q, and a run r is accepting iff there is a pair 〈G,B〉 ∈ α
such that inf(r) ∩G 6= ∅ and inf(r) ∩B = ∅. We use DRW to denote deterministic Rabin
word automata. By [8], DRWs are Büchi type: if a DRW A recognizes a DBW-recognizable
language, then a DBW for L(A) can be defined on top of A. In other words, if L(A) is in
DBW, then we can obtain a DBW for L(A) by redefining the acceptance condition of A.

Our study of succinctness considers the cases R is given by a DFW or an NFW, and the
automaton for the repetition language is DBW, DRW, or NBW. We start with the case both
automata are deterministic. Then, the case of lim(R) is easy and well known: Given a DFW
A for R, viewing A as a DBW results in an automaton for lim(R) [12]. Hence, there is no
blow-up in going from a DFW for R to a DBW for lim(R). We continue to the case of ∞R.
We first consider the case we are given an NFW or DFW for Σ∗ ·R.

I Theorem 15. For every regular language R ⊆ Σ∗, there is no blow-up in going from an
NFW (DFW) for Σ∗ ·R to an NBW (resp. DBW) for ∞R.

Proof. Let A = 〈Q,Σ, δ, q0, α〉 be an NFW with a single initial state that recognizes Σ∗ ·R.
We define an NBW A′ for (Σ∗ ·R)ω =∞R as follows. Intuitively, A′ simulates a run of A,
each time the simulation reaches a state in α it “restarts” the simulation, and it accepts an
infinite word iff simulation has been restarted infinitely often. The partition to successful
simulations also partitions accepted words to infixes in L(A)ω, thus accepted words are in
∞R. In addition, if a word is in ∞R, then a word in Σ∗ ·R start in all positions, implying
that a successful simulation is always eventually completed. Formally, A′ = 〈Q,Σ, δ′, q0, α〉,
where for all σ ∈ Σ and q /∈ α, δ′(q, σ) = δ(q, σ), and otherwise δ′(q, σ) = δ(q0, σ). In the
full version, we prove that L(A′) = (Σ∗ · R)ω = ∞R. Note that since ε /∈ R, then q0 /∈ α.
Also, note that when A is deterministic, so is A′. J

MFCS 2020



59:10 On Repetition Languages

Going from a DFW for R to a DFW for Σ∗ ·R may involve an exponential blow-up. To
see this, consider for example the language R = 0 · (0 + 1)n. While it can be recognized by a
DFW with n+ 2 states, a DFA for (0 + 1)∗ · 0 · (0 + 1)n needs at least 2n states. Theorem 16
shows that this blow-up is inherited to the construction of a DBW for ∞R.

I Theorem 16. The blow-up in going from a DFW for R to a DBW for ∞R is 2O(n).

Proof. For the upper bound, starting with a DFW with n states for R, one can construct
an NFW with n+ 1 states for Σ∗ ·R. Its determinization results in a DFW with 2n+1 states
for Σ∗ ·R. Then, by Theorem 15, we end up with a DBW with 2n+1 states for ∞R.

For the lower bound, we describe a family of languages R1, R2, . . . of finite words, such
that for all n ≥ 1, the language Rn can be recognized by a DFW with O(n) states, yet a
DBW for ∞Rn needs at least 2n−1

n states.
Let Σ = {0, 1}. For n ≥ 1, we define Rn ⊆ Σ∗ as the set of words of length n+ 1 that

start and end with the same letter. That is, Rn = {σ · w · σ : for σ ∈ Σ and w ∈ Σn−1}.
Equivalently, Rn = 0 · (0 + 1)n−1 · 0 + 1 · (0 + 1)n−1 · 1. It is easy to see that Rn can be
recognized by a DFW with 2n+ 3 states. In the full version, we prove that a DBW for ∞Rn

needs at least 2n−1

n states. J

We continue to Rω. While it is easy, given a DFW for R, to construct an NBW for Rω

(see Theorem 13), staying in the deterministic model is complicated, and not only in terms
of expressive power. Formally, we have the following.

