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Abstract
In the Strip Packing problem, we are given a vertical half-strip [0,W ]× [0,+∞) and a collection of
open rectangles of width at most W . Our goal is to find an axis-aligned (non-overlapping) packing of
such rectangles into the strip such that the maximum height OPT spanned by the packing is as small
as possible. Strip Packing generalizes classical well-studied problems such as Makespan Minimization
on identical machines (when rectangle widths are identical) and Bin Packing (when rectangle heights
are identical). It has applications in manufacturing, scheduling and energy consumption in smart
grids among others. It is NP-hard to approximate this problem within a factor (3/2− ε) for any
constant ε > 0 by a simple reduction from the Partition problem. The current best approximation
factor for Strip Packing is (5/3+ε) by Harren et al. [Computational Geometry ’14], and it is achieved
with a fairly complex algorithm and analysis.

It seems plausible that Strip Packing admits a (3/2 + ε)-approximation. We make progress in
that direction by achieving such tight approximation guarantees for a special family of instances,
which we call skewed instances. As standard in the area, for a given constant parameter δ > 0, we
call large the rectangles with width at least δW and height at least δOPT , and skewed the remaining
rectangles. If all the rectangles in the input are large, then one can easily compute the optimal
packing in polynomial time (since the input can contain only a constant number of rectangles). We
consider the complementary case where all the rectangles are skewed. This second case retains a
large part of the complexity of the original problem; in particular, it is NP-hard to approximate
within a factor (3/2− ε) and we provide an (almost) tight (3/2 + ε)-approximation algorithm.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases strip packing, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.44

Category APPROX

© Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, Klaus Jansen, Arindam Khan, and Malin
Rau;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 44; pp. 44:1–44:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6395-3322
mailto:galvez@in.tum.de
https://orcid.org/0000-0002-9676-4931
mailto:fabrizio@idsia.ch
https://orcid.org/0000-0001-5620-9039
mailto:afrouz@idsia.ch
https://orcid.org/0000-0001-8358-6796
mailto:kj@informatik.uni-kiel.de
https://orcid.org/0000-0001-7505-1687
mailto:arindamkhan@iisc.ac.in
https://orcid.org/0000-0002-5710-560X
mailto:malin.rau@inria.fr
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.44
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


44:2 A Tight (3/2 + ε) Approximation for Skewed Strip Packing

Funding Fabrizio Grandoni: Partially supported by the SNSF Excellence Grant 200020B_182865/1.
Afrouz Jabal Ameli: Partially supported by the SNSF Excellence Grant 200020B_182865/1.
Malin Rau: Partially supported by the French research program ENERGUMEN ANR-18-CE25-0008.

1 Introduction

In this paper, we consider the Strip Packing problem, a well-studied classical rectangle
packing problem (see Section 2 for a formal definition). Here, we are given a vertical half-
strip of (integral) width W , plus a collection R of rectangles of width at most W . Our
objective is to find an axis-aligned packing of R (where rectangles do not overlap) such that
the maximum height spanned by the packing is as small as possible.

Strip Packing generalizes famous problems. For example, it generalizes Makespan Minim-
ization (on identical machines) [11] when all the rectangle widths are 1 (here W would be the
number of processors), and also generalizes Bin Packing [12] when all the rectangle heights
are 1 (here the height OPT of the optimal solution would be the optimal number of bins).
Strip Packing has several natural applications. For example, there are many manufacturing
settings where rectangular pieces have to be cut out of some roll of raw material while using
a rectangular piece of that roll of minimum length. Another application is the minimization
of the peak energy consumption in smart-grids [28, 37]: here heights and widths model the
energy consumption and duration, respectively, of a given set of jobs. For analogous reasons,
it captures scenarios where a given set of jobs needs to be allocated a consecutive amount of
a given resource (memory locations, frequencies, etc.) for a given amount of time.

Strip Packing is strongly NP-hard [17], and hence it is reasonable to consider approxima-
tion algorithms for it. A simple reduction from the Partition problem shows that it is not
possible to obtain a ( 3

2 − ε)-approximation algorithm (with polynomial running time) for
any ε > 0 unless P=NP (more details on this reduction are given later). The first non-trivial
approximation algorithm for Strip Packing, with approximation ratio 3, was given by Baker,
Coffman, and Rivest [4]. The First-Fit-Decreasing-Height algorithm (FFDH) by Coffman et
al. [27] gives a 2.7-approximation. Sleator [35] gave an algorithm that generates a packing of
height 2OPT + hmax

2 , where hmax is the maximum height of a rectangle in the instance, hence
achieving a 2.5-approximation. Afterwards, Steinberg [36] and Schiermeyer [34] independently
improved the approximation ratio to 2. Harren and van Stee [19] first broke the barrier of 2
with their 1.9396-approximation. The present best ( 5

3 + ε)-approximation is due to Harren
et al. [18].

The Strip Packing problem has also been studied in the pseudopolynomial setting, i.e.,
when N = nO(1). After a series of recent improvements [33, 1, 16, 20, 23], Jansen and Rau [22]
have given a pseudopolynomial time algorithm with an almost tight ( 5

4 + ε)-approximation
ratio.

In terms of asymptotic approximations, the barrier of 3
2 can also be beaten. The best

results in these terms are an AFPTAS presented by Kenyon and Rémila [29] which produces
a solution of height (1 + ε)OPT +O

(
hmax
ε2

)
, and an APTAS which generates a solution of

height (1 + ε)OPT + hmax by Jansen and Solis-Oba [24]. For the variant of Strip Packing
with Rotations, where the rectangles are allowed to be rotated by 90 degrees, Jansen and van
Stee [25] gave an APTAS (see also [13, 32] for related results).

1.1 Related Work
Strip Packing has rich connections with many other important geometric packing problems
such as Two-dimensional Bin Packing (2BP) and Two-dimensional Geometric Knapsack
(2GK). In 2BP, we are given a set of rectangles and unit square bins, and the goal is to pack
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all the rectangles into minimum number of bins. The problem is known to be APX-hard [6]
and the present best approximation ratio is 1.405 [7]. In 2GK, we are given a set of rectangles
(with associated profit) and unit square knapsack, and the goal is to pack a subset of
rectangles into the knapsack maximizing the total profit. This problem is strongly NP-hard
even when all items are squares with unit profit [31]. The present-best approximation ratio
is 1.89 due to Gálvez et al. [14] (see also [3, 26]).

