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Abstract
The Non-Uniform k-center (NUkC) problem has recently been formulated by Chakrabarty, Goyal
and Krishnaswamy [ICALP, 2016] as a generalization of the classical k-center clustering problem. In
NUkC, given a set of n points P in a metric space and non-negative numbers r1, r2, . . . , rk, the goal
is to find the minimum dilation α and to choose k balls centered at the points of P with radius α · ri

for 1 ≤ i ≤ k, such that all points of P are contained in the union of the chosen balls. They showed
that the problem is NP-hard to approximate within any factor even in tree metrics. On the other
hand, they designed a “bi-criteria” constant approximation algorithm that uses a constant times k
balls. Surprisingly, no true approximation is known even in the special case when the ri’s belong to
a fixed set of size 3. In this paper, we study the NUkC problem under perturbation resilience, which
was introduced by Bilu and Linial [Combinatorics, Probability and Computing, 2012]. We show
that the problem under 2-perturbation resilience is polynomial time solvable when the ri’s belong to
a constant sized set. However, we show that perturbation resilience does not help in the general
case. In particular, our findings imply that even with perturbation resilience one cannot hope to
find any “good” approximation for the problem.
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1 Introduction

Stability is a popular notion, which has been used in literature in the context of beyond worst
case analysis. The general idea is to impose extra constraints on the inputs such that the
(stable) instances that satisfy those constraints can capture the instances that appear in
real life applications. In other words, we would like to exclude the “unrealistic” instances
from consideration and obtain optimistic bounds for algorithms on the remaining inputs. For
example, a major collection of work along this line have focused on designing polynomial
time algorithms for NP-complete problems under different stability conditions. Bilu and
Linial [10] introduced a notion of stability, which they termed as ψ-perturbation resilience for
some ψ > 1. Informally, an instance is called ψ-perturbation-resilient if the optimal solution
remains same even after the instance is perturbed by a factor of ψ.
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Recently, researchers have shown sufficient interest in studying geometric clustering
problems under perturbation resilience. An instance of a clustering problem is ψ-perturbation-
resilient if the optimal clustering is unique and remains unchanged under ψ-factor perturbation
of the input distances. Awasthi et al. [6] showed that the standard center based clustering
problems (e.g. k-center, k-median) can be solved in polynomial time under ψ-perturbation-
resilience for ψ ≥ 3. In any such center based clustering problem, the clustering is obtained
by assigning a point to its nearest center. In other words, the clustering is induced by the
Voronoi partition of the points w.r.t. the chosen centers. Subsequently, Balcan and Liang [8]
designed a polynomial time algorithm for these clustering problems under ψ-perturbation-
resilience for ψ ≥ 1 +

√
2, improving the bound of Awasthi et al. [6]. Later, Balcan et al.

[7] improved the bound for k-center to 2. On the other hand, they showed that k-center
under ψ-perturbation-resilience cannot be solved in polynomial time for ψ < 2, unless
NP = RP. They also considered the more general asymmetric k-center problem, where the
distances are not necessarily symmetric (but satisfy triangle inequality). The problem is
known to not admit a constant approximation unless NP ⊆ DTIME(nlog logn), where n is
the input size [15]. Surprisingly, Balcan et al. [7] showed that asymmetric k-center under
2-perturbation-resilience can be solved in polynomial time. Angelidakis et al. [4] gave a
generic polynomial time algorithm for clustering problems with center based objectives (e.g.
k-center, k-median, k-means) under 2-perturbation-resilience. Recently, Cohen-Addad and
Schwiegelshohn [16] proved that a simple local search scheme yields optimal solutions for
problems like k-median and k-means, under ψ-perturbation-resilience for ψ > 3. Chekuri and
Gupta [14] showed that an LP relaxation of k-center under 2-perturbation-resilience admits
an integral solution. They also proved the same result for k-center with outliers. Balcan
and Liang [8] introduced a weaker stability assumption called (ψ, ε)-perturbation-resilience,
where the optimal solution under ψ-perturbation can differ in at most ε fraction of the points
from the original optimal clustering (see Preliminaries for the formal definition). Assuming
that each cluster contains more than 2εn points, Balcan et al. [7] showed that k-center under
(3, ε)-perturbation-resilience can be solved in polynomial time, where n is the number of
input points.

The increasing interest in studying perturbation resilient clustering has given rise to
several open directions. One such interesting direction is to study clustering problems, where
the clustering is not necessarily induced by Voronoi partition. One such clustering problem is
Non-Uniform k-center (NUkC). In NUkC, we are given a set of n points P in a metric space,
non-negative integers r1, r2, . . . , rk, and the goal is to find the minimum dilation α and to
choose k balls centered at the points of P with radius α · ri for 1 ≤ i ≤ k, such that all points
of P are contained in the union of the chosen balls. We refer to any feasible solution of this
problem composed of the chosen balls as a feasible placement. From a feasible placement,
a clustering is retrieved in the following way – each point is assigned to a fixed ball that
contains the point, and then for each ball, the points that are assigned to that ball form a
cluster. Figure 1 shows that, the optimal clustering for an instance of NUkC is not the same
as the Voronoi partition w.r.t. the centers of the balls in the optimal placement. The NUkC
problem was formulated by Chakrabarty et al. [13] as a generalization of the well-studied
k-center clustering problem, where all ri’s are same. Apart from clustering, NUkC has several
applications in vehicle routing, sensor placement, and so on. For example, in vehicle routing,
we need to find k depot locations corresponding to k vehicles having different speeds, such
that any customer can be served by some vehicle as quickly as possible.

As mentioned before, k-center is a special case of NUkC where all the input radii are
equal. We call this version of the problem as NUkC with one radius class. In general, all
the radii might not be equal. But, we can consider only distinct radii from the input and
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Figure 1 The optimal clusters are contained in the two disks in the Euclidean plane. The centers
of balls are shown by boxes. The Voronoi partition w.r.t. the centers contains two subsets of points
lying on the different sides of the vertical bisector line.

associate a multiplicity parameter ki, with each such radius ri, which denotes the number of
balls of radius ri that can be opened. Then the problem can be formulated equivalently in
the following way.

I Definition 1 (NUkC with t radii classes). Given a set of n points P in a metric space, t ≤ k
distinct radii r1 > r2 > . . . > rt and non-negative integers k1, . . . , kt such that

∑t
i=1 ki = k,

the goal is to find the minimum dilation α and to choose ki balls centered at the points of P
with radius α · ri for all 1 ≤ i ≤ t, such that the union of the chosen balls contains all the
input points.

We note that k-center with outliers is a special case of NUkC with 2 radii classes where
the radius r2 = 0. Using a reduction from the Firefighters problem [1], Chakrabarty et al.
(Theorem 2 in [13]) proved that NUkC is NP-hard to approximate within any constant factor
even in tree metrics. In fact, their construction proves c-inapproximability of the problem
for any c, not necessarily a constant. On the other hand, they designed a (c1, c2) bi-criteria
approximation for the problem for large constants c1 and c2, i.e., if the algorithm is allowed
to use c1 · ki balls of type i (thus c1 · k in total), it can produce a solution with dilation
at most c2 times the optimal dilation. They also gave a 1 +

√
5-approximation for NUkC

with two radii classes. For k-center with outliers, they gave an improved 2-approximation.
However, even when the number of distinct radii is 3, no true approximation is known.

The motivation behind the study of NUkC under perturbation resilience is that, in many
applications, the distance function is heuristic. In fact, when the points represent structures
like images, proteins, documents, etc., it is very hard to find the true distance function,
and various standard distance/dissimilarity measures are used. If one solves a clustering
problem with such a heuristic distance function and expects good results, then they implicitly
assume that the optimal solution of the problem is not sensitive to small perturbations of
the distance function. The perturbation resilience condition is a natural way to make this
implicit assumption precise. And, the separation between the clusters forces an optimal
clustering to be unique.

Our results. In this paper, we obtain the following results.

