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Abstract
We study the complexity of approximating the partition function of the q-state Potts model and the
closely related Tutte polynomial for complex values of the underlying parameters. Apart from the
classical connections with quantum computing and phase transitions in statistical physics, recent
work in approximate counting has shown that the behaviour in the complex plane, and more precisely
the location of zeros, is strongly connected with the complexity of the approximation problem, even
for positive real-valued parameters. Previous work in the complex plane by Goldberg and Guo
focused on q = 2, which corresponds to the case of the Ising model; for q > 2, the behaviour in the
complex plane is not as well understood and most work applies only to the real-valued Tutte plane.

Our main result is a complete classification of the complexity of the approximation problems for
all non-real values of the parameters, by establishing #P-hardness results that apply even when
restricted to planar graphs. Our techniques apply to all q ≥ 2 and further complement/refine
previous results both for the Ising model and the Tutte plane, answering in particular a question
raised by Bordewich, Freedman, Lovász and Welsh in the context of quantum computations.
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1 Introduction

The q-state Potts model is a classical model of ferromagnetism in statistical physics [32, 37]
which generalises the well-known Ising model. On a (multi)graph G = (V,E), configurations
of the model are all possible assignments σ : V → [q] where [q] = {1, . . . , q} is a set of q spins
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36:2 The Complexity of Approximating the Complex-Valued Potts Model

with q ≥ 2. The model is parameterised by y, which corresponds to the temperature of the
model and is also known as the edge interaction. Each configuration σ is assigned weight
ym(σ) where m(σ) denotes the number of monochromatic edges of G under σ. The partition
function of the model is the aggregate weight over all configurations, i.e.,

ZPotts(G; q, y) =
∑

σ : V→[q]

ym(σ),

When q = 2, this model is known as the Ising model, and we sometimes use the notation
ZIsing(G; y) to denote its partition function.

The Ising/Potts models have an extremely useful generalisation to non-integer values of
q via the so-called “random-cluster” formulation and the closely related Tutte polynomial.
In particular, for numbers q and γ, the Tutte polynomial of a graph G is given by

ZTutte(G; q, γ) =
∑
A⊆E

qk(A)γ|A|, (1)

where k(A) denotes the number of connected components in the graph (V,A) (isolated vertices
do count). When q is an integer with q ≥ 2, we have ZPotts(G; q, y) = ZTutte(G; q, y− 1), see,
for instance, [34]. The Tutte polynomial on planar graphs is particularly relevant in quantum
computing since it corresponds to the Jones polynomial of an “alternating link” [37, Chapter
5], and polynomial-time quantum computation can be simulated by additively approximating
the Jones polynomial at a suitable value, as we will explain later in more detail, see also [6]
for details.

In this paper, we study the complexity of approximating the partition function of the
Potts model and the Tutte polynomial on planar graphs as the parameter y ranges in the
complex plane. Traditionally, this problem has been mainly considered in the case where y is
a positive real, however recent developments have shown that for various models, including
the Ising and Potts models, there is a close interplay between the location of zeros of the
partition function in the complex plane and the approximability of the problem, even for
positive real values of y.

The framework of viewing partition functions as polynomials in the complex plane of the
underlying parameters has been well-explored in statistical physics and has recently gained
traction in computer science as well in the context of approximate counting. On the positive
side, zero-free regions in the complex plane translate into efficient algorithms for approximating
the partition function [1,29] and this scheme has lead to a broad range of new algorithms
even for positive real values of the underlying parameters [2, 16–18, 26–28, 30, 31]. On the
negative side, the presence of zeros poses a barrier to this approach and, in fact, it has been
demonstrated that zeros mark the onset of computational hardness for the approximability
of the partition function [4, 5, 11,15]. These new algorithmic and computational complexity
developments stemming from the complex plane mesh with the statistical physics perspective
where zeros have long been studied in the context of pinpointing phase transitions, see
e.g., [3, 19,25,34,37,38].

For the problem of exactly computing the partition function of the Potts model, Jaeger,
Vertigan and Welsh [20], as a corollary of a more general classification theorem for the Tutte
polynomial, established #P-hardness unless (q, y) is one of seven exceptional points, see
Section 6.3 of the full version for more details; Vertigan [36] further showed that the same
classification applies on planar graphs with the exception of the Ising model (q = 2), where
the problem is in FP.
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For the approximation problem, the only known result that applies for general values y
in the complex plane is by Goldberg and Guo [11], which addresses the case q = 2; the case
q ≥ 3 is largely open apart from the case when y is real which has been studied extensively
even for planar graphs [11–13,15,21,24]. We will review all these results more precisely in
the next section, where we also state our main theorems.

1.1 Our main results
In this work, we completely classify the complexity of approximating ZPotts(G; q, y) for q ≥ 2
and non-real y, even on planar graphs G; in fact, our results also classify the complexity of
the Tutte polynomial on planar graphs for reals q ≥ 2 and non-real γ. Along the way, we
also answer a question for the Jones polynomial raised by Bordewich, Freedman, Lovász, and
Welsh [6]. To formally state our results, we define the computational problems we consider.
Let K and ρ be real algebraic numbers with K > 1 and ρ > 0. We investigate the complexity
of the following problems for any integer q with q ≥ 2 and any algebraic number y.1

Name: Factor-K-NormPotts(q, y)
Instance: A (multi)graph G.
Output: If ZPotts(G; q, y) = 0, the algorithm may output any rational number. Otherwise,

it must output a rational number N̂ such that N̂/K ≤ |ZPotts(G; q, y)| ≤ KN̂ .

