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Abstract

Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study
of algorithms and special structural properties. Unit interval graphs, their proper subclass, where
each interval has a unit length, has also been extensively studied. We study mixed unit interval
graphs – a generalization of unit interval graphs where each interval has still a unit length, but
intervals of more than one type (open, closed, semi-closed) are allowed. This small modification
captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free,
compared to unit interval graphs.

Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the
bubble model which turned out to be useful in algorithm design. We extend this model to the class
of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing
a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In
addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs.
We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit
interval graphs by Boyaci, Ekim, and Shalom (2017). Hence, the time complexity of this problem on
unit interval graphs remains open. We further provide a better algorithmic upper-bound on the
clique-width of mixed unit interval graphs.
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1 Introduction

A graph G is an intersection graph if there exists a family of nonempty sets F = {S1, . . . , Sn}
such that for each vertex vi in G, a set Si ∈ F is assigned in a way that there is an edge vivj
in G if and only if Si ∩ Sj 6= ∅. We say that G has an F-intersection representation. Any
graph can be represented as an intersection graph since per each vertex, we can use the set of
its incident edges. However, many important graph classes can be described as intersection
graphs with a restricted family of sets. Depending on the geometrical representation, different
types of intersection graphs are defined, for instance, interval, circular-arc, disk graphs, etc.

Interval graphs are intersection graphs of segments of the real line, called intervals. Such
a representation is being referred to as interval representation. They have been a well known
and widely studied class of graphs from both the theoretical and the algorithmic points of
view. Interval graphs have a nice structure, they are chordal and, therefore, also perfect
which provides a variety of graph decompositions and models. Such properties are often
useful tools for the algorithm design – the most common algorithms on them are based on
dynamic programming. Therefore, many classical NP-hard problems are polynomial-time
solvable on interval graphs, for instance Hamiltonian cycle [20], Graph isomorphism [4]
or Colorability [14] are solvable even in linear time. Surprisingly, the complexity of some
well-studied problems is still unknown despite extensive research, e.g. the MaxCut problem,
the L2,1-labeling problem, or the packing coloring problem.

An important subclass of interval graphs is the class of proper interval graphs, graphs
which can be represented by such an interval representation that no interval properly contains
another one. Another interval representation is a representation with intervals (of the same
type) of only unit lengths, graphs which have such a representation are called unit interval
graphs. Roberts proved [25] that a graph is a proper interval graph if and only if it is a unit
interval graph. Later, Gardi came up with a constructive combinatorial proof [13]. The
mentioned results do not specifically care about what types of intervals (open, closed, semi-
closed) are used in the interval representation. However, as far as there are no restrictions
on lengths of intervals, it does not matter which types of intervals are used [27]. The same
applies if there is only one type of interval in the interval representation. However, this is
not true when all intervals in the interval representation have unit length and at least two
types of intervals are used. In particular, the claw K1,3 can be represented using one open
interval and three closed intervals.

Recently, it has been observed that a restriction on different types of intervals in the unit
interval representation leads to several new subclasses of interval graphs. We denote the set
of all open, closed, open-closed, and closed-open intervals of unit length by U−−, U++, U−+,
and U+−, respectively. Let U be the set of all types of unit intervals. Although there are 16
different combinations of types of unit intervals, it was shown in [9, 24, 27, 18, 28] in the years
2012–2018 that they form only four different classes of mixed unit interval graphs. In par-
ticular, the following closure holds: ∅ ( unit interval ( unit open and closed interval (
semi-mixed unit interval ( mixed unit interval ( interval graphs, where unit open and
closed interval graphs have (U++ ∪ U−−)-representation, semi-mixed unit interval graphs have
(U++ ∪ U−− ∪ U−+)-representation, and mixed unit interval graphs have U-representation.
Hence, mixed unit interval graphs allow all types of intervals of unit length.

I Definition 1. A graph G is a mixed unit interval graph if it has a U-intersection repre-
sentation. We call such representation a mixed unit interval representation.

There are lots of characterizations of interval and unit interval graphs. Among many
of the characterizations, we single out a matrix-like representation called bubble model [16].
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A similar notion was independently discovered by Lozin [23] under the name canonical
partition. In the bubble model, vertices of a unit interval graph G are placed into a “matrix”
where each matrix entry may contain more vertices as well as it can be empty. Edges of G
are represented implicitly with quite strong conditions: each column forms a clique; and in
addition, edges are only between consecutive colums where they form nested neighborhood
(two vertices u and v from consecutive colums are adjacent if and only if v occurs in a
higher row than u). In particular, there are no edges between non-consecutive columns.
This representation can be computed and stored in linear space given a proper interval
ordering representation. We introduce a similar representation of mixed unit interval graphs,
called U-bubble model, and we extend some results from unit interval graphs to mixed unit
interval graphs using this representation. The representation has almost the same structure
as the original bubble model, except that edges are allowed in the same row under specific
conditions. We show that a graph is a mixed unit interval graph if and only if it can be
represented by a U-bubble model.

