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Abstract

We consider scheduling real-time jobs in the classic flow shop model. The input is a set of n jobs,
each consisting of m segments to be processed on m machines in the specified order, such that
segment Ii of a job can start processing on machine Mi only after segment Ii−1 of the same job
completed processing on machine Mi−1, for 2 ≤ i ≤ m. Each job also has a release time, a due
date, and a weight. The objective is to maximize the throughput (or, profit) of the n jobs, i.e.,
to find a subset of the jobs that have the maximum total weight and can complete processing
on the m machines within their time windows. This problem has numerous real-life applications
ranging from manufacturing to cloud and embedded computing platforms, already in the special
case where m = 2. Previous work in the flow shop model has focused on makespan, flow time, or
tardiness objectives. However, little is known for the flow shop model in the real-time setting. In
this work, we give the first nontrivial results for this problem and present a pseudo-polynomial
time (2m + 1)-approximation algorithm for the problem on m ≥ 2 machines, where m is a constant.
This ratio is essentially tight due to a hardness result of Ω( m

log m
) for the approximation ratio. We

further give a polynomial-time algorithm for the two-machine case, with an approximation ratio of
(9 + ε) where ε = O(1/n). We obtain better bounds for some restricted subclasses of inputs with
two machines. To the best of our knowledge, this fundamental problem of throughput maximization
in the flow shop scheduling model is studied here for the first time.
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1 Introduction

Flow shop is a fundamental scheduling model where a set of jobs needs to be processed in
multiple stages in a specified order that is the same for all jobs. There are many real-world
applications of flow shop scheduling, ranging from production planning and computing
platforms to satellite systems and service centers. For instance, an autonomous car runs
applications, such as obstacle detection and route planning, applying deep neural networks on
an embedded computing platform, which are composed of a CPU host and a GPU accelerator
connected via a non-preemptive bidirectional bus. Each execution instance (i.e., job) of the
applications is first initiated in the CPU to preprocess the input data, then transfers the
data from CPU to GPU via the bus, executes the computation on the GPU, and finally
transfers the results back via the bidirectional bus. There are multiple such jobs running in
real-time with different release times and deadlines, e.g., multiple images to be processed by
the object detection application in a time window. Hence, the computing platform needs to
schedule the execution on the CPU and GPU, as well as the data transfers on the bus, to
meet preset deadlines, e.g., to maximize the number of images processed in a time window.

The flow shop model has been widely studied for minimizing the latest completion time of
any job (or, makespan) since the 1950s, starting with the seminal work of Johnson [16], which
showed that makespan minimization in two-machine flow shop can be solved in polynomial
time. However, most extensions of the problem are strongly NP-hard [7]. For example,
makespan minimization for flow shop with three machines is already NP-complete, even if
the input length is measured by the sum of the job lengths [12]. Hence, later works studied
approximation algorithms for the problem (see, e.g., [13, 18,20,22,24]).

In this paper, we are interested in flow shop scheduling for jobs with different release
times, due dates, and weights, and the scheduling objective is to maximize the throughput –
the total weight of the jobs that are completed by their due dates. Surprisingly, in contrast
to the extensive results on minimizing the makespan, flow time, and tardiness in the flow
shop model, there is little work on maximizing the throughput of jobs with due dates. On
the other hand, the problem of maximizing the throughput of jobs with release times, due
dates, and weights, also known in the literature as (aperiodic) real-time scheduling, has been
widely studied. In this classic model, each job can be processed to completion on a single
machine or any of the parallel machines (see, e.g., [1–4,9, 15,17,19,25]).

We now formalize our problem. In the m-machine flow shop model, there is a set of
n jobs, J = {J1, . . . , Jn}, and m machines, M1, . . . ,Mm. Each job Jj , 1 ≤ j ≤ n, has a
release time, a due date, and a weight, given by rj ≥ 0, dj ≥ 0, and wj > 0, respectively. A
job can only start executing on machine Mi, 2 ≤ i ≤ m, after it has finished its execution
on the previous machine Mi−1. In addition, at any time t ≥ 0, each of the machines can
process at most one job. For a job Jj , we denote the processing time of its i-th segment to
be executed on machine Mi by pj,i. We assume that pj,i, rj and dj are rational numbers.
We further assume that all job segments are non-preemptive. In other words, once a job Jj
has started its execution on a machine, this machine cannot stop or switch to another job
until Jj has finished its execution on this machine. We seek a subset of jobs J ′ ⊆ J that
can be feasibly scheduled (i.e., each job Jj can complete processing on all machines in a flow
shop manner in its time window (rj , dj ]) and has a maximum total weight. We denote this
maximum throughput objective by MaxT. We obtain results for MaxT in the m-machine flow
shop model, with a focus on the special case of two-machine flow shop.
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1.1 Applications
In the following, we motivate MaxT in the flow shop model with some real-life applications.

Scheduling in Cloud Data Centers. A cloud-data-center (CDC) consists of a set of server
clusters connected with clients through a network. Since all the resources are stored on the
servers, clients generate resource requests from the CDC. A data request consists of two
steps: task execution, in which data is obtained from a disk or distributed storage systems
and stored in memory, and then transmission from memory to the client over the network
(see, e.g., [26]). When data requests have release times and due dates, a natural goal is to
maximize the total number of requests that can be processed by the CDC in a given time
interval. This yields an instance of MaxT in the flow shop model.

Earth Observation Satellites. An earth observation satellite (EOS) is equipped with high-
resolution cameras for observing target objects across the surface of Earth. There are available
time windows for multiple EOSs to observe a given object and to download the acquired
image/video data to ground receiver stations. The problem of observation scheduling (at
stage 1) and data downlink scheduling (at stage 2) with the objective of maximizing the
number of satellites that can complete processing in their time windows yields an instance of
MaxT in the two-machine flow shop model (see, e.g., [26]).

Autonomous Vehicle Navigation. An object detection application running in autonomous
cars takes images from a front-facing camera as input and produces car steering angles as
output (see, e.g., [6]). Since the algorithm uses deep neural networks (DNN), each image
is handled in stages (preprocessing data in CPU, data transfers between CPU and GPU,
and DNN computation in GPU), the process of handling the images in real-time so as to
maximize the number of images processed in a given time window can be viewed as a MaxT
instance in the flow shop model.

1.2 Contributions and Techniques
We say that A is a ρ-approximation algorithm for a maximization problem Π, for ρ ≥ 1, if
for any instance I of Π, A(I) ≥ OPT (I)

ρ , where OPT (I) is the value of an optimal solution
for I.