Strip Packing has also been well studied for higher dimensions. The present best
asymptotic approximation for 3-D Strip Packing is due to Jansen and Prädel [21] who
presented a 1.5-approximation extending techniques from 2-D Bin Packing.

Another related problem is the Independent Set of Rectangles problem: here we are given
a collection of axis-parallel rectangles embedded in the plane, and we need to find a maximum
cardinality/weight subset of non-overlapping rectangles [2, 8, 9].

We refer the readers to [10, 30] for surveys on geometric packing problems.

1.2 Our Contribution
In this paper, we study a special case of Strip Packing, where all rectangles are skewed. In
more detail, we say that a rectangle R is δ-large if, for some fixed constant δ > 0, its width
is at least a δ fraction of the width W of the strip and its height is at least a δ fraction of
the height OPT of the optimal packing; otherwise, the rectangle is δ-skewed. We just say
that a rectangle is large or skewed when δ is clear from the context. An instance of Strip
Packing is δ-skewed if all the rectangles in the input are such.

This special case is non-trivial: in particular, the mentioned 3/2− ε hardness of approx-
imation holds also for this special case with minor adaptations (see Section 5). We also
believe that this special case is practically relevant: e.g., it captures scenarios where no job
can consume a significant amount of the global resource (energy, memory space, etc.) for a
significant amount of time. Our main result is as follows (see Sections 3-4).

I Theorem 1. For a given constant ε′ > 0 and a small enough positive constant δ ≤
(ε′)(1/ε′)O(1) , there exists a polynomial-time

( 3
2 + ε′

)
-approximation algorithm for δ-skewed

Strip Packing.

We remark that our algorithm does not need to recognize first if the instance is δ-skewed:
It always returns a feasible solution, but only if the instance satisfies the requirements, its
approximation ratio is guaranteed.

Our result suggests that, in order to obtain a better (possibly 3/2 + ε) approximation for
the general case of Strip Packing, one of the main obstacles is the interaction between large
and skewed rectangles.

1.2.1 Organization
In Section 2, we introduce some useful notation and preliminary results. In Section 3,
we prove the existence of a good enough packing with certain structural properties. The
mentioned structure is exploited to derive an algorithm with the claimed approximation
guarantee in Section 4. Section 5 contains our hardness of approximation result.

2 Preliminaries

A Strip Packing instance consists of a vertical strip of integral widthW in the two-dimensional
plane, i.e. [0,W ] × R≥0, and a set of open rectangles R, where each rectangle R ∈ R is
characterized by its integral height h(R) and integral width w(R). An embedding of R is

APPROX/RANDOM 2020
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given by specifying a bottom-left position (x(R), y(R)) for each R ∈ R. The interpretation
is that R is embedded in the plane in the region

(
x(R), x(R) +w(R)

)
×
(
y(R), y(R) + h(R)

)
.

An embedding is a feasible packing into the strip if the following two conditions hold: (1)
each R ∈ R is embedded inside the strip, namely 0 ≤ x(R) ≤ W − w(R) and y(R) ≥ 0
and (2) rectangles do not overlap, namely, for any two R,S ∈ R,

((
x(R), x(R) + w(R)

)
×(

y(R), y(R) + h(R)
))
∩
(

(x(S), x(S) + w(S)) ×
(
y(S), y(S) + h(S)

))
= ∅. The height of

a feasible packing is the maximum height spanned by any embedded rectangle, namely
the maximum value of y(R) + h(R). The goal of Strip Packing is to compute a feasible
packing of minimum height OPT . W.l.o.g. we can restrict our attention to packings where
the coordinates (x(R), y(R)) are integral as any feasible packing can be transformed into a
feasible packing satisfying this property (intuitively, by pushing rectangles to the bottom-left
as much as possible while keeping feasibility).

Given a subset of rectangles S ⊆ R, we denote by w(S) :=
∑
R∈S w(R), h(S) :=∑

R∈S h(R), and a(S) :=
∑
R∈S h(R)w(R) the total width, height, and area of S, respectively.

The operation of changing the bottom-left corner of a rectangle R in a given packing from
(x(R), y(R)) to (x(R), y(R) + a) will be denoted by shifting R vertically by a. Analogously,
changing the bottom-left coordinate from (x(R), y(R)) to (x(R) + a, y(R)) will be denoted
by shifting R horizontally by a. These operations are only allowed if the resulting packing is
feasible.

A box of size w × h denotes a rectangular region of width w and height h. We sometimes
embed boxes into the strip similarly to rectangles. A monotone polygonal chain is a curve
specified by a sequence of points (A1, A2, . . . , An) called its vertices. The curve itself
consists of the line segments connecting the consecutive vertices, and we require that the
x-coordinates of points Ai are non-decreasing and the segments are horizontal or vertical.
We say that a rectangle R in the packing lies above (resp. below) one such P if for any
x1 ∈ (x(R), x(R) + w(R)) we have that y(R) (resp. y(R) + h(R)) is not smaller (resp. not
larger) than the largest (resp., smallest) y-coordinate of P at x-coordinate x1.

We can assume w.l.o.g. that W is lower bounded by a sufficiently large constant, in
particular W ≥ 1/ε. Otherwise one easily obtains a PTAS for δ-skewed instances1.

2.1 Next Fit Decreasing Height
One of the most recurring tools used as a subroutine in countless results on geometric packing
problems is the Next Fit Decreasing Height (NFDH) algorithm, which was originally analyzed
in [27]. We will use a variant of this algorithm to pack rectangles inside a rectangular box
and analyze its properties. We provide a full proof for the sake of completeness.

