
Linear High-Order Deterministic Tree Transducers
with Regular Look-Ahead
Paul D. Gallot
INRIA, Université de Lille, Villeneuve d’Ascq, France
paul.gallot@inria.fr

Aurélien Lemay
Université de Lille, INRIA, CNRS, Villeneuve d’Ascq, France
aurelien.lemay@univ-lille.fr

Sylvain Salvati
Université de Lille, INRIA, CNRS, Villeneuve d’Ascq, France
sylvain.salvati@univ-lille.fr

Abstract
We introduce the notion of high-order deterministic top-down tree transducers (HODT) whose outputs
correspond to single-typed lambda-calculus formulas. These transducers are natural generalizations
of known models of top-tree transducers such as: Deterministic Top-Down Tree Transducers, Macro
Tree Transducers, Streaming Tree Transducers. . .We focus on the linear restriction of high order
tree transducers with look-ahead (HODTRlin), and prove this corresponds to tree to tree functional
transformations defined by Monadic Second Order (MSO) logic. We give a specialized procedure for
the composition of those transducers that uses a flow analysis based on coherence spaces and allows
us to preserve the linearity of transducers. This procedure has a better complexity than classical
algorithms for composition of other equivalent tree transducers, but raises the order of transducers.
However, we also indicate that the order of a HODTRlin can always be bounded by 3, and give a
procedure that reduces the order of a HODTRlin to 3. As those resulting HODTRlin can then be
transformed into other equivalent models, this gives an important insight on composition algorithm
for other classes of transducers. Finally, we prove that those results partially translate to the case of
almost linear HODTR: the class corresponds to the class of tree transformations performed by MSO
with unfolding (not closed by composition), and provide a mechanism to reduce the order to 3 in
this case.

2012 ACM Subject Classification Theory of computation → Transducers; Theory of computation
→ Lambda calculus; Theory of computation → Tree languages

Keywords and phrases Transducers, λ-calculus, Trees

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.38

Related Version A full version of the paper is available at https://hal.archives-ouvertes.fr/
hal-02902853v1.

Funding Paul D. Gallot: ANR-15-CE25-0001 – Colis
Aurélien Lemay: ANR-15-CE25-0001 – Colis
Sylvain Salvati: ANR-15-CE25-0001 – Colis

1 Introduction

Tree Transducers formalize transformations of structured data such as Abstract Syntax Trees,
XML, JSON, or even file systems. They are based on various mechanisms that traverse tree
structures while computing an output: Top-Down and Bottom-Up tree transducers [17, 4]
which are direct generalizations of deterministic word transducers [8, 7, 3], but also more

© Paul D. Gallot, Aurélien Lemay, and Sylvain Salvati;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 38; pp. 38:1–38:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692707?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:paul.gallot@inria.fr
mailto:aurelien.lemay@univ-lille.fr
mailto:sylvain.salvati@univ-lille.fr
https://doi.org/10.4230/LIPIcs.MFCS.2020.38
https://hal.archives-ouvertes.fr/hal-02902853v1
https://hal.archives-ouvertes.fr/hal-02902853v1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

complex models such as macro tree transducers [11] (MTT) or streaming tree transducers [1]
(STT) to cite a few.

Logic offers another, more descriptive, view on tree transformations. In particular,
Monadic Second Order (MSO) logic defines a class of tree transformations (MSOT) [5, 6] which
is expressive and is closed under composition. It coincides with the class of transformations
definable with MTT enhanced with a regular look-ahead and restricted to finite copying
[9, 10], and also with the class of STT [1].

We argue here that simply typed λ-calculus gives a uniform generalisation of all these
different models. Indeed, they can all be considered as classes of programs that read input
tree structures, and, at each step, compose tree operations which in the end produce the
final output. Each of these tree operations can be represented using simply typed λ-terms.

In this paper, we define top-down tree transducers that follow the usual definitions of such
machines, except that rules can produce λ-terms of arbitrary types. We call these machines,
High-Order Top-down tree transducers, or High-Order Deterministic Tree Transducers
(HODT) in the deterministic case. This class of transducers naturally contains top-down
tree transducers, as they are HODT of order 0 (the output of rules are trees), but also MTT,
which are HODT of order 1 (outputs are tree contexts). They also contain STT, which can
be translated directly into HODT of order 3 with some restricted continuations. Also, STT
traverse their input tree represented as a string in a leftmost traversal (a stream). This
constraint could easily be adapted to our model but would yield technical complications that
are not the focus of this paper. Finally, our model generalizes High Level Tree Transducers
defined in [12], which also produce λ-term, but restricted to the safe λ-calculus case.

In this paper we focus on the linear and almost linear restrictions of HODT. In terms of
expressiveness, linear HODTR (HODTRlin) corresponds to the class of MSOT. This links
our formalism to other equivalent classes of transducers, such as finite-copying macro-tree
transducers [9, 10], with an important difference: the linearity restriction is a simple syntactic
restriction, whereas finite-copying or the equivalent single-use-restricted condition are both
global conditions that are harder to enforce. For STT, the linearity condition corresponds to
the copyless condition described in [1] and where the authors prove that any STT can be
made copyless.

The relationship of HODTRlin to MSOT is made via a transformation that reduces the
order of transducers. We indeed prove that for any HODTRlin, there exists an equivalent
HODTRlin whose order is at most 3. This transformation allows us to prove then that
HODTRlin are equivalent to Attribute Tree Transducers with the single use restriction
(ATTsur). In turn, this shows that HODTRlin are equivalent to MSOT [2].