I Theorem 1. A graph is a mixed unit interval graph if and only if it has a U-bubble model.
Moreover, given a mixed unit interval representation of graph G on n vertices, a U-bubble
model can be constructed in O(n) time.

Given a graph G, the MaxCut problem is a problem of finding a partition of vertices of G
into two sets S and S such that the number of edges with one endpoint in S and the other
one in S is maximum among all partitions. There were two results about polynomiality of
the MaxCut problem in unit interval graphs in the past years; the first one by Bodlaender,
Kloks, and Niedermeier in 1999 [3], the second one by Boyaci, Ekim, and Shalom which has
been published in 2017 [5]. The result of the first paper was disproved by authors themselves
a few years later [2]. In the second paper, the authors used a bubble model for proving the
polynomiality. However, we realized that this algorithm is also incorrect. Moreover, it seems
to us to be hardly repairable. We provide further discussion and also a concrete example, in
Subsection 3.1.

Using the U -bubble model, we obtain at least a subexponential-time algorithm for MaxCut
in mixed unit interval graphs. We are not aware of any subexponential algoritms on interval
graphs. In general graphs, there has been an extensive research dedicated to aproximation of
MaxCut in subexponential time, see e.g. [1] or [17]. Furthermore, we obtain a polynomial-time
algorithm if the given graph has a U -bubble model with a constant number of columns. This
extends a result by Boyaci, Ekim and Shalom [6] who showed a polynomial-time algorithm
for MaxCut on unit interval graphs which have a bubble model with two columns (also called
co-bipartite chain graphs). The question whether the MaxCut problem is polynomial-time
solvable or NP-hard in unit interval graphs still remains open.

I Theorem 2. Let G be a mixed unit interval graph. The maximum cardinality cut can be
found in time 20̃(

√
n).

I Corollary 3. The size of a maximum cut in the graph class defined by U-bubble models
with k columns can be determined in the time O(nk+5). Moreover, for k = 2 in time O(n5).

Many NP-hard problems can be solved efficiently on graphs with bounded clique-width [8].
In general, it is NP-complete even to decide if the graph has clique-width at most k for a given
number k, see [11]. Unit interval graphs are known to have unbounded clique-width [15]. It
follows from results by Fellows et al. [10], and Kaplan and Shamir [19] that the clique-width
of (mixed) unit interval graphs is upper-bounded by ω (the maximum size of their clique) +1.
Heggernes et al. [16] improved this result for unit interval graphs using the bubble model.

MFCS 2020



57:4 U-Bubble Model for Mixed Unit Interval Graphs

There, the clique-width is upper-bounded by a minimum of α (the maximum size of an
independent set) + 1, and a parameter related to the bubble model representation which
is in the worst case ω + 1. We use similar ideas to extend these bounds to mixed unit
interval graphs using the U-bubble model. In particular, we obtain that the upper-bound
on clique-width is the minimum of the analogously defined parameter for a U -bubble model
and 2α+ 3. The upper-bound is still in the worst case ω + 1. The upper-bound can be also
expressed in the number of rows or colums of U-bubble model. See Section 4 for further
details. As a consequence, we obtain an analogous result to Corollary 3 for rows using the
following result. Fomin, Golovach, Lokshtanov, and Saurabh [12] showed that the MaxCut
problem can be solved in time O(n2t+O(1)) where t is clique-width of the input graph. By
combination of their result and our upper-bounds on clique-width (Theorem 8 in Section 4)
we derive not only polynomial-time algorithm when the number of columns is bounded
(with worse running time) but also a polynomial-time algorithm when the number of rows is
bounded, formulated as Corollary 4.

I Corollary 4. The size of a maximum cut in the graph class defined by U-bubble models
with k rows can be determined in the time O(n4k+O(1)).

Preliminaries and Notation. By a graph we mean a finite, undirected graph without loops
and multiedges. Let G be a graph. We denote by V (G) and E(G) the vertex and edge set of
G, respectively; with n = |V (G)| and m = |E(G)|. Let α(G) and ω(G) denote the maximum
size of an independent set of G and the maximum size of a clique in G, respectively. By
a family we mean a multiset {S1, . . . , Sn} which allows the possibility that Si = Sj even
though i 6= j.