I Theorem 17. The blow-up in going from a DFW for R to a DBW for Rω, when exists, is
2O(n log n).

Proof. For the upper bound, one can determinize the NBW for Rω. Thus, starting with a
DFW with n states for R, we construct an NBW with n+ 1 states for Rω, and determinize
it to a DRW with 2O(n log n) states [20]. Since DRWs are Büchi type, the result follows.

For the lower bound, we describe a family of languages R1, R2, . . . of finite words, such
that for all n ≥ 1, the language Rn can be recognized by a DFW with O(n) states, Rω

n is in
DBW, yet a DBW for Rω

n needs at least n! states.
Given n ≥ 1, let Σn = [n]∪{#}, where [n] = {1, . . . , n}. We define the language Rn ⊆ Σ∗n

as the set of all finite words that start and end with the same letter from [n]. That is,
Rn = {σ · x · σ : for x ∈ Σ∗n and σ ∈ [n]}. It is easy to see that Rn is regular and a DFW for
Rn needs 2n+ 1 states. In the full verison, we prove that Rω

n is in DBW, and that a DBW
for Rω

n needs at least n! states. J

Since DRWs are Büchi type, Theorems 16 and 17 imply the following.

I Theorem 18. The blow-ups in going from a DFW with n states for R to DRWs for ∞R
and Rω are 2O(n) and 2O(n log n), respectively.

The succinctness analysis for case the automaton for the repetition languages is non-
deterministic is much easier, as the constructions described above involve no blow-up, and
except for the case of lim(R), they are valid also when R is given by an NFW. The case
of lim(R) is more complicated and is studied in [2]. It is easy to see that just viewing an
NFW for R as a Büchi automaton does not result in an NBW for lim(R). For example, an
NFW for (0 + 1) · 0 that guesses whether each 0 is the last letter, in which case it moves to
an accepting state with no successors, is empty when viewed as an NBW. The best known
construction of an NBW for lim(R) from an NFW A for R is based on a characterization
of the limit of L(A) as the union of languages, each associated with a state q of A and



O. Kupferman and O. Leshkowitz 59:11

containing words that have infinitely many prefixes whose accepting run reaches q. Following
this characterization, it is possible to construct, starting with A with n states, an NBW with
O(n3) states for lim(R) [2].

6 On Unboundedly Many vs. Infinitely Many

Essentially, the definition of R# replaces the “infinite” nature of Rω by an “unbound” one.
In this section we examine an analogous change in the definition of acceptance in Büchi
automata. Consider a nondeterministic automaton A = 〈Σ, Q, δ,Q0, α〉. When we view A
as a #-automaton, it accepts a word w ∈ Σω if for all i ≥ 0, there is a run of A on w that
visits α at least i times. Formally, for for all i ≥ 0, there is a run ri = qi

0, q
i
1, q

i
2, . . . of A on

w such that ri
j ∈ α for at least i indices of j ≥ 0. The #-language of A, denoted L#(A), is

the set of words that A accepts as above. We use the notations LF (A) and LB(A) to refer
the languages of A when viewed as an automaton on finite words and a Büchi automaton,
respectively. It is not hard to see that when A is deterministic, then LB(A) = L#(A). Indeed,
in both cases, A accepts a word w if its single run on w visits α infinitely often. When,
however, A is nondeterministic, its #-language may contain words accepted via infinitely
many different runs, none of which visits α infinitely often.

I Example 19. Consider the automaton A1 in Figure 1. Note that LF (A1) = R, for
R = ($ + 0 · {0, 1, $}∗ · 1), namely the language used in Theorem 9 for demonstrating a
language with R# 6= Rω. Here, we have that L#(A1) 6= LB(A1). For example, w =
011$1$$1$$$1$$$$1$$$$$ · · · = 0 ·

∏∞
i=0 1$i ∈ L#(A1) \ LB(A1).