A well-known fact is that the difficulty of the problem Factor-K-NormPotts(q, γ)
does not depend on the constant K > 1. This can be proved using standard powering
techniques (see [11, Lemma 11] for a proof when q = 2). In fact, the complexity of the
problem is the same even for K = 2n1−ε for any constant ε > 0 where n is the size of the
input.

Name: Distance-ρ-ArgPotts(q, y)
Instance: A (multi)graph G.
Output: If ZPotts(G; q, y) = 0, the algorithm may output any rational number. Otherwise,

it must output a rational Â such that, for some a ∈ arg(ZPotts(G; q, γ)), |Â− a| ≤ ρ .

In the special case that q equals 2, we omit the argument q and write Ising instead
of Potts in the name of the problem. Similarly, when the input of the problems is
restricted to planar graphs, we write PlanarPotts instead of Potts. We also consider
the problems Factor-K-NormTutte(q, γ) and Distance-π/3-ArgTutte(q, γ) for the
Tutte polynomial when q, γ are algebraic numbers. Note also that, when q, γ are real, the
latter problem is equivalent to finding the sign of the Tutte polynomial, and we sometimes
write SignTutte(q, γ) (and, analogously, SignTutte(q, γ)).

Our first and main result is a full resolution of the complexity of approximating
ZPotts(G; q, y) for q ≥ 3 and non-real y. More precisely, we show the following.

I Theorem 1. Let q ≥ 3 be an integer, y ∈ C\R be an algebraic number, and K > 1.
Then, Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y)
are #P-hard, unless q = 3 and y ∈ {e2πi/3, e4πi/3} when both problems can be solved exactly.

1 For z ∈ C\{0}, we denote by |z| the norm of z, by Arg(z) ∈ [0, 2π) the principal argument of z and
by arg(z) the set {Arg(z) + 2πj : j ∈ Z} of all the arguments of z, so that for any a ∈ arg(z) we have
z = |z| exp(ia).
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We remark that, for real y > 0, the complexity of approximating ZPotts(G; q, y) on planar
graphs is not fully known, though on general graphs the problem is #BIS-hard [13] and
NP-hard for y ∈ (0, 1) [12], for all q ≥ 3. For real y < 0, the problem is NP-hard on general
graphs when y ∈ (−∞, 1 − q] for all q ≥ 3 ( [15])2 and #P-hard on planar graphs when
y ∈ (1− q, 0) and q ≥ 5 ( [24], see also [14]). Our techniques for proving Theorem 1 allow us
to resolve the remaining cases q = 3, 4 for y ∈ (1− q, 0) on planar graphs, as a special case of
the following theorem that applies for general q ≥ 3. This is our second main result.

I Theorem 2. Let q ≥ 3 be an integer, y ∈ (−q+1, 0) be a real algebraic number, and K > 1.
Then Factor-K-NormPlanarPotts(q, y) and Distance-π/3-ArgPlanarPotts(q, y)
are #P-hard, unless (q, y) = (4,−1) when both problems can be solved exactly.

Our third main contribution is a full classification of the range of the parameters where
approximating the partition function of the Ising model is #P-hard. Note, on planar graphs
G, ZIsing(G; y) can be computed in polynomial time for all y. For general (non-planar)
graphs and non-real y, Goldberg and Guo show #P-hardness on the unit circle (|y| = 1) with
y 6= ±i, and establish NP-hardness elsewhere. Our next result shows that the NP-hardness
results of [11] for non-real y can be elevated to #P-hardness.

I Theorem 3. Let y ∈ C\R be an algebraic number, and K > 1 be a real. Then,
Factor-K-NormIsing(y) and Distance-π/3-ArgIsing(y) are #P-hard, unless y = ±i
when both problems can be solved exactly.

For real y, we remark that the problems of approximating ZIsing(G; y) and determining its
sign (when non-trivial) are well-understood:3 the problem is FPRASable for y > 1 and NP-
hard for y ∈ (0, 1) ( [21]), #P-hard for y ∈ (−1, 0) [11, 15], and equivalent to approximating
#PerfectMatchings for y < −1 [12]. For y = 0,±1, ZIsing(G; y) can be computed exactly.

1.2 Consequences of our techniques for the Tutte/Jones polynomials
While our main results are on the Ising/Potts models, in order to prove them it is convenient
to work in the “Tutte world”; this simplifies the proofs and has also the benefit of allowing
us to generalise our results to non-integer q. The following result generalises Theorem 1 to
non-integer q > 2.

I Theorem 4. Let q > 2 be a real, γ ∈ C\R be an algebraic number, and K > 1.
Then, Factor-K-NormPlanarTutte(q, γ) and Distance-π/3-ArgPlanarTutte(q, γ)
are #P-hard, unless q = 3 and γ + 1 ∈ {e2πi/3, e4πi/3} when both problems can be solved
exactly.

Our techniques can further be used to elevate previous NP-hardness results of [12, 15] in
the Tutte plane to #P-hardness for planar graphs, and answer a question for the Jones
polynomial raised by Bordewich et al. in [6]. A more detailed discussion can be found in
Section 4.