Let x, y ∈ R be real numbers. We call the set {z ∈ R : x ≤ z ≤ y} closed interval [x, y],
the set {z ∈ R : x < z < y} open interval (x, y), the set {z ∈ R : x < z ≤ y} open-closed
interval (x, y], and the set {z ∈ R : x ≤ z < y} closed-open interval [x, y). By semi-closed
interval we mean interval which is open-closed or closed-open. We denote the set of all
open, closed, open-closed, and closed-open intervals of unit length by U−−, U++, U−+, and
U+−, respectively. Formally, U++ := {[x, x + 1] : x ∈ R}, U−− := {(x, x + 1) : x ∈ R},
U+− := {[x, x + 1) : x ∈ R}, and U−+ := {(x, x + 1] : x ∈ R}. We further denote the set
of all unit intervals by U := U++ ∪ U−− ∪ U+− ∪ U−+. From now on, we will be speaking
only about unit intervals. Let I be an interval, we define the left and right end of I as
`(I) := inf(I) and r(I) := sup(I), respectively. Let I, J ∈ U be unit intervals, I, J are almost
twins if `(I) = `(J). The type of an interval I is a pair (r, s) where I ∈ Ur,s, r, s ∈ {+,−}.

Let G = (V,E) be a graph and I an interval representation of G. Let v ∈ V be represented
by an interval Iv ∈ Ur,s, where r, s ∈ {+,−}, in I. The type of a vertex v ∈ V in I, denoted
by typeI(v), is the pair (r, s). We use type(v) if it is clear which interval representation we
have in mind. We follow the standard approach where the maximum over the empty set
is −∞. The notion of Õ denotes the standard “big 0” notion which ignores polylogarithmic
factors, i.e, O(f(n) logk n) = Õ(f(n)), where k is a constant.

2 Bubble model for mixed unit interval graphs

In this section, we present a U-bubble model, a new representation of mixed unit interval
graphs which is inspired by the notion of bubble model for proper interval graphs created by
Heggernes, Meister, and Papadopoulos [16] in 2009.
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I Definition 2 (Heggernes et al. [16], reformulated). If A is a finite non-empty set, then a 2-di-
mensional bubble structure for A is a partition B = 〈Bi,j〉1≤j≤k,1≤i≤rj

, where A =
⋃
i,j Bi,j ,

∅ ⊆ Bi,j ⊆ A for every i, j with 1 ≤ j ≤ k and 1 ≤ i ≤ rj, and B1,1 . . . Bk,rk
are pairwise

disjoint. The graph given by B, denoted as G(B), is defined as follows:
1. G(B) has a vertex for every element in A, and
2. uv is an edge of G(B) if and only if there are indices i, i′, j, j′ such that u ∈ Bi,j , v ∈ Bi′,j′ ,
|j − j′| ≤ 1, and one of the two conditions holds: either j = j′ or (i− i′)(j − j′) < 0.

A bubble model for a graph G = (V,E) is a 2-dimensional bubble structure B for V such
that G = G(B).

I Theorem 5 (Heggernes et al. [16]). A graph is a proper interval graph if and only if it has
a bubble model.

We define a similar matrix-type structure for mixed unit interval graphs where each
set Bi,j is split into four parts and edges are allowed also in the same row under specific
conditions.

I Definition 3. Let A be a finite non-empty set and B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be a 2-

dimensional bubble structure for A such that Bi,j = B++
i,j ∪ B

+−
i,j ∪ B

−+
i,j ∪ B

−−
i,j , Br,si,j are

pairwise disjoint, and ∅ ⊆ Br,si,j ⊆ Bi,j for every r, s ∈ {+,−} and i, j with 1 ≤ j ≤ k and
1 ≤ i ≤ rj. We call the partition B a 2-dimensional U-bubble structure for A.

We call each set Bi,j a bubble, and each set Br,si,j , r, s ∈ {+,−}, a quadrant of the
bubble Bi,j . The type of a quadrant Br,si,j , r, s ∈ {+,−}, is the pair (r, s). We denote
by ∗ both + and −, for example B∗+i,j = B−+

i,j ∪ B
++
i,j . Bubbles with the same i-index

form a row of B, and with the same j-index a column of B, we say vertices from bubbles
Bi,1 ∪ . . . ∪Bi,k appear in row i, and we denote i as their row-index. We define an analogous
notion for columns. We denote the index of the first row with a non-empty bubble as
top(j) := min {i | Bi,j ∈ B and Bij 6= ∅}. Thus, Btop(j),j is the first non-empty bubble in the
column j. Let B be a bubble, then row(B) and col(B) is the row-index and column-index of
B, respectively. Let u ∈ Bi,j , v ∈ Bi′,j′ ; we say that u is under than v and v is above u if
i > i′.

I Definition 4. Let B = 〈Bi,j〉1≤j≤k,1≤i≤rj
be a 2-dimensional U-bubble structure for A.