In this paper, we study the fundamental problem of throughput maximization in the
flow shop scheduling model. Our main result is a polynomial-time (9 + ε)-approximation
algorithm for MaxT in the two-machine flow shop, where ε = O(1/n) for an input of size
n (i.e., n = |J |). We derive the algorithm by first obtaining a pseudo-polynomial time
(2m+ 1)-approximation algorithm for MaxT on m machines, where m ≥ 2 is a constant. We
note that the ratio of (2m+ 1) is essentially tight for any m ≥ 3, due to a known hardness of
approximation result for a ratio Ω( m

logm ) [14].
We show that MaxT admits better approximations on some restricted instances of the

two-machine model. In particular, we present a 4-approximation algorithm for instances
where all jobs have the same release time, i.e., rj = 0 for all Jj ∈ J , and uniform weights.
For the special case where all jobs have the same time window and arbitrary weights, we
give a (3 + ε)-approximation algorithm, for any fixed ε > 0.

Techniques. In Section 2, we give an approximation algorithm for instances of MaxT on
m machines, where m is some constant. As our algorithm requires solving a Configuration
Linear Program (LP), this implies a pseudo-polynomial running time. Showing that this

APPROX/RANDOM 2020
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algorithm can be implemented in polynomial time, with only a slight degradation in the
approximation ratio, is a major challenge even in the two machine case. We use the following
key observation. Any instance J can be modified to an instance Jnew (by replacing some jobs
with new jobs) in which for every job Jj ∈ Jnew either both pj,1 and pj,2 are large relative to
dj − rj , or both pj,1 and pj,2 are small relative to dj − rj . Then, by an intricate analysis, we
show how to reduce the number of variables associated with the jobs in Jnew to be of size
polynomial in |Jnew| (and consequently also in |J |, since we add only a polynomial number
of new jobs) with only a minor degradation in the quality of the solution. The resulting
polynomial-size linear program can then be solved and rounded in polynomial time to obtain
an approximate solution (details are in Section 3). In one of the special cases, we establish
a precise relation between the approximability of classic real-time scheduling on a single
machine and MaxT in the two-machine flow shop (details are in Section 4.1). This allows the
use of approximation algorithms for the single machine case for solving our problem.

1.3 Prior Work
The problem of real-time scheduling with the objective of throughput maximization is
discussed widely in the literature. A general instance of the problem consists of a set of n
jobs and k machines, for some k ≥ 1, where each job j has a weight wj > 0, a release time
rj , a due date dj and a processing time pji on machine i, for 1 ≤ i ≤ k and 1 ≤ j ≤ n. The
goal is to find a non-preemptive schedule that maximizes the weight of jobs that meet their
respective due dates. Note that all the related works in this domain do not consider the
flow shop model. Instead, the k machines form a single stage, where each job needs to be
processed on any one of the machines.

The problem is known to be NP-complete already in the single machine case (i.e., k = 1),
where all jobs have the same (unit) weight [11]. Some special cases of the problem are known
to be solvable in polynomial time. Moore [19] showed for the single machine case and uniform
job weights that, if rj = 0 ∀j the problem can be solved in time O(n2). Sahni presented
in [21] a fully polynomial time approximation scheme (FPTAS), whose running time is O(n

3

ε ),
for the more general case where jobs have the same release time and arbitrary weights.

Bar-Noy et al. [3, 4] considered the real-time scheduling problem for general instances
with k machines, for some k ≥ 1, where jobs may have arbitrary weights and arbitrary
release times and due dates. They presented in [3] a (2 + ε)-approximation algorithm, using
the local ratio technique. A quasi-polynomial time dynamic programming framework was
proposed in [15], which gives a (1+ε)-speed (1+ε)-approximation algorithm for the weighted
throughput problem on k machines. The best known result without speed augmentation is
an e

e−1 < 1.582 approximation algorithm [9], for a single machine and uniform job weights.
We note that a variant of MaxT, where for every job Jj ∈ J , the start-times of all

segments of Jj are given explicitly, yields an instance of maximum weight independent set in
m-union graphs. Recall that an m-union graph can be modeled as the intersection graph
of m-segments, i.e., each vertex in the graph can be represented by at most m segments on
the real line. Two vertices are adjacent if their ith segments intersect. For this problem,
the paper [5] presented a 2m-approximation algorithm that was shown to be close to the
best possible, due to a hardness of approximation result for a ratio of Ω( m

logm ) [14]. The
hardness result carries over to MaxT in the flow shop model and m machines, for any m ≥ 3.
Our approximation algorithm for a constant number of machines builds on an algorithm
presented in [5]. However, further steps are required to obtain polynomial running time,
which is the main contribution of this paper.
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Another line of work that relates to MaxT deals with maximizing the total weight of
just-in-time (JIT) jobs, i.e., the weighted number of jobs that are completed exactly on
their due dates. All previous studies assume that rj = 0 ∀j. Choi and Yoon [8] show that
JIT two-machine flow shop with arbitrary job weights is NP-complete. The special case of
uniform job weights is solvable in polynomial time on two machines and is strongly NP-hard
for instances with three machines. The best known result is an FPTAS in [10] (see also [23]).

We are not aware of earlier studies of throughput maximization in the flow shop model.

2 Approximation Algorithm for Fixed Number of Machines

In this section, we present a pseudo-polynomial time algorithm for MaxT on flow shop
instances with m ≥ 2 machines, where m is some constant. Given the set of jobs J , each job
Jj , 1 ≤ j ≤ n, is associated with m segments and a weight wj ≥ 0. Also, Jj has a release
time and a due date, rj ≥ 0 and dj ≥ 0, respectively. We seek a subset of the jobs that can
be feasibly scheduled on the machines in a flow shop manner, such that the total weight of
scheduled jobs is maximized.

As the processing time pj,i on machine Mi, release time rj , and deadline dj of job Jj
are all rational numbers, we can obtain integer values for these parameters by appropriate
scaling. Since all these values are integral, it is easy to see that any feasible solution can
be “tweaked” so that the start times of all segments of all jobs begin at an integral time
point. Thus, from now on we assume that this is the case. This allows us to discretize the
input and consider all the possible occurrences of a job Jj in its time window (rj , dj ]. An
occurrence of Jj specifies the start times of all segments of Jj on the m machines in (rj , dj ].
Note that the number of such possible occurrences of job Jj is upper bounded by (dj − rj)m.