1. Polynomial time exact algorithm for NUkC with a constant number of radii classes
under “2-perturbation-resilience” and “(3, ε)-perturbation-resilience when each cluster
contains more than εn+ 1 points”. Our algorithm reduces the NUkC problem to a version
of Firefighters problem on trees (formally defined in Section 4). Under the stability
assumptions, we can show that a feasible solution of NUkC maps to a feasible solution
of Firefighters problem and vice versa. Here, in particular, we use the “well-separated”
structure of the clusters in the optimal clustering that follows due to stability. The
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reduction has the property that if NUkC has t distinct radii classes, then the height of the
constructed tree instance is t+1. Then we show that using a dynamic programming based
scheme the Firefighters problem can be solved in polynomial time for constant height tree
instances. Thus we also obtain a polynomial time algorithm for NUkC under perturbation
resilience with a constant number of radii classes. We note that the algorithms for center
based clustering problems in [4, 8, 14] are also based on tree computation and dynamic
programming. However, the structure of the tree we compute is very different. We also
note that our result under 2-perturbation-resilience is tight, as even for k-center it is
unlikely to obtain a polynomial time algorithm under ψ-perturbation-resilience for ψ < 2.
To prove the result for (3, ε)-perturbation-resilience, we assume that each cluster contains
more than εn+ 1 points. We note that such a lower bound is necessary, as in its absence
even k-center is NP-hard [7] under (ψ, ε)-perturbation-resilience for all ψ ≥ 1 and ε > 0.

2. γ-inapproximability for NUkC under ψ-perturbation-resilience for any γ > 1 and ψ ≤ γ,
unless NP = RP. Our result implies that, for any ψ, γ > 1, even with ψ-perturbation-
resilience one cannot hope to find a γ-approximation for the problem. Our result should
be contrasted with the polynomial time algorithm for asymmetric k-center under 2-
perturbation-resilience, as asymmetric k-center is another candidate problem which is
hard to approximate within a constant factor. To prove the result, we use a chain of
reductions starting from the satisfiability problem to the NUkC problem in tree metrics
under perturbation resilience assumption. The last reduction in the chain is from a
version of the Firefighters problem which shows that NUkC is hard to approximate within
a factor of γ in tree metrics for any γ. Our reduction is similar to the reduction in [13].
Then, we argue that the constructed tree instances of NUkC are γ-perturbation-resilient,
and hence the similar hardness follows even for NUkC under γ-perturbation-resilience.
We also extend this hardness result to Euclidean metric of dimension d for d ≥ 1 using a
classical tree embedding result of Gupta [21].

The main contribution of this paper is twofold. The first one is to be able to establish an
exact connection between NUkC under perturbation resilience and the Firefighters problem
on trees. To establish this connection, we need to prove that perturbation resilience implies
that the optimal clusters are “well-separated”. Similar properties have been proved in the
context of other problems (e.g., k-center). Our contribution is to be able to extend these
proofs for NUkC as well. However, the extension is non-trivial, and one need sufficiently
good amount of extra work, as here we need to deal with non-uniform radii. We note that
Chakrabarty et al. [13] also showed a reduction from NUkC to Firefighters. However, their
LP-aware reduction is very different. Our second contribution is the tight hardness result for
the problem. This result along with the polynomial time algorithm gives the complete picture
for NUkC under perturbation resilience. To prove this result we are faced with the following
challenges. In any such hardness construction, one needs to show that the instances of NUkC
to which we map are perturbation resilient. Thus, we need to show that these instances have
unique optimal solution and the optimal solution does not change with some perturbation
of the distances. Chakrabarty et al. [13] showed a reduction from Firefighers to NUkC.
However, using their distance function it is not straightforward to show that the constructed
instances are insensitive to the perturbation of distances. Nevertheless, we consider a similar
distance function and show the reduction works out well with this modification. To prove
the uniqueness of the optimal solutions, we reduce a “unique” version of 3SAT to a “unique”
version of Firefighters using a chain of reductions.
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Related work and Open questions. Other optimization problems have also been studied
under stability assumptions [4, 17, 19, 25, 26]. Also different stability assumptions have
been introduced and well-studied in the literature [5, 24, 27]. Most of the clustering
problems mentioned here are NP-hard, but admit some constant approximations, e.g., see
[3, 12, 20, 22] and the references therein. It would be interesting to see if one can obtain
a constant approximation for NUkC with a constant number of radii classes without any
perturbation resilience assumptions. Also, one can study similar hard clustering problems
(e.g., k-clustering [9]) under perturbation resilience.

Organization. In Section 2, we define some notations that we use throughout the paper,
and make a few observations that will be useful later. In Section 3, we list some properties
implied due to perturbation resilience of the input instances. Then in Section 4, we discuss
the algorithm for NUkC with any constant number of classes and prove its correctness
by using the properties proved in the previous section. Lastly, in Section 5, we prove the
hardness results for the general problem.

2 Preliminaries

We denote an instance of NUkC with t radii classes on metric d by (P, d, t). Note that the
radii (ri) and multiplicity (kj) parameters remain implicit in this notation. But, references
to these parameters will become clear from the context. A ball with center p ∈ P and radius
r, denoted by B(p, r), is the set of points {q ∈ P | d(p, q) ≤ r}. A set of balls covers a set of
points if the union of the balls contains all the points. Recall that a feasible placement is a
feasible solution of the problem composed of the chosen balls that cover all the input points.
A feasible NUkC clustering C of the input set of points P is a partition {C1, . . . , Ck}, such
that there is a feasible placement Π with the property that for all i, Ci is a subset of a ball in
the placement. We say that the clustering C is induced by the placement Π. The radius of a
cluster C w.r.t. any distance function d, denoted by c-radius(C, d), is minp∈P maxq∈C d(p, q).
Note that no ball centered at a point p ∈ P of radius smaller than c-radius(C, d) can cover
all the points of C. For a placement with dilation α, a ball with radius αri (resp. < αri and
≥ αri) is called an ri (resp. < ri and ≥ ri) -ball.

Consider a metric space P with metric d : P × P → R≥0. A metric d1 is called a
ψ-perturbation of d if for any p, q ∈ P , d(p, q)/ψ ≤ d1(p, q) ≤ d(p, q)1. In this paper, all
perturbations we consider satisfy the metric properties.

I Definition 2. An instance I = (P, d, t) of NUkC is called ψ-perturbation-resilient (ψ-PR)
if for any metric ψ-perturbation d1 of d, the unique optimal NUkC clustering of I ′ = (P, d1, t)
is identical to the unique optimal clustering of I.

Note that in general, optimal clustering of NUkC might not be unique. We refer to the
instance I ′ as a ψ-perturbed instance of I. A few examples demonstrating the definition
of perturbation resilience w.r.t. NUkC with t radii classes are shown in Appendix A. We
also consider another notion of perturbation resilience introduced by Balcan and Liang [8],
where the optimal clustering is allowed to be different by a few points when the distances are
perturbed. Here we rewrite this notion in terms of NUkC. Two clusterings C = {C1, . . . , Ck}
and C′ = {C ′1, . . . , C ′k} are called ε-close if at most εn points are clustered differently in
the two clusterings, i.e., the minimum value of

∑k
i=1 |Ci \ C ′f(i)| over all permutations f of

{1, 2, . . . , k} is at most εn.

1 One can also define ψ-perturbation by both increasing and decreasing the distances - the two definitions
are equivalent modulo some factor, as one can always scale the input distances appropriately.
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I Definition 3. An instance I = (P, d, t) of NUkC is called (ψ, ε)-perturbation-resilient
((ψ, ε)-PR) if for any metric ψ-perturbation d1 of d, any optimal NUkC clustering of I ′ =
(P, d1, t) is ε-close to any optimal clustering of I.

This is again a well-studied stability criterion [2]. Note that when ε = 0, any optimal
NUkC clustering of I ′ must be same as any optimal clustering of I. This implies that
optimal clustering of I and I ′ are unique and we obtain the definition of ψ-PR. Thus, if
an instance of NUkC is ψ-PR, then it is also (ψ, 0)-PR, and hence any hardness result for
NUkC under ψ-PR trivially follows for NUkC under (ψ, ε)-PR. Now, we have the following
simple observation, which will be useful later in proving the properties of the PR instances.