The graph given by B, denoted as G(B), is defined as follows:
1. V (G(B)) = A,
2. uv is an edge of G(B) if and only if there are indices i, i′, j, j′ such that u ∈ Bi,j , v ∈ Bi′,j′ ,

or v ∈ Bi,j, u ∈ Bi′,j′ , and one of the three conditions holds:
a. j = j′, or
b. j = j′ − 1 and i > i′, or
c. j = j′ − 1 and i = i′ and u ∈ B∗+i,j , v ∈ B

+∗
i′,j′ .

The definition says that the edges are only between vertices from the same or consecutive
columns and if u ∈ Bi,j and v ∈ Bi′,j+1, there is an edge between u and v if and only if
u is lower than v (i > i′), or they are in the same row and u ∈ B∗+i,j , v ∈ B

+∗
i′,j+1. Vertices

from the same column form a clique, as well as vertices from the same bubble. Vertices from
the same bubble are almost-twins and their neighborhoods can differ only in the same row,
anywhere else they behave as twins. Vertices from the same bubble quadrant are true twins.

MFCS 2020
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I Definition 5. Let G = (V,E) be a graph. A U-bubble model for a graph G is a 2-
dimensional U-bubble structure B = 〈Bi,j〉1≤j≤k,1≤i≤rj

for V such that
(i) G is isomorphic to G(B), and
(ii) each column and each row contains a non-empty bubble, and
(iii) no column ends with an empty bubble, and
(iv) top(1) = 1, and for every j ∈ {1, . . . , k − 1} : top(j) ≤ top(j + 1).

For a U-bubble model B = 〈Bi,j〉1≤j≤k,1≤i≤rj
, by the number of rows of B we mean

max{rj | 1 ≤ j ≤ k}. We define the size of the U -bubble model B as the number of columns
multiplied by the number of rows, i.e., k ·max{rj | 1 ≤ j ≤ k}.

See Figure 1 with an example of a mixed unit interval graph, given by a mixed unit
interval representation, and by a U-bubble model.
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(a) Graph G; the blue ellipse denotes clique cdefgh; colors are used only for clarity.
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Figure 1 Three different representations of a mixed unit interval graph G.
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Construction of U-bubble model. First, we construct a mixed unit interval representation
I of a graph G using the quadratic-time algorithm by [28]; then each vertex of G is represented
by a corresponding interval in I. Having a mixed unit interval representation of the graph,
our algorithm outputs a U-bubble model for the graph in O(n) time.

Given a mixed unit interval representation I, we put all intervals (vertices) that are
almost-twins in I into a single bubble, to the particular quadrant which corresponds by its
type to the type of the interval. From now on, we speak about bubbles only, we denote
the set of all such bubbles by B. We are going to determine their place (row and column)
to create a 2-dimensional U-bubble structure for B. We show that the U-bubble structure
is a U-bubble model for our graph. Based on the order σ by endpoints of intervals in the
representation I from left to right, we obtain the same order on bubbles in B. The idea of
the algorithm is to process the bubbles in the order σ, and assign to each bubble its column
immediately after processing it. During the processing, the algorithm maintains an auxiliary
path in order to assign rows at the end. Thus, rows are assigned to each bubble after all
bubbles are processed.

For bubbles A,B ∈ B, A <σ B denotes that A is smaller than B in order σ. We
denote the order of bubbles by subscripts, i.e., B1 <σ B2 <σ . . . are all bubbles in the
described order σ. For technical reasons, we create two new bubbles: Bstart, Bend such that
`(Bstart) = r(Bstart) = −∞. We refer to them as auxiliary bubbles, in particular, if we speak
about bubbles, we exclude auxiliary bubbles. We enhance the representation in a way that
each bubble B ∈ B has a pointer prev : B→ B ∪ {Bstart} defined as follows.

prev(B) =


Bstart if `(B) < r(B1),
A s. t. `(B) = r(A) if such a bubble A exists,
Bj s. t. j = maxi

{
i | `(B) > r(Bi)

}
otherwise.

In order to set rows at the end, the algorithm is creating a single oriented path P that
has the necessary information about the height of elements in the U -bubble structure being
constructed. Some of the arcs of the path can be marked with level indicator (L). For ease
of notation, we use nextP (Bi) = Bj to say that Bj is the next element on path P after
Bi. Note that we can view P as an order of bubbles; we denote by A <P B, A,B ∈ B,

the information that A occurs earlier than B on P . Also from technical reasons, P starts
and ends with Bstart and Bend, respectively. Except P and pointers prev and nextP , the
algorithm remembers the highest bubble of column i, denoted by Ctop

i . Also, denote by curr,
the index of the currently processed column.