2 Note, for y ∈ (−∞, 1− q) ∪ [0,∞), #P-hardness is impossible (assuming NP 6= #P): finding the sign
of ZPotts(G; q, y) is easy, even on non-planar graphs ( [15]), and ZPotts(G; q, y) can be approximated
using an NP-oracle. For y = 1− q, the same applies when q ≥ 6; the cases q ∈ {3, 4, 5} are not fully
resolved though [15] shows that q = 3, 4 are NP-hard, whereas q = 5 should be easy unless Tutte’s
5-flow conjecture is false [37, Section 3.5].

3 Analogously to Footnote 2, for y ∈ (−∞,−1) ∪ (0, 1) #P-hardness is unlikely since the problem can be
approximated with an NP-oracle.
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2 Proof outline

In this section we provide some insight on the proofs of our main results. As mentioned
earlier, the proofs are performed in the context of the Tutte polynomial.

In previous #P-hardness results [11,15] for the Tutte polynomial, the main technique was
to reduce the exact counting #MinimumCardinality (s, t)-Cut problem to the problem
of approximating ZTutte(G; q, γ) using an elaborate binary search based on suitable oracle
calls. Key to these oracle calls are gadget constructions which are mainly based on series-
parallel graphs which “implement” points (q′, γ′); this means that, by pasting the gadgets
appropriately onto a graph G, the computation of ZTutte(G; q′, γ′) reduces to the computation
of ZTutte(G; q, γ). Much of the work in [11, 15], and for us as well, is understanding what
values (q′, γ′) can be implemented starting from (q, γ).

For planar graphs, while the binary-search technique from [11] is still useful, we have to use
a different overall reduction scheme since the problem #MinimumCardinality (s, t)-Cut
is not #P-hard when the input is restricted to planar graphs [33]. To obtain our #P-hardness
results our plan instead is to reduce the problem of exactly evaluating the Tutte polynomial
for some appropriately selected parameters q′, γ′ to the problem of computing its sign and
the problem of approximately evaluating it at parameters q, γ; note, this gives us the freedom
to use any parameters q′, γ′ we wish as long as the corresponding exact problem is #P-hard.
Then, much of the work consists of understanding what values (q′, γ′) can be implemented
starting from (q, γ), so we focus on that component first.

We first review previous constructions in the literature, known as shifts, and then introduce
our refinement of these constructions, which we call polynomial-time approximate shifts, and
state our main results about them.

2.1 Shifts in the Tutte plane
Let q be a real number and γ1, γ2 ∈ C. We say that a graph G (q, γ1)-implements (q, γ2) and
that there is a shift from (q, γ1) to (q, γ2) if there exist vertices s, t in G such that

γ2 = q
Zst(G; q, γ1)
Zs|t(G; q, γ1) ,

where Zst(G; q, γ1) is the contribution to ZTutte(G; q, γ1) from configurations A ⊆ E in which
s, t belong to the same connected component in (V,A), while Zs|t(G; q, γ1) is the contribution
from all other configurations A (here, E is the edge set of G).

In the following, we will usually encounter shifts in the (x, y)-parametrisation of the
Tutte plane, rather than the (q, γ)-parameterisation which was used for convenience here. To
translate between these, set y = γ + 1 and (x− 1)(y− 1) = q, see [37, Chapter 3]. We denote
by Hq the hyperbola {(x, y) ∈ C2 : (x−1)(y−1) = q}, and we will use both parametrisations
as convenient. Section 3.2 of the full version has a more detailed description of shifts that
apply to the multivariate Tutte polynomial.

As described earlier, shifts can be used to “move around” the complex plane. If one knows
hardness for some (x2, y2) ∈ Hq, and there is a shift from (x1, y1) ∈ Hq to (x2, y2), then
one also obtains hardness for (x1, y1), essentially by replacing every edge of the input graph
with a distinct copy of the graph G. This approach has been effective when attention is
restricted to real parameters [12, 14, 15], however, when it comes to non-real parameters, the
success of this approach has been limited. To illustrate this, in [11], the authors established
#P-hardness of the Ising model when y2 ∈ (−1, 0), and used this to obtain #P-hardness for
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36:6 The Complexity of Approximating the Complex-Valued Potts Model

y1 on the unit circle by constructing appropriate shifts. However, their shift construction
does not extend to general complex numbers, and this kind of result seems unreachable with
those techniques.

2.2 Polynomial-time approximate shifts
To obtain our main theorems, we instead need to consider what we call polynomial-time
approximate shifts; such a shift from (x1, y1) ∈ Hq to (x2, y2) ∈ Hq is an algorithm that, for
any positive integer n, computes in time polynomial in n a graph Gn that (x1, y1)-implements
(x̂2, ŷ2) with |y2 − ŷ2| ≤ 2−n. In fact, our constructions need to maintain planarity, and we
will typically ensure this by either making every Gn a series-parallel graph, in which case we
call the algorithm a polynomial-time approximate series-parallel shift, or by making every Gn
a theta graph, in which case we call the algorithm a polynomial-time approximate theta shift.4

These generalised shifts allow us to overcome the challenges mentioned above and are
key ingredients in our reduction. Our main technical theorem about them is the following.