I Observation 4. Consider an NUkC instance I = (P, d, t) that admits a unique optimal
clustering O. Let C be any cluster in O. Also, consider an optimal placement Π where C is
covered by a ball B. Then, the following two properties hold.

The center p of the ball B must belong to C.
For any two points u, v that lie in two different clusters of O, both of u, v cannot be
contained in B.

Proof.
Suppose p belongs to the cluster C ′ such that C 6= C ′. Construct another clustering
O′ by selecting all the clusters in O except C and C ′, and the clusters C ∪ {p} and
C ′ \ {p}. It is not hard to see that O′ is also a feasible clustering induced by Π. As Π is
an optimal placement, O′ is also an optimal clustering, which contradicts the uniqueness
of the optimal clustering of I. Hence, the statement follows.
Suppose B contains both u and v. We construct a new clustering O′, which is identical
to O except, in O′, we move the points u, v to the cluster C. Note that the clustering O′
can be induced by the placement Π, as the ball B that covers C ∈ O also contains u, v.
Hence, O′ is an optimal clustering for I different than O, which is a contradiction, and
thus the statement follows. J

WLOG we can assume that the optimal dilation of a ψ-PR or a (ψ, ε)-PR instance
of NUkC is 1. Like in the general case without perturbation resilience, in this case also
the assumption can be introduced by scaling ri values by a guessed value of the optimal
dilation α.

I Lemma 5. Suppose there is a polynomial time algorithm A for the NUkC problem with t
radii classes under ψ-PR (resp. (ψ, ε)-PR) with the properties that (i) for an instance which
admits a feasible placement of balls with dilation 1, A returns “yes” and a feasible clustering,
and (ii) for an instance which does not admit a feasible placement of balls with dilation 1, A
returns “no”. Then, the NUkC problem with t radii classes under ψ-PR (resp. (ψ, ε)-PR)
can be solved in polynomial time.

Proof. Consider any instance I = (P, d, t) of the NUkC problem with t radii classes under
ψ-PR (resp. (ψ, ε)-PR). Let α be the optimal dilation. Note that we do not know the value
of α. However, as the input metric is finite, there are only polynomial number of guesses for
α. We use the following procedure to obtain the optimal clustering for I. In each step, we
guess a value α′ for the optimal dilation in the increasing order of the values. We construct a
new instance I ′ from I by only changing the radius ri to α′ · ri for all i. Then, we apply the
algorithm A on the constructed instance. If A returns “no”, we repeat the process with a
different guess. Otherwise, the procedure terminates. We return the same clustering returned
by A as the solution for the instance I.
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Now, we argue about the correctness of the procedure. First, we claim that I ′ is a ψ-PR
(resp. (ψ, ε)-PR) instance. Before proving this claim we discuss its consequences. Note that
if there is no feasible solution for I with dilation α′, then with ki balls of radius α′ · ri for
all i it is not possible to cover the input points. Hence, in this case, for the constructed
instance, there is no feasible solution with dilation 1. Thus, the algorithm correctly returns
“no” assuming I ′ is a ψ-PR (resp. (ψ, ε)-PR) instance. If there is a feasible solution for I
with dilation α′, then with ki balls of radius α′ · ri for all i one can cover the input points.
Thus, in that case, for the constructed instance, there is a feasible solution with dilation 1.
Hence, A correctly returns “yes” assuming I ′ is ψ-PR (resp. (ψ, ε)-PR). Thus, when α′ = α,
A returns “yes” and the returned clustering is optimal for I. Now, we prove the claim.

B Claim 6. I ′ is a ψ-PR (resp. (ψ, ε)-PR) instance.

Proof. First, we show that the optimal clustering of I ′ is unique. Note that the optimal
dilation of I ′ is α/α′. Suppose optimal clustering of I ′ is not unique. Then, there are two
different clusterings where the points can be covered using ki balls of radius (α/α′)·α′·ri = α·ri
from each class i. It follows that there are two different optimal clusterings for I. But,
this is a contradiction, and thus the optimal clustering of I ′ is unique. Note that the
optimal clusterings of I and I ′ are identical. Let C be that clustering. Now, consider
any ψ-perturbation d1 of the input metric d and the ψ perturbed instance I ′1 of I ′. Let
I1 = (P, d1, t) be the corresponding ψ perturbed instance of I. Also, let C′1 be the optimal
clustering of I ′1 with dilation α′1. For the sake of contradiction, suppose C′1 is not identical
(resp. ε-close) to C. We argue that C′1 is also an optimal clustering of I1. But, this is
a contradiction, as I1 is a ψ perturbed instance of I and I is a ψ-PR (resp. (ψ, ε)-PR)
instance. Now, note that a placement that induces the clustering C′1 of I ′1 uses ki balls of
radius α′1 · α′ · ri from each class i. Thus, C′1 is a clustering for I1 with dilation α′1 · α′. It
is sufficient to argue that this dilation is optimal for I1. Suppose the optimal dilation is
< α′1 · α′. Then, using ki balls of radius < α′1 · α′ · ri from each class i all the points can be
covered. Hence, there is a clustering for I ′1 with dilation < α′1, which is a contradiction, and
hence the claim follows. C

Finally, as the number of guesses for α is a polynomial, the procedure terminates in polynomial
time. J

3 Properties of Perturbation Resilience

In this section, we show that perturbation resilience imposes useful structure on the optimal
solution. First, we consider the instances under (ψ, ε)-perturbation resilience with ψ = 3 and
prove an interesting property of the optimal clustering.

I Lemma 7. Consider any optimal placement Π for a (3, ε)-PR NUkC instance I = (P, d, t)
with optimal dilation 1 where the size of each optimal cluster is > εn+ 1. Let C1 and C2 be
two clusters induced by two balls of Π with radii ri and rj, respectively with ri ≥ rj. Then,
for any p ∈ C1 and q ∈ C2, d(p, q) > ri.

Proof. Let O be an optimal clustering of I that is induced by Π and contains C1, C2 as
clusters. For the sake of contradiction, suppose there are two points p ∈ C1 and q ∈ C2
such that d(p, q) ≤ ri. Then, we show that there is a 3-perturbation d′ of d such that an
optimal clustering of I ′ = (P, d′, t) is not ε-close to O. But, this gives a contradiction to the
assumption that I is a (3, ε)-PR instance, and hence the lemma follows.

APPROX/RANDOM 2020
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To construct the 3-perturbation d′ of d, we at first construct another metric d1. Later we
will scale d1 to construct d′. Let B1 = B(c1, ri) and B2 = B(c2, rj) be the balls in Π that
induce C1 and C2, respectively. Then, for any s ∈ C2, d(p, s) ≤ d(p, q) + d(q, s) ≤ ri + 2rj ≤
3ri. Also, for any w ∈ C1, d(p, w) ≤ 2ri. First, we construct a complete graph G with vertex
set equal to P , and for any edge (u, v), its length is defined by the function l as follows.

l(u, v) =
{

3ri if u = p, v ∈ (C1 ∪ C2) \ {c1} and d(u, v) ≥ ri
3 · d(u, v) otherwise

The distance d1 is the shortest path metric on G. Note that, as mentioned before, for
any v ∈ (C1 ∪ C2) \ {c1}, d(p, v) ≤ 3ri. Thus, it is not hard to see that, for any u, v ∈ P ,
d(u, v) ≤ d1(u, v) ≤ 3 · d(u, v). Now, let us define the metric d′. For any two points u, v,
d′(u, v) = d1(u, v)/3. Hence, for any u, v ∈ P , d(u, v)/3 ≤ d′(u, v) ≤ d(u, v). It follows that
d′ is a metric 3-perturbation of d, and thus the optimal clustering of I ′ is ε-close to O.

