
Compressing Permutation Groups into Grammars
and Polytopes. A Graph Embedding Approach
Lars Jaffke
University of Bergen, Norway
lars.jaffke@uib.no

Mateus de Oliveira Oliveira
University of Bergen, Norway
mateus.oliveira@uib.no

Hans Raj Tiwary
Charles University, Prague, Czech Republic
hansraj@kam.mff.cuni.cz

Abstract
It can be shown that each permutation group G v Sn can be embedded, in a well defined sense, in a
connected graph with O(n + |G|) vertices. Some groups, however, require much fewer vertices. For
instance, Sn itself can be embedded in the n-clique Kn, a connected graph with n vertices.

In this work, we show that the minimum size of a context-free grammar generating a finite
permutation group G v Sn can be upper bounded by three structural parameters of connected graphs
embedding G: the number of vertices, the treewidth, and the maximum degree. More precisely, we
show that any permutation group G v Sn that can be embedded into a connected graph with m

vertices, treewidth k, and maximum degree ∆, can also be generated by a context-free grammar of
size 2O(k∆ log ∆) ·mO(k). By combining our upper bound with a connection established by Pesant,
Quimper, Rousseau and Sellmann [33] between the extension complexity of a permutation group
and the grammar complexity of a formal language, we also get that these permutation groups can
be represented by polytopes of extension complexity 2O(k∆ log ∆) ·mO(k).

The above upper bounds can be used to provide trade-offs between the index of permutation
groups, and the number of vertices, treewidth and maximum degree of connected graphs embedding
these groups. In particular, by combining our main result with a celebrated 2Ω(n) lower bound on
the grammar complexity of the symmetric group Sn due to Glaister and Shallit [22] we have that
connected graphs of treewidth o(n/ log n) and maximum degree o(n/ log n) embedding subgroups
of Sn of index 2cn for some small constant c must have nω(1) vertices. This lower bound can be
improved to exponential on graphs of treewidth nε for ε < 1 and maximum degree o(n/ log n).
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50:2 Compressing Permutation Groups into Grammars and Polytopes

1 Introduction

Let Sn be the set of permutations of the set {1, ..., n} and str(Sn) be the set of strings in
{1, ..., n}n encoding permutations in Sn. The search for minimum size grammars generating
the language str(Sn) has sparked a lot of interest in the automata theory and in the complexity
theory communities, both in the study of lower bounds [18, 31, 20], and in the study of upper
bounds [25, 3, 2]. In particular, a celebrated result due to Ellul, Krawetz and Shallit [18]
states that any context-free grammar generating the language str(Sn) must have size 2Ω(n).
In this work, we complement this line of research by showing that the minimum size of a
context-free grammar representing a finite permutation group G v Sn can be upper bounded
by three structural parameters of connected graphs whose automorphism group embed G:
number of vertices, treewidth and maximum degree.

We say that a permutation group G v Sn can be embedded in a graph X with vertex
set [m] = {1, ...,m}, if m ≥ n and G is equal to the restriction of the automorphism group
of X to its first n vertices [n] = {1, ..., n}. A more precise definition of the notion of graph
embedding is given in Section 3. For a given class of connected graphs X , the X -embedding
complexity of G, denoted by gecX (G), is defined as the minimum m such that G can be
embedded in an m-vertex graph X ∈ X .

Given an alphabet Σ, the symmetric grammar complexity (SGC) of a formal language
L ⊆ Σn measures the minimum size of a context-free grammar accepting a permuted version
of L. As a matter of comparison, we note that languages accepted by online Turing machines
working in space s and with access to a stack have symmetric grammar complexity 2O(s) [24].
In this setting, the machine reads the input string w ∈ Σn from left to right, one symbol at a
time. While reading this string, symbols can be pushed into or popped from the stack. The
transitions relation depends on the current state, on the symbol being read at the input, and
on the symbol being read at the top of the stack. The caveat is that the number of symbols
used in the stack (which can be up to n) is not counted in the space bound s, which can be
much smaller than n (say s = O(logn)). The SGC of a language L ⊆ Σn is also polynomially
related to the minimum size of a read-once branching program with a stack accepting L (see
for instance [32]).

Our Results. We show that the automorphism group of any graph with n vertices, maximum
degree ∆ and treewidth k has symmetric grammar complexity at most 2O(k∆ log ∆) · nO(k)

(Theorem 3). More generally, we show that the SGC of groups that can be embedded
in m-vertex graphs of maximum degree ∆ and treewidth k is at most 2O(k∆ log ∆) ·mO(k)

(Theorem 5).
In linear programming theory, it can be shown that there are interesting polytopes

P ⊆ Rn, which can only be defined with an exponential (in n) number of inequalities, but
which can be cast as a linear projection of a higher dimensional polytope Q that can be defined
with polynomially many variables and constraints. Such a polytope Q is called an extended
formulation of P . Extended formulations of polynomial size play a crucial role in combinatorial
optimization because they provide a unified framework to obtain polynomial time algorithms
for a large variety of combinatorial problems. For this reason, extended formulations of
polytopes associated with formal languages and with groups have been studied intensively
during the past decades, both from the perspective of lower bounds [37, 21, 39, 34, 4, 13, 29],
and from the perspective of upper bounds [10, 17, 9, 10, 35, 19, 39, 14, 15].
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By combining our main theorem 5 with a connection established by Pesant, Quimper,
Rousseau and Sellmann [33] between the extension complexity of a permutation group and
the grammar complexity of a formal language, we show that any permutation group that can
be embedded in a connected graph with m vertices, treewidth k, and maximum degree ∆
can be represented by polytopes of extension complexity 2O(k∆ log ∆) ·mO(k) (Theorem 14).