Suppose we are given a box C of size w× h, and a set of rectangles R′ each one fitting in
the box. NFDH computes in polynomial time a packing of R′′ ⊆ R′ as follows. It sorts the
rectangles R ∈ R′ in non-increasing order of height h(R), and considers rectangles in that
order R1, . . . , Rn. Then the algorithm works in rounds j ≥ 1. At the beginning of round j it
is given an index n(j) and a horizontal segment L(j) going from the left to the right side
of C. Initially n(1) = 1 and L(1) is the bottom side of C. In round j the algorithm packs
a maximal set of rectangles Rn(j), . . . , Rn(j+1)−1, with bottom side touching L(j) one next
to the other from left to right (a shelf ). The segment L(j + 1) is the horizontal segment

1 Choosing δ such that δW < 1 enforces each rectangle to have height at most δOPT (otherwise it would
be large). A PTAS follows, e.g., from [24].
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containing the top side of Rn(j) and ranging from the left to the right side of C. The process
halts at round r when either all rectangles have being packed or Rn(r+1) does not fit above
Rn(r).

We prove the following standard result.

I Lemma 2 ([27]). Let C be a given box of size w × h and R′ ⊆ R. Assume that, for some
given parameter ε′ ∈ (0, 1), for each R ∈ R′ one has w(R) ≤ ε′w and h(R) ≤ ε′h. Then
NFDH is able to pack in C a subset R′′ ⊆ R′ of area at least a(R′′) ≥ min{a(R′), (1−2ε′)w·h}.
In particular, if a(R′) ≤ (1− 2ε′)w · h, all rectangles in R′ are packed.

Proof. The claim trivially holds if all rectangles are packed. Thus suppose that this is not
the case. Observe that

∑r+1
j=1 h(Rn(j)) > h, otherwise rectangle Rn(r+1) would fit in the next

shelf above Rn(r); hence
∑r+1
j=2 h(Rn(j)) > h− h(Rn(1)) ≥ (1− ε′)h. Observe also that the

total width of rectangles packed in each round j is at least w−ε′w = (1−ε′)w, since Rn(j+1),
of width at most ε′w, does not fit to the right of Rn(j+1)−1. It follows that the total area of
the rectangles packed in round j is at least (w − ε′w)h(Rn(j+1)−1), and thus

a(R′′) ≥
r∑

j=1

(1− ε′)w · h(Rn(j+1)−1) ≥ (1− ε′)w
r+1∑
j=2

h(Rn(j)) ≥ (1− ε′)2w · h ≥ (1− 2ε′)w · h. J

2.2 Container Packings
Similar to recent work on related problems (e.g., [14, 5]), we will exploit a container-based
packing approach. The idea is to partition the solution into a constant number of axis-aligned
rectangular regions (containers). The sizes (and therefore positions) of these containers can
be guessed in polynomial time, and subsequently, rectangles are packed inside the containers
in a simple way: either one next to the other from left to right (vertical container), or one
on top of the other from bottom to top (horizontal container), or by means of NFDH (area
container). We further require that the rectangles R packed into an area container of size
w × h satisfy w(R) ≤ ε′w and h(R) ≤ ε′h for a constant ε′ > 0 to be fixed later. We call
this an ε′-area container.

We will make use of the following standard PTAS to pack rectangles into a constant
number of containers. The basic idea is to reduce the problem to an instance of the Maximum
Generalized Assignment Problem (GAP) with one bin per container, and then use a PTAS
for the latter problem plus NFDH to repack rectangles in area containers. We recall that in
GAP, we are given a collection of n items and a set of k (one-dimensional) bins, each one
characterized by a positive size. Each item has a profit2 and a positive size per bin (possibly
different for different bins). Our goal is to compute a maximum profit subset of items and an
assignment of them into the bins so that the total size of items packed in each bin is at most
the size of the bin. GAP admits a PTAS for constant k (see e.g. Section E.2 in [15]) and the
following lemma shows how to use it to pack the rectangles into a given set of containers.

I Lemma 3. For any constant ε′ > 0, given a set of rectangles R that can be packed into
a given set of k containers (each container being either vertical, horizontal or ε′-area), k
constant, there is an algorithm to pack R′ ⊆ R with a(R′) ≥ (1−3ε′)a(R) into the mentioned
containers.

2 The same item might have different profit on different knapsacks; however, we do not need this extension
here.

APPROX/RANDOM 2020



44:6 A Tight (3/2 + ε) Approximation for Skewed Strip Packing

Proof. We let w(Cj) × h(Cj) be the size of the j-th container Cj . We build an instance
of GAP as follows. There is one item R per rectangle R ∈ R, with profit a(R). For each
horizontal container Cj , we create a knapsack j of size Sj := h(Cj). Furthermore, we define
the size s(R, j) of rectangle R w.r.t. knapsack j as h(R) if h(R) ≤ h(Cj) and w(R) ≤ w(Cj).
Otherwise s(R, j) = +∞ (meaning that R does not fit in Cj). The construction for vertical
containers is symmetric. For each area container Cj we create a knapsack j of size Sj = a(Cj)
and define the size s(R, j) of rectangle R w.r.t. knapsack j as a(R) if h(R) ≤ ε′h(Cj) and
w(R) ≤ ε′w(Cj), setting b(R, j) = +∞ otherwise (meaning that the rectangle is not small
enough with respect to the dimensions of the container).

We next apply the mentioned PTAS for GAP to this instance, so as to obtain a solution
R′′ to GAP of profit at least a(R′′) ≥ (1− ε′)a(R). We build a feasible packing of R′ ⊆ R′′
into the containers as follows. Let Rj be the items packed into knapsack j. If Cj is vertical,
we pack rectangles Rj into this container bottom-most and from left to right one next to the
other in any order. By definition all rectangles Rj will fit. A symmetric construction works if
Cj is horizontal. If Cj is area, we pack a subsetR′j ofRj into it using NFDH. By Lemma 2, we
either haveR′j = Rj , or it must be the case that a(R′j) ≥ (1−2ε′)w(Cj)h(Cj) = (1−2ε′)a(Cj).
Consider the second case. Let R′′j = Rj \R′j be the rectangles which are not packed. Observe
that a(Rj) ≤ a(Cj) by the feasibility of the GAP solution, hence

a(R′′j )
a(Rj)

= 1−
a(R′j)
a(Rj)

≤ 1− (1− 2ε′)a(Cj)
a(Rj)

≤ 2ε′.

Thus altogether a(R′) ≥ a(R′′)(1− 2ε′) ≥ a(R)(1− 2ε′)(1− ε′) ≥ a(R)(1− 3ε′). J

Notice that the containers may have considerable free space inside, but the lemma just claims
that the total area of the rectangles that the algorithm is not packing is negligible. Whenever
this lemma is applied, we will pack the remaining rectangles into an extra rectangular box of
small area and carefully argue where to place it.