We give some notations towards solving MaxT on m machines using a linear program. Let
Lj denote the set of occurrences of job Jj , so the number of the occurrences of Jj is |Lj |. Let
L =

⋃n
j=1 Lj . Clearly, |L| =

∑n
j=1 |Lj |. Let x`(j) ∈ {0, 1} be an indicator variable for the

selection of the `-th occurrence J`j of Jj in the solution, where 1 ≤ ` ≤ |Lj |. We note that the
number of variables and the number constraints in the linear program is O(

∑n
j=1(dj − rj)m),

and is thus pseudo-polynomial in the input size. Let w ∈ IRn, x ∈ IR|L| be a weight vector
and a relaxed indicator vector, respectively. Then, w · x =

∑n
j=1

∑|Lj |
`=1 wjx

`(j).
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Figure 1 The job clique (J3
1 , J4

2 , J2
1 , J1

4 ) is defined by z, the right endpoint of the ith segment of
J3

1 . The clique contains two occurrences of J1: J3
1 and J2

1 . The next clique, (J2
1 , J1

5 ), is defined by
the segment having its right endpoint at z′.

We now define job cliques on each of the m machines as follows. For machine 1 ≤ i ≤ m,
we examine the time axis from left to right and find among the segments that need to be
processed on machine i a segment whose right endpoint is earliest. Let z be the time point
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where this segment ends. We now define a clique C consisting of all job occurrences whose
ith segment intersects the time point z. The next clique is defined by the earliest endpoint
z′ of an ith segment of a job, for which the following holds: there exists a job occurrence Jrk ,
such that the ith segment of Jrk intersects z′, but Jrk /∈ C, as shown in Figure 1. Intuitively,
the endpoints z and z′ in the definition of job cliques capture the maximum intersecting job
occurrences in the time window [z, z′]. Hence, a feasible schedule can only select one job
occurrence in each clique.

We formulate the linear programming relaxation for MaxT as follows.

(P) maximize w · x subject to :∑
J`

j
∈C

x`(j) ≤ 1 for each clique C

|Lj |∑
`=1

x`(j) ≤ 1 ∀1 ≤ j ≤ n

x`(j) ≥ 0 ∀1 ≤ j ≤ n, 1 ≤ ` ≤ |Lj |

The first constraint ensures that at most one job occurrence is selected from each clique.
The second constraint guarantees that at most one occurrence of a job Jj is selected for
the solution, ∀Jj ∈ J . We note that (P) can be viewed as a Configuration LP, where each
occurrence, J`j , defines a configuration, ∀Jj ∈ J .

Considering the neighbors of a job occurrence J`j , we define two subsets of job occurrences.
1. Let Ñ1(J`j ) be the set of all job occurrences Jrk where k 6= j, such that a segment of Jrk

intersects a segment of J`j (recall that two segments can intersect only if both need to be
processed on the same machine).

2. Let Ñ2(J`j ) be the set of all job occurrences Jrj where r 6= `, i.e., other occurrences of Jj .

The neighborhood of a job occurrence J`j is defined as Ñ(J`j ) = Ñ1(J`j )
⋃
Ñ2(J`j ).

I Lemma 1. Let x be a feasible solution to (P). There exists a job occurrence J`j satisfying:

x`(j) +
∑

Jr
k
∈Ñ(J`

j
)

xr(k) ≤ 2m+ 1.

Proof. We first show that there exists a job occurrence J`j for which the following holds:

x`(j) +
∑

Jr
k
∈Ñ1(J`

j
)

xr(k) ≤ 2m. (1)

For two “neighboring” job occurrences J`j and Jrk (i.e., Jrk ∈ Ñ1(J`j ) and J`j ∈ Ñ1(Jrk)),
define z(J`j , Jrk) = x`(j) · xr(k). We also define z(J`j , J`j ) = (x`(j))2. We prove (1) using a
weighted averaging argument, where the weights are the values z(J`j , Jrk) for all pairs of job
occurrences which have intersecting segments. The full proof is given in Appendix A. J

2.1 The Algorithm
We now show how to use Lamma 1 to get a (2m+ 1)-approximation for MaxT on m machines
for some constant m ≥ 2. Let I be the set of all half open subintervals of the interval
(0, 2m+ 1]. Given an optimal solution x for the linear program (P), we construct a mapping
ψ : L → 2I such that for each job occurrence J`j the following properties are satisfied:
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1. All the subintervals in ψ(J`j ) are disjoint.
2. The total size of the subintervals in ψ(J`j ) is x`(j).
3. None of the subintervals in ψ(J`j ) intersects any of the subintervals in

⋃
Jr

k
∈Ñ [J`

j
] ψ(Jrk).

The mapping is constructed for one job occurrence at a time according to a hierarchical
order induced by Lemma 1. We first define this hierarchical order. The last job occurrence
in the order is the occurrence J`j that satisfies the inequality of Lemma 1. We then remove
this job occurrence from the feasible solution to (P). We still remain with a feasible solution
to (P) and we can apply Lemma 1 again and find yet another job occurrence that satisfies
the inequality of the lemma. We append this job occurrence to the order. We continue in
the same manner until we order all the job occurrences.

We compute ψ(J`j ) for one job occurrence at a time from the first to the last in the
hierarchical order defined above. When ψ(J`j ) is computed, we remove from the interval
(0, 2m + 1] all the subintervals in

⋃
Jr

k
∈N̄ ψ(Jrk), where N̄ ⊂ Ñ [J`j ] is the set of all job

occurrences in Ñ [J`j ] that precede J`j in the hierarchical order. By Lemma 1 the total size
of these subintervals is no more than 2m + 1 − x`(j). Thus, the remainder contains a set
of disjoint subintervals of a total size at least x`(j). If we assign ψ(J`j ) greedily, that is,
we assign the leftmost collection of such disjoint subintervals, then it can be shown that
|ψ(J`j )| is bounded by |L|. This is because each job occurrence may increase the number of
subintervals by at most one.

For a point y ∈ (0, 2m+1], let φ(y) ⊆ L be the subset of L consisting of all job occurrences
J`j for which one of the subintervals in ψ(J`j ) contains the point y. From the definition of
the mapping ψ, it is evident that the subset φ(y) does not contain two job occurrences that
intersect and also does not contain two job occurrences of the same job. Thus, the job
occurrences in φ(y) can be scheduled feasibly to yield a weight of w(y) =

∑
J`

j
∈φ(y) wj . Let

y∗ = arg maxy∈(0,2m+1]{w(y)}. Note that if the mapping is computed greedily there are at
most |L|2 possible values of w(y∗). These values are determined by the right endpoints of all
subintervals. The pseudocode of the algorithm, Flowshop_Time_Windows, is in Algorithm 1.

Algorithm 1 Flowshop_Time_Windows.