By combining our upper bound from Theorem 5 with the 2Ω(n) lower bound from [18], we
obtain an interesting complexity theoretic trade-off relating the index of a permutation group
with the size, treewidth and maximum degree of a graph embedding this group (Theorem 19).
As a corollary of this trade-off, we show that subgroups of Sn with index up to 2cn for some
small constant c have superpolynomial graph embedding complexity on classes of graphs
with treewidth o(n/ logn) and maximum degree o(n/ logn) (Corollary 20). Additionally,
this lower bound can be improved from super-polynomial to exponential on classes of graphs
of treewidth nε (for ε < 1) and maximum degree o(n/ logn) (Corollary 21). In particular,
Corollary 21 implies exponential lower bounds for minor-closed families of connected graphs
(which have treewidth

√
n).

Related Work. Proving lower bounds for the size of graphs embedding a given permutation
group is a challenging and still not well understood endeavour. It is worth noting that it is
still not known whether the alternating group An can be embedded in a graph with nO(1)

vertices. We note that by solving an open problem stated by Babai in [7], Liebeck has shown
that any graph whose automorphism group is isomorphic to the alternating group (as an
abstract group) must have at least 2Ω(n) vertices [30]. Nevertheless, a similar result has not
yet been obtained in the setting of graph embedding of groups, and indeed, constructing
an explicit sequence of groups that have superpolynomial graph embedding complexity is
a long-standing open problem [8]. Our results in Corollary 20 and Corollary 21 provide
unconditional lower bounds for interesting classes of graphs for any group of relatively small
index (index at most 2cn for some small enough constant c).

The crucial difference between the abstract isomorphism setting considered in [30] and
our setting is in the way in which graphs are used to represent groups. In the setting of [30],
given a group G, the goal is to construct a graph X whose automorphism group is isomorphic
to G. On the other hand, in the graph embedding setting, we want the group G to be equal
to the action of the automorphism group Aut(X) on its first [n] vertices. In the abstract
isomorphism setting it has been shown by Babai that for any class of graphs X excluding
a fixed graph H as a minor, there exists some finite group which is not isomorphic to the
automorphism group of any graph in X [6]. Our Corollary 21 can be regarded as a result in
this spirit in the context of graph embedding. While the lower bound stated in Corollary
21 also applies to graphs that are not minor closed, this lower boud is only meaningful for
graphs of maximum degree at most o(n/ logn).

We observe that in Theorem 5 an exponential dependence on the maximum degree
parameter ∆ is unavoidable. Indeed, as stated above, the symmetric grammar complexity of
the language str(Sn) is 2Θ(n). On the other hand, for each n ∈ N+, the symmetric group
Sn can be embedded in the star graph Kn,1 with vertex set V (Kn,1) = {1, ..., n + 1}, and
edge set E(Kn,1) = {{i, n+ 1} : i ∈ {1, . . . , n}}, which is a connected graph of treewidth 1.
Nevertheless, it is not clear to us whether the logarithmic factor log ∆ can be shaved from
the exponent of the upper bound 2O(k∆ log ∆) ·mO(k). We also note that the connectedness
requirement is also crucial for our upper bounds since Sn can be embedded in the discrete
graph Dn with vertex set Dn = {1, ..., n}, and edge set E(Dn) = ∅.

MFCS 2020



50:4 Compressing Permutation Groups into Grammars and Polytopes

2 Preliminaries

Proofs of statements marked with ‘♠’ are deferred to the full version. We let N denote the
set of non-negative integers and N+ = N \ {0} denote the set of positive integers. For each
n ∈ N+, we let [n] = {1, ..., n}. For each finite set S we let P(S) = {S′ : S′ ⊆ S} denote
the set of all subsets of S. For each set S and each k ∈ N, we let

(
S
k

)
= {S′ ⊆ S : |S′| = k}

be the set of subsets of S of size k and
(
S
≤k
)

=
⋃k
i=0
(
S
i

)
the set of subsets of size at most k.

For a function f : X → Y and a set X ′ ⊆ X, we denote by f |X′ the restriction of f to X ′,
i.e. the function f |X′ : X ′ → Y with f |X′(x) = f(x) for each x ∈ X ′.

Prefix Closed Sets. For each r ∈ N+, we let [r]∗ be the set of all strings over [r], including
the empty string λ. Let p and u be strings in [r]∗. We say that p is a prefix of u if there
exists q ∈ [r]∗ such that u = pq. Note that u is a prefix of itself, and that the empty string
λ is a prefix of each string in [r]∗. A non-empty subset U ⊆ [r]∗ is prefix closed if for each
u ∈ U , each prefix of u is also in U . We note that the empty string λ is an element of any
prefix closed subset of [r]∗. We say that U ⊆ [r]∗ is well numbered if for each p ∈ [r]∗ and
each j ∈ [r], the presence of pj in U implies that p1, ..., p(j − 1) also belong to U .

Tree-Like Sets. We say that a subset U ⊆ [r]∗ is tree-like if U is both prefix-closed and
well-numbered. Let U be a tree-like subset of [r]∗. If pj ∈ U , then we say that pj is a child
of p, or interchangeably, that p is the parent of pj. If pu ∈ U for u ∈ [r]∗, then we say that
pu is a descendant of p. For a node p ∈ U we let U |p = {pu ∈ U : u ∈ [r]∗} denote the
set of all descendants of p. Note that p is a descendant of itself and therefore, p ∈ U |p. A
leaf of U is a node p ∈ U without children. We let leaves(U) be the set of leaves of U , and
leaves(U, p) be the set of leaves which are descendants of p.

