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Abstract
A spin system is a framework in which the vertices of a graph are assigned spins from a finite set.
The interactions between neighbouring spins give rise to weights, so a spin assignment can also be
viewed as a weighted graph homomorphism. The problem of approximating the partition function
(the aggregate weight of spin assignments) or of sampling from the resulting probability distribution
is typically intractable for general graphs.

In this work, we consider arbitrary spin systems on bipartite expander ∆-regular graphs, including
the canonical class of bipartite random ∆-regular graphs. We develop fast approximate sampling
and counting algorithms for general spin systems whenever the degree and the spectral gap of the
graph are sufficiently large. Our approach generalises the techniques of Jenssen et al. and Chen et
al. by showing that typical configurations on bipartite expanders correspond to “bicliques” of the
spin system; then, using suitable polymer models, we show how to sample such configurations and
approximate the partition function in Õ(n2) time, where n is the size of the graph.
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1 Introduction

Spin systems are general frameworks that encompass sampling and counting problems in
computer science, graph homomorphism problems in combinatorics, and phase transition
phenomena in statistical physics. In this paper, we provide algorithms for general spin
systems on bounded-degree bipartite expander graphs.

A q-spin system is specified by a set of spins [q] = {1, 2, . . . , q} and a symmetric interaction
matrix H ∈ Rq×q≥0 . Given a graph G = (VG, EG), a spin configuration is an assignment
σ : VG → [q] and the weight of σ is given by wG,H(σ) =

∏
{u,v}∈EG Hσ(u),σ(v). The Gibbs

distribution of the system, denoted by µG,H , is a probability distribution on the set ΣG,H

which denotes the set of all possible spin configurations, given by µG,H(σ) = wG,H(σ)
ZG,H

, where
ZG,H :=

∑
τ∈ΣG,H wG,H(τ) is the so-called partition function. Well-known examples of spin

systems are the Ising/Potts models, where the matrix H has all diagonal entries equal to
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some parameter β > 0 and off-diagonal entries equal to 1; the case q = 2 is the Ising model,
and q > 2 is the Potts model. Apart from statistical physics systems, graph homomorphisms
also fit naturally into this framework, whenever H has 0-1 entries.

Henceforth, we will normalise H so that its largest entry is equal to 1. More formally, we
will consider δ-matrices, defined as follows.

I Definition 1. Let q ≥ 2 and let δ ∈ (0, 1). A symmetric matrix H ∈ Rq×q≥0 is called a
δ-matrix if maxi,j∈[q]Hi,j = 1 and maxi,j∈[q]:Hi,j 6=1Hi,j ≤ δ. J

Note that, apart from trivial cases1, we can always normalise the interaction matrix of a
spin system to satisfy Definition 1 for some δ ∈ (0, 1).

Approximately sampling from the Gibbs distribution of a spin system and approximating
its partition function are well-studied problems in computer science, since they appear
in various applications. However, even for the most canonical models, such as the Potts
model or graph homomorphisms, these computational problems are hard in general, even on
bounded-degree graphs [10, 4, 18, 17, 13, 16, 15].

In light of these hardness results, it is natural to consider whether efficient algorithms
can be developed for more restricted classes of graphs. Recently, Jenssen, Keevash, and
Perkins [23] (see also [21]) showed a new framework that such algorithms are possible for
three canonical models (ferromagnetic Potts model, colourings, and independent sets) on
bounded-degree expander graphs, in a range of parameters where the problems are otherwise
hard for general bounded-degree graphs. In this paper, we show that this framework can
further be used to obtain approximation algorithms of any spin system on bipartite expander
graphs whenever the degree is sufficiently large.

More precisely, we will consider regular bipartite graphs whose second eigenvalue is
bounded by a small constant [22]. Let G be an n-vertex ∆-regular bipartite graph. Let
λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) denote the eigenvalues of the adjacency matrix of G. It is
well-known that λ1(G) = ∆ and λn(G) = −λ1(G). We define λ(G) = λ2(G).

I Definition 2. Let ∆ ≥ 3 be an integer and λ be a positive real strictly less than ∆. We let
Gbip

∆,λ denote the set of all connected ∆-regular bipartite graphs G, for which λ(G) ≤ λ. J

One of the primary examples of bipartite expander graphs, and one of the main motivations
behind this work, are random bipartite regular graphs. It is known [3] that, for any fixed
ε > 0, with high probability2 over the choice of a random bipartite ∆-regular graph G, it
holds that λ(G) ≤ 2

√
∆− 1 + ε. From a counting/sampling perspective these graphs are

particularly interesting since they have been key ingredients in obtaining inapproximability
results [26, 5, 14]. Somewhat surprisingly, while we know constant factor estimates of the
partition function via (non-algorithmic) probabilistic methods that hold with probability
1 − o(1) over the choice of the graph [14], it is not known how to approximately sample
from the Gibbs distribution efficiently. In fact, even obtaining more refined estimates on the
partition function is an open problem. As a corollary of our main result, we address both of
these questions, provided that the degree ∆ is sufficiently large relative to H.

1 If H has all of its entries equal to some c > 0, then ZG,H = q|VG|c|EG| for any graph G = (VG, EG).
Similarly, if H is the all zeros matrix, then ZG,H = 0 for any non-empty graph G. So suppose that H has
at least two entries with distinct values and let hmax = maxi,j∈[q] Hi,j . Then, the matrix H ′ = 1

hmax
H

is a δ-matrix, for any δ ∈ (0, 1) which is bigger than the second largest entry in H ′. Moreover, for any
graph G = (VG, EG) we have that ZG,H = h

|EG|
max · ZG,H′ .

2 Here and throughout the paper, “with high probability” means with probability tending to 1 as the size
of the graph tends to infinity.
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To formally state our results, we will need some definitions. First, the following computa-
tional problem that we will study.

Parameters: H, a symmetric matrix in Rq×q≥0 , integer ∆ ≥ 3, and a real λ ∈ (0,∆).
Name: SPINH,∆,λ.
Input: A graph G ∈ Gbip∆,λ.
Output: The value of ZG,H .