Now, we are able to state the algorithm for assigning columns and rows to bubbles in
B and its properties which will be useful for showing the correctness.
Property 1: Bubbles are processed (and therefore added somewhere to P ) one by one

respecting the order σ.
Property 2: The order induced by P of already processed vertices never changes, i.e., once

A ≤P B then A ≤P B for the rest of the algorithm.
Property 3: The arc of P between bubbles A and B has the level indicator (L) if and only

if r(A) = `(B). Moreover, if the arc from A to B has level indicator, then
col(A) < col(B).

Property 4: col(Bi) ≤ col(Bj) whenever i ≤ j.
Property 5: prev(B) is the closest ancestor of B on P in the previous column, i.e., prev(B) =

max{A | A ≤P B, col(A) = col(B)− 1}.
Property 6: The order induced by P of vertices in the same column is exactly the order of

those vertices induced by σ.

MFCS 2020
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Algorithm. Given bubbles B1, B2, . . . in B ordered by σ, the algorithm creates P by
processing bubbles one by one in order σ. The algorithm outputs a row and a column to each
bubble. Initially, set col(B1) = 1, P = {Bstart, B1, Bend}, curr =1 and Ctop

1 = B1. Suppose
that i−1 bubbles have been already processed, for i ≥ 2. Split the cases of processing bubble
Bi based on the following possibilities:
i. `(Bi) > r(Ctop

curr): First increase curr by one, then set col(Bi) = curr and Ctop
curr = Bi.

ii. `(Bi) = r(Ctop
curr): First increase curr by one, then set col(Bi) = curr and Ctop

curr = Bi. Let
Q be nextP (Ctop

curr−1). Substitute arc in P from Ctop
curr−1 to Q with two new arcs Ctop

curr−1
to Bi that has L indicator set and from Bi to Q.

iii. `(Bi) < r(Ctop
curr): Set col(Bi) = curr.

We continue only with cases i. and iii. and distinguish multiple possibilities:
1. r(prev(Bi)) = `(Bi): Let Q be nextP (prev(Bi)). Then substitute arc in P from prev(Bi)

to Q with two new arcs prev(Bi) to Bi that has L indicator set and from Bi to Q.
2. r(prev(Bi)) < `(Bi): And split this case further based on the properties of Bi−1.

2a. prev(Bi−1) = prev(Bi): Let Q be nextP (Bi−1). Substitute arc in P from Bi−1 to Q
with two new arcs Bi−1 to Bi and from Bi to Q.

2b. prev(Bi−1) 6= prev(Bi): Let Q be nextP (prev(Bi)). Then substitute arc in P from
prev(Bi) to Q with two new arcs prev(Bi) to Bi and from Bi to Q.

Now, assign rows to bubbles by a single run over P , inductively: Take the first bubble B
of P and assign row(B) := 1. Let B be the last bubble on P with already set row index. We
are about to determine row(nextP (B)). If arc in P from B to nextP (B) has L indicator, set
row(nextP (B)) := row(B), otherwise row(nextP (B)) := row(B) + 1.

Proof of Theorem 1. The forward implication follows from the above algorithm. Its correc-
ntess is proved in the full version of the paper. Second, we prove the reverse implication: given
a U -bubble model for a graph G, we construct a mixed unit interval representation of G. Let
B = 〈Bi,j〉1≤j≤k,1≤i≤rj

be a U -bubble model of G. Let ε := 1/(max {rj | 1 ≤ j ≤ k}).We cre-
ate a mixed unit interval representation I of G as follows. Let v ∈ Br,si,j , where r, s ∈ {+,−}.
The corresponding interval Iv of v has the properties: Iv ∈ Ir,s and `(Iv) := j + (i − 1)ε.
Note that all vertices from the same bubble are represented by intervals that are almost
twins and the type of an interval corresponds with the type of the bubble quadrant. Since ε
was chosen such that ε(i − 1) < 1 for any row i in B, the graph given by the constructed
mixed unit interval representation is isomorphic to the graph given by B. J

3 Maximum cardinality cut

This section is devoted to the time complexity of the MaxCut problem on (mixed) unit
interval graphs. A cut of a graph G(V,E) is a partition of V (G) into two subsets S, S, where
S = V (G) \ S. Since S is the complement of S, we say for the bravity that a set S is a
cut and similarly we use terms cut vertex and non-cut vertex for a vertex v ∈ S and v ∈ S,
respectively. The cut-set of cut S is the set of edges of G with exactly one endpoint in S, we
denote it E(S, S). Then, the value |E(S, S)| is the cut size of S. A maximum (cardinality)
cut on G is a cut with the maximum size among all cuts on G. We denote the size of a
maximum cut of G by mcs(G). Finally, the MaxCut problem is the problem of determining
the size of the maximum cut.
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1

1 1

3

Figure 2 A counterexample to the original algorithm, a bubble model B where the numbers
denote the number of vertices in each bubble, and dashed lines indicate the edges between bubbles.