Now, let I1 = (P, d1, t) and O1 be an optimal clustering of I1. As scaling does not
change optimality of a clustering (for a formal proof see the proof of Lemma 5), O1 is also
an optimal clustering of the instance I ′ = (P, d′, t). Thus O1 is ε-close to O. Next, we prove
the following claim.

B Claim 8. The optimal dilation of I1 is 3.

Proof. As for any u, v ∈ V , d1(u, v) ≤ 3 · d(u, v), the optimal dilation of I1 is at most 3. We
prove that this dilation is at least 3. Suppose the dilation is less than 3. Let Π′ be any
placement with dilation less than 3 that induces the optimal clustering O1 of I1. Then,
we show that O1 is also a feasible clustering of I with dilation less than 1. But, this is
a contradiction, and hence the claim follows. Next, given Π′, we show the existence of a
placement for I with dilation less than 1 that induces O1.

Consider any cluster C ′ ∈ O1, and suppose it gets covered by an rl-ball B = B(w, r) in Π′.
Let x be any point in C ′. Now, consider the distance d1. Let π be any shortest path between
w and x. We claim that π cannot contain the edge (p, v) for any v ∈ (C1 ∪ C2) \ {c1} with
d(p, v) ≥ ri. For the sake of contradiction, say π contains (p, v). Note that d1(p, v) = 3ri.
As π contains (p, v), d1(w, p) ≤ r − 3ri. Now, consider any point u ∈ (C1 ∪ C2) \ {c1}. If
d(p, u) ≥ ri, d1(p, u) = 3ri. Otherwise, d(p, u) < ri, and thus d1(p, u) = 3 · d(p, u) < 3ri.
Thus, d1(w, u) ≤ d1(w, p) + d1(p, u) ≤ r. Hence, all the points of (C1 ∪ C2) \ {c1} are in B.
But, as C1, C2 contain more than εn+ 1 points, it follows that there is an optimal clustering
of I1 that is not ε-close to O. Thus, we get a contradiction. Hence, π does not contain (p, v),
and thus from the definition of the metric d1, it follows that d1(w, x) = 3 · d(w, x). Thus, a
ball centered at w and having radius r/3 can cover the points of C ′ in I. Now, note that
r < 3rl, and thus r/3 < rl. Hence, it is sufficient to use an rl-ball with less than 1 factor
expansion to cover the points of C ′ in I. In our new placement for I, we use the rl-ball
B(w, r/3) corresponding to each such cluster C ′. Clearly, the dilation of the new placement
is less than 1. C

Now, we show a clustering O2 of I1 that contains exactly k clusters, has dilation 3
and is not ε-close to O. O2 contains all the clusters in O except C1 and C2, and the
clusters (C1 ∪ C2) \ {c1}, {c1}. Note that for any s ∈ (C1 ∪ C2) \ {c1}, d(p, s) ≤ 3ri. Thus,
(C1 ∪ C2) \ {c1} can be covered by a ball of radius 3ri. It follows that the dilation of O2 is
at most 3 and hence it is an optimal clustering. Clearly, the two clusterings O and O2 differ
in > εn points, as |C1| > εn + 1 and |C2| > εn + 1. Now, for the same reason mentioned
before, O2 is also an optimal clustering of the instance I ′ = (P, d′, t). Hence, d′ is the desired
3-perturbation. This completes the proof of the lemma. J
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In the proof of the above lemma, one could have defined d′ directly without going via d1.
However, for simplicity of exposition, we have followed this approach. Indeed, this approach
shows that if one defines ψ-perturbation by increasing the (instead of decreasing) distances,
the lemma still holds. A proof can directly use the 3-perturbation d1 in that case.

Note that, as a 3-PR instance is also a (3, 0)-PR instance, the above lemma trivially
follows for 3-PR instances. In the following, we will show that the above mentioned property
of the optimal clustering follows even for any 2-PR instance.

I Lemma 9. Consider any optimal placement Π for a 2-PR NUkC instance I = (P, d, t)
with optimal dilation 1. Let C1 and C2 be two clusters induced by two balls of Π with radius
ri and rj, respectively, where ri ≥ rj. Then, for any p ∈ C1 and q ∈ C2, d(p, q) > ri.

Proof. Let O be the optimal clustering induced by the placement Π. Also, let B1 and B2
be the balls that induce the clusters C1 and C2, respectively. For the sake of contradiction,
suppose there exist two points p ∈ C1, q ∈ C2 such that d(p, q) ≤ ri. The idea is to show
that there is a metric d1 that is a 2-perturbation of d such that I ′ = (P, d1, t) has different
optimal clustering than O. But, this is a contradiction, and thus the lemma follows.

Let ct be the center of the ball Bt for t ∈ {1, 2}. Then, d(c1, q) ≤ d(c1, p) + d(p, q) ≤ 2ri.
We define the distance function d1 in the following way. First, we construct the complete
graph with vertex set equal to P , and for any edge (u, v), its length is defined by the
function l.

l(u, v) =
{

min{d(u, v), ri} if u = c1 and v = q

d(u, v) otherwise

We note that, for any u, v, d(u, v)/2 ≤ l(u, v) ≤ d(u, v). The distance function d1 is defined
by the shortest path distance between any pair of vertices. It is not hard to verify the
following observation.

I Observation 10. d1 is a metric 2-perturbation of d.

Hence, the instance I ′ = (P, d1, t) has the same optimal clustering O. Next, we prove a
claim that the optimal dilation of I ′ is also 1.

B Claim 11. The optimal dilation of I ′ is 1.

Proof. As for any u, v ∈ V , d1(u, v) ≤ d(u, v), the optimal dilation of I ′ is at most 1. We
prove that this dilation is at least 1. Suppose the dilation is less than 1. Let Π′ be any
placement with dilation less than 1 that induces the clustering O of I ′. Then, we show that
there is a placement for I with dilation less than 1. But, this is a contradiction, and hence the
claim follows. Consider any cluster C ∈ O that gets covered by an rt-ball B = B(w, r) in Π′.
Let x be any point in C. Now, consider the distance d1. Let π be any shortest path between
w and x. We claim that π cannot contain the edge (c1, q). For the sake of contradiction, say
π contains (c1, q). But, this implies d1(w, c1) ≤ d1(w, x) ≤ r and d1(w, q) ≤ d1(w, x) ≤ r.
Thus, B contains both c1 and q. Now, by the first property of Observation 4, c1 belongs to
C1. Thus, by the second property of Observation 4, we obtain a contradiction, as q ∈ C2.
Hence, π does not contain (c1, q). It follows that d1(w, x) ≥ d(w, x). Thus, the radius of the
ball needed to cover the points of C in I is at most r. Hence, it is sufficient to use an rt-ball
with at most r/rt < 1 factor expansion to cover the points of C in I. Now, we construct a
placement for I by selecting the same balls to cover the clusters that are used in Π′. Clearly,
the dilation of this placement is less than 1. C
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Next, we show that there is a different clustering O′ of I ′ with exactly k clusters that
achieves the optimal dilation. This gives rise to a contradiction, and thus d(p, q) > ri. Now,
there are two cases. In the first case, q is the only point in C2, and thus C2 \ {q} is empty. In
this case, we pick a non-singleton cluster C from O \ {C1} and choose a point s ∈ C. Such a
cluster exists WLOG. Then, we define O′ to be the set of clusters in O except C,C1 and
C2, and the clusters C1 ∪ {q}, {s} and C \ {s}. In the second case, q is not the only point in
C2, and thus C2 \ {q} is not empty. In this case, O′ is defined to be the set of clusters in O
except C1 and C2, and the clusters C1 ∪ {q}, C2 \ {q}. It is not hard to see that C1 ∪ {q}
can be covered by the ball B(c1, ri). Also, if C2 \ {q} is not empty, then B(c2, rj) covers the
points in C2 \ {q}. Hence, in all the cases, it is trivial to verify that the dilation of the new
clustering is 1. J

Note that, in the above proof, to show that O′ has dilation 1, we argue that there is a
placement with dilation 1. The balls in the placement might not be disjoint (both B(c1, ri)
and B(c2, rj) cover q). But, for the sake of just showing the optimality of the clustering, it
is sufficient to show the existence of such a placement.