In particular, we consider the problem of approximating ZG,H and sampling from µG,H .
Given an accuracy parameter ε > 0, we say that Ẑ is an ε-approximation to Z if (1− ε)Z ≤
Ẑ ≤ (1 + ε)Z. For a distribution µ, we say that a random variable X is an ε-sample
from µ if the total variation distance between the distribution of X and µ is at most ε. A
fully polynomial randomised approximation scheme (FPRAS) for SPINH,∆,λ is a randomised
algorithm that, given ε > 0 and G = (V,E) ∈ Gbip∆,λ as input, outputs a random variable that
is an ε-approximation to ZG,H with probability at least 3/4, in time poly(|V |, 1/ε).3

We prove the following result. For a bipartite graph G, we use (V 0
G, V

1
G) to denote the

bipartition of the vertex set of G, and all logarithms throughout the paper are with base e.

I Theorem 3. Let q ≥ 2 be an integer, δ be a real in (0, 1), H ∈ Rq×q≥0 be a symmetric
δ-matrix. Suppose that ∆, λ satisfy ∆

λ ≥
100
1−δ q

2 log(q∆) and ∆ ≥
( 10

1−δ q log(q∆)
)4. Then,

there is an FPRAS for SPINH,∆,λ.
In fact, there is a randomised algorithm that, given a graph G ∈ Gbip

∆,λ with n = |V 0
G| = |V 1

G|
vertices and an accuracy parameter ε∗ ≥ e−n/(5q), outputs an ε∗-approximation to ZG,H and
an ε∗-sample from the Gibbs distribution µG,H in time O((n/ε∗)2 log3(n/ε∗)).

As a corollary of Theorem 3, we have the following for random bipartite ∆-regular graphs.

I Corollary 4. Let q ≥ 2 be an integer, δ be a real in (0, 1), and H ∈ Rq×q≥0 be a symmetric
δ-matrix. Then, for all integers ∆ ≥

( 10
1−δ q log(q∆)

)4, there is a randomised algorithm such
that the following holds with high probability over the choice of a random ∆-regular bipartite
graph G with n = |V 0

G| = |V 1
G|.

The algorithm, on input G and an accuracy parameter ε∗ ≥ e−n/(5q), outputs in time
O((n/ε∗)2 log3(n/ε∗)) an ε∗-approximation to the partition function ZG,H and an ε∗-sample
from the Gibbs distribution µG,H .

Proof. Using the result in [3, Theorem 4], we have that, with high probability over the
choice of G, it holds that λ(G) ≤ 2

√
∆. It follows that ∆

λ(G) ≥
1
2

√
∆ and hence the result

follows by applying Theorem 3. J

Our algorithms apply to a larger class of graphs when δ is small so that the interactions
between spins are weak – this corresponds to the so-called “low-temperature” regime – by
contrast, approaches such as MCMC and correlation decay typically apply in high-temperature
regimes. Since our results concern regular graphs, they easily extend to models with external
fields – the fields can be incorporated in the entries of the interaction matrix H.

3 Note, the error probability can be reduced to any η > 0 by calling the original FPRAS O(log(1/η))
times.

MFCS 2020
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1.1 Proof Outline

In order to prove our main Theorem 3, we appeal to what are known as polymer models, as
introduced by Gruber and Kunz [19] in the statistical physics literature. Recently, polymer
models have been used as a tool in the development of efficient counting and sampling
algorithms [21, 23, 25, 8, 6, 7] for problems that are not amenable to traditional approaches
such as local-update Markov chains. Our approach is inspired by, and generalises, the
approaches in [23, 8], where counting and sampling algorithms are given for the hard-core
and ferromagnetic Potts models on expander graphs at low temperatures.

The main idea behind the use of polymer models is that, for graphs with good expansion
properties, the partition function and the Gibbs distribution are dominated by configurations
which are highly ordered, i.e., whose weight is large. As we shall see in detail in Section 3,
these large-weight configurations correspond to “bicliques” of H, as defined below.4

I Definition 5. Let q ≥ 2 be an integer, δ ∈ [0, 1) be a real and H ∈ Rq×q≥0 be a symmetric
δ-matrix. A biclique of H is a pair (B0, B1) with B0, B1 ⊆ [q], such that Hi,j = 1 for all
i ∈ B0 and all j ∈ B1. We use KH to denote the set of all bicliques of H and we use Kmax

H

to denote the set of all inclusion maximal bicliques of H.

Note that, for a bipartite graph G, configurations σ which assign vertices in V 0
G a spin

from B0 and vertices in V 1
G a spin from B1 have weight 1, the largest possible weight (since

H is a δ-matrix). Polymer models allow us to capture deviations from such configurations
and approximate their contribution to the partition function, see Section 4.

Using the results of Sections 3 and 4, we give the proof of Theorem 3 in Section 5.

2 Preliminaries

Let G be a bipartite graph. We will write G as (V 0
G, V

1
G, EG), where (V 0

G, V
1
G) denotes the

bipartition of the vertex set of G and EG its edge set; we will use VG = V 0
G ∪ V 1

G to denote
the vertex set of G.

For a vertex subset S ⊆ VG, let ∂GS denote the set of vertices of VG \ S that have a
neighbour in S, and let S+

G = S ∪ ∂GS. When S = {u}, we simply write ∂Gu instead of
∂GS. For vertex subsets S, T ⊆ VG, let EG(S, T ) denote the set of edges of G that have one
endpoint in S and the other in T , and let eG(S, T ) = |EG(S, T )|; when S = T , we simply
write EG(S), eG(S) instead of EG(S, S), eG(S, S), respectively. We will omit G from all of
the above notation where it is obvious from the context.

2.1 Bipartite Expander Graphs

It is well-known that graphs in Gbip∆,λ have good expansion properties, and in this section we
will review certain edge and vertex expansion properties that will be relevant for us.

The following result relates the spectrum of a regular bipartite graph to its edge-expansion
properties. This result was first proven in [20, Theorem 5.1], though the version we state
below is taken from [9].