2.3 Classification of Rectangles

From now on, we will assume that instance (R,W ) is δ-skewed for some δ > 0 to be fixed
later. By OPT , we denote both the optimal height and an optimal packing: the meaning
will be clear from the context. We can assume that OPT is even (otherwise, multiply heights
by a factor 2).

We will assume that our algorithm is given in the input a value OPT ′ such that OPT ≤
OPT ′ ≤ (1 + ε)OPT . This assumption can be removed as follows. We compute, say,
a 2-approximation APX by Steinberg’s algorithm for Strip Packing and then run our
algorithm for all the (constantly many) values OPT ′ = (1 + ε)j APX2(1+ε) which fit in the range
[ APX2(1+ε) , APX(1 +ε)]. One of these values will satisfy the claim. In order to keep the notation
light, we simply use OPT to denote this value OPT ′. Therefore, all the approximation
factors should be scaled by a factor (1 + ε) in order to consider the true value of OPT .

Let ε > 0 and assume for simplicity that 1
ε ∈ N. We will classify the rectangles according

to their heights as follows:
The set of tall rectangles T = {R ∈ R : h(R) > 1

2OPT};
The set of vertical rectangles V = {R ∈ R : h(R) ∈ (δOPT, 1

2OPT ]};
The set of short rectangles S = {R ∈ R : h(R) ≤ δOPT};
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2.4 Linear Grouping
We need the following lemma whose proof (given in the appendix) is based on linear grouping,
a standard technique in the area of rectangle packing. Given a subset S of rectangles, let
Shslice be the set of rectangles obtained by taking each R ∈ S and replacing it with h(R)
rectangles of height 1 and width w(R) (horizontal slices). We define symmetrically the set
Svslice of vertical slices. Notice that any embedding of S naturally induces an embedding of
Shslice and Svslice.

I Lemma 4. Let ε′ > 0 be a given constant, P be a rectangular region of size W ×H and H
be a subset or rectangles of height at most δ ·H each for some constant δ ∈ [1, 0). Suppose
that Hhslice can be packed into a set B of K = Oε′(1) boxes contained in P. Then, for
δ ≤ (ε′/K)(K/ε′)O(1) , there exists a partition of H into two sets Hcont and Hdisc such that:
1. Hcont can be packed into a set of at most K ′ = Oε′(1) horizontal and ε′-area containers,

where each container is fully contained in some box in B.
2. Hdisc can be packed in one horizontal container of size maxR∈H{w(R)}× (ε′)2H and one

ε′-area container of size ε′W × ε′H.
3. The sizes of the above containers belongs to a set that can be computed in polynomial

time.
A symmetric claim holds for a subset of rectangles V ′ of width at most δ ·W such that V ′vslice
can be packed into the corresponding boxes.

3 Existence of a Structured Solution

In this section, we will prove our main structural result.

I Theorem 5. For any given constant ε > 0 and any given instance of δ-skewed Strip
Packing (R,W ) with δ = Ωε(1) small enough, there exists a feasible container packing such
that the following holds:
1. The total height of the packing is

( 3
2 +O(ε)

)
OPT .

2. The number of containers is Oε(1) and their possible sizes belong to a set that can be
computed in polynomial time.

3. Given any fixed ordering of T in non-increasing order of height, T can be partitioned
into subsequences each one fitting in precisely one vertical container.

4. The packing leaves a free rectangular region (free box) of size ε2W × 1
2OPT .

To achieve the above result, we proceed in three steps:
1. We describe a packing of T ∪ Shslice with height at most (3/2 +O(ε))OPT (see Section

3.1) into Oε(1) boxes. This packing leaves a free space of at least (1/2+Ω(ε))OPT +a(V).
2. We describe (see Section 3.2) how to pack Vvslice within the free space of the previous

packing using Oε(1) extra boxes. Furthermore, we guarantee that there is a free box
(not containing any rectangle) of size at least Ω(ε)W × 1

2OPT . Guaranteeing the latter
property is critical, and it is the main technical novelty in our approach.

3. Finally (see Section 3.3), we convert the above packing into a feasible container packing
(via Lemma 4) inside the above boxes. The residual containers that do not fit into the
boxes can be placed inside the free box (still leaving enough space) plus a new box of size
W ×O(ε2)OPT that can be placed on top of the previous packing.

The reason for leaving a free box will be clearer in Section 4, where we will describe our final
algorithm.

APPROX/RANDOM 2020



44:8 A Tight (3/2 + ε) Approximation for Skewed Strip Packing

3.1 Packing of T ∪ Shslice

In this section, we describe a packing of T ∪ Shslice. The proof of the following Lemma is
illustrated in Figure 1.

I Lemma 6. For any given constant ε ∈ (0, 1/4] with 1/ε integral and δ = Ωε(1) sufficiently
small, it is possible to pack T ∪ Shslice into the region P = [0,W ] × [0, ( 3

2 + 15ε)OPT ] in
such a way that:
1. Rectangles in T are packed into at most 1/ε vertical boxes, slices in Shslice are packed

into at most 1/ε+ 1 horizontal boxes, and the remaining area is partitioned into at most
2/ε free boxes. Furthermore, given any fixed ordering of T in non-increasing order of
height, it is possible to partition T into subsequences such that each subsequence fits into
precisely one vertical box.

2. The sizes of the boxes belong to a set that can be computed in polynomial time.
3. The total area of the free boxes is at least ( 1

2 + 9ε)OPT ·W + a(V).

Proof. Consider the embedding of T ∪ Shslice induced by the optimum solution. Let
us draw the horizontal line y = 1

2OPT and partition Shslice into two sets Stophslice and
Sbottomhslice corresponding to the rectangles in Shslice which are packed above and below the
line y = 1

2OPT respectively (notice that this line does not intersect any rectangle in Shslice
as OPT is even by assumption). If we shift up rectangles in Sbottomhslice by OPT , we obtain a
feasible packing (since the region [0,W ] × [OPT, 3

2OPT ] was empty) with final height at
most 3

2OPT . Notice that every rectangle in T intersects the horizontal segment [0,W ]×
{ 1

2
}
.