3.1 Time complexity is still unknown on unit interval graphs
As it was mentioned in the introduction, there is a paper A polynomial-time algorithm
for the maximum cardinality cut problem in proper interval graphs by Boyaci, Ekim, and
Shalom from 2017 [5], claiming that the MaxCut problem is polynomial-time solvable in unit
interval graphs and giving a dynamic programming algorithm based on the bubble model
representation. We realized that the algorithm is incorrect; this section is devoted to it.

We start with a counterexample to the original algorithm.

I Example 6. Let B = 〈Bi,j〉1≤j≤2,1≤i≤2, where B1,1 = {v1}, B2,1 = {v2}, B1,2 =
{v3, v4, v5}, B2,2 = {v6}, be a bubble model for a graph G, see also Figure 2. In other
words, this bubble model corresponds to a unit interval graph on vertices v1, v2, v3, v4, v5, v6
where there is an edge v1v2, and vertices v2, v3, v4, v5, v6 create a complete graph without an
edge v2v6.

Then, according to the paper [5], the size of a maximum cut in G is eight. To be more
concrete, the algorithm from [5] fills the following values of dynamic table: F0,1(0, 0) = 4,
F2,1(1, 1) = 8 for s2,1 = 1, s2,2 = 1, and finally, F0,0(0, 0) = 8 which is the output of the
algorithm. However, the size of a maximum cut in G is only seven. Suppose, for contradiction,
that the size of a maximum cut is eight. As there are ten edges in total in G, at least one
vertex of the triangle v3, v4, v5 must be a cut-vertex and one not. Then, those two vertices
have three common neighbors. Therefore, the size of a maximum cut is at most seven which
is possible; for example, v1, v4, v5 are cut-vertices.

The brief idea of the algorithm in [5] is to process the columns from the biggest to
the lowest column from the top bubble to the bottom one. Once we know the number of
cut-vertices in the actual processed bubble B (in the column j) and the number of cut-vertices
which are above B in the columns j and j + 1, we can count the exact number of edges. For
each bubble and each such number of cut-vertices in the columns j and j + 1 (above the
bubble), we remember only the best values of MaxCut1.

We claim that the algorithm and its full idea from [5] is incorrect since we lose the
consistency there – to obtain a maximum cut, we do not remember anything about the
distribution of cut vertices within bubbles, that was used in the previously processed column.
Therefore, there is no guarantee that the final outputted cut of the computed size exists. To
be more specific, one of two problems is in the moving from the column j to the column
j − 1 since we forget there too much. The second problem is that for each bubble Bi,j and
for each possible numbers x, x′ we count the size Fi,j(x, x′) of a specific cut and we choose
some values si,j , si,j+1 (possibly different; they represents the number of cut-vertices in the
bubbles Bi,j , Bi,j+1) which maximize the values of Fi,j(x, x′). In few steps later, when we
are processing the bubble Bi,j−1, again, for each possible values y and y′ we choose some

1 We refer the reader to the paper [5] for the notation and the description of the algorithm.
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values s′i,j−1 and s′i,j such that they maximize the size of Fi,j−1(y, y′). However, we need to
be consistent with the selection in the previous column, i.e., to guarantee that si′,j = si,j for
any particular values y, y′ = x, and x′.

A straightforward correction of the algorithm would lead to remembering too much for a
polynomial-time algorithm. However, we can be inspired by it to obtain a subexponential-
time algorithm. We attempted to correct the algorithm or extend the idea leading to the
polynomiality. However, despite lots of effort, we were not successful and it seemed to us
that the presented algorithm is hardly repairable. To conclude, the time complexity of the
MaxCut problem on unit interval graphs is still not resolved and it seems to be a challenging
open question.

3.2 Subexponential algorithm in mixed unit interval graphs
Here, we present a subexponential-time algorithm for the MaxCut problem in mixed unit
interval graphs. Our aim is to have an algorithm running in 2Õ(

√
n) time. Some of the ideas,

for unit interval graphs, originated in discussion with Karczmarz, Nadara, Rzazewski, and
Zych-Pawlewicz at Parameterized Algorithms Retreat of University of Warsaw 2019 [7].

Let us start with a notation. Let G be a graph, H be a subgraph of G, and S be a
cut of H, we say that a cut X of G agrees with S in H if X = S on H. Let G be a
mixed unit interval graph. We take a U-bubble model B = 〈Bi,j〉1≤j≤k,1≤i≤rj

for G and we
distinguish columns of B according to their number of vertices. We denote by bij the number
of vertices in bubble Bi,j and by cj the number of vertices in column j, i.e., bij = |Bi,j | and
cj =

∑rj

i=1 bi,j . We call a column j with cj >
√
n a heavy column, otherwise a light column.