1: Find an optimal solution x for the linear program (P ).
2: Order the job occurrences according to the hierarchical order.
3: for each job occurrence J`j in order do
4: Remove from the interval (0, 2m+ 1] all subintervals assigned to “neighbors” of J`j

that precede it in the hierarchical order.
5: Assign to J`j the leftmost collection of subintervals of total size x`(j).
6: end for
7: Let maxwy = 0.
8: for a point y that is a right endpoint of a subinterval do
9: Let φ(y) ⊆ L be the subset of all job occurrences J`j for which one of the subintervals

in ψ(J`j ) contains the point y.
10: Let w(y) =

∑
J`

j
∈φ(y) wj .

11: if w(y) > maxwy then
12: Let maxwy = w(y) and y∗ = y.
13: end if
14: end for
15: Return φ(y∗).

APPROX/RANDOM 2020
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I Theorem 2. Flowshop_Time_Windows yields a (2m+ 1)-approximation for MaxT on m
machines.

Proof. Consider
∫ 2m+1

0 w(y)dy. By our definitions,

∫ 2m+1

0
w(y)dy =

n∑
j=1

|Lj |∑
`=1

∫
ψ(J`

j
)
wjdzj =

n∑
j=1

|Lj |∑
`=1

wjx
`(j) = w · x

The first equality is derived by a variable substitution and the second equality follows
from the second property of the mapping. Since

∫ 2m+1
0 w(y)dy = w · x it follows that

(2m+ 1)w(y∗) ≥ w · x. J

I Corollary 3. There is a pseudo-polynomial time (2m + 1)-approximation algorithm for
MaxT on m machines, where m ≥ 2 is some constant.

3 Approximating MaxT on Two Machines

We now show that, with a slight degradation of the approximation ratio, we can use the
algorithm presented in Section 2 to obtain a polynomial-time algorithm for m = 2.

We start with some notations. Consider two machines, M1 and M2, and each job consists
of two non-preemptive segments. For notation simplicity, in the following sections, we denote
the processing times of Jj on M1 and M2 as aj and bj , respectively. Recall that a job Jj ∈ J
has a release time rj ≥ 0, a due date dj ≥ 0, and a weight wj ≥ 0. Thus, in any feasible
schedule of J ′ ⊆ J in the flow shop model, Jj ∈ J ′ is processed first for aj time units on
M1 after its release time rj , then processed for bj time units on M2 and finished no later
than its due date dj .

We distinguish between three types of jobs based on their slackness:
(i) Small jobs JS : Job Jj is a Small job, if it has a large slack in its time window [rj , dj ],

satisfying aj + bj <
dj−rj−aj−bj

n2−1 . Note that this implies aj + bj <
dj−rj

n2 .
(ii) Large jobs JL: Job Jj is a Large job, if aj ≥ dj−rj−aj−bj

2n2−2 and bj ≥ dj−rj−aj−bj

2n2−2 .
(iii) Almost-Large jobs JAL: Job Jj is a Almost-Large job, if it satisfies aj + bj ≥

dj−rj−aj−bj

n2−1 (and hence aj + bj ≥ dj−rj

n2 ), and also one of the following:
(a) aj ≥ dj−rj−aj−bj

2n2−2 and bj < dj−rj−aj−bj

2n2−2 .
(b) aj < dj−rj−aj−bj

2n2−2 and bj ≥ dj−rj−aj−bj

2n2−2 .

We modify the linear program (P) in Section 2 to solve it in polynomial time in the
following steps. First, we eliminate Almost-Large jobs and replace each Almost-Large
job by two Large jobs and one Small job. Then, we define the modified linear program
(Pnew) of polynomial size by identifying only a polynomial number of job occurrences for each
job included in this formulation. We call these job occurrences the selected job occurrences.
All the unselected job instances will not be scheduled (fractionally). We show that any
feasible solution of (P) induces a feasible solution of (Pnew) with a slight degradation in the
value of the objective function. Finally, we show how a feasible solution of (Pnew) can be
“rounded” to a schedule whose weight is 1

9 of the objective value of this feasible solution of
(Pnew). This schedule is a (9 + ε)-approximation of the optimal solution.

3.1 Eliminating the Almost-Large Jobs
We first partition the set JAL of Almost-Large jobs into two subsets J 1

AL and J 2
AL.

(1) The subset J 2
AL of jobs Jj satisfying aj ≥ dj−rj−aj−bj

2n2−2 and bj < dj−rj−aj−bj

2n2−2 .
(2) The subset J 2

AL of jobs Jj satisfying aj < dj−rj−aj−bj

2n2−2 and bj ≥ dj−rj−aj−bj

2n2−2 .
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Consider a job Jj ∈ J 1
AL. Let time point tj = dj − aj − (2n2 − 1)bj , so bj = dj−tj−aj−bj

2n2−2 .
Partition the occurrences of Jj into two subsets. The first subset consists of all occurrences
J`j in which the first segment of J`j starts (on M1) at or after tj , and the complement subset
consists of all occurrences J`j in which the first segment of J`j starts processing before time
tj . We replace job Jj with three new jobs as follows.

Note that the job occurrences in the first subset are essentially the job occurrences of a
new job consisting of two segments of lengths aj , bj with new release time tj and due date
dj . We add such a job Jn+j to the input. This job is Large, since aj ≥ dj−tj−aj−bj

2n2−2 and
bj = dj−tj−aj−bj

2n2−2 .
For the second subset of job occurrences, we ignore (for now) all the occurrences where

the second segment starts before tj + aj . Note that the rest of the job occurrences in the
second subset are essentially the job occurrences of two new jobs: one job consisting of
a single segment of length aj (to be processed on M1) with release time rj and new due
date tj + aj , and a second job consisting of a single segment of length bj (to be processed
on M2) with new release time tj + aj and due date dj . We add these two jobs J2n+j and
J3n+j to the input. Since dj − bj = tj + aj + (2n2 − 2)bj ≥ tj + aj and aj ≥ dj−rj−aj−bj

2n2−2 ,
we have aj ≥ tj+aj−rj−aj

2n2−2 . Thus, the job J2n+j is Large. The job J3n+j is Small, since
bj = dj−tj−aj−bj

2n2−2 <
dj−tj−aj−bj

n2−1 . We make sure that J2n+j and J3n+j are scheduled together
by modifying the linear program.