I Theorem 5. Let q ≥ 2 be a real algebraic number. Let x and y be algebraic numbers
such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) 6∈ {(i,−i), (−i, i), (j, j2), (j2, j)}, where
j = exp(2πi/3). Then, for any pair of algebraic numbers (x′, y′) ∈ Hq with y′ ∈ [−1, 1] there
is a polynomial-time approximate series-parallel shift from (x, y) to (x′, y′).

The exceptions {(i,−i), (−i, i), (j, j2), (j2, j)} are precisely the non-real points of the (x, y)
plane where the Tutte polynomial of a graph can be evaluated in polynomial time (see
Section 6.3). As we will see, being able to (x, y)-implement approximations of any number in
(−1, 0) is essentially the property that makes the approximation problem #P-hard at (x, y).

We remark that the idea of implementing approximations of a given weight or edge
interaction has been explored in the literature, though only when all the edge interactions
involved are real. We review these results in Section 4 of the full version.

We study the properties of polynomial-time approximate shifts in Section 4 and prove
Theorem 5 in Section 5. In the next section, we describe some of the techniques used.

2.2.1 Proof Outline of Theorem 5
Shifts, as defined in Section 2.1, have a transitivity property: if there is a shift from (x1, y1)
to (x2, y2) and from (x2, y2) to (x3, y3), then there is a shift from (x1, y1) to (x3, y3), see
Section 3.2 of the full version for more details.

The polynomial-time approximate shift given in Theorem 5 is constructed in a similar
way. First, we construct a polynomial-time approximate shift from (x, y) to some (x2, y2)
such that y2 ∈ (−1, 0), where x2 and y2 depend on x, y. Then, we construct a polynomial-
time approximate shift from (x2, y2) to (x′, y′). Finally, we combine both polynomial-time
approximate shifts using an analogue of the transitivity property.

However, when this approach is put into practice, there is a difficulty that causes various
technical complications: we only have mild control in our constructions over the intermediate
shift (x2, y2). In particular, even if the numbers x and y are algebraic, we cannot guarantee
that x2 and y2 are algebraic, and this causes problems with obtaining the required transitivity

4 A theta graph consists of two terminals s and t joined by internally disjoint paths [10]. A series-parallel
graph with terminals s and t can be obtained from the single-edge graph with edge (s, t) by repeatedly
subdividing edges or adding parallel edges [8, Chapter 11].
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property. Instead, we have to work with a wider class of numbers, the set PC of polynomial-
time computable numbers. These are numbers that can be approximated efficiently, i.e., for
y ∈ PC there is an algorithm that computes ŷn ∈ Q[i] with |y− ŷn| ≤ 2−n in time polynomial
in n [23]. We denote by PR = R ∩ PC the set of polynomial-time computable reals.

Our polynomial-time approximate shifts are constructed in Section 3. The first of these
polynomial-time approximate shifts is provided by Lemma 6.

I Lemma 6. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers
such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) 6∈ {(i,−i), (−i, i), (j, j2), (j2, j)}, where
j = exp(2πi/3). Then there is a polynomial-time approximate series-parallel shift from (x, y)
to (x′, y′) for some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1).

The construction in Lemma 6 is obtained using a theta graph and trying to get a shift that
is very close to the real line. However, we cannot control the point (x′, y′) that we are
approximating, and as mentioned, x′, y′ might not be algebraic. The proof of Lemma 6 is
the most technically demanding new ingredient in our work, and is outlined in Section 3.

Using Lemma 6, we have a series-parallel polynomial-time approximate shift from (x, y) to
some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1). Next, we have to construct a polynomial-
time approximate shift from (x′, y′) to (x̂, ŷ), where (x̂, ŷ) is the point that we want to shift
to in Theorem 5. In fact, we actually use a theta shift, which also facilitates establishing the
required transitivity property later on. Note that since y′ is not necessarily algebraic, we can
not directly apply the results that have already appeared in the literature on implementing
approximations of edge interactions. In the next lemma, we generalise these results to the
setting of polynomial-time computable numbers, where we need to address some further
complications that arise from computing with polynomial-time computable numbers instead
of algebraic numbers. The proof of the lemma is given in Section 5.5 of the full version.

I Lemma 7. Let q, x, y ∈ PR such that q > 0, (x, y) ∈ Hq, y is positive and 1− q/2 < y < 1.
There is a polynomial-time algorithm that takes as an input:

two positive integers k and n, in unary;
a real algebraic number w ∈ [yk, 1].

The algorithm produces a theta graph J that (x, y)-implements (x̂, ŷ) such that
∣∣ŷ−w∣∣ ≤ 2−n.

The size of J is at most a polynomial in k and n, independently on w.

Then, we are able to combine the shifts in Lemmas 6 and 7 via a transitivity property
for polynomial-time approximate shifts (see Lemma 17), and therefore prove Theorem 5, see
Section 5.5 of the full version for the details.

2.3 The reductions
In Section 6.6 of the full version we show how to use a polynomial-time approximate shift
from (x1, y1) to (x2, y2) to reduce the problem of approximating the Tutte polynomial at
(x2, y2) to the same problem at (x1, y1). The following lemma gives such a reduction for the
problem of approximating the norm, we also give an analogous result for approximating the
argument in the full version (see Lemma 56).