One of the main interests of HODTRlin is that λ-calculus also offers a simple composition
algorithm. This approach gives an efficient procedure for composing two HODTRlin. In
general, this procedure raises the order of the produced transducer. In comparison, com-
position in other equivalent classes are either complex or indirect (through MSOT). In any
case, our procedure has a better complexity. Indeed, it benefits from higher-order which
permits a larger number of implementations for a given transduction. The complexity of the
construction is also lowered by the use of a notion of determinism slightly more liberal than
usual that we call weak determinism.

The last two results allow us to obtain a composition algorithm for other equivalent
classes of tree transducer, such as MTT or STT: compile into HODTRlin, compose, reduce
the order, and compile back into the original model. The advantage of this approach over
the existing ones is that the complex composition procedure is decomposed into two simpler
steps (the back and forth translations between the formalisms are unsurprising technical

P.D. Gallot, A. Lemay, and S. Salvati 38:3

procedures). We believe in fact that existing approaches [12, 1] combine in one step the two
elements, which is what makes them more complex.

The property of order reduction also applies to a wider class of HODT, almost linear
HODT (HODTRal). Again here, this transformation allows us to prove that this class of
tree transformations is equivalent to that of Attribute Tree Transducers which is known to
be equivalent to MSO tree transformations with unfolding [2], i.e. MSO tree transduction
that produce Directed Acyclic Graphs (i.e. trees with shared sub-trees) that are unfolded to
produce a resulting tree. We call these transductions Monadic Second Order Transductions
with Sharing (MSOTS). Note however that HODTRal are not closed under composition.

Section 2 presents the technical definitions used throughout the paper. In particular, it
gives the definitions of the various notions of transducers studied in the paper and also the
notion of weak determinism. Section 3 studies the expressivity of linear and almost linear
higher-order transducer by relating them to MSOT and MSOTS. It focuses more specifically
on the order reduction procedure that is at the core of the technical work. Section 4 presents
the composition algorithm for linear higher-order transducers. This algorithm is based on
Girard’s coherence spaces and can be interpreted as a form of partial evaluation for linear
higher-order programs. Finally we conclude.

2 Definitions

This section presents the main formalisms we are going to use throughout the paper, namely
simply typed λ-calculus, finite state automata and high-order transducers.

2.1 λ-calculus
Fix a finite set of atomic types A, we then define the set of types over A, types(A), as the
types that are either an atomic type, i.e. an element of A, or a functional type (A→ B), with
A and B being in types(A). The operator → is right-associative and A1 → · · · → An → B

denotes the type (A1 → (· · · → (An → B) · · ·)). The order of a type A is inductively defined
by order(A) = 0 when A ∈ A, and order(A→ B) = max(order(A) + 1, order(B)).

A signature Σ is a triple (C,A, τ) with C being a finite set of constants, A a finite set of
atomic types, and τ a mapping from C to types(A), the typing function.

We allow ourselves to write types(Σ) to refer to the set types(A). The order of a signature
is the maximal order of a type assigned to a constant (i.e. max{order(τ(c)) | c ∈ C}). In this
work, we mostly deal with tree signatures which are of order 1 and whose set of atomic types
is a singleton. In such a signature with atomic type o, the types of constants are of the form
o→ · · · → o→ o. We write on → o for an order-1 type which uses n+ 1 occurrences of o,
for example, o2 → o denotes o→ o→ o. When c is a constant of type A, we may write cA
to make explicit that c has type A. Two signatures Σ1 = (C1,A1, τ1) and Σ2 = (C2,A2, τ2)
so that for every c in C1 ∩ C2 we have τ1(c) = τ2(c) can be summed, and we write Σ1 + Σ2
for the signature (C1 ∪ C2,A1 ∪ A2, τ) so that if c is in C1, τ(c) = τ1(c) and if c is in C2,
τ(c) = τ2(c). The sum operation over signatures being associative and commutative, we
write Σ1 + · · ·+ Σn to denote the sum of several signatures.

We assume that for every type A, there is an infinite countable set of variables of type A.
When two types are different the set of variables of those types are of course disjoint. As
with constants, we may write xA to make it clear that x is a variable of type A.

When Σ is a signature, we define the family of simply typed λ-terms over Σ, denoted
Λ(Σ) = (ΛA(Σ))A∈types(Σ), as the smallest family indexed by types(Σ) so that:

if cA is in Σ, then cA is in ΛA(Σ),
xA is in ΛA(Σ),

MFCS 2020

38:4 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

if A = B → C and M is in ΛC(Σ), then (λxB .M) is in ΛA(Σ),
if M is in ΛB→A(Σ) and N is in ΛB(Σ), then (MN) is in ΛA(Σ).

The term M is a pure λ-term if it does not contain any constant cA from Σ. When the type
is irrelevant we write M ∈ Λ(Σ) instead of M ∈ ΛA(Σ). We drop parentheses when it does
not bring ambiguity. In particular, we write λx1 . . . xn.M for (λx1(. . . (λxn.M) . . .)), and
M0M1 . . .Mn for ((. . . (M0M1) . . .)Mn).

The set fv(M) of free variables of a term M is inductively defined on the structure of M :
fv(c) = ∅,
fv(x) = {x},
fv(MN) = fv(M) ∪ fv(N),
fv(λx.M) = fv(M)− {x}.