4 NUkC with a Constant Number of Radii Classes

In this section, we show a polynomial time reduction from NUkC to the Constrained Resource
Minimization for Fire Containment on Trees problem.

I Definition 12 (Constrained Resource Minimization for Fire Containment on Trees (CRMFC-T)).
Given a rooted tree T = (V,E) with height t+ 1, a set of forbidden nodes F ⊆ V , and integers
k1, . . . , kt, the goal is to decide if there is a collection of non-root nodes U ⊆ (V \ F ) such
that (a) for every leaf-root path π, U contains at least one node from π, and (b) |U ∩Li| ≤ ki
for 1 ≤ i ≤ t, where Li is the layer i nodes of T , i.e., the nodes at distance exactly i from
the root.

Given any instance I = (P, d, t) of NUkC under 2-PR or (3, ε)-PR (the size of each optimal
cluster is more than εn+ 1), we will show how to construct an instance I ′ of CRMFC-T such
that I has a feasible placement with dilation 1 iff I ′ has a feasible solution. Also, from a
feasible solution for I ′, a feasible solution for I can be computed in polynomial time. In the
constructed instance I ′, the height of the tree is one more than the number of radii classes
in NUkC. We show that CRMFC-T can be solved in polynomial time if the height of the
input tree is a constant. From Lemma 5, it follows that the perturbation resilient version of
NUkC can be solved in polynomial time if the number of classes is a constant. Thus, we
obtain the following theorem.

I Theorem 13. NUkC under 2-PR (or (3, ε)-PR, where the size of each optimal cluster
is more than εn + 1) can be solved in polynomial time if the number of radii classes is a
constant.

4.1 Tree Construction
Let G be the complete graph that defines the distances between the input points. Note that
we are also given the input radii r1 > r2 > . . . > rt. We construct the tree T in t rounds
that contains t levels other than the root level. We denote the nodes at level i by Li for
i ∈ {0, . . . , t}. L0 contains a singleton node – the root of the tree. For i ≥ 1, in ith round,
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we construct the nodes Li and connect them with the nodes in Li−1. Each node v in T

corresponds to a connected subgraph Gv of G. The root corresponds to G itself. Also, each
node is marked with either yes or no denoting if the node can be selected or it is in the
forbidden set.

For each index i ∈ {1, . . . , t}, in ith round, we consider all the nodes v ∈ Li−1 and the
subgraph Gv corresponding to v. We remove all the edges with weight more than ri from
Gv. Let G1

v, . . . , G
l
v be the connected components formed from Gv due to the removal of

these edges. We add l children of v to Li corresponding to these connected l subgraphs. For
each such child u, if there is a node w in Gu, such that for all node x in Gu, d(w, x) ≤ ri, we
label u with yes. Otherwise, we label u with no (forbidden). Lastly, for each level i ≥ 1, the
number of nodes that can be chosen from Li in CRMFC-T is set to ki. The following lemma
establishes the connection between the two instances I and I ′.

I Lemma 14. I has a feasible placement with dilation 1 iff I ′ has a feasible solution to
CRMFC-T.

Proof. First, suppose there is a feasible solution to I ′. For each chosen node v, v must be a
yes node. Let i be the integer such that v ∈ Li. Then, the points in Gv can be covered by
an ri ball centered at some point in Gv. We choose this ball in our placement. Note that
we select at most ki balls of radius ri for all i. We prove that each point is covered in the
constructed placement. Consider any point p. The way we construct the tree, each point can
lie in the connected subgraph Gv of exactly one node v of Lj for all j. Let π be the root-leaf
path in T , such that for any v ∈ π, p is in Gv. Now, there must be a node along π that is
chosen in the solution of CRMFC-T. Let u be such a node. As we place a ball of radius
ri that covers all the points of Gu, p gets covered. Thus, I has a feasible placement with
dilation 1.

Now, suppose I has a feasible placement with dilation 1. Let O be the clustering induced
by the placement. Now, consider any cluster C ∈ O, which is covered by a ball of radius rj .
Thus, c-radius(C, d) ≤ rj . The way the tree T is constructed it follows that all the points
in C remain in the same connected subgraph Gv corresponding to a unique vertex v ∈ Li
for each i ≤ j. Let Gu be the subgraph corresponding to level j − 1. As I is a 2-PR (resp.
(3, ε)-PR) instance, from Lemma 9 (resp. Lemma 7), we know that, for any p ∈ C and
q ∈ P \ C, d(p, q) > rj . Thus, when the edges with weight more than rj are removed from
Gu, p and q cannot remain in the same component. But, as c-radius(C, d) ≤ rj all the points
of C remain in the same component. Also, by the first property of Observation 4, the center
of the rj-ball that covers C must lie in C. It follows that there is a yes node C(v) ∈ Lj such
that GC(v) contains only the points of C as vertices. For each cluster C ∈ O, we select the
yes node C(v) in the solution to CRMFC-T. It is not hard to see that we choose at most kj
nodes from Lj . Now, consider any root-leaf path π in T corresponding to a leaf l. Let p be a
point in Gl. Also, let p be a point in the cluster C ∈ O. Then, there must be a yes node
C(v) in π such that GC(v) contains only the points of C. As we choose v in our solution, we
have at least one node from the path π. Hence, the constructed solution is feasible. J

4.2 The Algorithm for CRMFC-T
In this section, we design a dynamic programming based algorithm that decides the feasibility
of any instance of CRMFC-T. The algorithm runs in polynomial time when the height of the
tree is a constant. Let T be the input tree having height t, i.e., T has t+ 1 levels L0, . . . , Lt.
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L0 contains only the root of T . Let ni = |Li|. We also assume that the nodes of Li are
ordered for all i ≥ 1, i.e., Li = {vi1, . . . , vini}. For j ≤ l, let F (i, j, l) be the union of the
induced subtrees of T rooted at the vertices vij , . . . , vil. We construct the tree T (i, j, l) from
F (i, j, l) by connecting the roots of the subtrees to a common root.

Let feasible(T (i, j, l), li, li+1, . . . , lt) be the function that decides if there is a feasible
solution to CRMFC-T for the tree T (i, j, l) by selecting at most lm nodes from level m, where
i ≤ m ≤ t. Note that computing the function feasible(T = T (1, 1, n1), k1, . . . , kt) solves the
CRMFC-T problem. We consider the following recursive definition of feasible(). In the base
case, if i = t − 1, the function can be computed in polynomial time. Otherwise, if li is 0,
let j′ be the minimum index such that vi+1,j′ is a child of vij and l′ be the maximum index
such that vi+1,l′ is a child of vil. In this case, feasible(T (i, j, l), li, li+1, . . . , lt)=feasible(T (i+
1, j′, l′), li+1, . . . , lt). Otherwise, there must be a minimum index j ≤ j1 ≤ l such that a
yes node vij1 is selected to be in the solution. For such a fixed j < j1 < l, let j′ be the
minimum index such that vi+1,j′ is a child of vij and l′ be the maximum index such that
vi+1,l′ is a child of vi,j1−1. In this case, if there are values l1i+1, . . . , l

1
t , l

2
i , l

2
i+1, . . . , l

2
t such that

l2i = li−1, lm = l1m+ l2m for all i+1 ≤ m ≤ t, and both feasible(T (i+1, j′, l′), l1i+1, . . . , l
1
t ) and

feasible(T (i, j1 + 1, l), l2i , l2i+1, . . . , l
2
t ) return yes, then feasible(T (i, j, l), li, li+1, . . . , lt) also

returns yes. Otherwise if for all j1 there are no such values, feasible(T (i, j, l), li, li+1, . . . , lt)
returns no. The corner cases when j1 = j or j1 = l can be handled similarly.