I Lemma 8. Let q 6= 0, γ1 and γ2 6= 0 be algebraic numbers, and K > 1. For j ∈ {1, 2},
let yj = γj + 1 and xj = 1 + q/γj. If there is a polynomial-time series-parallel approximate
shift from (x1, y1) to (x2, y2), then we have a reduction from Factor-K-NormTutte(q, γ2)
to Factor-K-NormTutte(q, γ1). This reduction also holds for the planar version of the
problem.

MFCS 2020
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In order to prove Lemma 8, we need some lower bounds on the norm of the partition
function ZTutte(G; q, γ). This kind of lower bound plays an important role in several hardness
results on the complexity of approximating partition functions [4, 11]. Here, we have to work
a bit harder than usual since we have two (algebraic) underlying parameters (in the case
of Tutte), and we need to use results in algebraic number theory, see Section 6.1 of the full
version for details.

By combining Theorem 5 and Lemma 8 with existing hardness results, we obtain our
hardness results for non-real edge interactions in Section 6.8 of the full version. On the
way, we collect some hardness on real parameters as well that strengthen previous results in
the literature, and part of Section 6 of the full version is devoted to this. The main reason
behind these improvements is that previous work on real parameters used reductions from
approximately counting minimum cardinality (s, t)-cuts [11, 15], the minimum 3-way cut
problem [12], or maximum independent set for planar cubic graphs [14], which are either easy
on planar graphs or the parameter regions they cover are considerably smaller or cannot be
used to conclude #P-hardness. We instead reduce the exact computation of ZTutte(G; q, γ)
to its approximation, which has the advantage that the problem that we are reducing from is
#P-hard for planar graphs [36]. Interestingly, our reduction requires us to apply an algorithm
of Kannan, Lenstra and Lovász [22] to reconstruct the minimal polynomial of an algebraic
number from an additive approximation of the number. The lower bounds on the partition
function ZTutte(G; q, γ) also play a role in this reduction, the details are given in Section 6.5
of the full version.

3 Polynomial-time approximate shifts with complex weights

We have already outlined in Section 2.2.1 the proof of Theorem 5, the key ingredient in the
reductions to obtain our inapproximability results, based on the polynomial-time approximate
shifts described in Lemmas 6 and 7. In this section, we give the proof of Lemma 6 which has
the “complex part” of the proof and has the new technical ingredients; Lemma 7 follows by
generalising results from [14] from algebraic reals to computable numbers.

We will use theta graphs (cf. Footnote 4) to prove Lemma 6. Let J be the theta graph
with m internal paths of lengths l1, . . . , lm between two vertices s, t. Then J gives a shift, in
the sense of Section 2.1, from (q, γ) to (q, γ′) where

γ′ =
m∏
j=1

(
1 + q

xlj − 1

)
− 1 and x = 1 + q/γ, (4)

see Section 3.2 of the full version for details. Note, we will mainly use this in the (x, y)-
parametrisation. Also, when m = 1, we refer to J as an `1-stretch, whereas when `1 = . . . =
`m, we refer to J as an m-thickening.

We start by giving in Section 3.1 some shifts that we will need, and then show how to
use them to obtain the polynomial-time approximate shifts of Lemma 6 in Section 3.2. Let q
be a real algebraic number with q ≥ 2 and let (x, y) ∈ Hq be a pair of algebraic numbers.

3.1 Some shifts for non-reals
In this section, for (x, y) as in Lemma 6, we will be interested in computing a shift from
(x, y) to (x1, y1) ∈ Hq with x1 6∈ R and |x1| > 1. The following remark will thus be useful.
I Remark 23. Let q be a positive real number and let (x, y) ∈ Hq. From (x− 1)(y − 1) = q

it follows that x = 1 + q/(y − 1) = (y + q − 1)/(y − 1), so |x| ≥ 1 iff Re(y) ≥ 1− q/2, with
equality only when |x| = 1.
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A root of unity is a complex number z such that zk = 1 for some positive integer k; there is
a polynomial-time algorithm to determine whether an algebraic number z is a root of unity,
see [7]. Also, if z ∈ C is not a root of unity and |z| = 1, then {zj : j ∈ N} is dense in the
unit circle, see, e.g., [9, Section 1.2].

I Lemma 24. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers
such that (x, y) ∈ Hq and Arg(y) 6∈ {0, π/2, 2π/3, π, 4π/3, 3π/2}. Then we can compute a
theta graph J that (x, y)-implements (x1, y1) with |x1| > 1 and x1 6∈ R.

Proof. We show how to compute n such that Re(yn) > 0 and Im(yn) > 0. For such n, we
let y1 = yn and x1 = 1 + q/(y1 − 1), so Remark 23 ensures that |x1| > 1 and x1 6∈ R. Hence,
we can return J as the graph with two vertices and n edges joining them. Since y and |y|
are algebraic numbers, we can compute the algebraic number y/ |y| and detect if y/ |y| is a
root of unity as explained earlier. There are two cases:
1. y/ |y| is not a root of unity. Then we can compute the smallest positive integer n such

that Arg(yn) ∈ [π/6, π/3]; such an integer exists because {(y/ |y|)j : j ∈ N} is dense in
the unit circle. Finally, since Arg(yn) ∈ [π/6, π/3], we have Re(yn) > 0 and Im(yn) > 0.