Terms which have no free variables are called closed. We writeM [x1, . . . , xk] to emphasize that
fv(M) is included in {x1, . . . , xk}. When doing so, we write M [N1, . . . , Nk] for the capture
avoiding substitution of variables x1, . . . , xk by the terms N1, . . . , Nk. In other contexts,
we simply use the usual notation M [N1/x1, . . . , Nk/xk]. Moreover given a substitution θ,
we write M.θ for the result of applying this (capture avoiding) substitution and we write
θ[N1/x1, . . . , Nk/xk] for the substitution that maps the variables xi to the terms Ni but is
otherwise equal to θ. Of course, we authorize such substitutions only when the λ-term Ni
has the same type as the variable xi.

We take for granted the notions of β-contraction, noted →β , β-reduction, noted
∗→β ,

β-conversion, noted =β , and β-normal form for terms.
Consider closed terms of type o that are in β-normal form and that are built on a tree

signature, they can only be of the form a t1 . . . tn where a is a constant of type on → o and
t1, . . . , tn are closed terms of type o in β-normal form. This is just another notation for
ranked trees. So when the type o is meant to represent trees, types of order 1 which have
the form o → · · · → o → o represent functions from trees to trees, or more precisely tree
contexts. Types of order 2 are types of trees parametrized by contexts. The notion of order
captures the complexity of the operations that terms of a certain type describe.

A term M is said linear if each variable (either bound or free) in M occurs exactly once
in M . A term M is said syntactically almost linear when each variable in M of non-atomic
type occurs exactly once in M . Note that, through β-reduction, linearity is preserved but
not syntactic almost linearity.

For example, given a tree signature Σ1 with one atomic type o and two constants f of type
o2 → o and a of type o, the termM = (λy1y2.f y1 (f a y2)) a (f x a) with free variable x of type
o is linear because each variable (y1, y2 and x) occurs exactly once inM . The termM contains
a β-redex so: (λy1y2.f y1 (f a y2)) a (f x a) →β (λy2.f a (f a y2)) (f x a) →β f a (f a (f x a)).
The term f a (f a (f x a)) has no β-redex so it is the β-normal form of M .

Another example: the term M2 = (λy.f y y) (x a) with free variable x of type o → o is
syntactically almost linear because the variable y which occurs twice in the term is of the
atomic type o. It β-reduces to the term M ′2 = f (x a) (x a) which is not syntactically almost
linear, so β-reduction does not preserve syntactical almost linearity.

We call a term almost linear when it is β-convertible to a syntactically almost linear
term. Almost linear terms are characterized also by typing properties (see [15]).

2.2 Tree Automata
We present here the classical definition of deterministic bottom-up tree automaton (BOT)
adapted to our formalism. A BOT A is a tuple (ΣP ,Σ, R) where:

Σ = (C, {o}, τ) is a first-order tree signature, the input signature,

P.D. Gallot, A. Lemay, and S. Salvati 38:5

ΣP = (P, {o}, τP) is the state signature, and is such that for every p ∈ P , τP (p) = o.
Constants of P are called states,
R is a finite set of rules of the form a p1 . . . pn → p where:
p,p1, . . . , pn are states of P ,
a is a constant of Σ with type on → o.

An automaton is said deterministic when there is at most one rule in R for each possible
left hand side. It is non-deterministic otherwise.

Apart from the notation, our definition differs from the classical one by the fact there are no
final states, and hence, the automaton does not describe a language. This is due to the fact
that BOT will be used here purely for look-ahead purposes.

2.3 High-Order Deterministic top-down tree Transducers
From now on we assume that Σi is a tree signature for every number i and that its atomic
type is oi.

A Linear High-Order Deterministic top-down Transducer with Regular look-ahead
(HODTRlin) T is a tuple (ΣQ,Σ1,Σ2, q0, R, A) where:

Σ1 = (C1, {o1}, τ1) is a first-order tree signature, the input signature,
Σ2 = (C2, {o2}, τ2) is a first-order tree signature, the output signature,
ΣQ = (Q, {o1, o2}, τs) is the state signature, and is such that for every q ∈ Q, τs(q) is of
the form o1 → Aq where Aq is in types(Σ2). Constants of Q are called states,
q0 ∈ Q is the initial state,
A is a BOT over the tree signature Σ1, the look-ahead automaton, with set of states P ,
R is a finite set of rules of the form

q(a−→x)〈−→p 〉 →M(q1x1) . . . (qnxn)

where:
q, q1, . . . , qn ∈ Q are states of ΣQ,
a is a constant of Σ1 with type on1 → o1,
−→x = x1, . . . , xn are variables of type o1, they are the child trees of the root labeled a,
−→p = p1, . . . , pn are in P (the set of states of the look-ahead A),
M is a linear term of type Aq1 → · · · → Aqn → Aq built on signature Σ2 + ΣQ.
there is one rule per possible left-hand side (determinism).

Notice that we have given states a type of the form o1 → A where A ∈ types(o2). The
reason why we do this is to have a uniform notation. Indeed, a state q is meant to transform,
thanks to the rules in R, a tree built in Σ1 into a λ-term built on Σ2 with type Aq. So
we simply write qM N1 . . . Nn when we want to transform M with the state q and pass
N1,. . . , Nn as arguments to the result of the transformation. We write ΣT for the signature
Σ1 + Σ2 + ΣQ. Notice also that the right-hand part of a rule is a term that is built only
with constants of Σ2, states from ΣQ and variables of type o1. Thus, in order for this
term to have a type in types(Σ2), it is necessary that the variables of type o1 only occur as
the first argument of a state in ΣQ. Finally, remark that we did not put any requirement
on the type of the initial state. So as to restrict our attention to transducers as they are
usually understood, it suffices to add the requirement that the initial state is of type o1 → o2.
However, we consider as well that transducers may produce programs instead of first order
terms.