Consider now the automaton A2. Here, LB(A2) = (0 + 1)∗ · 1ω. On the other hand, for
every i ≥ 1, there is a run of A2 on w = 01011011101111 · · · =

∏∞
i=0 01i that visits α at least

i times. Thus, w ∈ L#(A2) even though it has infinitely many 0’s and is not in LB(A2).
Note that the word w is also used to differentiate the Büchi and prompt-Büchi acceptance
conditions. A prompt-Buch automaton A accepts a word w iff there is i ≥ 1 and a run r of
A on w, such that r visits α at least once in every i successive states [1]. It is not hard to
see that w is not accepted by all DPWs for (1∗ · 0)ω. J

A1 :

q0 q1q2

0

1
1

$ $, 0, 1$, 0, 1

A2 :

q0 q1 q2
1 0

0, 1 1 0, 1

Figure 1 Automata with a non-regular #-language.

I Remark 20. Defining L#(A), we require the transition function δ of A to be defined for all
states and letters. Indeed, a rejecting sink in a #-automaton may support acceptance. To
see this, consider A2 from Example 19, and assume that rather than going with the letter 0
to the rejecting sink q2, the state q1 would have no outgoing transitions labeled 0. Then,
no run of A2 on the word w from the example can visit q1 even once without getting stuck.
Note that rather than requiring δ to be total, we could also define L#(A) as these words for
which, for all i ≥ 0, there is a run of A on a prefix of w that visits α at least i times. J

Interestingly, the relation between L#(A) and LB(A) is similar to the one obtained for
R# and Rω. Formally, we have the following.

MFCS 2020



59:12 On Repetition Languages

I Theorem 21. For all finite automata A, the following are equivalent.
(1) L#(A) is ω-regular.
(2) LB(A) = L#(A).
(3) L#(A) is in DBW.

Proof. Clearly, both (2)→ (1) and (3)→ (1). We prove that (1)→ (2) and (1)→ (3).
We start with (1)→ (2). First, clearly, for all automata A, we have that LB(A) ⊆ L#(A).

We prove that L#(A) ⊆ LB(A). Since L#(A) is ω-regular, then, as ω-regular languages are
closed under complementation, there is an NBW B for L#(A) \ LB(A). If L#(A) 6⊆ LB(A),
then LB(B) is not empty, which implies B accepts a lasso-shaped word, namely a word of
the form u · vω for u, v ∈ Σ∗ \ {ε}. But L#(A) and LB(A) agree on all lasso-shaped words.
Indeed, u · vω ∈ L#(A) iff A has a cycle that visits α and is traversed when the vω suffix is
read, iff u · vω ∈ LB(A). Hence, B is empty, L#(A) ⊆ LB(A), and we are done.

We continue to (1)→ (3). For all i ≥ 0, let Li be the set of words w ∈ Σ∗ such that there
exists a run of A on w that visits α exactly i times. Observe that L#(A) =

⋂
i≥0 Li · Σω.

Thus, L#(A) is a countable intersection of open sets. Hence, by Landweber, L#(A) being
ω-regular implies that L#(A) is in DBW. J

7 Discussion

The expressiveness and succinctness of different classes of automata on infinite words have
been studied extensively in the early days of the automata-theoretic approach to formal
verification [21]. Specification formalisms that combine regular expressions or automata with
temporal-logic modalities have been the subject of extensive research too [23, 22]. Quite
surprisingly, the expressiveness and succinctness of repetition languages, which are at the
heart of this study, have been left open. The research described in this paper started following
a question asked by Michael Kaminski about Rω being DBW-recognizable for every regular
language R. We had two conjectures about this question. First, that the answer is positive,
and second, that this must have been studied already. We were not able to prove either
conjectures, and in fact refuted the first. In the process, we developed the full theory of
repetition languages, their expressiveness, and succinctness, as well the notion of #-languages
which goes beyond ω-regular languages. Our results are summarized in Table 1 below. The√

and× symbols indicate whether a translation always exists. All blow-ups except for the
one from [2] are tight. The blow-ups in translations to DBWs apply also to DRWs (Th. 18).
Finally, for R#, translations exist whenever Rω is DBW-recognizable (Th. 5), in which case
the blow-ups agree with the one described for Rω.