Terms. Let Σ be a finite set of symbols. An r-ary term over Σ is a function t : Pos(t)→ Σ
whose domain Pos(t) is a tree-like subset of [r]∗. We denote by Ter(Σ) the set of all terms
over Σ. If t1, ..., tr are terms in Ter(Σ), and a ∈ Σ, then we let t = a(t1, ..., tr) be the term
in Ter(Σ) which is defined by setting t(λ) = a and t(jp) = tj(p) for each j ∈ [r] and each
p ∈ Pos(tj).

3 Embedding Permutation Groups in Graphs

For each finite set Γ, we let S(Γ) be the group of permutations of Γ. If Ω ⊆ Γ and α ∈ S(Γ),
then we say that α stabilizes Ω setwise if α(Ω) = Ω. Alternatively, we say that Ω is invariant
under α. We let αΩ be the permutation in S(Ω) which is defined by setting αΩ(i) = α(i) for
each i ∈ Ω. In other words, αΩ is the restriction of α to Ω. If G is a subgroup of S(Γ), then
we let stab(G,Ω) be the set of permutations in G that stabilize Ω setwise. We say that a
group G stabilizes Ω if stab(G,Ω) = G. Alternatively, we say that Ω is invariant under G.
We let G|Ω = {α|Ω : α ∈ G} be the set of restrictions of permutations in G to Ω. In what
follows, for each n ∈ N+ we write Sn to denote S([n]).

Graphs. Let m ∈ N+. An m-vertex graph is a pair X = ([m], E(X)), where E(X) ⊆
([m]

2
)
.

Isomorphisms and Automorphisms. If X and Y are two m-vertex graphs, then an iso-
morphism between X and Y is a permutation α ∈ Sm such that for each {i, j} ∈

([m]
2
)
,

{i, j} ∈ E(X) if and only if {α(i), α(j)} ∈ E(Y ). An automorphism of X is an isomorphism
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between X and X. We let Iso(X,Y ) denote the set of all isomorphisms between X and Y ,
and let Aut(X) = Iso(X,X) be the set of automorphisms of X. If Ω ⊆ [m] is invariant under
Aut(X) then we define Aut(X,Ω) = Aut(X)|Ω = {α|Ω : α ∈ Aut(X)}.

I Definition 1. Let G be a subgroup of Sn and X be a connected m-vertex graph where
m ≥ n. We say that G is embeddable in X if Aut(X, [n]) = G.

In other words, G is embeddable in X if the image of action of the automorphism group
of X on its first n vertices is equal to G. We note that the requirement that the graph X of
Definition 1 is connected is crucial for our applications.

Let X be a class of connected graphs and G be a subgroup of Sn. We say that G is
X -embeddable if there exists some graph X ∈ X such that G is embeddable in X. The X
embedding complexity of G, denoted by gecX (G) is the minimumm such that G is embeddable
in a graph X ∈ X with at most m vertices. If no such a graph X ∈ X exists, then we set
gecX (G) =∞.

4 Using Grammars to Represent Finite Permutation Groups

A context-free grammar is a 4-tuple G = (Σ,B, R,B1) where Σ is a finite set of symbols, B
is a finite set of variables, R ⊆ B × (Σ ∪ B)∗ is a finite set of production rules, and B1 ∈ B is
the initial variable of G. The notion of a string w generated by G can be defined with basis
on the notions of G-parse-tree and yield of a G-parse-tree, which are inductively defined as
follows.

1. For each a ∈ Σ ∪ {λ} the term t : {λ} → Σ ∪ {λ} which sets t(λ) = a is a G-parse-tree.
Additionally, yield(t) = a.

2. If t1, ..., tr are G-parse-trees and B → t1(λ) · t2(λ) · ... · tr(λ) is a production rule in
R, then the term t = B(t1, ..., tr) is a G-parse-tree. Additionally, yield(t) = yield(t1) ·
yield(t2) · ... · yield(tr). In other words, the yield of t is the concatenation of the yields of
the subterms t1, . . . , tr.

We say that a G-parse-tree t is accepting if t(λ) = B1. We say that a string w ∈ Σ∗
is generated by G if there is an accepting G-parse-tree with yield(t) = w. The language
generated by G is the set L(G) = {w ∈ Σ∗ : w is generated by G} of strings generated
by G. The size of G is defined as |G| =

∑
(B,u)∈R(1 + |u|) log(|Σ| + |B|), where |u| is the

number of symbols/variables in u, |Σ| is the number of elements in Σ and |B| is the number
of elements in B. We denote by G(Σ) the set of context-free grammars over the alphabet Σ.

A context-free grammar G is said to be regular if each production rule is either of the
form (B, a) for some B ∈ B and a ∈ Σ, or of the form (B, aB′) for some B,B′ ∈ B and some
a ∈ Σ. We denote by RG(Σ) the set of regular context-free grammars over the alphabet Σ.

Complexity Measures. If α ∈ Sn and w ∈ Σn then we let Perm(w,α) def= wα(1)wα(2)...wα(n)
be the string obtained by permuting the positions of w according to α. If L ⊆ Σn then we let
Perm(L,α) def= {Perm(w,α) : w ∈ L}. In other words, Perm(L,α) is the language obtained
by permuting the positions of each string w ∈ L according to α. The symmetric grammar
complexity of a language L ⊆ Σn is defined as the minimum size of a context-free grammar
generating Perm(L,α) for some α ∈ Sn. More precisely, sgc(L) = min{|G| : ∃α ∈ Sn, G ∈
G(Σ), L(G) = Perm(L,α)}.