MFCS 2020

38:6 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

The linearity constraint on M affects both bound variables and the free variables
x1, . . . , xn, meaning that all of the subtrees x1, . . . , xn are used in computing the out-
put. That will be important for the composition of two transducers because if the first
transducer fails in a branch of its input tree then the second transducer, applied to that tree,
must fail too. This restriction forcing the use of input subtrees does not reduce the model’s
expressivity because we can always add a state q which visits the subtree but only produces
the identity function on type o2 (this state then has type Aq = o1 → o2 → o2).

Almost linear high-order deterministic top-down transducer with regular look-ahead
(HODTRal) are defined similarly, with the distinction that a term M appearing as a right-
hand side of a rule should be almost linear.

As we are concerned with the size of the composition of transducers, we wish to re-
lax a bit the notion of HODTRlin. Indeed, when composing HODTRlin we may have to
determinize the look-ahead so as to obtain a HODTRlin, which may cause an exponen-
tial blow-up of the look-ahead. However if we keep the look-ahead non-deterministic, the
transducer stays deterministic in the weaker sense that only one rule of the transducer
can apply when it is actually run. For this we adopt a slightly relaxed notion of determ-
inistic transducer that we call high-order weakly deterministic top-down transducer with
regular look-ahead (HOWDTRlin). They are similar to HODTRlin but they can have non-
deterministic automata as look-ahead with the proviso that when q(a x1 . . . xn)〈p1, . . . , pn〉 →
M [x1, . . . , xn] and q(a x1 . . . xn)〈p′1, . . . , p′n〉 → M ′[x1, . . . , xn] are two distinct rules of the
transducer then it must be the case that for some i there is no tree that is recognized by
both pi and p′i. This property guarantees that when transforming a term at most one rule
can apply for every possible state. Notice that it suffices to determinize the look-ahead so as
to obtain a HODTRlin from a HOWDTRlin, and therefore the two models are equivalent.

Given a HODTRlin, a HODTRal or a HOWDTRlin T , we write T :: Σ1 −→ Σ2 to mean
that the input signature of T is Σ1 and its output signature is Σ2.

A transducer T induces a notion of reduction on terms. A T -redex is a term of the form
q(aM1 . . .Mn) if and only if q(a x1 . . . xn)〈p1, . . . , pn〉 → M [x1, . . . , xn] is a rule of T and
(the β-normal forms of)M1, . . . ,Mn are respectively accepted by A with the states p1, . . . , pn.
In that case, a T -contractum of q(aM1 . . .Mn) is M [M1, . . . ,Mn]. Notice that T -contracta
are typed terms and that they have the same type as their corresponding T -redices. The
relation of T -contraction relates a term M and a term M ′ when M ′ is obtained from M

by replacing one of its T -redex with a corresponding T -contractum. We write M →T M
′

when M T -contracts to M ′. The relation of β-reduction is confluent, and so is the relation
of T -reduction as transducers are deterministic, moreover, the union of the two relations is
terminating. It is not hard to prove that it is also locally confluent and thus confluent. It
follows that →β,T (which is the union of →β and →T) is confluent and strongly normalizing.
Given a term M built on ΣT , we write |M |T to denote its normal form modulo =β,T .

Then we write rel(T) for the relation:

{(M, |q0M |T) | M is a closed term of type o1 and |q0M |T ∈ Λ(Σ2)} .

Notice that when |q0M |T contains some states of T , as it is usual, the pair (M, |q0M |T)
is not in the relation.

Given a finite set of trees L1 on Σ1 and L2 included in ΛAq0 , we respectively write T (L1)
and T−1(L2) for the image of L1 by T and the inverse image of L2 by T .

We give an example of a HODTRlin T that computes the result of additions of numeric
expressions (numbers being represented in unary notation). For this we use an input tree
signature with type o1, and constants Zo1 , So1 and addo1→o1→o1 which respectively denote

P.D. Gallot, A. Lemay, and S. Salvati 38:7

zero, the successor function and addition. The output signature is similar but different to
avoid confusion: it uses the type o2 and constants Oo2 , No2→o2 which respectively denote
zero and successor.

We do not really need the look-ahead automaton for this computation, so we omit it for
this example. We could have a blank look-ahead automaton A with one state l and rules:
A(Z) = l, A(S l) = l, A(add l l) = l; which would not change the result of the transducer.

The transducer has two states: q0 of type o1 → o2 (the initial state), and qi of type
o1 → o2 → o2. The rules of the transducer are the following:

q0(Z)→ O, q0(S x)→ N(qi xO),
q0(addx y)→ qi x (qi y O),
qi(Z)→ λx.x,
qi(S x)→ λy.N(qi x y),
qi(addx y)→ λz.qi x (qi y z),

As an example, we perform the transduction of the following term add(S(S Z))(S(S(S Z))):
q0(add(S(S Z))(S(S(S Z)))) →T (qi(S(S Z)))(qi(S(S(S Z)))O)

∗→T (λy1.N((λy2.N((λx.x)y2))y1))((λy3.N((λy4.N((λy5.N((λx.x)y5))y4))y3))O)
∗→β N(N(N(N(N O))))

The state qi transforms a sequence of n symbols S into a λ-term of the form λx.Nn(x),
and the add maps both its children into such terms and composes them. The state q0 simply
applies O to the resulting term.