Now, let us shift down each rectangle R in T so that its bottom coordinate becomes zero
(again, the packing remains feasible). Next, we shift rectangles so that the ones in T appear
one next to the other in the bottom left part of the packing, in non-increasing order of height.
To this aim, we proceed recursively as follows. Let T1, . . . , Tq be the considered ordering of T
in non-increasing order of height. At the beginning of iteration i ≥ 1, we are given a feasible
packing where T1, . . . , Ti−1 are packed from left to right one next to the other as left as
possible (and with bottom coordinate 0). We consider the region Ai := [wi−1,W ]× [0, h(Ti)],
where wi−1 =

∑
j≤i−1 w(Tj). Let Li be the portion of Ai to the left of (the current embedding

of) Ti. Note that every rectangle is either completely contained in or disjoint from Li since
Ti is the tallest rectangle contained in Ai and Ti−1 is taller than Ti. We move Ti so that its
left coordinate is wi−1, and shift Li to the right by w(Ti), moving consistently all rectangles
in Li. Obviously the new packing satisfies the invariant for the next iteration. At the end of
iteration q the packing satisfies the claim.

In the next step, we partition the area not occupied by T into unit-height stripes. Notice
that each rectangle in Shslice is fully contained in some stripe. We need (for a reason that
will be clearer later) to temporarily discard, meaning that we remove them from the packing,
some slices as follows. Let us say that a slice is wide if its width is at least εW , and narrow
otherwise. Consider the slices S ′hslice in a given horizontal stripe. This set contains at most
1/ε wide slices. Let w′ be the total width of the remaining narrow slices and let w′′ ≤ w′

be the largest multiple of εW . We discard a minimal subset of narrow slices so that the
remaining ones have width at most w′′. We let Sdischslice be the set of discarded slices, and
Sselhslice be the remaining (selected) slices.

Next, we push slices Sselhslice as right as possible. Afterward, we permute the y-coordinates
of slices in pairs of stripes so that stripes are sorted from top to bottom in non-increasing
order of the total width of the slices contained in them. Observe that this cannot create any
conflict with T (hence the packing remains feasible).
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( 3
2 + Ω(ε)

)
OPT

1
2OPT

OPT

0

0 W

Sbottomhslice

Stophslice

( 3
2 + Ω(ε)

)
OPT

1
2OPT

OPT

3
2OPT

0

0 W

Sbottomhslice

Stophslice

1
2OPT

( 3
2 +O(ε)

)
OPT

0

0 W

Cdw

Cup

Figure 1 Depiction of the proof of Lemma 6. Left: Packing of T ∪ Shslice in the optimal
solution. Light gray rectangles correspond to Shslice, dark gray rectangles correspond to T . Center:
By shifting Sbottom

hslice to the top we can shift down the rectangles in T . Right: We can shift now
horizontally rectangles in T and sort stripes. Finally one obtains Cup and Cdw.

We proceed as follows. We shift up Sselhslice by 11ε ·OPT and construct a polygonal chain
Cup with the following procedure. The chain starts at coordinate pup0 = (0, ( 3

2 + 11ε)OPT ).
We extend the chain to the right (possibly by a zero amount) until the chain hits some
rectangle in Sselhslice. We denote this point by (x1, ( 3

2 + 11ε)OPT ) and extend the chain down
by εOPT , hence reaching some point pup1 = (x1, ( 3

2 + 10ε)OPT ). We continue from pup1 in
the same fashion. The procedure ends when the chain reaches the x-coordinate W . Observe
that, by construction, every rectangle in Sselhslice lies above Cup. Furthermore, Cup is defined
by axis parallel segments only and at most 1/ε of them.

Afterward, we build symmetrically a polygonal chain Cdw as follows. We start from
pdw0 = (W, 0) and extend the chain to the left (possibly by a zero amount) until we hit
some rectangle R in T . Then, we extend the chain up by εOPT , hence reaching a point
pdw1 = (x1, εOPT ). We continue from pdw1 in the same fashion until we reach the x-coordinate
0. Notice that each rectangle from T lies below Cdw. Notice also that Cdw is defined by
axis parallel segments only and at most 1/ε of them. Furthermore, it is fully below Cup. To
see the latter, take any coordinate x ∈ (0,W ) (which, for simplicity, is not the position of a
vertex of any one of the two chains). Let yup and ydw be the corresponding y-coordinates in
Cup and Cdw, resp. Suppose by contradiction that ydw > yup. Observe that by construction
the segment x× (yup, yup + εOPT ) must hit some rectangle Rup in Sselhslice. Symmetrically,
the segment x× (ydw − εOPT, ydw) must hit some rectangle Rdw in T . This however implies
that Rup and Rdw overlapped before the shifting up of Sselhslice by 11εOPT , a contradiction3.

We claim that points pupi and pdwi have coordinates that belong to a set that can be
computed in polynomial time. Recall that OPT is known to the algorithm. Notice that
the y coordinates of the points pupi and pdwi are multiples of εOPT , hence they satisfy the
requirement. Since we know the precise packing of T , we can compute the x-coordinates of
points pdwi explicitly. The x-coordinates of points pupi have value W minus the sum w′′ of
the widths of the slices in a given strip. By the previous discarding procedure, w′′ is the sum
of up to 1/ε widths of input rectangles, plus a multiple of εW . Hence we can compute the
set of the possible coordinates in polynomial time.

3 A shifting up by 2εOPT would be sufficient to achieve a contradiction here. The extra shift by 9εOPT
is used to create some more free space that is needed in the following arguments.
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Let us subdivide the area in the strip between Cup and [0,W ] × ( 3
2 + 11ε)OPT by

extending to the right the horizontal segments in Cup. This gives up to 1/ε boxes Bup that
fully contain Sselhslice. Symmetrically, we can subdivide the area in the strip between Cdw and
[0,W ] by extending down the vertical segments in Cdw. This provides up to 1/ε boxes Bdw
that fully contain T . Next, consider the free area between Bup and Bdw. By extending down
the vertical sides of the boxes in Bup until reaching Bdw and symmetrically extending up
the vertical sides of the boxes in Bdw until reaching Bup, we obtain a partition of the free
area into up to 2/ε free boxes Bfree. By the previous discussion, the possible sizes of all the
mentioned boxes can be computed in polynomial time.