MFCS 2020



50:6 Compressing Permutation Groups into Grammars and Polytopes

Analogously, the symmetric regular grammar complexity of a language L ⊆ Σn is defined as
the minimum size of a regular grammar generating Perm(L,α) for some α ∈ Sn. reg-sgc(L) =
min{|G| : ∃α ∈ Sn, G ∈ RG(Σ), L(G) = Perm(L,α)}.

We note that the symmetric regular grammar complexity of a language L ⊆ Σn is
polynomially related to the minimum size of an acyclic non-deterministic finite automaton
accepting some permuted version of L, or equivalently to the minimum size of a non-
deterministic read-once oblivious branching program accepting L. On the other hand, the
symmetric context-free complexity of a language L is polynomially related to the minimum
size of a pushdown automaton accepting some permuted version of L.

Let α : [n] → [n] be a permutation in Sn. We let str(α) = α(1)α(2)...α(n) ∈ [n]n be
the string associated with α. For each group G v Sn we let str(G) = {str(α) : α ∈ G}
be the language associated with G. The symmetric grammar complexity of G is defined
as sgc(G) def= sgc(str(G)). Analogously, the regular grammar complexity of G is defined as
reg-sgc(G) def= reg-sgc(str(G)).

If β : [n] → [n] and γ : [n] → [n] are permutations in Sn, then we let β ◦ γ be the
permutation that sends each i ∈ [n] to the number β(γ(i)). If S is a subset of Sn, we let
β ◦ S def= {β ◦ γ : γ ∈ S}. Note that if G is a subgroup of Sn, H is a subgroup of G, and
β ∈ G, then β ◦H is a left coset of H in G. The following proposition, which will be used in
the proofs of Lemma 16 and Theorem 5 follows from the fact that context-free languages are
closed under homomorphisms.

I Proposition 2 (♠). Let H ⊆ Sn, and α be a permutation in Sn. Let G be a context-free
grammar such that L(G) = Perm(str(H), α). Then for each permutation β ∈ Sn there is a
context-free grammar Gβ of size |Gβ | = |G| generating Perm(str(β ◦H), α).

The following theorem, which will be crucial to the proof of our main result (Theorem 5),
upper bounds the symmetric grammar complexity of the automorphism group of a graph in
terms of the number of its vertices, its maximum degree, and its treewidth. If the latter two
quantities are bounded, then this upper bound is polynomial in the number of its vertices.

I Theorem 3. Let X be a connected graph with n vertices, treewidth k and maximum degree
∆. Then

sgc(Aut(X)) ≤ 2O(k∆ log ∆) · nO(k).

Additionally, one can construct in time 2O(k∆ log ∆) · nO(k) a permutation α ∈ Sn and a
context-free grammar G(X) generating the language Perm(str(Aut(X)), α).

I Remark 4. If the graph X of Theorem 3 has pathwidth k, then one may assume that G(X)
is a regular grammar. In other words, in this case, reg-sgc(Aut(X)) ≤ 2O(k∆ log ∆) · nO(k).

Theorem 3 can be simultaneously generalized in two ways. First, by allowing grammars
to represent not only the automorphism group of a graph, but also groups that can be
embedded in the graph. Second, not only the groups themselves but also left cosets of such
groups can be represented in the same way. The result of these generalizations is stated in
the next theorem.

I Theorem 5. Let G v Sn, and suppose that G is embeddable in a connected graph X with
m vertices (m ≥ n), maximum degree ∆, and treewidth k. Then, for each β ∈ Sn,

sgc(β ◦G) ≤ 2O(k∆ log ∆) ·mO(k).

Additionally, given X and β, one can construct in time 2O(k∆ log ∆) ·mO(k) a permutation
α ∈ Sn (depending only on X) and a grammar Gβ generating the language Perm(str(β◦G), α).
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I Remark 6. If the graph X of Theorem 5 has pathwidth k, then one may assume that Gβ(X)
is a regular grammar. In other words, in this case, reg-sgc(β ◦G) ≤ 2O(k∆ log ∆) ·mO(k).

4.1 Proof of Theorem 5
In this section, we will prove Theorem 5, which establishes an upper bound for the symmetric
grammar complexity of a permutation group G in function of the size, treewidth and
maximum degree of a graph embedding G. On the way to prove Theorem 5, we will first
prove Theorem 3. The proofs of Remarks 4 and 6 follow by small adaptations of the proofs
of Theorems 3 and 5 respectively.

Subtree-Like Sets and Subterms. Let r ∈ N+, U ⊆ [r]∗ be a tree-like set, p, q ∈ U and u
be the longest common prefix of p and q. Let p = up′ and q = uq′. The distance between
p and q is defined as |p′| + |q′|. We call a set M ⊆ U subtree-like if there exists a p ∈ M ,
such that M = U |p. We let M ′ = {u | pu ∈M} be the tree-like set induced by M . For a set
U ′ ⊆ U , we call the smallest subtree-like set containing U ′ the closest ancestral closure of
U ′. For any subtree-like set M ⊆ Pos(t), we call t|M a subterm of t. If M ′ is the induced
tree-like set of M , then we call the corresponding term t′ with Pos(t′) = M ′ the t-term
induced by M . For a position p ∈ Pos(t), we denote by t|p the subterm of t rooted at p,
i.e. we let t|p

def= t|Pos(t)|p .