Note that our reduction strategy here has consisted in first computing the T -redices
and then reducing the β-redices. This makes the computation simpler to present. As we
mentioned above a head-reduction strategy would lead to the same result.

The order of the HODTRlin T is max{order(Aq) | q ∈ Q}. Before going further, we
want to discuss how our framework relates to other transduction models. More specifically
how the notion of order of transformations generalizes the DTOP and MTT transduction
models: if we relax the constraint of linearity of our transducers, then DTOP and MTT
can be seen as non-linear transducers of order 0 and 1 respectively. In contrast of these, we
chose to study the constraint of linearity instead of the constraint of order and, in this paper,
we will explore the benefits of this approach. Firstly we will explain why increasing the
order beyond order 3 does not increase the expressivity of neither HODTRlin nor HODTRal.
Next we will show how HODTRlin and HOWDTRlin both capture the expressivity of tree
transformations defined by monadic second order logic. Lastly, we will prove that, contrary
to MTT, the class of HODTRlin transformations is closed under composition, we will give an
algorithm for computing the composition of HODTRlin and HOWDTRlin, and explain why
using HOWDTRlin avoids an exponential blow-up in the size of the composition transducer.

3 Order reduction and expressiveness

In this section we outline a construction that transforms a transducer of HODTRlin or
HODTRal into an equivalent linear or almost linear transducer of order ≤ 3. These two
constructions are similar and central to proving that HODTRlin and HODTRal are respect-
ively equivalent to Monadic Second Order Transductions from trees to trees (MSOT) and to
Monadic Second Order Transductions from trees to terms (i.e. trees with sharing) (MSOTS).
We will later show that there are translations between HODTRlin of order 3 and attribute tree
transducers with the single use restriction and between HODTRal of order 3 and attribute
tree transducers. These two models are known to be respectively equivalent to MSOT and
MSOTS [2].

MFCS 2020

38:8 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

The central idea in the construction consists in decomposing λ-termsM into pairs 〈M ′, σ〉
where M ′ is a pure λ-term and σ is a substitution of variables with the following properties:

M =β M
′.σ,

the free variables of M ′ have at most order 1,
for every variable x, σ(x) is a closed λ-term,
the number of free variables in M ′ is minimal.

In such a decomposition, we call the term M ′ a template. In case M is of type A, linear or
almost linear, it can be proven that M ′ can be taken from a finite set [14]. The linear case is
rather simple, but the almost linear case requires some precaution as one needs first to put
M in syntactically almost linear form and then make the decomposition. Though the almost
linear case is more technical the finiteness argument is the same in both cases and is based
on proof theoretical arguments in multiplicative linear logic which involves polarities in a
straightforward way.

The linear case conveys the intuition of decompositions in a clear manner. One takes
the normal form of M and then delineates the largest contexts of M , i.e. first order terms
that are made only with constants and that are as large as possible. These contexts are
then replaced by variables and the substitution σ is built accordingly. The fact that the
contexts are chosen as large as possible makes it so that no introduced variable can have
as argument a term of the form xM1 . . .Mn where x is another variable introduced in the
process. Therefore, the new variables introduced in the process bring one negative atom
and several (possibly 0) positive ones and all of them need to be matched with positive
and negative atoms in the type of M as, under these conditions, they cannot be matched
together. This explains why there are only finitely many possible templates for a fixed type.

I Theorem 1. For all type A built on tree signature Σ, the set of templates of closed linear
(or almost linear) terms of type A is finite.

Moreover, the templates associated with a λ-term can be computed compositionally (i.e.
from the templates of its parts). As a result, templates can be computed by the look-ahead
of HODTRlin or of HODTRal. When reducing the order, we enrich the look-ahead with
template information while the substitution that is needed to reconstruct the produced
term is outputted by the new transducer. The substitution is then performed by the initial
state used at the root of the input tree which then outputs the same result as the former
transducer. The substitution can be seen as a tuple of order 1 terms. It is represented as a
tuple using Church encoding, i.e. a continuation. This makes the transducer we construct be
of order 3.

I Theorem 2. Any HODTRlin (resp. HODTRal) has an equivalent HODTRlin (resp.
HODTRal) of order 3.

The proof of this result shows that every HODTRlin (or HODTRal) can be seen as mapping
trees to tuples of contexts and combining these contexts in a linear (resp. almost linear)
way. This understanding of HODTRlin and of HODTRal allows us to prove that they are
respectively equivalent to Attribute Tree Transducers with Single Use Restriction (ATTsur);
and to Attribute Tree Transducers (ATT). Then, using [2], we can conclude with the following
expressivity result:

I Theorem 3. HODTRlin are equivalent to MSOT and HODTRal are equivalent to MSOTS.

The proof that HODTRlin are equivalent to MSOT could have been simpler by using the
equivalence with MTT with the single-use restricted property instead of ATT, but we would
still need to use ATT to show that HODTRal are equivalent to MSOTS.

P.D. Gallot, A. Lemay, and S. Salvati 38:9

4 Composition of HODTRlin

As we are interested in limiting the size of the transducer that is computed, and even though
our primary goal is to compose HODTRlin, this section is devoted to the composition of
HOWDTRlin. Indeed, working with non-deterministic look-aheads allows us to save the
possibly exponential cost of determinizing an automaton.