We call consecutive heavy columns and their two bordering light columns a heavy part of
B (if B starts or ends with a heavy column, for brevity, we add an empty column at the
beginning or the end of B, respectively), and we call their light columns borders. Heavy part
might contain no heavy columns in the case that two light columns are consecutive.

Note that we can guess all possible cuts in one light column without exceeding the aimed
time, and that most of those light column guesses are independent of each other – once we
know the cut in the previous column, it does not matter what the cut is in columns before.
Furthermore, there are at most

√
n consecutive heavy columns which allow us to process

them together. More formally, we show that we can determine a maximum cut independently
for each heavy part, given a fixed cut on its borders, as stated in the following lemma. The
formal proof is in the full version.

I Lemma 7. Let G be a mixed unit interval graph and B be a U-bubble model for G partitioned
into heavy parts B̂1, · · · , B̂p in this order. If S = S0 ∪ · · · ∪Sp is a (fixed) cut of light columns
C0, . . . , Cp in G(B) such that Sj is a cut of Cj, j ∈ {0, . . . , p}, then the size of a maximum
cut of G that agrees with S in light columns is

mcs(G,S) =
p∑
j=1

mcs(G(B̂j), Sj−1 ∪ Sj)− (
p−1∑
j=1
|Sj | · |Cj \ Sj |)

where mcs(G(B̂j), Sj−1 ∪ Sj) denotes the size of a maximum cut of G(B̂j) that agrees with
Sj−1 ∪ Sj in its borders Cj−1, Cj.

Now, our aim is to determine the size of a maximum cut for a heavy part B̂ given a fixed
cut on its borders, which is stated in Theorem 6 (bellow). We provide only a sketch and key
ideas here.Note that if B̂ is a heavy part with no heavy columns, we can straightforwardly
count the number of cut edges of G(B̂), i.e., mcs(G(B̂)), assuming a fixed cut on borders is
given. Therefore, we are focusing on a situation where at least one heavy column is present
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in a heavy part. We use dynamic programming to determine the size of a maximum cut on
each such heavy part. First, we present a brief idea of the dynamic programming approach.
We take bubbles in B̂ which are not in borders and process them one-by-one in top-bottom,
left-right order. When processing a bubble, we consider all the possibilities of numbers of
cut-vertices in each its quadrant. We refer to the already processed part after i-th step as
Gi, that is Gi is the the induced subgraph of G(B̂) with V (Gi) = B1 ∪ · · · ∪Bi ∪ C0 ∪ Cl+1
where C0 and Cl+1 are borders of B̂ and Bj , j ∈ {1, . . . , i} are first i bubbles in top-bottom,
left-right order in B̂.

We store all possible (l + 1)-tuples (s1, s2, . . . , sl, a), where l is the number of heavy
columns, sj characterizes the number of all cut vertices in the j-th heavy column, and
number a characterizes the number of cut vertices of types (∗,+) in the last processed bubble.
Then, we define recursive function fi which will be related to the maximum size of a cut
that has exactly sj cut vertices in column j (for all j) in the already processed part Gi.
More precisely, we want the recursive function f to satisfy the following properties. For each
stored tuple s = (s1, . . . , sl, a) and for every i ∈ {1, . . . ,m}, where m is the total number of
bubbles in B̂, the value fi(s) is equal to the maximum size of a cut S in Gi that satisfies:

for every j ∈ {1, . . . , l}, the number of cut vertices in the column j in Gi is equal to sj ,
and S agrees with S0 ∪ Sl+1 in C0 ∪ Cl+1, and
a is equal to the number of cut vertices from B++

i ∪B−+
i ,

or fi(s) is equal to −∞ if there is no such cut.
Once, f satisfies the desired properties, we easily obtain Theorem 6 which gives us the

size of a maximum cut in the heavy part. Due to space limitation the formal definition of
the function f is in the full version. Here, we present a key observation for construction of f .
Observe, by the properties of U-bubble model, that the edges of Gi can be partitioned into
following disjoint sets: E1 = {edges of the graph Gi−1}, E2 = {edges inside Bi}, E3 = {edges
between Bi and the same column above Bi}, E4 = {edges between Bi and the next column
above Bi}, E5 = {edges between Bi and the bubble in the previous column and the same
row as Bi}, E6 = {edges between Bi and column C0 bellow Bi}, E7 = {edges between Bi
and the bubble in column Cl+1 in the same row as Bi}. The idea there is to count the size of
a desired cut of Gi using the sizes of possible cuts in Gi−1, which are stored in fi−1, and add
the size of a cut using edges E2 −E7, which we can count from the number of cut vertices in
currently processed bubble Bi and numbers in the (l + 1)-tuple we are processing.