Neighborhood of a Vertex, and Induced Subgraphs. Let X be an n-vertex graph. For
a vertex v ∈ [n], we let N(v) def= {u ∈ [n] : {v, u} ∈ E(X)} be the neighborhood of
v. If S ⊆ [n] then we let N(S) =

⋃
v∈S N(v) be the neighborhood of S. Finally, we let

N(S) = N(S) ∪ S be the closed neighborhood of S. The subgraph of X induced by S is
defined as X[S] = (S,E(X[S])) where E(X[S]) = E(X) ∩

(
S
2
)
.

Tree decomposition as Terms. If we regard the set
(
V (X)
≤k+1

)
as an alphabet, then each

width-k tree decomposition of a graph X may be regarded as a term over
(
V (X)
≤k+1

)
. More

precisely, let X be an n-vertex graph and k ∈ {0, 1, . . . , n− 1}. A width-k tree decomposition
(or simply tree decomposition, if k is clear from the context) of X is a term t ∈ Ter(

(
V (X)
≤k+1

)
)

satisfying the following axioms.
(T1)

⋃
p∈Pos(t) t(p) = V (X)

(T2) For each vertex v ∈ V (X) and each of its neighbors u ∈ N(v), there is a position
p ∈ Pos(t) such that {v, u} ⊆ t(p).

(T3) For each vertex v ∈ V (X), the set {p ∈ Pos(t) | v ∈ t(p)} induces a subterm of t.
The treewidth of X, is defined as the smallest non-negative integer k ∈ N such that X admits
a width-k tree decomposition.

Annotated Tree Decompositions. Let X be an n-vertex graph, S and S′ be subsets of [n]
such that |S| = |S′|, and ν : S → S′ be a bijection. We say that ν is a partial automorphism
of X if ν is an isomorphism from the subgraph X[S] of X induced by S to the subgraph X[S′]
of X induced by S′. Next, we define the notion of annotated tree decomposition of a graph
X. These are tree-decompositions whose bags are annotated with partial automorphisms.

I Definition 7 (Annotated Bags). Let X be an n-vertex graph and k ∈ {0, . . . , n − 1}. A
k-annotated bag is a pair (S, ν), where S ∈

(
V (X)
≤k+1

)
, and ν : N [S] → V (X) is a function

satisfying the following two properties.

MFCS 2020
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1. ν(N(S)) = N(ν(S)). In other words, the image of N(S) under ν is equal to the closed
neighborhood of the image of S under ν.

2. ν is a partial automorphism of X.

We let B(X, k) be the set of all k-annotated bags of X. If b is a k-annotated bag in
B(X, k), then we denote the first coordinate of b by b.S and the second coordinate of b by
b.ν. In other words, b = (b.S, b.ν). We let ρ : B(X, k)→

(
V (X)
≤w+1

)
be the map that takes an

annotated bag b ∈ B(X, k) and sends it to the bag ρ(b) = b.S ∈
(
V (X)
≤k+1

)
. In other words,

the map ρ erases the second coordinate of the annotated bag b. We extend ρ to terms in
Ter(B(X, k)) positionwise. More precisely, for each term t̂ ∈ Ter(B(X, k)), we let ρ(t̂) be the
term in Ter(

(
V (X)
≤k+1

)
) where Pos(ρ(t̂)) def= Pos(t̂) and ρ(t̂)(p) def= ρ(t̂(p)) for each p ∈ Pos(t).

We say that a term t̂ ∈ Ter(B(X, k)) is an annotation of a term t ∈ Ter(
(
V (X)
≤k+1

)
) if ρ(t̂) = t.

Note that a term t ∈ Ter(
(
V (X)
≤k+1

)
) may have many annotations.

We give an upper bound on the number of annotated bags, see Definition 7. There are at
most O(nk+1) choices for the set S. Once such a set S is fixed, there are (at most) O(nk+1)
ways of mapping the vertices in S to vertices in X. (In other words, there are at most
O(nk+1) choices for the image of S under the partial automorphism ν.) Once the image of
S is fixed, for each vertex x ∈ S there are at most ∆! ways of mapping the neighbors of x
to the neighbors of ν(x). Hence there are at most (∆!)k+1 choices for obtaining a partial
automorphism for a fixed image of S. Therefore, by noting that ∆! = 2O(∆ log ∆), we have
the following observation.

I Observation 8. Let X be a graph of maximum degree ∆ and let k ∈ {0, . . . , n− 1}. Then,
|B(X, k)| ≤ 2O(k∆·log ∆) · nO(k).

I Definition 9 (Annotated Tree Decomposition). Let t̂ be a term in Ter(B(X, k)). We say
that t̂ is an annotated width-k tree decomposition if the following conditions are satisfied.
1. ρ(t̂) is a tree decomposition.
2. for each p ∈ Pos(t̂) with children p1, . . . , pd, and for each j ∈ [d], the restriction of t̂(p).ν

to N [t̂(p).S] ∩N [t̂(pj).S] is equal to the restriction of t̂(pj).ν to N [t̂(p).S] ∩N [t̂(pj).S].

Intuitively, the first condition states that if we take an annotated tree decomposition t̂
and forget annotation then the result is a tree-decomposition of X. The second condition
guarantees that the annotation is consistent along the whole tree decomposition, in the
sense that for each vertex x ∈ V (X), if the partial automorphism of one bag sends x to
vertex x′, then the partial automorphism of each bag sends x to x′. Each annotated tree
decomposition t̂ gives rise to a map µ(t̂) : V (X)→ V (X) which sets µ(t̂)|N [t̂(p).S] = t̂(p).ν
for each p ∈ Pos(t̂). We call the map µ the annotation morphism of t̂. The following lemma
is the main technical tool of this section.