4 The “biclique” terminology comes from the homomorphism problem (where H corresponds to a graph),
but our interpretation here is analogous which justifies its use.
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I Lemma 6 ([9, Lemma 8]). Let G = (V 0
G, V

1
G, EG) ∈ Gbip

∆,λ with n = |V 0
G| = |V 1

G|. Then, for
sets S0 ⊆ V 0

G, S1 ⊆ V 1
G, we have that

∣∣∣eG(S0, S1)− ∆|S0||S1|
n

∣∣∣ ≤ λ√|S0||S1|
(

1− |S0|
n

)(
1− |S1|

n

)
.

The following simple consequence of the above result gives a lower bound on the edge
expansion of G ∈ Gbip∆,λ when λ is sufficiently small.

I Corollary 7. Let G = (V 0
G, V

1
G, EG) ∈ Gbip

∆,λ with n = |V 0
G| = |V 1

G|. Then, for sets
S0 ⊆ V 0

G, S1 ⊆ V 1
G such that λ ≤ ∆

2n
√
|S0||S1|, it holds that eG(S0, S1) ≥ ∆

2n |S0||S1|.

Proof. Lemma 6 implies that∣∣∣eG(S0, S1)− ∆|S0||S1|
n

∣∣∣ ≤ ∆|S0||S1|
2n , therefore eG(S0, S1) ≥ ∆|S0||S1|

2n . J

A second combinatorial notion of expansion is vertex expansion. A well-known result
from Tanner [27] relates the spectrum of a graph to its vertex expansion properties (see also
[24] for a more refined estimate). Here we state a version from [22, Theorem 4.15]; there, the
result is stated and proved for non-bipartite graphs, but a minor adaptation of the proof in
[22], which we give for completeness in the full version, also applies to bipartite graphs.

I Lemma 8. Let G = (V 0
G, V

1
G, EG) ∈ Gbip

∆,λ, ρ > 0 be a real number and i ∈ {0, 1}. Then,
for all S ⊆ V iG with |S| ≤ ρ|V iG|, it holds that |∂S| ≥ |S|/

(
ρ+ λ2

∆2 (1− ρ)
)
.

3 Ground states for spin configurations

In this section, we show that the partition function of a spin system is dominated by
configurations which are “close to maximal bicliques”, cf. Definition 5. Let q ≥ 2, ∆ ≥ 3 be
integers and λ, δ be reals with λ ∈ (0,∆) and δ ∈ (0, 1). Let G ∈ Gbip∆,λ and let H ∈ Rq×q≥0 be
a symmetric δ-matrix.

We next describe more precisely the configurations which are “close” to some maximal
biclique of H. Given σ : VG → [q] and a spin i ∈ [q], we write σ−1(i) for the set of vertices
of G whose image under σ is i. More generally, for a subset of spins Q ⊆ [q], we let
σ−1(Q) = {v ∈ VG | σ(v) ∈ Q}.

I Definition 9. Let ε ∈ (0, 1). For (B0, B1) ∈ Kmax
H , define ΣB0,B1

G,H,ε to be the set of spin
configurations σ ∈ ΣG,H for which

∣∣σ−1(B0) ∩ V 0
G

∣∣ +
∣∣σ−1(B1) ∩ V 1

G

∣∣ ≥ (1 − ε)|VG|. We
define ΣG,H,ε to be the union of the sets ΣB0,B1

G,H,ε over all bicliques (B0, B1) ∈ Kmax
H and define

ZG,H,ε :=
∑
σ∈ΣG,H,ε wG,H(σ). J

The following result shows that ZG,H,ε gives a close approximation to ZG,H whenever ε
is sufficiently large relative to λ,∆, q.5

I Lemma 10. Let ε ∈ (0, 1) be such that ε ≥ 2qλ/∆ and ε2 ≥ 8q2 log q
∆ log(1/δ) . Then, for G ∈ G

bip
∆,λ

with n = |V 0
G| = |V 1

G|, we have that ZG,H,ε is an e−n-approximation to ZG,H .

5 Note, in Lemma 10, as in other lemmas as well, our assumed inequalities for ε impose some restrictions
on ∆, λ, q to ensure that such an ε exists. These restrictions will be carefully accounted for when we
apply these lemmas; namely, in the proof of Theorem 3.

MFCS 2020
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Proof. We associate each spin configuration σ∈ΣG,H with a pair of spin subsets
(
B0(σ),B1(σ)

)
by setting for i ∈ {0, 1}, Bi(σ) =

{
j ∈ [q] :

∣∣σ−1(j) ∩ V iG
∣∣ ≥ εn

q

}
. Note that for σ ∈ ΣG,H ,

there are fewer than εn vertices of V iG which are not assigned spins from B0(σ)∪B1(σ). Also
note that, since ε ∈ (0, 1), we have that Bi(σ) 6= ∅ for i ∈ {0, 1}.

Fix arbitrary σ ∈ ΣG,H . We first show that

either
(
B0(σ), B1(σ)

)
∈ KH or wG,H(σ) ≤ δ∆ε2n/(2q2), (4)

i.e., either (B0(σ), B1(σ)) is a biclique of H or σ has small weight. For i ∈ {0, 1}, consider
arbitrary ji ∈ Bi(σ) and let Si = σ−1(ji)∩V iG. Since |Si| ≥ εn/q, we have that ∆

2n
√
|S0||S1| ≥

∆ε/(2q) ≥ λ, thus it follows from Corollary 7 that e(S0, S1) ≥ ∆|S0||S1|
2n ≥ ∆ε2n/(2q2). It

follows that, if Hj0,j1 ≤ δ, then wG,H(σ) ≤ δ∆ε2n/(2q2); otherwise, Hj0,j1 = 1. Since j0, j1
were arbitrary spins in B0(σ), B1(σ), respectively, we conclude (4).