I Theorem 6. Let B̂ be a heavy part with l ≥ 1 heavy columns (numbered by 1, . . . , l)
and borders C0 and Cl+1. Let B1,. . . ,Bm be bubbles in B̂ \ (C0 ∪ Cl+1) numbered in the
top-bottom, left-right order. Let S0 and Sl+1 be (fixed) cuts in C0 and Cl+1. Then, the size of
a maximum cut in G(B̂) that agrees with S0∪Sl+1 in light columns is mcs(G(B̂), S0∪Sl+1) =
maxs∈T fm(s).

Towards proving Theorem 2 and Corollary 3, it remains to prove the time complexity of
processing a heavy part, see the full version for complete proofs.

4 Clique-width of mixed unit interval graphs

The clique-width is one of the parameters which are used to measure the complexity of a
graph. Definition of the clique-width is quite technical but it follows the idea that a graph of
the clique-width at most k can be iteratively constructed such that in any time, there are at
most k types of vertices, and vertices of the same type behave indistinguishably from the
perspective of the newly added vertices. Formally, the clique-width of a graph G, denoted by
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cwd(G), is the smallest integer number of different labels that is needed to construct the
graph G using the four operations: creation of a labeled vertex, disjoint union of labeled
graphs, renaming all labels i to j, and connecting all vertices with label i to all vertices with
label j, i 6= j (already existing edges are not doubled). Such a construction of a graph can
be represented by an algebraic term composed of the operations, called cwd-expression.

We present here the main result for the better upper-bounds on clique-width which is
inspired by a similar result for unit interval graphs [16]. In general, unit interval graphs
(and therefore mixed unit interval graphs) have unbounded clique-width [15] and the known
upper-bound (even for interval graphs) is the size of a maximum clique + 1 [19, 10]. The
proofs can be found in the full version.

To state the main theorem, we need more notation. Let G be a mixed unit interval
graph and let B = 〈Bi,j〉1≤j≤k,1≤i≤rj

be a U -bubble model for G. We say that vertices from
the same column j of B create a group if they have the same neighbours in the following
column j + 1 of B. Let v ∈ Bi,j , the group number of vertex v in B, denoted by gB(v), is
defined as the maximum number of groups in N(v)∩

(⋃rj−1
i′=i+1 Bi′,j−1 ∪

⋃i−1
i′=1 Bi′,j ∪A

)
over

the sets A = B∗+i,j−1 ∪ B
+∗
i,j and A = Bi,j . Then the group number of G in B is defined as

ϕB(G) := maxv∈V (G) gB(v).

I Theorem 8. Let G be a mixed unit interval graph. Then

cwd(G) ≤ min {2α(G) + 3, ϕB(G) + 2} ≤ ω(G) + 1,

where B is a U-bubble model for G. Moreover, the corresponding expression can be constructed
in O(n+m) time providing B is given, otherwise in O(n2) time.

Observe that ϕB(G) ≤ 2 max {rj | 1 ≤ j ≤ k}. We also obtain a useful Corollary 7. In
particular, if the number of rows or number of columns is bounded, than clique-width is
bounded.

I Corollary 7. Let G be a mixed unit interval graph. Then cwd(G) ≤ min {k + 3, 2r + 2},
where k is the number of columns and r is the length of a longest column in a U-bubble model
for G.

Note that by an application of Lemma 4.1 in [23], slightly worse bounds on clique-width
in terms of rows and columns can also be derived. In particular, if we take two natural
orderings of the bubbles in U-bubble model, one taking rows first and the other taking
columns first, we obtain two times larger multiplicative factor than in Corollary 7.

5 Conclusion

A long-term task is to determine the difference between the time complexity of basic problems
on unit interval graphs compared to interval graphs. In particular, on a more precise scale of
mixed unit interval graphs, determine what is a key property for the change of the complexity.
Independently, a long-standing open problem is the time complexity of the MaxCut problem
on unit interval graphs, in particular, decide if it is NP-hard or polynomial time solvable.
An interesting direction to pursuit the first task could be the study of labeling problems;
either L2,1-labeling or Packing Coloring. Although, these are well-known problems, quite
surprisingly, their time complexity is open for interval graphs. The complexity of L2,1-labeling
is still wide open even for unit interval graphs, despite partial progress on specific values for
the largest used label [26]. Recently, there was a small progress on unit interval graphs leading
to an FPT algorithm (time f(k) · nO(1) for some computable function f and parameter k).
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It is shown in [21] that the packing coloring problem is in FPT parameterized by the size of
a maximum clique. We note that the algorithm can be straightforwardly extended to mixed
unit interval graphs. However, a polynomial time algorithm or alternatively NP-hardness for
(unit) interval graphs is of a much bigger interest.
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