2. y/ |y| is a root of unity of order r with r ≥ 5. Recall that we can compute r by sequentially
computing the powers of y/ |y| until we obtain 1. Then we have (y/ |y|)r+1 = ei2π/r. Note
that the real and imaginary parts of ei2π/r = cos(2π/r) + i sin(2π/r) are positive. J

In the following lemmas, we consider the cases Arg(y) ∈ {π/2, 2π/3, 4π/3, 3π/2}, where
the exemptions in Lemma 6 arise.

I Lemma 25. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers
such that (x, y) ∈ Hq, y 6= 0 and Arg(y) ∈ {2π/3, 4π/3}. If q 6= 3 or |y| 6= 1, then we can
compute a series-parallel graph J that (x, y)-implements (x1, y1) with |x1| > 1 and x1 6∈ R.

Proof. Note that y/ |y| is a root of unity of order 3. We have Re(y) = |y| cos(2π/3) =
− |y| /2 < 0. Let x = 1 + q/(y − 1). We consider three cases.

Case I: Re(y) > 1− q/2. Then, by Remark 23, |x| > 1. We return J as the graph with
2 vertices and one edge joining them.

Case II: Re(y) < 1− q/2. Then |x| < 1. Let yn = 1 + q/(xn − 1). An n-stretch gives
a shift from (x, y) to (xn, yn). Since x 6∈ R, there are infinitely many values of n such that
yn 6∈ R. Note that yn converges to 1− q ∈ (−∞,−1], and the distance between 1− q and the
set of complex points {z ∈ C : Arg(z) ∈ {π/2, 2π/3, 4π/3, 3π/2}} is larger than 0. Hence, we
can compute n such that Arg(yn) 6∈ {0, π/2, 2π/3, π, 4π/3, 3π/2}. Since (xn, yn) ∈ Hq, the
result follows from applying Lemma 24 to (xn, yn), the transitivity property of shifts and
noticing that the obtained graph is series-parallel.

Case III: Re(y) = 1−q/2. Note that q > 2 because for q = 2 we would obtain Re(y) = 0;
also |y| 6= 1, otherwise from Re(y) = − |y| /2, we obtain that q = 3, which is excluded.
If |y| < 1, let n ≥ 1 be an integer such that |y|n < q − 2 and Arg(yn) = 2π/3. Since
Re(yn) = − |y|n /2, we have Re(yn) > 1− q/2, so |xn| > 1 for xn = 1 + q/(xn − 1) and we
can return J as the graph with two vertices and n edges joining them. If |y| > 1, let n ≥ 1
be an integer such that Arg(yn) = 2π/3 and Re(yn) = − |y|n /2 < 1− q/2, and apply Case
II to (xn, yn), where xn = 1 + q/(yn − 1), the transitivity property of shifts and noticing
that the obtained graph is series-parallel.

This finishes the proof. J
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I Lemma 26. Let q be a real algebraic number with q ≥ 2. Let y be an algebraic number
such that y 6= 0 and Arg(y) ∈ {π/2, 3π/2}.

If q > 2, then we can compute a theta graph J that (x, y)-implements (x1, y1) with
|x1| > 1 and x1 6∈ R. If q = 2 and |y| 6= 1, then we can compute a series-parallel graph J

that (x, y)-implements (x2, y2) with y2 ∈ (−1, 0).

Proof. The hypotheses y 6= 0 and Arg(y) ∈ {π/2, 3π/2} are equivalent to y 6= 0 and
Re(y) = 0. Let x = 1 + q/(y − 1). If q > 2, then 1 − q/2 < 0 = Re(y) and |x| > 1 as a
consequence of Remark 23, so we return the graph with two vertices and one edge joining
them as J . The second claim (case q = 2) has been studied in [11, Lemma 3.15], where the
graph constructed is a 2-thickening of a k-stretching. J

3.2 An approximate shift to (x′, y′) with y′ ∈ (0, 1)
We will use the shifts to complex points (x, y) with |x| > 1 in polynomial-time approximate
shifts. We start with a technical lemma, which will simplify the proofs, and use this to design
the desired polynomial-time approximate shift, cf. Lemma 33. Then, it is just a matter of
combining the pieces to conclude the proof of Lemma 6.

I Lemma 32. Let r, c ∈ (0, 1) ∩ Q, and {zn} be a sequence of algebraic complex numbers
satisfying, for every integer n ≥ 1, |zn| < 1 and

zn = 1− f(n) + ig(n) with f, g satisfying crn ≤ f(n), g(n) ≤ rn/2.

Then there is w ∈ (0, 1) and a bounded sequence of positive integers {en} such that∣∣∣∏n

j=1
z
ej
j − w

∣∣∣ ≤ (π2 + π

c(1− r)

)
rn for every integer n ≥ 1.

Further, if the representation of the algebraic number zn can be computed in time polynomial
in n, then w ∈ PR and en can be computed in polynomial time in n.