Let σ be such that
(
B0(σ), B1(σ)

)
∈ KH . Then there exists (B0, B1) ∈ Kmax

H such
that Bi(σ) ⊆ Bi for i ∈ {0, 1}. Moreover, for i ∈ {0, 1} and j ∈ [q] \ Bi, we have that∣∣σ−1(j) ∩ V iG

∣∣ < εn/q and therefore that |σ−1([q] \Bi) ∩ V iG| < εn. Hence, we conclude that∣∣σ−1(B0)∩ V 0
G

∣∣+ ∣∣σ−1(B1)∩ V 1
G

∣∣ ≥ (1− ε)|VG|. Combining this with (4), we obtain that for
all σ ∈ ΣG,H \ ΣG,H,ε it holds that wG,H(σ) ≤ δ∆ε2n/(2q2), and hence

ZG,H − ZG,H,ε ≤
∑

σ∈ΣG,H\ΣG,H,ε

δ
∆ε2n
2q2 ≤ q2nδ

∆ε2n
2q2 ≤ q−2n,

where in the last inequality we used that ∆ ≥ 8q2 log(q)
ε2 log(1/δ) . The result follows since ZG,H ≥ 1;

this bound can be seen by considering the configuration that maps V 0
G to j0 and V 1

G to j1,
where j0, j1 ∈ [q] are such that Hj0,j1 = 1. J

For our approximation algorithms, it will be useful to consider the following quantities.

I Definition 11. For ε ∈ (0, 1), let

ẐG,H,ε =
∑

(B0,B1)∈Kmax
H

∑
σ∈ΣB0,B1

G,H,ε

wG,H(σ) and Zoverlap
G,H,ε :=

∑
σ∈Σoverlap

G,H,ε

wG,H(σ),

where Σoverlap
G,H,ε :=

⋃
(B0,B1)∈Kmax

H

⋃
(C0,C1)∈Kmax

H
\{(B0,B1)}

(
ΣB0,B1
G,H,ε ∩ ΣC0,C1

G,H,ε

)
.

The following lemma shows, given a value of ε that is sufficiently small, that ẐG,H,3ε is a
close approximation to ZG,H,ε by showing that Zoverlap

G,H,3ε is small relative to ZG,H,ε.

I Lemma 12. Let ε ∈ (0, 1
240q log q ] be such that ε2 ≥ 8q2 log(q)

∆ log(1/δ) and ε ≥ 2q λ∆ . Then, for all
G ∈ Gbip

∆,λ with n = |V 0
G| = |V 1

G| sufficiently large, we have that Zoverlap
G,H,3ε ≤ e−n/(3q)ZG,H,ε and

that ẐG,H,3ε is an e−n/(4q)-approximation to ZG,H,ε.

Proof (Sketch). The main overcounting in ẐG,H,3ε in comparison to ZG,H,ε comes from
double-counting configurations in Σoverlap

G,H,3ε (we also have to account for configurations
in ΣG,H,3ε\ΣG,H,ε, but this can be done using Lemma 10). Consider such a configura-
tion σ; then, there exist distinct maximal bicliques (B0, B1), (C0, C1) ∈ Kmax

H such that
S := ∪i∈{0,1}(V iG\σ−1(Bi)) and T := ∪i∈{0,1}(V iG\σ−1(Ci)) satisfy |S|, |T | ≤ 6εn. The key
observation is that for i ∈ {0, 1}, the vertices in V iG\(S ∪ T ) can be coloured in at most
|Bi∩Ci|n ways, since they must have a colour inBi∩Ci. Observe now that at least one of the in-
equalities |B0∩C0| ≤ |B0|−1, |B1∩C1| ≤ |B1|−1 must hold since otherwiseB0 ⊆ C0, B1 ⊆ C1,
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contradicting the maximality of (B0, B1). Since (|Bi| − 1)n/|Bi|n ≤ (1− 1/q)n ≤ e−n/q for
i ∈ {0, 1}, we have that the number of such σ (and hence their aggregate weight) is roughly
at most e−n/(3q)

∑
(B0,B1)∈Kmax

H
|B0|n|B1|n; note, the factor e−n/(3q) also accounts for the

number of spin assignments to the sets S, T , see the full version for details. By considering
surjective homomorphisms to bicliques in Kmax

H , we obtain a lower bound on ZG,H,ε of the
order

∑
(B0,B1)∈Kmax

H
|B0|n|B1|n, yielding the result. J

4 Using polymer models to estimate the partition function

In this section, we first define abstract polymer models, which will be important in ob-
taining our approximation algorithms, and then review the algorithmic results of [8] in
Section 4.2. We then define a polymer model for spin systems in Section 4.3, and obtain
approximation/sampling algorithms for it in Section 4.4.

4.1 Abstract polymer models
Our presentation of abstract polymer models follows mostly [23], but is slightly modified so
that a polymer model is a function of both an underlying graph G and a host graph JG.

Let G be a class of graphs. Given an underlying graph G ∈ G and a set of spins
[q] = {1, . . . , q}, we construct a “host” graph JG for the polymer model; in our case, we
will set for example JG to be G3 (see Section 4.3 for more details), but in general other
choices are obviously possible. We assign to each vertex v ∈ VJG a set of “ground state”
spins gv ⊆ [q]. A polymer is a pair γ = (Vγ , σγ) consisting of a JG-connected set of vertices
Vγ and an assignment σγ : Vγ → [q] such that σγ(v) ∈ [q] \ gv for all v ∈ Vγ . Let PG be the
set of all polymers.

A polymer model for an underlying graph G and host graph JG is defined by a set of
allowed polymers CG ⊆ PG, and a weight function wG : CG → R≥0. For polymers γ, γ′ ∈ PG,
we write γ ∼ γ′ to denote that γ, γ′ are compatible, i.e., if dJG(Vγ , Vγ′) > 1 where dJG(·, ·)
denotes the graph distance in JG and for S, T ⊆ VG we let dJG(S, T ) = minu∈S,v∈T dJG(u, v).
We define ΩG = {Γ ⊆ CG | ∀γ, γ′ ∈ Γ, γ ∼ γ′} to be the set of all sets of mutually compatible
polymers of CG; elements of ΩG are called polymer configurations. The polymer model induces

the following Gibbs distribution on ΩG, defined for Γ ∈ ΩG by µG(Γ) =
∏

γ∈Γ
wG(γ)

ZG
, where

ZG :=
∑

Γ′∈ΩG
∏
γ∈Γ′ wG(γ) is the partition function of the model. We use (CG, wG, JG)

to denote the polymer model and {(CG, wG, JG) | G ∈ G} to denote the family of polymer
models corresponding to the class of graphs G; we say that the family has degree bound ∆ if,
for every G ∈ G, both G and the host graph JG have maximum degree at most ∆.