4.1 Semantic analysis
Let T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) be two Linear High-Order
Weakly Deterministic tree Transducers with Regular look-ahead. The rules of T1 can be
written: q(a−→x)〈

−→
` 〉 → M (q1 x1) . . . (qn xn) where q, q1, . . . , qn ∈ Q are states of T1,−→

` = `1, . . . , `n are states of A1 and the λ-term M is of type Aq1 → · · · → Aqn
→ Aq. Our

goal is to build a HOWDTRlin T :: Σ1 → Σ3 that does the composition of T1 and T2, so we
want to replace a rule such as that one with a new rule which corresponds to applying T2 to
the term M .

In order to do so, we need, for each o2 tree in M , to know the associated state ` ∈ L2
of T2’s look-ahead, and the state p ∈ P of T2 which is going to process that node. So
with any such tree we associate the pair (p, `). In this case we call (p, `) the token which
represents the behavior of the tree. In general, we want to associate tokens not only with
trees, but also with λ-terms of higher order. For example, we map an occurrence of a symbol
a ∈ Σ2 of type o2 → o2 → o2, whose arguments x1 and x2 (of type o2) respectively have
look-ahead states `1 and `2 and are processed by states p1 and p2 ∈ P of T2, to the token
(p1, `1) ((p2, `2) ((p, `) where (p, `) is the token of the tree a x1x2 (of type o2). We
formally define tokens as follows:

I Definition 4. The set of semantic tokens JAK over a type A built on atomic type o2 is
defined by induction:

Jo2K = {(p, `) | p ∈ P, ` ∈ L2} JA→ BK = {f (g | f ∈ JAK, g ∈ JBK}

Naturally, the semantic token associated with a λ-term M of type A built on atomic type
o2 will depend on the context where the term M appears. For example a tree of atomic type
o2 can be processed by any state p ∈ P of T2, and a term of type A→ B can be applied to
any argument of type A. But for any such M taken out of context, there exists a finite set
of possible tokens for it. For example, a given tree of type o2 can be processed by any state
p ∈ P depending on the context, but it has always the same look-ahead ` ∈ L2.

In order to define the set of possible semantic tokens for a term, we use a system of
derivation rules. The following derivation rules are used to derive judgments that associate
a term with a semantic token. So a judgment Γ ` M : f associates term M with token f ,
where Γ is a substitution which maps free variables in M to tokens. The rules are:

p(a−→x)〈`1, . . . , `n〉
T2−→ M(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1) (· · ·((pn, `n) ((p, `)

Γ1 `M : f (g Γ2 ` N : f
Γ1,Γ2 `M N : g

Γ, xA : f `M : g
Γ ` λxA.M : f (g

f ∈ JAK
xA : f ` xA : f

Using this system we can derive, for any termMA, all the semantic tokens that correspond
to possible behaviours of MA when it is processed by T2.

MFCS 2020

38:10 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

4.2 Unicity of derivation for semantic token judgements
We will later show that we can compute the image of M from the derivation of the judgement
`M : f , assuming that f is the token that represents the behaviour of T2 on M . But before
that we need to prove that for a given term M and token f the derivation of the judgement
`M : f is unique:

I Theorem 5. For every type A, for every term M of type A and every token f ∈ JAK, there
is at most one derivation D ::`M : f .

This theorem relies in part on the fact that tokens form a coherent space, as introduced
by Girard in [13], the proof is detailed in the full version of the paper

Now that we have shown that there is only one derivation per judgement `M : f , we are
going to see how to use that derivation in order to compute the term N that is the image of
M by transducer T2.

4.3 Collapsing of token derivations
We define a function (we call it collapsing function) which maps every derivation D :: `M : f
to a term D which corresponds to the output of transducer T2 on term M assuming that M
has behaviour f .

I Definition 6. Let D be a derivation. We define D by induction on D, there are different
cases depending on the first rule of D:

If D is of the form:

p(a−→x)〈`1, . . . , `n〉
T2−→ N(p1 x1) . . . (pn xn) A2(a (`1, . . . , `n)) = `

` a : (p1, `1) (· · ·((pn, `n) ((p, `)

then D = N ,
if D is of the form:

D1 :: Γ1 ` N1 : f (g D2 :: Γ2 ` N2 : f
Γ1,Γ2 ` N1N2 : g

then D = D1D2,
if D is of the form:

D1 :: Γ, xA : f ` N : g
Γ ` λxA.N : f (g

then D = λx.D1,
if D is of the form:

f ∈ JAK
xA : f ` xA : f

then D = xf .

We can check that, for all derivation D ::` M : f , the term D is of type f given by:
(p, `) = Ap and f (g = f → g.

Now that we have associated, with any pair (M,f) such that f is a semantic token of
term M , a term N = D which represents the image of M by T2, we need to show that
replacing M with N in the computation of transducers leads to the same results.

P.D. Gallot, A. Lemay, and S. Salvati 38:11

4.4 Construction of the transducer which realizes the composition
We recall some notations: T1 = (ΣQ,Σ1,Σ2, q0, R1, A1) and T2 = (ΣP ,Σ2,Σ3, p0, R2, A2) are
two HOWDTRlin, Q = {q1, . . . , qm} is the set of states of T1 and, for every state qi ∈ Q, we
note Aqi the type of qi(t) when t is a tree of type o1. For all type A built on o2, the set of
tokens of terms of type A is noted JAK and is finite.