Jobs Jj ∈ J 2
AL are handled symmetrically. Let tj be the time point satisfying aj =

tj−rj−aj−bj

2n2−2 . Partition the occurrences of Jj into two subsets. The first subset consists of
all occurrences where the second segment ends at or before tj , and the complement subset
consists of all occurrences where the second segment ends processing (on M2) after time tj .
The job occurrences in the first subset are the same as the new job occurrences of a job with
two segments of lengths aj , bj , release time rj and new due date tj . We add such a job Jn+j
to the input. This job is Large since aj = tj−rj−aj−bj

2n2−2 and bj ≥ tj−rj−aj−bj

2n2−2 . For the second
subset, we again ignore (for now) all the occurrences where the first segment finishes after
tj−bj . Then the rest job occurrences in the second subset are the same as the job occurrences
of two new jobs: one job with a single segment of length bj (to be processed on M2) with
new release time tj − bj and due date dj , and a second job consisting of a single segment of
length aj (to be processed on M1) with release time rj and new due date tj − bj . We add
these jobs J2n+j and J3n+j to the input. Since tj − bj = rj + aj + (2n2 − 2)aj ≥ rj + aj

and bj ≥ dj−rj−aj−bj

2n2−2 , we have bj ≥ dj−(tj−bj)−bj

2n2−2 . Thus, the job J2n+j is Large. Since
aj = tj−rj−aj−bj

2n2−2 <
(tj−bj)−rj−aj

n2−1 , the job J3n+j is Small.

3.2 The Selected Occurrences of Small and Large Jobs
After eliminating Almost-Large jobs, the set of Small jobs in the modified LP becomes

JSnew = JS
⋃
{J3n+j | Jj ∈ JAL} and |JSnew| = |JS |+ |JAL|.

For each Small job Jj ∈ JSnew, find n2 non-overlapping occurrences of Jj : J1
j , . . . , J

n2

j ,
such that in each such occurrence, the two segments of Jj are scheduled with no wait, i.e.,
the second segment is scheduled on M2 immediately after completing the first segment on
M1. We can find n2 such job occurrences since aj + bj <

dj−rj

n2 . These non-overlapping
occurrences are the selected occurrences of job Jj .

After eliminating Almost-Large jobs, the set of Large jobs in the modified LP is

JLnew = JL
⋃
{Jn+j , J2n+j | Jj ∈ JAL} and |JLnew| = |JL|+ 2|JAL|.
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For every Jj ∈ JLnew, define 2n2 +1 dividers on the time axis for machineM1, at the time
points rj +h · (dj−bj−rj)

2n2 , for h = 0, . . . , 2n2, and 2n2 +1 dividers on the time axis for machine
M2, at the time points rj + aj + h · (dj−rj−aj)

2n2 , for h = 0, . . . , 2n2. The |JLnew|(4n2 + 2)
dividers define half open time slots for M1 and M2, where each time slot is between adjacent
dividers. We note that for any Jj ∈ JLnew, no segment of Jj is completely contained in a
time slot, i.e., it lies between two adjacent dividers.

Consider a Large job Jj ∈ JLnew. For each time slot s for M1 and time slot t for M2,
consider the set of all job occurrences of Jj where the right endpoint of its first segment is
in time slot s and the right endpoint of its second segment is in t. Select one arbitrary job
occurrence from this set. Let J`j , for 1 ≤ ` ≤ (2n2 + 1)2, be all the selected job occurrences.

3.3 The Modified Linear Program

The set of jobs in the modified LP is Jnew = JSnew
⋃
JLnew. Thus, |Jnew| = |JS |+ |JL|+

3|JAL| ≤ 3n. All the jobs in Jnew are either Small or Large. We only consider variables
that correspond to the selected job occurrences. We define job cliques as before but only
with respect to the selected job occurrences. The modified linear program is as follows.

(Pnew) maximize w · x subject to :∑
J`

j
∈C

x`(j) ≤ 2 for each clique C

|Lj |∑
`=1

x`(j) ≤ 1 ∀Jj ∈ Jnew

|Lj |∑
`=1

x`(n+ j) +
|Lj |∑
`=1

x`(2n+ j) ≤ 1 ∀Jj ∈ JAL

|Lj |∑
`=1

x`(2n+ j)−
|Lj |∑
`=1

x`(3n+ j) = 0 ∀Jj ∈ JAL

x`(j) ≥ 0 ∀Jj ∈ Jnew, 1 ≤ ` ≤ (2n2 + 1)2

The first constraint is a relaxation of the original clique constraint and ensures that the
total value of the variables associated with the selected job occurrences in each clique is
at most two. The second constraint guarantees that at most one occurrence of a job Jj is
selected for the solution, ∀Jj ∈ Jnew. The third and fourth constraints deal with the jobs
that replace the Almost-Large jobs. Recall that in Section 3.1 the occurrences of any
Jj ∈ JAL were partitioned into two subsets. The third constraint ensures that the total value
of the variables associated with the two Large jobs that replace a single Almost-Large
job (one Large job for each subset of job occurrences of the Almost-Large job) is at most
one. The fourth constraint ensures that for each pair of Large job and Small job that
replace the second subset of job occurrences of a single Almost-Large job, the total value
of the variables associated with the replacement Large job is the same as the total value of
the variables associated with the replacement Small job.
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3.4 The Induced Solution of the Modified Linear Program
Consider a solution of the linear program (P) for an instance with two machines. Denote this
solution y`(j), for 1 ≤ j ≤ n, 1 ≤ ` ≤ Lj . We show how it induces a solution to the modified
linear program (Pnew) as follows. If Jj ∈ JS , then for ` = 1, . . . , n2, x`(j) = 1

n2

∑Lj

r=1 y
r(j).

If Jj ∈ JL, then for each selected job occurrence J`j , the variable x`(j) is the sum of all
variables y`(r), over all job occurrences Jrj such that the right endpoint of the first segment
of Jrj is in the same time slot as the right endpoint of the first segment of J`j and the right
endpoint of the second segment of Jrj is in the same time slot as the right endpoint of the
second segment of J`j .

Suppose Jj ∈ J 1
AL. Recall that in Section 3.1 the occurrences of Jj were partitioned into

two subsets, denoted as S1 and S2. (The subset S2 includes the job occurrences we ignored
in Section 3.1.) For each selected job occurrence J`n+j , the variable x`(n+ j) is the sum of
all variables y`(r), over all job occurrences Jrj ∈ S1 such that the right endpoint of the first
(second) segment of Jrj is in the same time slot as the right endpoint of the first (second)
segment of J`j . Similarly, for each selected job occurrence J`n+2j , the variable x`(n + 2j)
is the sum of all variables y`(r), over all Jrj ∈ S2 such that the right endpoint of the first
segment of Jrj is in the same time slot as the right endpoint of the first segment of J`j .