4.2 Algorithms for polymer models
Given a family of polymer models, Chen et. al. [8], building upon work of [23], give sufficient
conditions under which the partition function of the polymer model can be efficiently
approximated using Markov chains. We will briefly describe these conditions, as well as the
key results from [8] that will be later important for us.

The first condition is known as computational feasibility and is defined as follows.

I Definition 13. [8, Definition 3] Let G be a class of graphs. A family of polymer models
{(CG, wG, JG) | G ∈ G} is computationally feasible if, for all G ∈ G and all γ ∈ PG, we can
determine whether γ ∈ CG and, if so, compute wG(γ) in time polynomial in |Vγ |. J

The second condition is called the polymer sampling condition and is defined as follows.
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I Definition 14 ([8, Definition 4]). Let q ≥ 2,∆ ≥ 3 be integers, and G be a class of graphs.
A family of polymer models {(CG, wG, JG) | G ∈ G} with q spins and degree bound ∆ satisfies
the polymer sampling condition with constant τ ≥ 5 + 3 log((q − 1)∆) if wG(γ) ≤ e−τ |Vγ | for
all γ ∈ CG and all G ∈ G.

The following result from [8] asserts that if a family of polymer models satisfies the
above two conditions, then there are efficient approximation and sampling algorithms for the
partition function and the Gibbs distribution of the polymer model, respectively.

I Theorem 15 ([8, Theorems 5 & 6]). Let q ≥ 2, ∆ ≥ 3 be integers, and G be a class of
graphs. Suppose that {(CG, wG, JG) | G ∈ G} is a family of computationally feasible polymer
models with q spins and degree bound ∆ that satisfies the polymer sampling condition.

Then, there is a randomised algorithm that takes as input an n-vertex graph G ∈ G
and an accuracy parameter ε∗ ∈ (0, 1) and outputs an ε∗-approximation to ZG in time
O((n/ε∗)2 log2(n/ε∗)) with probability ≥ 3/4. Moreover, there is a randomised algorithm
that on input G and ε∗ as before, outputs an ε∗-approximate sample from µG in time
O(n log(n/ε∗)).

4.3 Polymer model for spin systems
In this section we define a polymer model for spin systems that captures the deviations
of spin configurations from maximal bicliques. The polymer model that we propose is a
generalisation to arbitrary spin systems of a polymer model that was used in [23, Section 5]
in the case of proper colourings.

Let H ∈ Rq×q≥0 be a symmetric matrix and (B0, B1) ∈ Kmax
H be a maximal biclique of

H. Let G ∈ Gbip∆,λ be a graph, and let ε ∈ (0, 1). The host graph for the polymer model is
JG = G3, where G3 is the graph defined on VG with two vertices connected by an edge if
the distance between them in G is at most 3. For v ∈ V iG with i ∈ {0, 1}, the set of ground
state spins gv is Bi. Let PB0,B1

G,H denote the set of all polymers, i.e., all pairs γ = (Vγ , σγ)
consisting of a G3-connected set of vertices Vγ and an assignment σγ : Vγ → [q] such that
σγ(v) ∈ [q] \ gv for all v ∈ Vγ . We define the set of allowed polymers as

CB0,B1
G,H,ε =

{
γ ∈ PB0,B1

G,H : |Vγ | ≤ ε|VG|
}

(9)

and let ΩB0,B1
G,H,ε denote the set of all sets of mutually compatible polymers. We define the

weight of a polymer γ = (Vγ , σγ) ∈ CB0,B1
G,H,ε as

wB0,B1
G,H (γ) =

∏
{u,v}∈EG(Vγ)Hσγ(u),σγ(v)

∏
u∈∂Vγ Fu∏

i∈{0,1} |Bi||V
i
G
∩V +

γ |
, (10)

where for u ∈ V iG with i ∈ {0, 1}, Fu :=
∑
j∈Bi

∏
v∈Vγ∩∂uHj,σγ(v).

We let ZB0,B1
G,H,ε and µB0,B1

G,H,ε denote the partition function and the Gibbs distribution of
the polymer model (CB0,B1

G,H,ε , w
B0,B1
G,H , JG), as defined in Section 4.1.

The next lemma shows the motivation behind the definition of the weight of a polymer.
For a polymer configuration Γ ∈ ΩB0,B1

G,H,ε , let ∪Γ =
⋃
γ∈Γ Vγ , and σΓ denote the assignment

to vertices in ∪Γ obtained by combining all of the assignments σγ , for γ ∈ Γ.

I Definition 16. For Γ ∈ ΩB0,B1
G,H,ε , define ΣB0,B1

G,H (Γ) to be the set of configurations τ such
that τ |∪Γ = σΓ and which map, for i ∈ {0, 1}, V iG \ (∪Γ) to Bi. J
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I Lemma 17. Let n = |V 0
G| = |V 1

G|. For all ε ∈ (0, 1), and all polymer configurations
Γ ∈ ΩB0,B1

G,H,ε , we have that

|B0|n|B1|n
∏
γ∈Γ

wB0,B1
G,H (γ) =

∑
τ∈ΣB0,B1

G,H
(Γ)

wG,H(τ).