It is not hard to verify that feasible(T (i, j, l), li, li+1, . . . , lt) correctly decides whether
there is a feasible solution or not for T (i, j, l). To compute the feasible() function for all
possible values one can use a simple dynamic programming based technique. In particular,
one can store the values of the function for all possible parameters in a table. The table
is filled up in a bottom-up manner, where the values corresponding to a level j subtree is
computed before computations of the values corresponding to a level i subtree for i < j. It
is not hard to see that the procedure would take polynomial time and space for a constant t.

5 Hardness of Approximation

In this section, we will prove the following theorem.

I Theorem 15. For any constant c and any γ ≤ cn
c , NUkC under γ-PR is hard to

approximate in polynomial time within a factor of γ, unless NP = RP.

To prove this theorem, we use a chain of reductions that involves the following problems.

1-in-3SAT [28]
INSTANCE: An ordered pair (B,C) consisting of a set B of Boolean variables and a set

C of clauses over B having three literals each in conjunctive normal form.
QUESTION: Is there a truth assignment for B such that every clause in C contains

exactly one true literal?

RESOURCE MINIMIZATION FOR FIRE CONTAINMENT ON TREES (RMFC-T) [18, 23]
INSTANCE: A rooted tree T and an integer m.
QUESTION: Is there a set N of non-root nodes such that every root-leaf path contains

a node from N and for any integer j ≥ 1, |N ∩ Lj | ≤ m, where Lj is the set of nodes at
distance exactly j from the root?

The chain of reductions that we use consists of the following reductions: (1) 3SAT to
1-in-3SAT, (2) 1-in-3SAT to RMFC-T, and (3) RMFC-T to NUkC. Note that NUkC under
PR has a unique optimal solution. As we would like to show hardness for the PR version of
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NUkC, we will consider “Unambiguous” version of all these problems. For “Unambiguous”
version of 3SAT and 1-in-3SAT, if an instance has a feasible solution, the solution is unique.
For “Unambiguous” version of RMFC-T, if an instance has a feasible solution, the solution
has a specific structure that we will define shortly. For the reduction from 3SAT to 1-in-3SAT,
we ensure that the reduction preserves the number of solutions. Such a reduction is called a
parsimonious reduction. To refer to the Unambiguous version of a problem we add a prefix
“U-” to the problem name. Next, we discuss the details of the reductions.

In a celebrated work, Valiant and Vazirani [29] showed that U-3SAT is hard, unless
NP = RP. Schaefer [28] showed a reduction from 3SAT to 1-in-3SAT to prove the NP-
hardness of the latter problem. As noted in [11] the reduction is parsimonious. We use the
same reduction (now from U-3SAT to U-1-in-3SAT) to prove the hardness of U-1-in-3SAT,
unless NP = RP.

Next, we discuss the reduction from 1-in-3SAT to RMFC-T. First, we define the Unam-
biguous version of RMFC-T. For a vertex v of a rooted tree T , let leaves(Tv) be the set of
leaves at the subtree rooted at v. For any two feasible solutions S1 and S2 of RMFC-T, S1
and S2 are called equivalent, if the two sets ∪v∈S1 { leaves(Tv)} and ∪v∈S2 { leaves(Tv)}
are identical. U-RMFC-T is same as RMFC-T except if the input instance has more than
one feasible solutions, then all the feasible solutions are pairwise equivalent. The reduction
from U-1-in-3SAT to U-RMFC-T appears in the appendix. The reduction is a non-trivial
adaptation of the reduction due to Finbow et al. [18] from a version of 3SAT (RESTRICTED
NAE 3-SAT) to the RMFC-T problem. We summarize our finding in the following lemma.

I Lemma 16. Given a tree T , it is not possible to distinguish between the following two
cases in polynomial time, unless NP = RP.

YES: There is a solution to the U-RMFC-T instance with m = 1.
NO: There is no solution to the U-RMFC-T instance with m = 1.

To complete the chain of reductions, now we discuss the last reduction. In particular, we
show a reduction from RMFC-T to NUkC that proves the following theorem.

I Theorem 17. For any constant c and any γ ≤ cn
c , NUkC is NP-hard to approximate

within a factor of γ in tree metrics.

Note that this theorem has already been proved in [13]. However, it is not straightforward
to show that the instances of NUkC they construct are perturbation resilient. Using a similar
construction, we will argue that the instances of NUkC to which the instances of RMFC-T
map are perturbation resilient. However, to ensure that the constructed instance of NUkC
has a unique optimal solution, we will consider the Unambiguous version of RMFC-T.

5.1 Proof of Theorem 17
To prove the theorem we show a reduction from U-RMFC-T. As mentioned before, the
reduction is similar to the reduction used by Chakrabarty et al. [13]. The construction is
as follows. Let h be the height of the tree. We set P to be the leaves of the given tree T ,
i.e., P = Lh. For any edge (u, v) of T such that u ∈ Lh and v ∈ Lh−1, assign a weight
(γ + 1)/2 to (u, v). For any edge (u, v) of T such that u ∈ Li and v ∈ Li−1 for i ≤ h − 1,
assign a weight ((γ + 1)h−i+1 − (γ + 1)h−i)/2 to (u, v). Then the distance function d is the
shortest-path metric on P induced by the weights of T . We set t = h, rt = 0 and for any
1 ≤ j < t, rj = (γ + 1)t−j . Also k1 = . . . = kt = 1. Now we have the following observation.

I Observation 18. For any two leaves u, u′ with a common ancestor v ∈ Lj, d(u, u′) ≤ rj.
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Proof.

d(u, u′) ≤ d(u, v) + d(v, u′)
= ((γ + 1)/2 + ((γ + 1)2 − (γ + 1))/2 + . . .+ ((γ + 1)h−j − (γ + 1)h−j−1)/2)+

((γ + 1)/2 + ((γ + 1)2 − (γ + 1))/2 + . . .+ ((γ + 1)h−j − (γ + 1)h−j−1)/2)
= rj . J

We note that the weight of any edge is bounded by (γ + 1)h−1 = cO(nch) and thus can
be represented using O(nch) number of bits. It follows that the construction can be done
in polynomial-time. We denote the constructed instance of NUkC by I. For simplicity, we
use the terms point and leaf interchangeably. The following lemma completes the proof of
Theorem 17 which follows from the construction and the fact that the feasible solutions for
T are pairwise equivalent.

I Lemma 19. If T is the “YES” case of Lemma 16, then the optimum dilation of I is 1. If
T is the “NO” case of Lemma 16, then the optimum dilation of I is more than γ. Moreover,
I has a unique optimal clustering.

Proof. Let T be a “YES” instance and N be a solution for T . We construct a solution for I
from N as follows. For any v ∈ N , let j be the integer such that v ∈ Lj . We select a leaf u
from the subtree rooted at v and place a ball of radius rj . We note that at most 1 ball of
radius ri is selected for all i, as |N ∩ Li| ≤ 1. Now consider any point w ∈ P . Then there
must be a node v in N along the path between w and the root. Let v ∈ Lj . Now the way we
place the balls there must be a leaf u in the subtree rooted at v such that a ball of radius rj
is opened at u. As v is a common ancestor of u and w, from Observation 18, it follows that
d(u,w) ≤ rj . Hence the ball B(u, rj) covers w.

Now let T be a “NO” instance and the optimum dilation of I be at most γ. Consider
such a solution S corresponding to the instance I. We construct a solution N for U-RMFC-T
on T using S as follows. For any 1 ≤ j ≤ t, let u be the point where the ball (of radius at
most γrj) corresponding to rj is placed. Let v be the ancestor of u that is in Lj . We add v
to N . Note that, as S contains only one ball corresponding to the value ri, |N ∩ Li| ≤ 1 for
all i. Now consider any leaf w. We show that N contains a node along the w-root path. Let
B be a ball in S that covers w. Also let B be corresponding to the value rj and is centered
at the point u. Suppose v is the ancestor of u that is in Lj . As the radius of the ball at u
is at most γrj < rj−1, a point that is not contained in the subtree rooted at v cannot be
covered by B. Hence w must be contained in the subtree rooted at v and thus w-root path
contains v ∈ N . But this implies that N is a solution for T corresponding to the “YES” case
and thus T must be a “YES” instance. But this is a contradiction and thus the optimum
dilation of I must be more than γ.