Proof Sketch. Write zn = ρne
iθn for some ρn ∈ (0, 1) and θn ∈ (0, π/2). Note that

1− f(n) < ρn. Let h(n) = 1− ρn. Using the assumption on f(n), we obtain

0 < h(n) < f(n) ≤ rn/2 for integers n ≥ 1. (8)

We have sin (θn) = Im(zn)
ρn

= g(n)
1−h(n) , so using that sin(x) ≤ x ≤ π sin(x)/2 for every

x ∈ [0, π/2], we obtain g(n)
1−h(n) ≤ θn ≤

πg(n)
2(1−h(n)) , and from (8) it follows that

g(n) ≤ θn ≤ πg(n) for integers n ≥ 1. (9)

Using the assumption crn ≤ g(n) ≤ rn/2, we conclude that, for integers n ≥ 2,

θn−1

θn
≤ πg(n− 1)

g(n) ≤ π

2cr . (10)

Let τ0 = 0. We define τn and en by induction on n. Let en be the largest integer such
that τn−1 + enθn ≤ 2π and let τn = τn−1 + enθn. The definition, combined with (9) and (10),
yields that (see full version for details)

0 ≤ en ≤
2π
cr

for integers n ≥ 1. (11)
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The sequence {eiτn} converges to 1. In fact, we show that it does so exponentially fast.
Note that the derivative of eit has constant norm 1. Therefore, eit is a Lipschitz function
with constant 1, that is,

∣∣eit − eis∣∣ ≤ |s− t| for every s, t ∈ R. Using (9), it follows that∣∣1− eiτn ∣∣ =
∣∣ei2π − eiτn ∣∣ ≤ |2π − τn| < θn ≤ πg(n) ≤ π

2 r
n. (12)

Next we study the sequence {xn} defined by xn =
∏n
j=1 ρ

ej
j . Since ρj ∈ (0, 1), {xn} is

decreasing and has a limit w ∈ [0, 1). In the full version, we show that w > 0 based on the
fact that en ≤ 2π/(cr) and that h(n) is a decreasing geometric series. We next show that
{xn} converges exponentially fast to w. Note that xn = (1− h(n))en xn−1 and, thus, for
n ≥ 2, using (8), (11) and that (1− x)k ≥ 1− kx for x ∈ (0, 1) and k ∈ Z≥0,

0 ≤ xn−1 − xn = xn−1 (1− (1− h(n))en) ≤ 1− (1− h(n))en ≤ h(n)en ≤ π
cr r

n.

By telescoping appropriately, we conclude that |xn − w| ≤ π
c(1−r)r

n for every integer n ≥ 1.
Using this and (12), we obtain for every positive integer n that∣∣∣∏n

j=1
z
ej
j − w

∣∣∣ ≤ ∣∣∣∏n

j=1
z
ej
j − xn

∣∣∣+ |xn − w| = |xn|
∣∣∣∏n

j=1
eiejθj − 1

∣∣∣+ |xn − w|

≤
∣∣∣∏n

j=1
eiejθj − 1

∣∣∣+ |xn − w| =
∣∣eiτn − 1

∣∣+ |xn − w| ≤
π

2 r
n + π

c(1− r)r
n.

Using that en is a bounded sequence of positive integers and that zn can be computed in
time polynomial in n, we have that en can be computed in time polynomial in n as well. We
conclude that w is the limit of a sequence of algebraic numbers that converges exponentially
fast and whose n-th element can be computed in time polynomial in n, so w ∈ PR. J

I Lemma 33. Let q be a real algebraic number with q > 0. Let x and y be algebraic numbers
such that (x, y) ∈ Hq, y 6∈ R and |x| > 1. Then there is a polynomial-time approximate theta
shift from (x, y) to (x′, y′) for some (x′, y′) ∈ Hq with y′ ∈ (0, 1) ∩ PR.

Proof Sketch. Since y 6∈ R and (x− 1)(y − 1) = q, we have x 6∈ R. Let us write x = Reiθ

for some R > 1 and θ ∈ (0, 2π). An m-stretch gives a shift from (x, y) to (xm, ym) with
ym = (xm + q − 1)/(xm − 1). By plugging x = Reiθ in the definition of ym and multiplying
by Rme−imθ − 1 in the numerator and denominator, we obtain

ym = R2m − q + 1 + (q − 2)Rm cos (mθ)− iqRm sin (mθ)
1 +R2m − 2Rm cos (mθ) . (13)

If θ ∈ {π/2, 3π/2}, that is, x ∈ iR, then for m ≡ 2 (mod 4) such that 1 + Rm > q, we
have cos (mθ) = −1, sin (mθ) = 0 and ym = (1+Rm)2−q(1+Rm)

(1+Rm)2 = 1+Rm−q
1+Rm ∈ (0, 1), so we can

choose y′ = ym and we are done. In the rest of the proof we assume that θ 6∈ {π/2, 3π/2}.
We are going to apply Lemma 32 to a subsequence of ym. In particular, we invoke

Corollary 21 of the full version in order to find a sequence σ(m) of integers, a positive integer
k and a positive rational C that satisfy:

σ(m) can be computed in time polynomial in m, while k and C can be computed in
constant time from x;
σ(m) ∈ [m,m+ k − 1] and sin(σ(m)θ), cos(σ(m)θ) ≤ −C for every integer m ≥ 1.