Previously, we saw how to apply transducer T2 to terms M of type A built on the
atomic type o2, so we can apply T2 to terms which appear on the left side of rules of T1:
q(a−→x)〈

−→
` 〉 →M (qi1 x1) . . . (qin xn) . In a rule such as this one, in order to replace term M

with term N = D where D is the unique derivation of the judgement `M : f , we need to
know which token f properly describes the behaviour of T2 on M . The computation of that
token is done in the look-ahead automaton A of T .

We define the set of states of A as: L = L1 × JAq1K× · · · × JAqm
K

With any tree t (of type o1) we want to associate the look-ahead of T1 on t and, for each
state qi ∈ Q of T1, a token of qi(t). The transition function of the look-ahead automaton A
is defined by, for all (`1, f1,1, . . . , f1,n), . . . , (`n, fm,1, . . . , fm,n) ∈ L:

a (`1, f1,1, . . . , f1,m) . . . (`n, fn,1, . . . , fn,m) A→ (`, f1, . . . , fm)

where a `1 . . . `n
A1→ ` and, for all state qi ∈ Q, fi is such that in T1 there exists a rule

qi(a−→x)〈`1, . . . , `n〉
T1→M (qi1 x1) . . . (qin xn) and a derivation of the judgement `M : f1,i1 (

· · · (fn,in (fi. Note that this look-ahead automaton is non-deterministic in general,
but the transducer is weakly deterministic in the sense that, at each step, even if several
look-ahead states are possible, only one rule of the transducer can be applied.

We define the set of states Q′ of transducer T by:

Q′ = {(q, f) | q ∈ Q, f ∈ JAqK} ∪ {q′0}

Then we define the set R of rules of transducer T as the set of rules of the form:

(q, f)(a−→x)〈(`1, f1,1, . . . , f1,m), . . . 〉 T→ D ((qi1 , f1)x1) . . . ((qin , fn)xn)

such that there exists in T1 a rule: q(a−→x)〈`1, . . . 〉
T1→ M (qi1 x1) . . . (qin xn) and D is a

derivation of the judgement `M : f1,i1 (· · ·(fn,in (f .
Because of Theorem 5 that set of rules is weakly deterministic.
To that set R we then add rules for the initial state q′0, which simply replicate the rules of

states of the form (q0, (p0, `)): for all a ∈ Σ1, all (`1, f1,1, . . . , f1,m), . . . , (`n, fn,1, . . . , fn,m) ∈
L and all rule in R of the form:

(q0, (p0, l))(a−→x)〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)

where p0 is the initial state of T2 and l ∈ L2 is a state of the look-ahead automaton of T2,
we add the rule :

q′0(a−→x)〈(`1, f1,1, . . . , f1,m), . . . 〉 T→M ((q1, f1)x1) . . . ((qn, fn)xn)

This set R of rules is still weakly deterministic according to Theorem 5.
We have thus defined the HOWDTRlin T = (ΣQ′ ,Σ1,Σ3, q

′
0, R, A).

I Theorem 7. T = T2 ◦ T1

MFCS 2020

38:12 Linear High-Order Deterministic Tree Transducers with Regular Look-Ahead

Finally, we will analyze the complexity of this algorithm and show that using the
algorithm on HOWDTRlin instead of HODTRlin avoids an exponential blow-up of the size
of the produced transducer.

First the set of states Q′ of T is of size |Q′| = 1 + Σq∈Q|JAqK| where |JAqK| is the number
of tokens of type Aq. |JAqK| = (|P | |L2|)|Aq| where |P | is the number of states of transducer
T2, |L2| is the number of states of the look-ahead automaton of transducer T2 and |Aq| is
the size of the type Aq. So the size of Q′ is O(Σq∈Q(|P | |L2|)|Aq|), that is a polynomial in
the size of T2 to the power of the size of types of states of T1.

It is important to note that the set JAqK of tokens of type Aq is where HOWDTRlin and
HODTRlin differ in their complexity: the deterministic alternative to the weakly deterministic
T would require to store with the state not a single token, but a set of two-by-two coherent
tokens, that would bring the size of Q′ to 1 + Σq∈Q2|JAqK| which would be exponential in the
size of T2 and doubly exponential in the size of types of T1.

Then there is the look-ahead automaton: its set of states is L = L1× JAq1K× · · · × JAqm
K.

So the number of states is in O(|L1| (|P | |L2|)Σq∈Q|Aq|). The size of the set of rules of the
look-ahead automaton is in O(Σa(n)∈Σ1 |L|

n+1) where n is the arity of the constant a(n).
Finally there is the set R of rules of T . For every judgement `M : f1,i1 (· · ·(fn,in (

f , finding a derivation D of that judgement and computing the corresponding D is in O(|M |2)
time where |M | is the size of M . The number of possible rules is in O(Σa(n)∈Σ1(|Q′|)n+1).
So computing R is done in time O(|R|2 Σa(n)∈Σ1(|Q′|)n+1) where R is the set of rules of T1.
With a fixed input signature Σ1, the time complexity of the algorithm computing T is a
polynomial in the sizes of T1 and T2, with only the sizes of types of states of T1 as exponents.