As the feasible solutions for T are pairwise equivalent, it follows due to argument above
that these feasible solutions get mapped to a unique optimal clustering of dilation 1. Similarly,
the unique optimal clustering of dilation 1 gets mapped to a feasible solution of T . It follows
that I has a unique optimal clustering. J

5.2 Hardness of Perturbation Resilient Version of NUkC
To show the hardness of the γ-perturbation-resilient version of NUkC, we prove that the
constructed instances of U-NUkC in the reduction from U-RMFC-T to U-NUkC in tree
metrics are γ-PR. First, we remind the reader of the tree metric d∗ we used there. We are
given a parameter γ and a tree Tγ with height h whose leaves are at the same distance from
the root. The points in the metric space correspond to all the leaves of Tγ . Let n be the
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number of leaves. Also, let Li be the nodes of Tγ at level i for 1 ≤ i ≤ h. For an edge (u, v)
of T such that u ∈ Lh and v ∈ Lh−1, we assign a weight l(u, v) = (γ + 1)/2 to (u, v). For
each u ∈ Li, v ∈ Li−1 for i ≤ h − 1 such that (u, v) is an edge in Tγ , we assign a weight
l(u, v) = ((γ + 1)h−i+1 − (γ + 1)h−i)/2. For any two leaves w,w′, d∗(w,w′) is the length of
the shortest path between w and w′, i.e., if the least common ancestor of w,w′ is in Lj , then
d∗(w,w′) = (γ + 1)h−j . We set t = h, rt = 0 and for any 1 ≤ j < t, rj = (γ + 1)t−j . Also,
k1 = . . . = kt = 1. Let L(γ) be the set of leaves of Tγ . As the distance between any two
points and the rj ’s are of the form (γ + 1)i for some i, we have the following observation.
I Observation 20. The optimal dilation of the instance I = {L(γ), d∗, t} is (γ + 1)i for
some integer i ≥ 0.

As we have shown before, for any constant c and any γ ≤ cn
c , U-NUkC is hard to

approximate within a factor of γ for the metric space (Tγ , d∗), unless NP = RP. Next, we
prove the following lemma.
I Lemma 21. The instance I = {L(γ), d∗, t} is γ-PR.
Proof. LetO be the optimal clustering of I and α be its dilation. Consider any γ-perturbation
d′ of d∗. We prove that the optimal clustering O′ of the instance I ′ = {L(γ), d′, t} is same as
O. Suppose for the sake of contradiction that O′ is not same as O. As d′ is a γ-perturbation
(the distances are non-increasing), the dilation of O′ is at most α. We show that O′ is also a
feasible clustering for I with dilation at most α.

Consider any non-singleton cluster C ∈ O′ with center c1 that is covered by an rj-ball
for j < t. Then, for all pairs of points p, q ∈ C, d′(p, q) ≤ αrj . This is true, as all the
points are leaves of the tree. From Observation 20, it follows that αrj = (γ + 1)i for some
i. As d′ is a γ-perturbation of d∗, d∗(p, q) ≤ γ · d′(p, q) < (γ + 1)i+1. Now, the way Tγ is
constructed, there is no distance values strictly between (γ + 1)i and (γ + 1)i+1. Hence,
d∗(p, q) ≤ (γ + 1)i = αrj , and the ball B(c1, αrj) covers the points of the cluster C w.r.t. d∗.
It follows that O′ is also a feasible clustering for I with dilation at most α. But, as per our
assumption O and O′ are different, and thus the optimal clustering of I is not unique. This
is a contradiction, and hence O and O′ must be same. J

5.3 Hardness in Euclidean Metric
I Theorem 22. For any constant κ and any β ≤ κn

κ , NUkC under β-PR is hard to
approximate within a factor of β in the Euclidean metric of dimension d for any d ≥ 1,
unless NP = RP.

This result is in turn based on the following theorem due to Gupta [21].
I Theorem 23 ([21]). Any weighted tree T with L leaves can be embedded in polynomial-time
into d-dimensional Euclidean space with O(dL1/(d−1) min{logL, d}1/2) distortion.

The idea is to show that if there is a polynomial-time β-approximation for NUkC under
β-PR in the Euclidean metric for any constant κ and any β ≤ κn

κ , then there is also a
polynomial-time γ-approximation for NUkC under γ-PR in tree metrics for any γ ≤ cn

c ,
where c is a constant. But, by Theorem 15 this is a contradiction, and hence the proof of the
theorem follows. To obtain the γ-approximation in tree metrics we embed the tree metric
into Euclidean metric of dimension d using the algorithm of Theorem 23. Then, we use the
algorithm for Euclidean metric to obtain a solution for the embedded instance. Lastly, we
map this solution back to the tree metric with sufficient expansion of the balls. For a suitable
choice of β, one can show that the constructed solution is a γ-approximation. The details
are given in the appendix.
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A Examples demonstrating the definition of perturbation resilience

For more clarity, we describe the notion of ψ-perturbation-resilience in the context of NUkC
using two examples in Figure 2 (top-left and bottom-left). In all our examples, the number
of clusters k = 2 and the number of radii classes t = 1. For the instance shown at the top-left
figure, let r1 = 10. We claim that this instance is 2-perturbation-resilient. To see this note
that here the optimal dilation is 1, and the optimal clusters are {a, c} and {b, d}. Moreover,
even if all the distances are perturbed by a factor of 2, the distance between a and c (resp. b
and d) can be at most 10. Hence, the dilation of the previous clustering for the perturbed
instance would be at most 1. But, as all the distances between a and b, a and d, c and b, and
c and d are 50, in any 2-perturbation of the distances, the distance between the two points
in any of these four pairs would be at least 25. Thus if both of the points in such a pair
remain in same cluster, the dilation must be at least 2.5. As there is a clustering of dilation
at most 1, in optimal clustering, both of these points cannot lie in the same cluster. Hence,
the optimal clustering is unique and same as the one before. The top-right figure shows a
2-perturbed instance with the same optimal clustering. Now, consider the instance in the
bottom-left figure. Let r1 = 15. We claim that this instance is not 2-perturbation-resilient.
To prove this we show a 2-perturbed instance where the optimal clustering is different. Note
that in the original instance, the optimal dilation is 1, and the optimal clusters are {a, c} and
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Figure 2 Examples demonstrating the definition of perturbation resilience. The top-right (resp.
bottom-right) instance is a 2-perturbed instance of the top-left (resp. bottom-left) instance. The
points in same optimal cluster are shown by same shape and color.

{b, d}. The 2-perturbed instance we consider is shown in the bottom-right figure. Note that
in the perturbed instance the optimal clustering is {{a, b}, {c, d}} with dilation 10/15=2/3.
This is because any other clustering has a dilation at least 1.

B Reduction from 1-in-3SAT to RMFC-T

Finbow et al. [18] showed a reduction from Restricted NAE 3-SAT to RMFC-T. As per the
definition of Restricted NAE 3-SAT, if the input instance has a feasible assignment, then it
must at least have two. Thus, it cannot have a unique feasible solution. This is the reason
behind our selection of the problem 1-in-3SAT, which can have a unique feasible solution.
However, the reduction is motivated by the one in [18]. For consistency, we borrow some of
their notations.

Given an instance I of 1-in-3SAT, we construct a rooted tree T with root r in multiple
steps. Also, we choose the parameter m = 1. Before discussing the reduction, we have a few
definitions to set up the stage. Throughout this discussion, we will use the operation root
a copy of a rooted tree (T, r) at a vertex x of a graph G. This means we construct a new
graph from the disjoint union of G and T by identifying x and r. A vertex v of a tree is said
to be defended by a vertex u if the root to v path contains u. For any path, we assume that
its root is one of the degree one vertices. Also, the length of a path is defined as the number
of edges contained in it.