Table 1 Translations from an automaton for R to automata for its repetition languages.

lim(R) ∞R Rω

√ √ ×
DFW to DBW O(n) 2O(n) 2O(n log n)

[12] Ths. 15 and 16 Ths. 9 and 17
√ √ √

DFW to NBW O(n) O(n) O(n)
[12] Th. 15 Th. 13
√ √ √

NFW to NBW O(n3) O(n) O(n)
[2] Th. 15 Th. 13



O. Kupferman and O. Leshkowitz 59:13

References
1 S. Almagor, Y. Hirshfeld, and O. Kupferman. Promptness in omega-regular automata. In 8th

Int. Symp. on Automated Technology for Verification and Analysis, volume 6252, pages 22–36,
2010.

2 B. Aminof and O. Kupferman. On the succinctness of nondeterminizm. In 4th Int. Symp.
on Automated Technology for Verification and Analysis, volume 4218 of Lecture Notes in
Computer Science, pages 125–140. Springer, 2006.

3 A. Arnold and D. Niwiński. Fixed point characterization of weak monadic logic definable sets
of trees. In M. Nivat and A. Podelski, editors, Tree Automata and Languages, pages 159–188.
Elsevier, 1992.

4 C. Baier, L. de Alfaro, V. Forejt, and M. Kwiatkowska. Model checking probabilistic systems.
In Handbook of Model Checking., pages 963–999. Springer, 2018.

5 R. Bloem, K. Chatterjee, and B. Jobstmann. Graph games and reactive synthesis. In Handbook
of Model Checking., pages 921–962. Springer, 2018.

6 J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press,
1962.

7 C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer, 2006.

8 S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis deterministic
Büchi automata. In Algorithms and Computations, volume 834 of Lecture Notes in Computer
Science, pages 378–386. Springer, 1994.

9 O. Kupferman. Automata theory and model checking. In Handbook of Model Checking, pages
107–151. Springer, 2018.

10 O. Kupferman and M.Y. Vardi. From linear time to branching time. ACM Transactions on
Computational Logic, 6(2):273–294, 2005.

11 R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

12 L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,
1969.

13 C. Löding. Optimal bounds for the transformation of ω-automata. In Proc. 19th Conf. on
Foundations of Software Technology and Theoretical Computer Science, volume 1738 of Lecture
Notes in Computer Science, pages 97–109, 1999.

14 R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

15 A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proc. 13th IEEE Symp. on Switching and Automata
Theory, pages 125–129, 1972.

16 D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory
of the tree and its complexity. In Proc. 13th Int. Colloq. on Automata, Languages, and
Programming, volume 226 of Lecture Notes in Computer Science, pages 275–283. Springer,
1986.

17 M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction
of the AMS, 141:1–35, 1969.

18 M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math. Logic
and Foundations of Set Theory, pages 1–23. North Holland, 1970.

19 M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
Research and Development, 3:115–125, 1959.

MFCS 2020



59:14 On Repetition Languages

20 S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, 1988.

21 W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages
133–191, 1990.

22 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

23 P. Wolper. Temporal logic can be more expressive. In Proc. 22nd IEEE Symp. on Foundations
of Computer Science, pages 340–348, 1981.


	Introduction
	Preliminaries
	Automata
	Repetition languages

	Expressiveness
	Complexity
	Succinctness
	On Unboundedly Many vs. Infinitely Many
	Discussion