Note that, as our model generalizes other classes of transducers, it is possible to perform
their composition in our setting. Thanks to results of Theorem 2, it is then possible to reduce
the order of the result of the composition, and obtain a HODTRlin that can be converted
back in those other models. This methods gives an important insight on the composition
procedure for those other formalisms.

In comparison, the composition algorithms for equivalent classes of transductions are
either not direct or very complex as they essentially perform composition and order reduction
at once. For instance, composition of single used restricted MTT is obtained through MSO
([11]). High-level tree transducers [12] go through a reduction to iterated pushdown tree
transducers and back. The composition algorithm for Streaming Tree Transducers described
in [1] is direct, but made complex by the fact that the algorithm hides this reduction of order.

The double-exponential complexity of composition of HODTRlin compares well to the
non-elementary complexity of composition in equivalent non-MSOT classes of transducers.
Although the simple exponential complexity of composition in MSOT is better, we should
account for the fact that the MSOT model does not attempt to represent the behavior of
programs.

5 Conclusion and future work

In this paper we have presented a new mechanical characterization of Monadic Second Order
Transductions. This characterization is based on simply typed λ-calculus which allows us to
generalize with very few primitives most of the mechanisms used to compute the output in
the transducer literature. The use of higher-order allows us to propose an arguably simple
algorithm for computing the composition of linear higher-order transducers which coincide
with MSOT. The correctness of this algorithm is based on denotation semantics (coherence
spaces) of λ-calculus and the heart of the proof uses logical relations. Thus, the use of

P.D. Gallot, A. Lemay, and S. Salvati 38:13

λ-calculus allows us to base our work on standard tools and techniques rather than developing
our own tools as is often the case when dealing with transducers. Moreover, this work sheds
some light on how composition is computed in other formalisms. Indeed, we argue that for
MTTsur, STT, or ARRsur, the composition must be the application of our composition
algorithm followed by the order reduction procedure that we use to prove the equivalence
with logical transductions.

The notion of higher-order transducer has already been studied [12, 18, 16], however,
there is still some work to be done to obtain direct composition algorithms. We plan to
generalize our approach of the linear case to the general one and devise a semantic based
partial evaluation for the composition of higher-order transducers.

References
1 R. Alur and L. D’Antoni. Streaming tree transducers. J. ACM, 64(5):31:1–31:55, 2017.
2 Roderick Bloem and Joost Engelfriet. A comparison of tree transductions defined by monadic

second order logic and by attribute grammars. J. Comput. Syst. Sci., 61(1):1–50, 2000.
doi:10.1006/jcss.1999.1684.

3 C. Choffrut. A generalization of Ginsburg and Rose’s characterisation of g-s-m mappings. In
ICALP 79, number 71 in LNCS, pages 88–103. SV, 1979.

4 H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications, 2007. URL: http://tata.gforge.
inria.fr/.

5 B. Courcelle. Monadic second-order definable graph transductions: a survey. Theoretical
Computer Science, 126(1):53–75, 1994.

6 B. Courcelle. Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations. In Rozenberg, editor, Handbook of Graph Grammars, 1997.

7 S. Eilenberg. Automata, Languages and Machines. Acad. Press, 1974.
8 C. C. Elgot and G. Mezei. On relations defined by generalized finite automata. IBM J. of

Res. and Dev., 9:88–101, 1965.
9 J. Engelfriet and S. Maneth. Macro tree transducers, attribute grammars, and mso definable

tree translations. Information and Computation, 154(1):34–91, 1999.
10 J. Engelfriet and S. Maneth. The equivalence problem for deterministic MSO tree transducers

is decidable. Inf. Process. Lett., 100(5):206–212, 2006.
11 J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. Syst. Sci., 31(1):71–146,

1985.
12 Joost Engelfriet and Heiko Vogler. High level tree transducers and iterated pushdown tree

transducers. Acta Informatica, 26(1):131–192, October 1988. doi:10.1007/BF02915449.
13 J. Y. Girard. Linear logic. TCS, 50:1–102, 1987.
14 M Kanazawa and R Yoshinaka. Distributional learning and context/substructure enumerability

in nonlinear tree grammars. In Formal Grammar, pages 94–111. Springer, 2016.
15 Makoto Kanazawa. Almost affine lambda terms. National Institute of Informatics, 2012.
16 Naoki Kobayashi, Naoshi Tabuchi, and Hiroshi Unno. Higher-order multi-parameter tree

transducers and recursion schemes for program verification. SIGPLAN Not., 45(1):495–508,
January 2010. doi:10.1145/1707801.1706355.

17 J. Thatcher and J. Wright. Generalized Finite Automata Theory With an Application to a
Decision Problem of Second-Order Logic. Mathematical Systems Theory, 2(1):57–81, 1968.

18 Akihiko Tozawa. Xml type checking using high-level tree transducer. In Masami Hagiya and
Philip Wadler, editors, Functional and Logic Programming, pages 81–96, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

MFCS 2020

https://doi.org/10.1006/jcss.1999.1684
http://tata.gforge.inria.fr/
http://tata.gforge.inria.fr/
https://doi.org/10.1007/BF02915449
https://doi.org/10.1145/1707801.1706355

	Introduction
	Definitions
	lambda-calculus
	Tree Automata
	High-Order Deterministic top-down tree Transducers

	Order reduction and expressiveness
	Composition of HODTR_{lin}
	Semantic analysis
	Unicity of derivation for semantic token judgements
	Collapsing of token derivations
	Construction of the transducer which realizes the composition

	Conclusion and future work