Symmetrically, suppose Jj ∈ J 2
AL. For each selected job occurrence J`n+j , the variable

x`(n+ j) is defined as above. For each selected job occurrence J`n+2j , the variable x`(n+ 2j)
is the sum of all variables y`(r), over all Jrj ∈ S2 such that the right endpoint of the second
segment of Jrj is in the same time slot as the right endpoint of the second segment of J`j .

Finally, suppose Jj ∈ JAL for ` = 1, . . . , n2, we have x`(n+ 3j) = 1
n2

∑
Jr

j
∈S2

yr(j).
It is straightforward to verify that the induced solution of the modified linear program

(Pnew) satisfies all constraints but the relaxed clique constraint. We show that the relaxed
clique constraint is satisfied as well. First, we show that it is satisfied when we ignore the
variables associated with Small jobs.

Consider a time slot s for M1, and assume that at least one selected job occurrence J`j
has the right endpoint of its first segment is time slot s. Let C be the clique defined by this
endpoint. Let S be the set of all job occurrences Jrk whose first segment intersects time
slot s. Clearly,

∑
Jr

k
∈C x

r(k) ≤
∑
Jr

k
∈S y

r(r). Since all jobs are Large, the first segment
of any Jrk ∈ S intersects at least one of the dividers that define time slot s. It follows∑
Jr

k
∈C x

r(k) ≤ 2. The same argument holds for any time slot t for M2.
Next, we show how the relaxed clique constraint is satisfied when we add the variables

associated with Small jobs. Note that for each variable associated with a Small job Jj ,
x`(j) ≤ 1

n2 , for 1 ≤ ` ≤ n2. Still, adding these variables may render the solution infeasible.
Since for each Small job Jj , the job occurrences J`j , 1 ≤ ` ≤ n2 are nonoverlapping, any
job clique C contains at most one segment out of all segments of the job occurrences J`j ,
1 ≤ ` ≤ n2. Thus, the total sum of fractions assigned to Small jobs in any job clique C is at
most 1

n2 · n = 1
n . It follows that scaling the fractions assigned to Large jobs by a factor

of (1− 1
n ) will make the solution feasible. This scaling degrades the value of the objective

function of the fractional solution by a factor of (1− 1
n ).

3.5 Rounding the Solution of the Modified Linear Program
Since the clique constraint is relaxed, we need to reformulate Lemma 1.

I Lemma 4. Let x be a feasible solution to (Pnew). Then, there exists a job occurrence J`j
satisfying x`(j) +

∑
Jr

k
∈Ñ(J`

j
) x

r(k) ≤ 9.
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Proof. The proof is similar to the proof of Lemma 1. We first show that there exists a
selected job occurrence J`j for which

x`(j) +
∑

Jr
k
∈Ñ1(J`

j
)

xr(k) ≤ 8. (2)

As before, we define z(J`j , Jrk) = x`(j) · xr(k). The analysis is slightly different from the one
in the proof of Lemma 1 since the first constraint in (Pnew) is now relaxed. We omit the
details. J

We apply Lemma 4 to obtain a mapping (as defined in Section 2.1). This can be done in
polynomial time since we are guaranteed to have a polynomial number of nonzero variables
that correspond to job occurrences. The mapping yields a schedule of a subset of jobs in
Jnew as defined in Section 2.1 with total weight 1

9 of the objective value of the feasible
solution of (Pnew). Recall that this value is the objective value of the feasible solution of (P)
scaled down by a factor of (1− 1

n ). We summarize in the next theorem.

I Theorem 5. There is a polynomial time (9 + ε)-approximation algorithm for MaxT on two
machines.

4 Better Approximations for Special Cases on Two Machines

4.1 A 4-approximation Algorithm for Unit Weight Jobs with the Same
Release Time

Consider instances of flow shop with two machines, in which all jobs have the same release
time, i.e., rj = 0 ∀Jj ∈ J , arbitrary due dates, and unit weight. Below, we show that for
such instances a simple algorithm yields an improved approximation ratio of 4 for MaxT. We
note that the problem of maximizing throughput on a single machine with the same release
times and unit job weights is solvable in polynomial time using Moore’s algorithm [19]. We
call this problem below MaxTS. Moore’s algorithm can thus be used as a subroutine in our
algorithm for MaxT, Split_the_Schedule. We give the pseudocode in Algorithm 2.

Algorithm 2 Split_the_Schedule.

1: For any job Jj ∈ J let pj = aj + bj .
2: Solve optimally MaxTS, where each job Jj has a processing time pj , a release time
rj = 0, and a due date dj . Let SOL be the set of jobs in the solution.

3: Define the following flow shop schedule of SOL on M1 and M2: for any Jj ∈ SOL that
is processed on the single machine in (sj , tj ], process Jj on M1 in (sj , sj + aj ] and on
M2 in (sj + aj , tj ].

4: Return the schedule of SOL on M1 and M2.

I Theorem 6. Let OPT be the set of jobs in an optimal solution for MaxT. Then |SOL| ≥
|OPT |

4 .

We use the following two lemmas to prove our main result in Theorem 6.

I Lemma 7. For any instance of MaxT where rj = 0 ∀Jj ∈ J , there exists an optimal
permutation schedule, i.e., a schedule where jobs are scheduled in the same order on both
machines.
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Proof. Consider an optimal schedule that is not a permutation schedule, then we show that
by swapping jobs we can obtain a feasible permutation schedule. Formally, given a schedule
of the jobs on the two machines, we scan the schedule on M2, starting from time t = 0. For
any two consecutive jobs on M2, Jk, Jj , if Jk precedes Jj on M2, but Jj precedes Jk on M1,
we modify the schedule on M1 as follows. Let s1

j , s
1
k the start-times of Jj , Jk on M1, and

t1k the completion time of Jk on M1 (see Figure 2). Then we schedule Jk on M1 at time
t1k − ak − aj and Jj at time t1k − aj . For M1 we have:

Jk completes processing earlier.
Jj has a later completion time on M1, but it still completes processing on M2 by its due
date. Indeed, as before, Jj starts processing on M2 at time s2

j ≥ t1k and completes by dj .
For any other job Jr, r 6= j, k, the above swap can only result in an earlier completion
time of Jr on M1.

In addition, since we made no change on M2, the schedule is still feasible. J

…
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�
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Figure 2 A non permutation schedule. Jj and Jk can be swapped on M1 and scheduled
consecutively, so that Jj completes processing on M1 at time t1

k.