I Lemma 10 (♠). Let X be an n-vertex graph of treewidth k and α ∈ Sn. Then, α is an
automorphism of X if and only if there exists an annotated tree decomposition t̂ of X such
that α = µ(t̂).

I Definition 11. A tree decomposition t is called permutation yielding, if there is a bijection
π : leaves(Pos(t))→ V (X) such that for each leaf p ∈ leaves(Pos(t)), t(p) = {π(p)}.

In other words, a tree decomposition t is permutation yielding if each vertex occurs
in precisely one leaf bag. The next lemma shows that any tree decomposition t can be
transformed in polynomial time into a permutation yielding tree decomposition of the same
width. We note that a statement analogous to Lemma 12 can also be obtained by observing
that tree-decompositions can be converted in polynomial time into branch decompositions of
roughly the same width [36]. We include a proof of Lemma 12 for completeness.
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I Lemma 12 (♠). Let X be an n-vertex graph, k ∈ {0, . . . , n − 1}, and t a width-k tree
decomposition of X. Then, one can construct from t in polynomial time a permutation
yielding width-k tree decomposition.

Let t̂ be an annotated tree decomposition with r leaves, and let yield(t̂)=(S1, ν1). . .(Sr, νr)
be the yield of t̂. In other words, yield(t̂) is the sequence of annotated bags obtained by
reading the leaves of t̂ from left to right. We define the annotation yield of t̂ as the sequence
yieldν(t̂) def= ν1(S1) . . . νm(Sr). Note that if t is a permutation yielding tree decomposition
of X, and t̂ is an annotation of t, then r = |V (X)|, and yieldν(t̂) is a string of singletons of
the form {v1}{v2} . . . {vr} where vi ∈ V (X) for each i ∈ [r], and vi 6= vj for i 6= j.

I Restatement of Theorem 3. Let X be a connected graph with n vertices, treewidth k and
maximum degree ∆. Then sgc(Aut(X)) ≤ 2O(k∆ log ∆) ·nO(k). Additionally, one can construct
in time 2O(k∆ log ∆) · nO(k) a permutation α and a context-free grammar G(X) generating
Perm(str(Aut(X)), α).

Proof. Since the graph X has treewidth k, one can construct in time 2O(k) · nO(1) a width
O(k) tree decomposition t of X. Additionally, from Lemma 12, one can assume that t is
yielding. Let yield(t) = {v1}{v2}...{vn}. Then we let αt be the permutation in Sn with
str(αt) = v1v2...vn. We set α = α−1

t . Since t can be constructed in time 2O(k) · nO(1), so
can the permutation α. We show that from t one can construct a context-free grammar G
accepting the language L(G) = Perm(str(Aut(X)), α). Intuitively, the parse trees accepted
by the grammar G correspond to annotations of t, and by Lemma 10, these annotations
correspond to automorphisms of X. Formally, the grammar G = (Σ,B, R,B1) is defined as
follows. We let Σ = V (X) = [n] and B = (Pos(t)×B(X, k)) ∪ {B1} where B1 is the initial
variable of G. Recall that ρ : B(X, k)→

(
V (X)
≤k+1

)
is the map that erases the second coordinate

from each annotated bag b ∈ B. The set R contains the following rules.

1. A rule B1 → (λ, b) for each annotated bag b ∈ B(X, k) such that ρ(b) = t(λ). Intuitively,
each such b is an annotated bag corresponding to the bag at the root of t.

2. For each non-leaf position p ∈ Pos(t) \ leaves(Pos(t)), with children p1, . . . , pd, we have
a rule (p, b)→ (p1, b1)(p2, b2) . . . (pd, bd), for each sequence b, b1, ..., bd of annotated bags
in B(X, k) satisfying the following conditions:
(i) ρ(b) = t(p) and for j ∈ [d], ρ(bj) = t(pj), and
(ii) for each j ∈ [d], b.ν|S∗ = bj .ν|S∗ where S∗ = b.S ∩ bj .S.

3. A rule (p, b)→ j for each leaf position p ∈ Pos(t) with b.S = {i} and b.ν(i) = j.

These rules defined above ensure that if we take an accepting parse tree t of G and remove
its root (i.e the variable B1) and its leaves (which are labeled with numbers in [n]) then
we are left with an annotated version t̂ of the tree decomposition t. By Lemma 10, t̂ is
an annotation of t if and only if the map µ(t̂) : V (X) → V (X) is an automorphism of X.
Therefore, since str(µ(t̂)) = yield(t), we have that L(G) = Perm(str(Aut(X)), α). Since we
can assume that |Pos(t)| = O(kn) (see e.g. [16, Lemma 7.4]), and for each bag, there are at
most 2O(k∆ log ∆) · nO(k) annotations, we have that |G| = 2O(k∆ log ∆) · nO(k), as claimed. J

I Restatement of Theorem 5. Let G v Sn, and suppose that G is embeddable in a connected
graph X with m vertices (m ≥ n), maximum degree ∆, and treewidth k. Then, for each
β ∈ Sn, sgc(β ◦G) ≤ 2O(k∆ log ∆) ·mO(k). Additionally, given X and β, one can construct in
time 2O(k∆ log ∆) ·mO(k) a permutation α ∈ Sn (depending only on X) and a grammar Gβ
generating the language Perm(str(β ◦G), α).