Proof (Sketch). Let γ, γ′ be two distinct polymers in Γ. Since the polymers are compatible,
they correspond to distinct G3-connected components; in particular, V +

γ ∩V +
γ′ = ∅. It follows

that |(∪Γ)+| =
∑
γ∈Γ |V +

γ |. Hence, by the definition in (10), we have that

|B0|n|B1|n
∏
γ∈Γ

wB0,B1
G,H (γ) = |B0|n|B1|n

∏
γ∈Γ

∏
{u,v}∈EG(Vγ)Hσγ(u),σγ(v)

∏
u∈∂Vγ Fu∏

i∈{0,1} |Bi||V
i
G
∩V +

γ |

=
∏

i∈{0,1}

|Bi||V
i
G\(∪Γ)+|

∏
{u,v}∈EG(∪Γ)

HσΓ(u),σΓ(v)
∏

u∈∂(∪Γ)

Fu.

(11)

On the other hand, for each τ ∈ ΣB0,B1
G,H (Γ), we have that

wG,H(τ) =
∏

{u,v}∈EG(∪Γ)

HσΓ(u),σΓ(v)
∏

u∈∂(∪Γ)

∏
v∈(∪Γ)∩∂u

HσΓ(v),τ(u),

i.e., given Γ and that τ ∈ ΣB0,B1
G,H (Γ), the weight of τ depends only on the assignment of

∂(∪Γ). Using this, we show in the full version that∑
τ∈ΣB0,B1

G,H
(Γ)

wG,H(τ) =
∏

i∈{0,1}

|Bi||V
i
G\(∪Γ)+|

∏
{u,v}∈EG(VΓ)

HσΓ(u),σΓ(v)
∏

u∈∂(∪Γ)

Fu,

which combined with (11) gives the desired equality. J

The following quantity combines the partition functions of the polymer models corresponding
to maximal bicliques of H; we will use this as our approximation to ZG,H .

I Definition 18. For ε ∈ (0, 1), let Zpolymer
G,H,ε =

∑
(B0,B1)∈Kmax

H
|B0|n|B1|n · ZB0,B1

G,H,ε .

Using a minor adaptation of [23, Claim 29] in our setting, we show in the full version that
the aggregate size of polymer configurations is at most 6εn (cf. Lemma 19), so combining
Lemmas 12 and 17 we obtain the following result (proof in the full version).

I Lemma 20. Let ε ∈ (0, 1
240q log q ] be such that ∆ ≥ 8q2 log(q)

ε2 log(1/δ) and ε ≥ 2q λ∆ . Then, for
all G ∈ Gbip

∆,λ with n = |V 0
G| = |V 1

G| sufficiently large, we have that Zpolymer
G,H,ε is an e−n/(4q)-

approximation to ZG,H,ε.

4.4 Sampling from the polymer model
Let q ≥ 2,∆ ≥ 3 be integers and δ ∈ (0, 1), λ ∈ (0,∆) be reals. Let H ∈ Rq×q≥0 be a symmetric
δ-matrix and (B0, B1) ∈ Kmax

H . For ε ∈ (0, 1), we now show that the family of polymer
models {(CB0,B1

G,H,ε , w
B0,B1
G,H , JG) | G ∈ Gbip∆,λ} which was defined in the previous subsection is

computationally feasible and satisfies the polymer sampling condition.

I Lemma 21. Let ε ∈ (0, 1) be such that ε ≥ λ2/∆2 and ε ≤ 1−δ
40q log(q∆) . The family of

polymer models {(CB0,B1
G,H,ε , w

B0,B1
G,H , JG) | G ∈ Gbip

∆,λ} is computationally feasible and satisfies
the polymer sampling condition with constant τ ≥ 5 + 3 log((q − 1)∆3).

MFCS 2020
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Proof (Sketch). Consider an arbitrary polymer γ = (Vγ , σγ) ∈ PB0,B1
G,H . We focus on

verifying the polymer sampling condition, since the computational feasibility follows using
the definitions. From (10), using that the entries of H are at most 1, we have the bound

wB0,B1
G,H (γ) ≤

∏
u∈∂Vγ∩VG Fu∏

i∈{0,1} |Bi||V
i
G
∩V +

γ |
, (13)

where, recall that, for u ∈ V iG with i ∈ {0, 1}, Fu :=
∑
j∈Bi

∏
v∈Vγ∩∂uHj,σγ(v). Let v be a

neighbour of u in Vγ ∩V i⊕1
G ; such v exists since u ∈ ∂Vγ ∩V iG. Then, there exists j ∈ Bi such

that Hj,σγ(v) ≤ δ; otherwise (Bi, Bi⊕1∪{σγ(v)}) would also be a biclique of H, contradicting
the maximality of (B0, B1) (since σγ(v) /∈ Bi⊕1). It follows that Fu ≤ |Bi| − 1 + δ. Using
this in (13), we get that

wB0,B1
G,H (γ) ≤

∏
i∈{0,1}(|Bi| − 1 + δ)|∂Vγ∩V iG|∏

i∈{0,1} |Bi||V
i
G
∩V +

γ |
≤
(

1− 1− δ
q

)|∂Vγ |
≤ e−|∂Vγ |

( 1−δ
q

)
, (14)

where in the second to last inequality we used that |V +
γ ∩ V iG| ≥ |∂Vγ ∩ V iG| for i ∈ {0, 1}.

We next lower bound |∂Vγ | in terms of |Vγ |. For i ∈ {0, 1}, let ρi = |Vγ ∩ V iG|/n and
ρ = |Vγ |/n . Applying Lemma 8 to the set Vγ ∩ V iG and using the inequality a

x + b
y ≥

(a+b)2

ax+by
which holds for all a, b, x, y ≥ 0, we obtain

∑
i∈{0,1}

|∂(Vγ ∩ V iG)| ≥
∑

i∈{0,1}

|Vγ ∩ V iG|
ρi + λ2

∆2

≥ |Vγ |
ρ+ λ2

∆2

≥ |Vγ |3ε ,

using that ρ ≤ 2ε and ε ≥ λ2

∆2 . Since ε ∈ (0, 1/20), we have that |∂Vγ | ≥ |Vγ |3ε − |Vγ | ≥
|Vγ |
4ε .