It remains to pack Sdischslice. To that aim, we create a new box Bdisc of width W and height
4εOPT that we place on top of the current packing, hence increasing the total height to
( 3

2 + 15ε)OPT . Notice that each R ∈ Sdischslice satisfies w(R) ≤ εW and h(R) = 1 ≤ δOPT .
Hence assuming ε ≤ 1/4 and δ ≤ 4ε2, Lemma 2 with ε′ = 1/4 guarantees that Sdischslice can be
fully packed in Bdisc via NFDH.

Properties (1) and (2) follow by contruction. It remains to prove (3). Notice that by
construction the area inside Bup not occupied by Sselhslice is at most εOPT ·W . Indeed, as
observed earlier, if we take any point (x, y) along Cup, where x does not correspond to a
step of Cup, the segment x× [y, y + εOPT ] hits some rectangle in Sselhslice. Thus a(Bup) ≤
a(Sselhslice) + εOPT ·W . A symmetric argument shows that a(Bdw) ≤ a(T ) + εOPT ·W . We
can therefore conclude that

a(Bfree) ≥W ·
(

3
2 + 11ε

)
OPT − a(Sselhslice)− a(T )− 2εOPT ·W

≥W ·
(

3
2 + 9ε

)
OPT − a(S ∪ T )

≥W ·
(

3
2 + 9ε

)
OPT −OPT ·W + a(V) = W ·

(
1
2 + 9ε

)
OPT + a(V). J

3.2 Including Vvslice

In this section, we show how to incorporate Vvslice in the packing from the previous subsection.
Critically, we need to leave a free box of sufficiently large size.

I Lemma 7. Consider the packing from Lemma 6 and assume ε is small enough. It is
possible to pack Vvslice inside the free boxes and furthermore define an empty rectangular
region of size 2ε2W × 1

2OPT .

Proof. Consider the set of (at most) 2/ε free boxes B1, . . . ,Bq sorted non-decreasingly by
height. We partition them into unit-width vertical stripes S ′ = {S1, . . . , Sk} sorted in the
same order, and breaking ties so that stripes of the same box appear consecutively. Recall
that a(S ′) ≥

(
1
2 + 9ε

)
OPT ·W + a(V).

We next place slices of Vvslice in these stripes from bottom to top in a greedy manner. In
particular, we consider rectangles R in Vvslice in any order, and place R in the left-most stripe
where it fits, as low as possible. Assume that the non-empty stripes are S ′used. Notice that the
unused space in these stripes is at most (w(S ′used)−1)(OPT2 −1)+OPT ≤

(w(S′
used)+1

2
)
OPT ,

hence

a(S ′used) ≤ a(V) + w(S ′used) + 1
2 OPT.
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( 3
2 +O(ε)

)
OPT

OPT

1
2OPT

1
2OPT

Figure 2 Description of the packing of Vvslice. Left: Packing of T ∪ Shslice as described in
Lemma 6 and the Oε(1) boxes for the free area defined by the dashed lines. Right: Boxes in the
free area sorted by height. Even if we ignore 1

2OPT height from each box we have enough space for
Vvslice and even to reserve space for future discarded vertical rectangles.

Let us distinguish the unused stripes S ′unused into the ones S ′tallunused of height at least OPT/2,
and the remaining ones S ′shortunused. One has that

a(S ′tallunused) ≥
(1

2 + 9ε
)
OPT ·W + a(V)− a(S ′used)− a(S ′shortunused)

≥
(1

2 + 9ε
)
OPT ·W + a(V)−

(
a(V) +

(
w(S ′used) + 1

)
2 OPT

)
−OPT2 w(S ′shortunused)

=
(1

2 + 9ε
)
OPT ·W −

(
w(S ′used) + w(S ′shortunused)

)
2 OPT − OPT

2

≥ 9εOPT ·W − OPT

2 ≥ 8εOPT ·W,

The second last inequality follows from the fact that
(
w(S ′used) + w(S ′shortunused)

)
≤W . In the

last inequality, we used the assumption W ≥ 1/ε.
Since a(S ′tallunused) ≤ ( 3OPT

2 + 11εOPT )w(S ′tallunused), it follows that, for ε ≤ 1/22,

w(S ′tallunused) ≥
8ε ·W
3
2 + 11ε

≥ 4ε ·W.

Next, consider the set of boxes spanned by S ′tallunused. All these boxes contain a free
rectangular region of height 1

2OPT induced by the bottom part of S ′tallunused: let us call these
regions F1, . . . , Fk. Since the number of these regions is at most 2

ε (i.e. the total number of
boxes) and their total width is at least 4ε ·W , by an averaging argument there exists one
such Fi of width at least 2ε2W . J

3.3 Rounding
In this section, we show how to round the packing from Lemma 7 by means of Lemma 4,
hence concluding the proof of Theorem 5.
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44:12 A Tight (3/2 + ε) Approximation for Skewed Strip Packing

Proof of Theorem 5. We start with the packing of T ∪ Shslice ∪ Vvslice obtained from
Lemma 7. Recall that Shslice is packed into 1/ε+ 1 boxes BS and Vvslice into 2/ε boxes BV .
The total height of this packing is ( 3

2 + 15ε)OPT , and this packing leaves a free region F of
size 2ε2W × 1

2OPT . Provided that δ is small enough, we can apply Lemma 4 to (Shslice,BS)
and obtain a packing of S into a set of containers fully contained in BS , plus two containers
of size at most W × ε2

2 OPT each. We place the latter two containers on top of the packing,
hence increasing the total height by ε2OPT . By applying the same Lemma to (Vvslice,BV ),
we obtain a packing of V into a set of containers fully contained in BV plus two containers of
size at most ε2

2 W ×
1
2OPT each. The latter two containers can be placed inside F without

further increasing the height of the packing, still leaving a free region of size ε2W × 1
2OPT .

By construction, the number of used containers is Oε(1) and their sizes belong to a set
that can be computed in polynomial time. J

4 Algorithm

In this section, we describe an algorithm based on Theorem 5 to compute our final solution.
Consider the set of containers guaranteed by Theorem 5. In polynomial time we can

guess such containers by trying all possibilities. By brute force we can also compute (in
polynomial time) a packing of these containers plus the free box in the strip of total height
at most ( 3

2 +O(ε))OPT . We guess which ones among the vertical containers contain T , and
pack the whole set T there greedily in non-increasing order of height.