I Lemma 8. Let OPT be an optimal solution for a MaxT instance J for which there is a
permutation schedule. Then there exists a subset of jobs OPTsingle ⊆ OPT satisfying:
(i) The jobs in OPTsingle can be feasibly scheduled on a single machine, taking the processing

time of each Jj ∈ OPTsingle to be pj = aj + bj.
(ii) |OPTsingle| ≥ |OPT |4 .

Proof. Consider an optimal subset of jobs, OPT , which has a permutation schedule. Assume
w.l.o.g. that this permutation is the identity permutation. We now show how to move
from a two machine schedule to a schedule of a subset of jobs in OPT , such that each
job is completely processed either on M1 or on M2. We note that if |OPT | is odd then
we can always process the two segments of the last job on M1. Hence, we assume from
now on that |OPT | = 2k for some integer k ≥ 1. We now partition OPT to k pairs of
jobs: (J1, J2), . . . , (J2i−1, J2i), . . .. Consider the jobs J2i−1, J2i with the processing times
(a2i−1, b2i−1) and (a2i, b2i), respectively. We distinguish between two cases:
(i) If a2i > b2i−1 then we schedule J2i−1 on M1 with processing time p2i−1 = a2i−1 + b2i−1.
(ii) If a2i ≤ b2i−1 then we schedule J2i on M2 with processing time p2i = a2i + b2i.

We note that the schedules obtained on M1 and M2 are feasible. In addition, from each pair
of jobs in OPT , one job is scheduled (either on M1 or on M2). Therefore, |OPT |/2 jobs
are scheduled. Now, we choose the machine with a maximum number of jobs. This yields a
solution consisting of at least |OPT |/4 jobs. J

Proof of Theorem 6. Recall that for an instance in which rj = 0 ∀Jj ∈ J we can use
Moore’s algorithm to solve MaxTS optimally. By Lemma 8, there exists a subset of |OPT |/4
jobs that can be scheduled feasibly on a single machine, where OPT is an optimal solution
for MaxT on two machines. Since Moore’s algorithm outputs an optimal solution on a single
machine, we have the statement of the theorem. J
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4.2 A (3 + ε)-approximation Algorithm for Jobs with the Same
Release Time and Due Date

Consider instances of flow shop with two machines, in which all jobs have the same release
time and the same due date. We assume below that for all 1 ≤ j ≤ n, rj = 0 and dj = T , for
some T > 0. We note that MaxT on such instances is NP-hard, as Knapsack is the special
case where bj = 0 for all 1 ≤ j ≤ n.

Algorithm 3 below is a (3 + ε)-approximation algorithm for such instances. The algorithm
partitions the jobs into two groups: large and small jobs. For the large jobs the algorithm
finds an optimal solution by applying an algorithm for makespan minimization in two-machine
flow shop due to Johnson [16]. For the small jobs it finds a (2 + ε)-approximation by applying
a greedy algorithm for the knapsack problem. The algorithm then outputs the better of the
two solutions, to yield a (3 + ε)-approximation.

Let ∆j = max{aj , bj} for each job Jj , 1 ≤ j ≤ n. Also, let ∆0 = 0. For a set of jobs J ,
define the weight of J to be w(J ) =

∑
Jj∈J wj .

Algorithm 3 Pack_and_Schedule.

1: Fix 0 < ε < 1.
2: Let L = {Jj ∈ J | ∆j ≥ εT

6 } and S = J \ L.
3: Let ML = 0
4: for all R ⊆ L such that |R| ≤ 12

ε jobs do
5: if R can be scheduled with makespan at most T then

. use Johnson’s Algorithm [16] to check this condition
6: if w(R) > ML then
7: Let SOLL = R

8: Let ML = w(R)
9: end if
10: end if
11: end for
12: Order the jobs in S in non-ascending order of the ratio wj

∆j
. Assume w.l.o.g. that

S = {J1, . . . , J|S|}, and w1
∆1
≥ w2

∆2
≥ . . . ≥ w|S|

∆|S|

13: Find the maximum index k such that
∑k
j=1 ∆j ≤ T (1− ε

6 )
14: Let SOLS = {J1, . . . , Jk} . SOLS can be scheduled feasibly as shown below
15: If w(SOLL) > w(SOLS) then SOL = SOLL; else SOL = SOLS .
16: Return SOL

I Theorem 9. For any fixed 0 < ε < 1 , Algorithm 3 runs in polynomial time and yields a
(3 + ε)-approximation for MaxT on instances where rj = 0 and dj = T , ∀j.

To prove Theorem 9 we need an observation and a few lemmas.

I Observation 10. Any feasible solution R of MaxT on instances where rj = 0 and dj = T

∀j satisfies
∑
Jj∈R ∆j ≤ 2T .

Proof. We note that
∑
Jj∈R ∆j =

∑
Jj∈R max{aj , bj} ≤

∑
Jj∈R (aj + bj) ≤ 2T. The last

inequality follows from the fact that R can be scheduled feasibly. J

I Lemma 11. The set SOLL is an optimal solution for input L.
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Proof. Since for every job Jj ∈ L we have ∆j ≥ εT
6 , it follows from Observation 10 that

any feasible solution for L cannot include more than 12
ε jobs. Since we enumerate over all

feasible schedules with up to this number we are guaranteed to find the optimum. J

I Lemma 12. The jobs in SOLS = {J1, . . . , Jk} can be scheduled feasibly.

Proof. Sort the jobs J1, . . . , Jk in non-ascending order of ∆j . Let π be the resulting
permutation; that is, ∆π(1) ≥ ∆π(2) ≥ . . . ≥ ∆π(k). Let π(0) = 0.

Schedule job Jπ(j) at time tj1 =
∑j−1
i=0 ∆π(i) on M1 and at time tj2 = tj1 + ∆π(1) on M2.

The schedule is feasible since (i) no two jobs overlap in any of the machines (recall that
∆j = max{aj , bj}), (ii) the makespan of the schedule is ∆π(1) +

∑k
j=1 ∆π(j) ≤ T since

∆π(1) <
εT
6 , and (iii) for any job Jj , its segment on M2 is executed after the completion of

its segment on M1, since the schedule on M2 is shifted by ∆π(1) = maxj∈[1..k] ∆j . J

I Lemma 13. The set SOLS is a (2 + ε)-approximation of the optimal solution for input S.