MFCS 2020



50:10 Compressing Permutation Groups into Grammars and Polytopes

Proof. This is a consequence of Theorem 3, together with the fact that context free
grammars are closed under homomorphisms. More precisely, we first construct in time
2O(k∆ log ∆) · mO(k) a permutation α′ ∈ Sm, and a context-free grammar G′ such that
L(G) = Perm(str(Aut(X)), α). Now let h : [m]\[n] → {λ} be the map that sends each
number in [m]\[n] to the empty string λ. Then using G, one can construct in time polyno-
mial in |G′| a context-free grammar G′′ whose language L(G′′) is the homomorphic image
of L(G′) under h. Additionally, one may assume that the grammar G′′ has no production
rule containing the empty string λ. Let α = α′|[n] be the permutation in Sn obtained by
restricting α′ to [n]. Note that α is well defined, since the fact that G v Sn is embeddable
in X implies that α′([n]) = [n], and therefore that α([n]) = [n]. Then we have that the
language accepted by G′′ is L(G′′) = Perm(str(Aut(X)), α).

Finally, let β : [n] → [n] be a permutation in Sn. Then we can regard β as a usual
map from [n] to [n], and using again the fact that context-free languages are closed under
homomorphism, we can construct in time O(|G′′|) a context-free grammar G accepting the
homomorphic image of L(G′′) under β. This homomorphic image is simply the language
Perm(str(β ◦G), α). J

5 Polytopes for Permutation Groups

In linear-programming theory, the n-permutahedron is the polytope P (Sn) formed by the
convex-hull of the set of permutations of the set {1, . . . , n}. It can be shown that to define
the permutahedron on the n-dimensional space, 2Ω(n) constraints are required. On the other
hand, a celebrated result from Goemans states that the n-permutahedron has extended
formulations with O(n logn) variables and constraints [23].

More generally, given a subgroup G v Sn, one can define the G-hedron as the convex-hull
of the permutations in G. The technique used in [23] to upper bound the extension complexity
of polytope P (Sn), which is based on the existence of sorting networks of size O(n logn) [1],
has been used to show that polytopes corresponding to certain families of groups have small
extension complexity. This includes polytopes corresponding to the alternating group [38],
and to finite reflection groups [27, 28, 26, 11]. Nevertheless, techniques to prove non-trivial
upper bounds on the extension complexity of polytopes associated with general permutation
groups based on structural properties of these groups are still lacking. We note that a trivial
upper bound of |G| can be obtained from the fact that the extension complexity of a polytope
is upper bounded by its number of vertices. Nevertheless, |G| may have up to n! = 2Ω(n logn)

elements.
In this section, by combining our main theorem (Theorem 5) with a connection established

in [33] between the grammar complexity of a given formal language L ⊆ [n]r (for n, r ∈ N+)
and the extension complexity of the polytope P (L) associated with L, we obtain a new
approach for proving upper bounds on the extension complexity of a general permutation
group G v Sn based on structural parameters of graphs embedding G (Theorem 14). We
note that Theorem 14 is more general in the sense that it also can be used to upper bound
the extension complexity of polytopes associated with cosets of G.

Let X be a set of real variables. A real vector over X is a function v : X → R. We let
RX be the set of all real vectors over X . Given a set W = {v1, . . . , vr} of real vectors, the
convex-hull of W is the set conv(W ) = {

∑r
i=1 αivi : αi ≥ 0,

∑r
i=1 αi = 1} of all convex

linear-combinations of vectors in W . A subset P ⊆ RX is a polytope over X if P = conv(W )
for some finite set W of real vectors over X . For each such a polytope P , there is a finite
set E of linear inequalities over X such that P is the set of vectors in RX which satisfy each
inequality in E .
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Let X and Y be sets of real variables with X ∩ Y = ∅. We say that a (X ∪ Y)-polytope
Q is an extended formulation of P if there exists a linear projection ρ : RX∪Y → RX such
that P = ρ(Q). The extension complexity of P , denoted by xc(P ), is defined as the least
number of inequalities necessary to define an extended formulation of P .

For each n ∈ N+, we let [n]X be the set of real vectors over X whose coordinates are chosen
from the set [n]. For r ∈ N+, let w = w1 . . . wr be a string in [n]r, and let Xr = {x1, ..., xr}
be an ordered set of real variables. We let ŵ : Xr → [n] be the real vector over Xr which
sets ŵi = wi for each i ∈ [r]. Given a subset L ⊆ [n]r, the Xr-polytope associated with L is
defined as P (L) = conv({ŵ : w ∈ L}).

The following theorem, proved in [33], relates the grammar complexity of a subset L ⊆ [n]
with the extension complexity of the polytope P (L).

I Theorem 13 ([33]). Let G be a context-free grammar such that L(G) ⊆ [n]r for some
n, r ∈ N+. Then the extension complexity of the polytope P (L(G)) is upper bounded by
|G|O(1). A system of inequalities defining P (L(G)) can be constructed in time |G|O(1).

If G is a subgroup of Sn, and β ∈ G, then we let P (β ◦ G) ..= P (str(β ◦ G)) be the
polytope associated with the coset β ◦G. The following theorem, which is the main result of
this section, follows by a direct combination of Theorem 5 with Theorems 13.

I Theorem 14. Let G v Sn, and suppose that G is embeddable on a graph X with m

vertices (m ≥ n), maximum degree ∆, and treewidth k. Then, for each β ∈ Sn, the extension
complexity of the polytope P (β ◦G) is at most 2O(k∆ log ∆) ·mO(k). Additionally, given X and
β, a system of inequalities defining P (β ◦G) can be constructed in time 2O(k∆ log ∆) ·mO(k).