We next apply Lemma 3 with parameter ε′ = ε3 to the remaining containers and
to the remaining rectangles V ∪ S. This way we can pack a set R′ ⊆ V ∪ S of area at
least a(V ∪ S)(1 − ε3). It remains to pack R′′ := (V ∪ S) \ R′, a(R′′) ≤ ε3a(V ∪ S) ≤
ε3( 3

2 + O(ε))OPT ·W ≤ 2ε3OPT ·W . We partition R′′ into 3 subsets and pack them as
follows:
1. The rectangles V ′′ ⊆ R′′ of height at least 2εOPT (notice that they have height at most

OPT/2). By an area argument their total width is at most 2ε3OPT ·W
2εOPT = ε2W . Hence they

fit in a vertical container of size ε2W × 1
2OPT that can be placed in the area occupied

by the free box (without increasing the height of the packing).
2. The rectangles H′′ ⊆ R′′ of width at least ε2W . By a similar area argument their total

height is at most 2ε3OPT ·W
ε2W = 2εOPT . Hence they can be placed into a horizontal

container of size W × 2εOPT that can be placed on top of the current packing.
3. The remaining rectangles S ′′ ⊆ R′′ with height at most 2εOPT and width at most ε2W .

By Lemma 2 with parameter ε′ =
√
ε and for small enough ε, we can pack S ′′ by means

of NFDH into an area container of size ε
√
εW × 2

√
εOPT to be placed on top of the

current packing.
We now have all the ingredients to prove our main theorem.

Proof of Theorem 1. Consider the above algorithm. Clearly it runs in polynomial time for
any fixed parameter ε > 0. Furthermore, for δ small enough, it generates a feasible packing
of all rectangles of total height at most

( 3
2 +O(

√
ε)
)
OPT . Considering the initial rounding

of OPT by a factor (1 + ε), this gives a 3
2 +O(

√
ε) approximation. The claim then follows

by choosing ε appropriately. J

5 Hardness of Approximation

In this section, we prove that the lower bound of 3
2 on the approximability of Strip Packing

still holds in the case of δ-skewed instances.
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0 W =
(
1 + δ

4
)
M

0

1

2

δ
2M

M
δ
4M

Figure 3 Construction from Lemma 8. Light gray rectangles represent dummy rectangles and
dark gray rectangles represent partition rectangles.

I Lemma 8. Given δ > 0 and ε > 0, there is no polynomial-time
( 3

2 − ε
)
-approximation for

δ-skewed Strip Packing unless P=NP.

Proof. We will prove this result via a reduction from the NP-complete Partition problem.
Recall that in Partition we are given a set of integers I = {x1, . . . , xn} whose sum is p.
Our goal is to determine whether I can be partitioned into two sets I1 and I2 such that∑
xi∈I1

xi = p
2 . We define our Strip Packing instance as follows: The width of the strip will

be W = (1 + δ/4)M where M = 2p
δ . Also, we will have n+ 4

δ rectangles in the instance, from
which 4

δ will have height 1 and width δ
2M (dummy rectangles) and the remaining n rectangles

will have, for each i = 1, . . . , n, height 1 and width xi (partition rectangles). Notice that the
instance is indeed δ-skewed as the width of the rectangles is either δ

2M ≤
δ
2W or at most

p = δ
2M ≤

δ
2W . Notice also that OPT ≥ 2 since the area of the rectangles is 2W .

We will now prove that the Partition instance is a YES instance if and only if OPT = 2.
Since all the heights in the instance are 1, as a consequence a NO instance has height at least
3, hence concluding the proof of the claim. Notice that if the Partition instance is a YES
instance then we can pack one next to the other 2

δ dummy rectangles plus one side of the
partition since their total width would be M + p

2 =
(
1 + δ

4
)
M . We then analogously pack

the rest of the rectangles on top, obtaining a packing of height 2 which is optimal as the total
area of the rectangles is 2W (see Figure 3). On the other hand, if the optimal height of the
Strip Packing instance is 2, the subregion [0,W ]× [0, 2] in the strip must be fully occupied by
rectangles. This actually implies that the horizontal segment [0,W ]× {1} does not intersect
the interior of any rectangle in the packing: indeed otherwise the space below that rectangle
could not be occupied by any other rectangle (as heights are all 1). This divides the solution
into two rows of height 1 and width W which are completely filled with rectangles. The only
way to divide dummy rectangles into the two rows is to have exactly 2

δ in each row (as the
largest total width below W that they can sum up to is M and their total width is 2M),
hence the remaining partition rectangles in each row have total width exactly p

2 , forming
then a feasible solution to the Partition instance. J
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A Omitted Proofs

Proof of Lemma 4. We prove the claim for H, the case of V ′ being symmetric. For a proper
parameter α > 0 to be fixed later, we define a rectangle R (and its horizontal slices) to be
narrow if w(R) ≤ α2W and wide otherwise. We temporarily remove narrow rectangles, and
pack the wide ones.

The first step in our construction is to round up the widths of the wide slices, while
discarding a small-area subset of them. Let β > 0 be a parameter to be fixed later. Let us
sort the wide slices Hwidehslice in non-increasing order of width, and let us partition the obtained
sequence into subsequences H1, . . . ,H1/β of total height βh(Hwidehslice) each (excluding possibly
the last group that can have smaller height). For a group i, we define wmini as the minimum
width in Hi. For each i = 1, . . . , 1/β − 1, we define an injection between Hi+1 and Hi. Next,
we delete slices H1. Let Hwdisc1 denote the rectangles of which we removed at least one
slice. Notice that all rectangles having some slice in H1 have all their slices in H1 excluding
possibly one rectangle (which has part of its slices in H1). Observe that h(Hwidehslice) ≤ H

α since
otherwise a(Hwidehslice) ≥ αW · h(H) would be too large to fit into the region of size W ×H.
Hence h(H1) = βh(H) ≤ β

αH. It follows that h(Hwdisc1) ≤ (βα + δ)H. For any fixed α, this
quantity is at most (ε′)2