Plugging this into (14), we obtain wB0,B1
G,H (γ) ≤ e

−|Vγ |
( 1−δ

4εq
)
≤ e−τ |Vγ |, where τ := 1−δ

4εq ≥
10 log(q∆) ≥ 5 + 3 log((q − 1)∆3) using that ε ≤ 1−δ

40q log(q∆) and q ≥ 2,∆ ≥ 3. This
finishes the proof of Lemma 21, after observing that the degree bound for the family
{(CB0,B1

G,H,ε , w
B0,B1
G,H , JG) | G ∈ Gbip∆,λ} is ∆3. J

Finally, we can apply Theorem 15, which gives us an efficient algorithm for approximating
the partition function of the polymer model.

I Corollary 22. Let q ≥ 2, δ ∈ (0, 1), H ∈ Rq×q≥0 be a symmetric δ-matrix, and (B0, B1) ∈
Kmax
H . Let ε ∈ (0, 1) be such that ε ≥ λ2/∆2 and ε ≤ 1−δ

40q log(q∆) .
Then, there is a randomised algorithm that takes as input an n-vertex graph G ∈ Gbip

∆,λ
and an accuracy parameter ε∗ ∈ (0, 1) and outputs an ε∗-approximation to ZB0,B1

G,H,ε in time
O((n/ε∗)2 log2(n/ε∗)) with probability ≥ 3/4. Moreover, there is a randomised algorithm
that on input G and ε∗ as before, outputs an ε∗-approximate sample from µB0,B1

G,H,ε in time
O(n log(n/ε∗)).

5 Proof of Theorem 3

In this section, we combine the results of Sections 3 and 4 to prove Theorem 3.

I Theorem 3. Let q ≥ 2 be an integer, δ be a real in (0, 1), H ∈ Rq×q≥0 be a symmetric
δ-matrix. Suppose that ∆, λ satisfy ∆

λ ≥
100
1−δ q

2 log(q∆) and ∆ ≥
( 10

1−δ q log(q∆)
)4. Then,

there is an FPRAS for SPINH,∆,λ.
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In fact, there is a randomised algorithm that, given a graph G ∈ Gbip
∆,λ with n = |V 0

G| = |V 1
G|

vertices and an accuracy parameter ε∗ ≥ e−n/(5q), outputs an ε∗-approximation to ZG,H and
an ε∗-sample from the Gibbs distribution µG,H in time O((n/ε∗)2 log3(n/ε∗)).

Proof. As input to the FPRAS, we are given a graph G ∈ Gbip∆,λ and an accuracy parameter
ε∗ ∈ (0, 1). We may assume that n = |V 0

G| = |V 1
G| is sufficiently large, otherwise we can

compute ZG,H exactly in constant time, by brute force. Similarly, we may assume that
ε∗ ≥ 9e−n/(4q), otherwise we can compute ZG,H exactly in O(nq2n) = poly(1/ε∗) time, by
brute force.

Let ε = 1−δ
50q log(q∆) and observe that, using the lower bounds on ∆

λ and ∆, we have that

ε ≤ 1
240q log q , ε ≥ 2q λ∆ ≥

λ2

∆2 , ε2 ≥ 8q2 log q
∆ log(1/δ) ,

where the first inequality follows from ∆ ≥ q4, the second from rearranging ∆
λ ≥ 2q/ε (using

the lower bound on ∆
λ ), and the last inequality from using that log(1/δ) ≥ 1 − δ for all

δ ∈ (0, 1). In particular, the assumption of Lemmas 10, 20 and Corollary 22 are satisfied.
By Corollary 22, for an arbitrary biclique (B0, B1) ∈ Kmax

H , we can obtain an (ε∗/8)-
approximation to ZB0,B1

G,H,ε in O((n/ε∗)2 log2(n/ε∗)) time, with probability at least 3/4. Taking
the median of O(log(1/ε∗)) runs of this algorithm, we therefore obtain ẐB0,B1

G,H,ε which is an
(ε∗/8)-approximation to ZB0,B1

G,H,ε with probability at least 1−ε∗/(16|Kmax
H |). By a union bound

over the bicliques in Kmax
H , it follows that Ẑpolymer

G,H,ε :=
∑

(B0,B1)∈Kmax
H
|B0|n|B1|n · ẐB0,B1

G,H,ε , is
an (ε∗/8)-approximation to Zpolymer

G,H,ε (cf. Definition 18) with probability at least 1− ε∗/16.
By Lemma 20, Zpolymer

G,H,ε is an (ε∗/8)-approximation to ZG,H,ε which, by Lemma 10, is an
(ε∗/8)-approximation to ZG,H . It therefore follows that Ẑpolymer

G,H,ε is a (3ε∗/8)-approximation,
and hence an ε∗-approximation, to ZG,H with probability at least 1 − ε∗/16. The total
run-time of the algorithm is therefore O((n/ε∗)2 log3(n/ε∗)).

For the sampling algorithm, we assume again that ε∗ ≥ 9e−n/(4q). We first sample a

biclique B̂ = (B0, B1) ∈ Kmax
H with probability |B0|n|B1|nẐ

B0,B1
G,H,ε

Ẑpolymer
G,H,ε

, where ẐB0,B1
G,H,ε and Ẑpolymer

G,H,ε

are as before. Then, using Corollary 22, we sample a polymer configuration Γ̂ whose
distribution is at distance at most ε∗/6 from µB0,B1

G,H,ε . We output σ̂ = SpinB̂(Γ̂), where for a
biclique B = (B0, B1) and a polymer configuration Γ, SpinB(Γ) is a random configuration τ
obtained as follows:

For every vertex u ∈ ∪Γ, we set τ(u) = σΓ(u).
For u ∈ V iG\(∪Γ)+ with i ∈ {0, 1}, we assign a random spin from Bi uniformly at random.
For u ∈ ∂(∪Γ) ∩ V iG with i ∈ {0, 1}, for j ∈ Bi we set τ(u) = j with probability
1
Fu

∏
v∈∂u∩(∪Γ)Hj,σΓ(v) where Fu :=

∑
j∈Bi

∏
v∈∂u∩(∪Γ)Hj,σΓ(v).