It follows that Re
(
xσ(m)) = Re

(
Rσ(m)eiσ(m)θ) ≤ −CRσ(m) ≤ −CRm. Since R > 1, we can

compute m1 ∈ Z≥0 such that for m ≥ m1 we have Re(xσ(m)) < 1−q/2 and, thus,
∣∣yσ(m)

∣∣ < 1
(recall that ym = (xm + q − 1) / (xm − 1) and Remark 23).
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Let am, bm be such that ym = 1 − am + ibm. Then, using the bounds R2σ(m) ≤
1 +R2σ(m) − 2Rσ(m) cos (σ(m)θ) ≤ 4R2σ(m), we obtain the bounds

qC

4 R−σ(m) ≤ aσ(m), bσ(m) ≤ 2qR−σ(m) for integers m ≥ 1. (14)

Then, let m2 be an integer such that m2 ≥ logR(4q),m1 and c be a rational with c ∈
(0, qCR−m2−k−1/4). Then, with f(m) = aσ(m+m2) and g(m) = bσ(m+m2), we obtain from
(14) and the inequalities R−m−k+1 ≤ R−σ(m) ≤ R−m that

cR−m ≤ f(m), g(m) ≤ 1
2R
−m for integers m ≥ 1. (15)

Using that
∣∣yσ(m)

∣∣ < 1 and (15), we obtain that the sequence {zm} = {yσ(m+m2)} satisfies
the assumptions of Lemma 32, so applying the lemma yields y′ ∈ (0, 1) ∩ PR and a bounded
sequence of positive integers {em} such that∣∣∣∏m

j=1
z
ej
j − y

′
∣∣∣ ≤ (π2 + π

c(1− 1/R)

)
R−m, (16)

and em can be computed in time polynomial in m, for all integers m ≥ 1. This gives
the following polynomial-time approximate theta shift from (x, y) to (x′, y′), where x′ =
1 + q/(y′ − 1). For integer n, pick m to be the smallest integer so that the r.h.s. in (16) is
smaller than 2−n, and note that m is linear in n. We return the theta graph Jn that is the
parallel composition of the path graphs that are used to implement the weights yσ(j+m2), each
one repeated ej times, for j ∈ {1, . . . ,m}. The graph Jn is a shift from (x, y) to (x̂, ŷ) ∈ Hq

for ŷ =
∏m
j=1 z

ej
j =

∏m
j=1 y

ej
σ(j+m2), cf. (4). J

I Lemma 6. Let q be a real algebraic number with q ≥ 2. Let x and y be algebraic numbers
such that (x, y) ∈ Hq, y ∈ (−1, 0) ∪ (C\R) and (x, y) 6∈ {(i,−i), (−i, i), (j, j2), (j2, j)}, where
j = exp(2πi/3). Then there is a polynomial-time approximate series-parallel shift from (x, y)
to (x′, y′) for some (x′, y′) ∈ Hq with x′, y′ ∈ PR and y′ ∈ (0, 1).

Proof. If y ∈ (−1, 0), then a 2-thickening of (x, y) gives the result. Hence, let us assume
that y 6∈ (−1, 0) in the rest of the proof. There are two cases to consider.
Case I: q 6= 2 or y 6∈ iR. We apply either Lemma 24, Lemma 25 or Lemma 26, depending on

Arg(y), to find a shift from (x, y) to (x1, y1) ∈ Hq with y1 6∈ R and |x1| > 1. The graph
of this shift is series-parallel. Then we apply Lemma 33 to obtain a polynomial-time
approximate theta shift from (x1, y1) to some (x′, y′) ∈ Hq with y′ ∈ (0, 1) ∩ PR. The
result follows from the transitivity property of shifts.

Case II: q = 2 and y ∈ iR. Since y 6= ±i, Lemma 26 gives a shift from (x, y) to (x′, y′) for
some (x′, y′) ∈ Hq with y′ ∈ (−1, 0). A 2-thickening of (x′, y′) gives the result.

The fact that x′ ∈ PR follows from x′ = 1 + q/(y′ − 1) and y′ ∈ PR. J

4 Further consequences of our results

In this final section, we apply our results to the problem of approximating the Jones
polynomial of an alternating link, which is connected to the quantum complexity class BQP
as explained in [6]. More details can be found in Section 7 of the full version.

We briefly review some relevant facts about links and the Jones polynomial that relate it
to the Tutte polynomial on graphs, see [37] for their definitions. Let VL(T ) denote the Jones
polynomial of a link L. By a result of Thistlethwaite, when L is an alternating link with
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associated planar graph G(L), we have VL(t) = fL(t)T (G(L);−t,−t−1), where fL(t) is an
easily-computable factor that is plus or minus a half integer power of t, and T (G;x, y) is the
Tutte polynomial of G in the (x, y)-parametrisation [35,37]. Moreover, every planar graph
is the graph of an alternating link [37, Chapter 2]. Hence, we can translate our results on
the complexity of approximating the Tutte polynomial of a planar graph to the complexity
of approximating the Jones polynomial of an alternating link, and obtain #P-hardness
results for approximating VL(t). This is done in Corollary 61 of the full version, which shows
#P-hardness for all algebraic t with Re(t) > 0 and t 6∈ {1,−e2πi/3,−e4πi/3}.

The case t = e2πi/5 of Corollary 61 is particularly relevant due to its connection between
approximate counting and the quantum complexity class BQP, which was explored by
Bordewich, Freedman, Lovász and Welsh in [6], where they posed the question of determining
whether Re(ZTutte(G; q, γ)) ≥ 0 or Re(ZTutte(G; q, γ)) for planar graphs G. The non-planar
version has been studied in [11, Section 5], where #P-hardness was shown. Our planar results
for the Tutte polynomial allow us to adapt the argument in [11] to answer the question asked
in [6], see Corollary 62 of the full version.
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