6 Complexity Theoretic Tradeoffs

In 1969 Babai and Bouwer showed independently that any subgroup G of Sn can be embedded
in a connected graph with O(n+ |G|) vertices [5, 12]. Note that |G| can be as large as n!.
Classifying which groups can, or cannot, be embedded in connected graphs with a much
smaller number of vertices is an important problem in algebraic graph theory [8]. Indeed,
constructing an explicit class of groups with superpolynomial graph embedding complexity
is still an open problem, although a conjecture of Babai states that the alternating group An
has graph embedding complexity 2Ω(n) [7]. We note that Liebeck has shown that any graph
whose automorphism group is isomorphic to the alternating group An (as an abstract group)
has an exponential number of vertices [30]. Nevertheless this result does not extend to the
graph embedding setting.

In this section we use our main theorem to establish a trade-off between the index of
a subgroup G of Sn, and structural parameters of graphs embedding G. In particular,
for several classes of graphs X , this trade-off can be used to prove lower bounds on the
X -embedding complexity of subgroups of Sn of small index (i.e index up to 2cn for some
small constant c). We start by stating the following immediate observation.

I Observation 15. Let G1 and G2 be context-free grammars. Then there is a context-free
grammar G1 ∪G2 of size O(|G1|+ |G2|) such that L(G1 ∪G2) = L(G1) ∪ L(G2).

The next lemma states that the symmetric grammar complexity of a group G is at most
the index of a subgroup H in G times the symmetric grammar complexity of H. Recall that if
G is a group and H is a subgroup of G, then the index of H in G is defined as IG(H) = |G|

|H| .

I Lemma 16 (♠). Let H v G v Sn. Then sgc(G) ≤ IG(H) · sgc(H).
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It has been shown in [18] (Theorem 30) that the language str(Sn) cannot be represented
by context-free grammars of polynomial size. Since str(Sn) is invariant under permutation
of coordinates, i.e., str(Sn) = Perm(str(Sn), α) for any permutation α ∈ Sn, we have that
the symmetric context-free complexity of str(Sn) is exponential.

I Theorem 17 (Theorem 30 of [18]). sgc(Sn) ≥ 2Ω(n).

Now, by combining Theorem 17 with Lemma 16 (for G = Sn), we have the following
immediate corollary.

I Corollary 18. Let H be a subgroup of Sn. Then sgc(H) ≥ 2Ω(n)

ISn (H) .

By combining Theorem 5 with Corollary 18, we have a trade-off between the index of a
group H, and the number of vertices, the treewidth and the maximum degree of a graph
embedding H. Below, we write exp2(x) to denote 2x.

I Theorem 19 (♠). There exist positive real constants c1, c2 and c3 such that for large
enough n, and each subgroup H of Sn, if H is embeddable in a connected graph with m

vertices, maximum degree ∆ and treewidth k, then

m ≥ exp2

(
c1n− c2k∆ log ∆− c3 log ISn(H)

k

)
.

As a corollary of Theorem 19, we get the following lower bound stating that subgroups of
Sn with small index (i.e. index at most 2cn for some small constant c) cannot be embedded
in graphs of treewidth o(n/ logn), maximum degree o(n/ logn) and a polynomial number of
vertices.

I Corollary 20. Let X be a class of connected graphs of treewidth o(n/ logn) and maximum-
degree o(n/ logn). Then there is a function f ∈ ω(1), and a constant c ∈ R, such that for
each sufficiently large n, each subgroup G of Sn of index ISn(G) ≤ 2cn has X -embedding
complexity at least nf(n).

For classes of graphs of treewidth nε (for ε < 1), and maximum degree o(n/ logn),
Theorem 5 implies exponential lower bounds on the embedding complexity of groups of small
index (i.e. index at most 2cn for some small constant c).

I Corollary 21. Let X be a class of connected graphs of treewidth nε (for ε < 1) and maximum-
degree o(n/ logn). Then there exist constants c, c′ ∈ R, such that for each sufficiently large n,
each subgroup G of Sn of index ISn

(G) ≤ 2cn has X -embedding complexity at least 2c′n1−ε .

In particular, for some small c, c′ ∈ R, the graph embedding complexity of subgroups of
Sn of index at most 2c′n is lower bounded by 2c

√
n for any minor closed class of graphs of

maximum degree o(n logn). Note that these classes of graphs have treewidth at most
√
n.

7 Conclusion and Open Problems

In this work, we have established new connections between three complexity measures for
permutation groups: embedding complexity parameterized by treewidth and maximum-
degree, symmetric grammar complexity and extension complexity. In particular, we have
shown that groups that can be embedded in graphs of small treewidth and degree have
small symmetric grammar complexity and small extension complexity. These results can also
be used to translate strong lower bounds on the symmetric grammar complexity or on the
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extension complexity of a group G v Sn into lower bounds on the embedding complexity of
G. In particular, using this approach, we have shown that subgroups G v Sn of sufficiently
small index have superpolynomial embedding complexity on classes of graphs of treewidth
o(n/ logn) and maximum degree o(n/ logn).

Below, we state some interesting open problems related to our work.

I Problem 22. Construct an explicit family of groups {Gn}n∈N+ with superpolynomial graph
embedding complexity, that is to say, such that gec(Gn) = nΩ(1).

In particular, it is not known if the graph embedding complexity of the alternating group
An is superpolynomial. Note that the graph embdding complexity of the symmetric group
Sn is n, which is witnessed by Kn, the complete graph with vertex set {1, . . . , n}.

I Problem 23. Does the alternating group An have superpolynomial graph embedding com-
plexity?

The n-alternahedron polytope P (An) is the polytope associated with the alternating
group An. The technique used in [23] to prove an O(n logn) upper bound on the extension
complexity of the n-permutahedron P (Sn) was generalized in [38] to show that the extension
complexity of the n-alternahedron is O(n logn).
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