We claim that σ̂ is an ε∗-approximate sample from the Gibbs distribution µG,H . To
prove this, let B,Γ,σ be the analogues of B̂, Γ̂, σ̂, respectively, when there is no error, i.e.,:
1. Set B = (B0, B1) with probability |B0|n|B1|n

Z
B0,B1
G,H,ε

Zpolymer
G,H,ε

.

2. Conditioned on B = (B0, B1), set Γ to be a sample from µB0,B1
G,H,ε and σ = SpinB(Γ).

With probability 1− ε∗/16, we have that, for all bicliques (B0, B1) ∈ Kmax
H , ẐB0,B1

G,H,ε and
Ẑpolymer
G,H,ε are (ε∗/8)-approximations to ẐB0,B1

G,H,ε and Ẑpolymer
G,H,ε respectively, and conditioned on

this the total variation distance between the distributions of B̂ and B is at most 1+ε∗/8
1−ε∗/8 −1 ≤

3ε∗/8. It follows that the total variation distance between the distributions of B̂ and B is at
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most 3ε∗/8+ε∗/16 ≤ ε∗/2, and so there is a coupling so that Pr[B̂ 6= B] ≤ ε∗/2. Conditioned
on B̂ = B, we have that the total variation distance between Γ̂ and Γ is at most ε∗/6, so
there is a coupling which further satisfies Pr[Γ̂ 6= Γ | B̂ = B] ≤ ε∗/6. Finally, conditioned
on B̂ = B and Γ̂ = Γ, we can clearly couple σ̂ and σ so that they agree. It follows that
the total variation distance between σ̂ and σ it at most 2ε∗/3, so the result will follow by
showing that the distribution of σ and µG,H are at distance at most 3e−n/(4q) ≤ ε∗/3.

For this, we will consider the set of configurations Σ̂ := ΣG,H,ε\Σoverlap
G,H,3ε, where recall

from Definition 9 that ΣG,H,ε is the set of configurations τ with
∑
i∈{0,1}

∣∣τ−1(Bi) ∩ V iG
∣∣ ≥

(1 − ε)|VG|, and from Definition 11 that Σoverlap
G,H,3ε is the set of configurations τ such that

τ ∈ ΣB0,B1
G,H,3ε ∩ ΣC0,C1

G,H,3ε for some distinct maximal bicliques (B0, B1), (C0, C1).
Consider arbitrary τ ∈ Σ̂ and let (B0, B1) be such that τ ∈ ΣB0,B1

G,H,ε . For i ∈ {0, 1}, let
Ti = V iG ∩ τ−1([q]\Bi), and S1, . . . , Sk denote the G3-connected components of T := T0 ∪ T1;
note, since τ ∈ Σ̂, we have |T | ≤ ε|VG|. Consider the polymer configuration Γτ which is the
union of the polymers (S1, τ |S1), . . . , (Sk, τ |Sk). In the full version, we show that

σ = τ iff B = (B0, B1), Γ = Γτ , σ|VG\(∪Γ) = τ |VG\T . (15)

From (15) and the sampling procedure for σ, we therefore have that σ = τ with probability

|B0|n|B1|nZB0,B1
G,H,ε

Zpolymer
G,H,ε

·
wB0,B1
G,H (Γτ )
ZB0,B1
G,H,ε

·
∏

i∈{0,1}

1
|Bi||V

i
G
\T+|

∏
u∈∂T

( 1
Fu

∏
v∈T∩∂u

Hτ(u),τ(v)

)
. (16)

From (11) applied to the polymer configuration Γτ , we have that (using ∪Γτ = T and
σΓτ = τ)

|B0|n|B1|nwB0,B1
G,H (Γτ ) =

∏
i∈{0,1}

|Bi||V
i
G\T

+|
∏

{u,v}∈EG(T )

Hτ(u),τ(v)
∏
u∈∂T

Fu,

and hence we obtain that the expression in (16) equals∏
{u,v}∈EG(T )Hτ(u),τ(v)

∏
u∈∂T

∏
v∈T∩∂uHτ(u),τ(v)

Zpolymer
G,H,ε

= wG,H(τ)
Zpolymer
G,H,ε

,

where the last equality follows by noting that edges that are not in EG(T ) ∪ EG(T, ∂T )
contribute a factor of 1 in the weight of T (since their endpoints are assigned spins of the
biclique). So, we have shown that σ = τ with probability wG,H(τ)/Zpolymer

G,H,ε .
Let pσ be the probability that σ ∈ Σ̂ and p be the aggregate weight of configurations in

the Gibbs distribution µG,H in Σ̂. Then, using that Zoverlap
G,H,3ε ≤ e−n/(3q)ZG,H,ε from Lemma 12

and Zpolymer
G,H,ε ≤ (1 + e−n/(4q))ZG,H,ε from Lemma 20, we have that

pσ ≥
1

Zpolymer
G,H,ε

∑
τ∈Σ̂

wG,H(τ) ≥
ZG,H,ε − Zoverlap

G,H,3ε

Zpolymer
G,H,ε

≥ 1− 2e−n/(4q), (17)

while for p, using that ZG,H ≤ (1 + e−n)ZG,H,ε from Lemma 10, we have the bound

p ≥ 1
ZG,H

∑
τ∈Σ̂

wG,H(τ) ≥
ZG,H,ε − Zoverlap

G,H,3ε

ZG,H
≥ 1− 2e−n/(3q). (18)

It follows that the total variation distance between the distribution of σ and µG,H is bounded
above by D := 1

2
(
(1 − pσ) + (1 − p) + M

)
, where M :=

∑
τ∈Σ̂ wG,H(τ)

∣∣∣ 1
Zpolymer
G,H,ε

− 1
ZG,H

∣∣∣.
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Using Lemma 10 and Lemma 20, we have the bound

M ≤
∣∣∣ ZG,H

Zpolymer
G,H,ε

− 1
∣∣∣ ≤ 2e−n/(4q). (19)

Combining (17), (18) and (19), we obtain that D ≤ 3e−n/(4q), i.e., the distance between the
distribution of σ and µG,H is at most 3e−n/(4q), finishing the proof of Theorem 3. J
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