Proof. First, consider a knapsack problem with set of items corresponding to the jobs in S,
where the size of item j is ∆j and its weight is wj . Assume that the knapsack capacity is T .
We claim that the weight of the optimal solution to this knapsack problem has weight that
is at least 1

2 of the weight of optimal solution for input S. To see this consider an optimal
solution for input S and partition the set of jobs in this solution into two disjoint sets: the
first set O1 consists of all jobs Jj in the solution for which ∆j = aj , and the second set
O2 consists of all jobs Jj in the solution for which ∆j > aj (and ∆j = bj). Let i be the
index of the set whose total weight is larger; that is w(Oi) ≥ w(O3−i). Clearly w(Oi) is at
least half the optimum. Since we start from a feasible solution, the total size of the items
corresponding to the jobs in Oi is bounded by T . Thus, there is a feasible solution to the
knapsack problem with weight that is at least 1

2 of the weight of optimal solution for input
S. Note that we may not be able to feasibly schedule the set of jobs corresponding to the
items in an optimal solution of this knapsack problem.

From the way we chose k and since for all Jj ∈ S, ∆j <
εT
6 , it follows that

∑k
j=1 ∆j >

T (1− ε
3 ). Since the jobs are sorted in non-ascending order of the ratio wj

∆j
, we are guaranteed

that w(SOLS) is at least (1 − ε
3 ) of the weight of the optimal solution to the knapsack

problem and thus it is at least 1
2 (1 − ε

3 ) of the weight of the optimal solution for input
S. Since (2 + ε) · 1

2 (1 − ε
3 ) = 1 + 1

6 (ε − ε2) ≥ 1, for 0 < ε < 1, it follows that SOLS is a
(2 + ε)-approximation of the optimal solution for input S. J

I Lemma 14. The time complexity of Algorithm 3 is O(n 12
ε ).

Proof of Theorem 9. Consider an optimal solution O for input J , and partition the jobs
in this solution into two disjoint sets OL = O ∩ L and OS = O ∩ S. By Lemmas 11
and 13, we have that w(OL) ≤ w(SOL) and w(OS) ≤ (2 + ε) · w(SOL). It follows that
w(O) ≤ (3 + ε) · w(SOL).

By the algorithm and Lemma 12 the jobs in SOL can be scheduled feasibly, and by
Lemma 14 the running time is polynomial in n. The theorem follows. J

I Corollary 15. If aj ≤ bj, for all Jj ∈ J , or aj ≥ bj, for all Jj ∈ J , then, for any fixed
0 < ε < 1 , Algorithm 3 is a (2 + ε)-approximation algorithm for MaxT on instances where
rj = 0 and dj = T , ∀j.

Proof. It is easy to see that if any of the conditions in the corollary hold then the weight of
an optimal solution to the knapsack problem defined in Lemma 13 is at least the weight of
the optimal solution for input S, and thus the set SOLS is a (1 + ε)-approximation of the
optimal solution for input S. J
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A Some Proofs

Proof of Lemma 1. We first show that there exists a job occurrence J`j for which the
following holds:

x`(j) +
∑

Jr
k
∈Ñ1(J`

j
)

xr(k) ≤ 2m. (3)

For two “neighboring” job occurrences J`j and Jrk (i.e., Jrk ∈ Ñ1(J`j ) and J`j ∈ Ñ1(Jrk)),
define z(J`j , Jrk) = x`(j) · xr(k). We also define z(J`j , J`j ) = (x`(j))2. We prove (3) using a
weighted averaging argument, where the weights are the values z(J`j , Jrk) for all pairs of job
occurrences which have intersecting segments.

Consider the sum
∑n
j=1

∑Lj

`=1

(
z(J`j , J`j ) +

∑
Jr

k
∈Ñ1(J`

j
) z(J`j , Jrk)

)
. We upper bound this

sum as follows. Let I(J`j ) denote the set of segments of a job occurrence J`j . For each
job occurrence J`j , we consider all of its segments I ∈ I(J`j ). For each such segment I,
we sum up z(J`j , Jrk) for all job occurrences Jrk having at least one segment that intersects
with I (including J`j itself). Let R(J`j , I) be the set of job occurrences that have a segment
intersecting the right endpoint of I (including J`j itself). We note that it suffices to sum up
z(J`j , Jrk) only for job occurrences Jrk ∈ R(J`j , I) and then multiply the total sum by 2. This
is because, for the intersecting segment I of J`j and segment I ′ of Jrk , if the right endpoint
of I precedes the right endpoint of I ′, then Jrk ∈ R(J`j , I); otherwise, J`j ∈ R(Jrk , I ′). Since
z(J`j , Jrk) = z(Jrk , J`j ), each of them contributes the same value to the other. Therefore, it
follows that

n∑
j=1

|Lj |∑
`=1

z(J`j , J`j ) +
∑

Jr
k
∈Ñ1(J`

j
)

z(J`j , Jrk)

 ≤ 2
n∑
j=1

|Lj |∑
`=1

∑
I∈I(J`

j
)

∑
Jr

k
∈R(J`

j
,I)

z(J`j , Jrk). (4)

By the first constraint in (P), the definition of job cliques and the definition of z(J`j , Jrk),
we have∑

Jr
k
∈R(J`

j
,I)

z(J`j , Jrk) ≤ x`(j) ·
∑

Jr
k
∈R(J`

j
,I)

xr(k) ≤ x`(j). (5)

Using (4), (5), and the fact that |I(J`j )| ≤ m, we get that

n∑
j=1

|Lj |∑
`=1

z(J`j , J`j ) +
∑

Jr
k
∈Ñ1(J`

j
)

z(J`j , Jrk)

 ≤ 2
n∑
j=1

|Lj |∑
`=1

∑
I∈I(J`

j
)

x`(j) ≤ 2m
n∑
j=1

|Lj |∑
`=1

x`(j).
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Hence, there exists a job occurrence J`j satisfying

z(J`j , J`j ) +
∑

Jr
k
∈Ñ1(J`

j
)

z(J`j , Jrk) = (x`(j))2 +
∑

Jr
k
∈Ñ1(J`

j
)

xr(k)x`(j) ≤ 2m · x`(j).

By factoring out x`(j) from both sides we get inequality (3).
To complete the proof of the lemma, we note that for a job J`j satisfying (3) it also holds

that

x`(j)+
∑

Jr
k
∈Ñ(J`

j
)

xr(k) = x`(j)+
∑

Jr
k
∈Ñ1(J`

j
)

xr(k)+
∑

Jr
k
∈Ñ2(J`

j
)

xr(k) ≤ 2m+
|Lj |∑
r=1

xr(j) ≤ 2m+1.

The last inequality follows from the second constraint in (P). J

Proof of Lemma 14. It is easy to see that the most time consuming part is the loop defined
in Step 4 where we enumerate over all subsets of L of size at most 12

ε and thus the time
complexity. J
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