2 H if β ≤ α(ε′)2/4 and δ ≤ (ε′)2/4.
For i = 1, . . . , 1/β − 1, we temporarily increase the width of each H ∈ Hi+1 to wmini ,

hence getting an enlarged slice H. Then, we move each such H into the region that was
occupied by the slice H ′ ∈ Hi associated with H according to the above injection. Notice
that this is possible since we removed H1 and since w(H) = wmini ≤ w(H ′). Let H be the
final set of enlarged slices. Observe that the number of possible distinct widths in H is
1/β − 1.
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Let us focus on a specific box B ∈ B of size w(B)× h(B), and let H′hslice be the slices
contained in B. Next, we partition B into unit height stripes. We shift slices in each stripe
as left as possible, and permute them so that slices in H appear to the left of each stripe. We
call a configuration C of a stripe the sequence of (enlarged) widths (w1, . . . , wq) of its slices
in H from left to right. Notice that there are 1/β − 1 possible enlarged widths, and each
stripe can contain at most 1/α2 wide slices. Hence the number of possible configurations is
at most nconf =

∑1/α2

i=0 (1/β − 1)i ≤ 2(1/β − 1)1/α2 ≤ (1/β)1/α2 .
We reorder the stripes in H′hslice vertically so that equal configurations appear consec-

utively from top to bottom, and stripes without narrow rectangles appear at the bottom.
Suppose that the number of stripes in B with a given configuration C = (w1, . . . , wq) is h(C),
and A(C) is the corresponding region. We initially cover A(C) by creating q consecutive
horizontal containers of height h(C) and width w1, . . . , wq respectively. These containers
altogether cover all the wide slices in B. The width of each container belongs to a set that
can be computed in polynomial time (it is the width of some input rectangle). In order to
enforce the same property for their heights, we round down the height of each such container
to the largest multiple h′(C) of δ

γH not larger than h(C), for some parameter γ > 0 to be
fixed later. The number of these containers is nwcont ≤ Knconf .

We next use the obtained horizontal containers to place most of the wide rectangles. We
consider the containers in non-increasing order of width and the slices of wide rectangles
in the same order, breaking ties so that slices of the same rectangle appear consecutively.
We also create a dummy final container of sufficient width and of height large enough to
accommodate the total height of the wide slices minus the total height of the containers.
Now, we place back the slices into the containers following the previous order. Notice that
all slices will fit. We discard each wide rectangle whose slices are contained in 2 containers
(3 is not possible) and all the wide rectangles whose slices are contained in the dummy final
container. Let Hwdisc2 be the set of discarded rectangles. Their total height is

h(Hwdisc2) ≤ nwcontδH + nwcont
δ

γ
H.

The above quantity is at most (ε′)2

2 H for any choice of ε′, α, β, and γ, provided that
δ ≤ (ε′)2γ

4nwcont ≤
(ε′)2γ

4K(1/β)(1/α2) .
So we packed all the wide rectangles into horizontal containers except for the set Hwdisc =

Hwdisc1 ∪Hwdisc2. The latter set has, by the above discussion, height at most (ε′)2H, hence
we can pack it into a container of size maxR∈Hwide{w(R)} × (ε′)2H.

It remains to pack the narrow rectangles. Consider again a given box B. For each
configuration C, there is some free region F (C) to the right of the containers built for C
whose height is h′(C) (in particular, a multiple of δ

γH) and of some width w(F (C)). We
build an area container of the same height and with width equal to the largest multiple
w′(F (C)) of α

γW not larger than w(F (C)). We apply a similar construction to the free
rectangular region F in B below all the previous containers, if any: in particular we create
an area container whose width is the largest multiple of α

γW not larger than w(F ) = w

and whose height is the largest multiple of δ
γH not larger than h(F ). The total number of

constructed area containers is nncont ≤ K · nconf .
Next, we start packing the narrow rectangles in non-increasing order of height in the

area containers using NFDH. Observe that these rectangles satisfy the claim of Lemma 2
with parameter γ. If all narrow rectangles are packed this way, we are done. Otherwise, let
Hncont and Hndisc be the subset of narrow rectangles that are packed and not packed in
the area containers, resp. By Lemma 2, a(Hncont) ≥ (1 − 2γ)Aacont, where Aacont is the
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total area of the area containers. Let afree be the total area in the boxes not occupied by
horizontal containers. Clearly afree ≥ a(Hnarrow) since all narrow slices did fit in a region of
area not smaller than afree. Due to the rounding involved in the construction, in each box
there is some area which is not used by area containers nor by horizontal ones. The latter
area is at most W · δγH +H · αγW per container, hence at most ∆ ≤ K · ( δ+α

γ )WH in total.
We can conclude that

a(Hncont) ≥ (1−2γ)Aacont = (1−2γ)(afree−∆) ≥ (1−2γ)(a(Hnarrow)−K ·(δ + α

γ
)WH).

Thus

a(Hndisc) ≤ 2γ · a(Hnarrow) +K · (δ + α

γ
)WH) ≤ (2γ +K · (δ + α

γ
))WH.

If we choose γ ≤ (ε′)2/6, δ ≤ (ε′)2γ
6K and α ≤ (ε′)2γ

6K , then the latter quantity is at most
(ε′)2

2 WH. Next, we create a new area container Cdarea of size ε′W × ε′H, and use NFDH to
pack Hndisc in it. It is not difficult to verify that, for such values of δ and α, rectangles in
Hndisc satisfy the conditions of Lemma 2 with parameter ε′. Thus we have

a(Hndisc) ≤
1
2(ε′)2WH = 1

2a(Cdarea) ≤ (1− 2ε′)a(Cdarea).

Thus all rectangles in Hndisc are packed into Cdarea.
It is possible to choose constant parameters α, β and γ such that the above conditions are

all satisfied (for δ small enough) and the total number of containers is Oε′(1). More precisely,
this is true if γ = (ε′)2/6, α = (ε′)4/(36 ·K), β = (ε′)6/(144 ·K) and δ = (ε′)2γ

4K(1/β)(1/α2) ∈ δ ≤

(ε′/K)(K/ε′)O(1) , leading to at most (K/ε′)(K/ε′)O(1) containers. By the above construction,
the sizes of the containers belong to a set that can be computed in polynomial time. J
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