A ladder tree L T (n) is a path having 2n + 1 vertices such that the middle vertex of
the path is identified as the root of the tree. See Figure 3(i). Thus, the root of L T (n) has
two branches each being a path of length n. A bell tree BT (n,m) is formed by rooting a
ladder tree L T (n−m) at an endpoint of a path having m edges. The other endpoint of the
path becomes the root of the bell tree. See Figure 3(ii). Thus, in the figure, the distance
(in terms of edges) between a and b is m and the distance between a and a leaf is n. A
snake tree S T (n,m) is formed by rooting an m − 1 length path at the root of a bell tree
BT (n,m+ 1). The root of the bell tree (or the path) becomes the root of the snake tree.
Note that a snake tree has exactly one degree 3 vertex. See Figure 3(iii). Thus, in the figure,
the distance between a and b is m, and the length of the path between a and a leaf such
that the path contains b is n. A rooted tree T is called full if all leaves occur at the same
level. A rooted tree T is called complete if every internal vertex has exactly two children.
One simple observation is that a complete and full binary tree of height h ≥ 0 has 2h+1 − 1
vertices, and among those 2h are leaves.



S. Bandyapadhyay 31:19

(i) (ii) (iii)

a

b

a

b

Figure 3 (i) A ladder tree. (ii) A bell tree. (iii) A snake tree. Dashed segments denote paths.
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Figure 4 Figure showing the constructed tree after the first phase.

Now, we describe the construction. We are given the 1-in-3SAT instance I=(B,C)
with the set of variables B = {b1, . . . , bb} and the set of clauses C = {C1, . . . , Cn}. Let
p = dlogne+ 2. Thus, 2p ≥ 4n. We are going to construct a tree T which is initialized to
the root vertex r. For each 1 ≤ i ≤ b, root two paths of length i at the root r of T . Call
the degree one vertices of these two paths bi and bi. Root a complete and full binary tree of
height p at bi and bi for each i. From each leaf of these trees root a path of length b− i. Call
the leaves of these paths tbi,1, . . . , tbi,2p and tbi,1, . . . , tbi,2p . Note that all the leaf nodes are
now at a distance b+ p from r. Root two paths of length b+ 1 at r, and call the degree one
vertices of these paths b0 and b0. So far the construction is exactly the same as the one in
[18]. In the following, we modify their construction to adapt it for our setting. From b0 and
b0 root a complete and full binary tree of height p and p+ 1, respectively, and call their leaves
tb0,1, . . . , tb0,2p and tb0,1, . . . , tb0,2p+1 . This completes the first phase of the construction (see
Figure 4).

In the second phase, we add clause gadgets by rooting special tree structures at the
leaves of T constructed so far. For each 1 ≤ j ≤ n, and for each literal l of Cj , root the
snake tree S T (4n + 3, 4j − 2) at tl,j . For 1 ≤ τ ≤ 3, let q be the τ th literal of Cj . Root
S T (4n + 3, 4j − 2 + τ) at tq,j . Also, root the bell tree BT (4n + 3, 4j + 1) at r for each
1 ≤ j ≤ n. For 1 ≤ i ≤ 2p, add two children xi and yi of tb0,i. In each such added child,
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b1 b2 b3 r

Figure 5 Figure showing parts of the three snake trees and the bell tree corresponding to the
literals of Cj . The circled vertices are selected in the solution.

root the ladder tree L T (4n+ 1). For 1 ≤ i ≤ 2p+1, add two children xi and yi of tb0,i
. In

each such added child, root the ladder L T (4n). At each remaining leaf of T (as mentioned
before) where no tree structure has been rooted so far, root L T (4n+ 3). This completes the
construction.

Now, let us give an intuitive description of the clause gadgets. Note that our main goal
is to defend all the leaves. Consider the clause Cj = (b1 ∨ b2 ∨ b3). In a feasible solution,
exactly one literal of Cj must be true, say b1. Now suppose in the solution of U-RMFC-T we
select the vertices corresponding to true literals, i.e., b1, b2 and b3. Note that we have added
one snake tree corresponding to each complemented literal of Cj . Thus, all the vertices in
the snake trees corresponding to b2 and b3 are already defended. In this case, we can defend
the degree three vertex (and all of its descendants) of the snake tree corresponding to b1 by
choosing the degree three vertex itself. If more than one literal are true, then we need to
defend vertices of at least two snake trees instead for which we would have to pick more
than one vertices from a level. Now, we have also added three other snake trees one for each
literal of Cj . As the snake tree corresponding to b1 is already defended by b1, we just need
to defend the leaves of the remaining two. We can defend them by selecting the parent of
the degree three vertex from the corresponding snake tree. In this way, we can also defend
the last added bell tree by selecting its degree three vertex (see Figure 5). The alignments of
these degree three vertices and their parents help us pick them in different levels. Note that
if none of the literals are true, then we would need to defend the leaves of the three snake
trees corresponding to the literals and in that case it is not possible to defend the leaves of
the bell tree corresponding to Cj .

The argument behind the correctness of the reduction is similar to the one in [18]. The
forward direction is simple. First, defend the vertices corresponding to true literals, i.e., if bi
(resp. bi) is true, defend bi (resp. bi) at time i for 1 ≤ i ≤ b. At time b+ 1, defend b0. From
time b+ 2 to b+p+ 1, defend the unprotected descendant of b0 which is not on the path from
r to x1. At time b+ p+ 2, defend x1. From time b+ p+ 3 to b+ p+ 4n+ 3, defend the tree
greedily by picking a vertex at each level that contains the maximum number of nodes in the
subtree rooted at it. The other direction is nontrivial, but similar counting arguments as in
[18] should be used for the proof. It follows that the 1-in-3SAT formula is satisfiable if and
only if all the leaves of T can be defended by selecting exactly one vertex from each level.
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Finally, we show that all the feasible solutions are pairwise equivalent as claimed. This
actually follows from the construction. Fix the unique feasible assignment to the 1-in-3SAT
formula. Then, while finding a feasible solution for U-RMFC-T from the assignment in the
above, in all the steps one need to select a unique vertex except when one needs to choose
the parent of the degree three vertices of S T (4n+ 3, 4j + 1) and BT (4n+ 3, 4j + 1) both of
which lie at the same level. However, irrespective of the selection, the set of leaves remains
same. Thus, even though the solutions are different, the corresponding sets of leaves are
same, and hence the solutions are pairwise equivalent.

C Hardness in Euclidean Metric

Let X and Y be two finite metric spaces with metrics d and d′, respectively. Let f : X → Y

be a map. Then, the contraction of f is defined as,

Dc(f) = max
x,y∈X

d(x, y)
d′(f(x), f(y)) .

The expansion of f is similarly defined as,

De(f) = max
x,y∈X

d′(f(x), f(y))
d(x, y) .

The distortion of f , D(f) = Dc(f) · De(f). We need Theorem 23 due to Gupta [21] for
proving the hardness result. Next, we prove Theorem 22.

Proof. Suppose there is a polynomial-time β-approximation for NUkC under β-PR in the
Euclidean metric for any constant κ and any β ≤ κn

κ . Then, we show that there is a
polynomial-time γ-approximation for NUkC under γ-PR in tree metrics for any γ ≤ cn

c ,
where c is a constant. But, by Theorem 15 this is a contradiction, and hence the proof of the
theorem follows.

Now, consider a constant c and any γ ≤ cn
c . Also, consider any instance of NUkC

under γ-PR in the tree metric induced by the weighted tree T . We show how to get a
γ-approximate solution for T using the approximation algorithm for the Euclidean metric.
Let ∆ = O(dn1/(d−1) logn). First, we embed the tree T into d-dimensional Euclidean space
Rd using the algorithm of Theorem 23. Let f : T → Rd be the embedding. Also, let d and
df denote the tree and the Euclidean metric, respectively. We fix β such that β ≤ γ/∆,
and compute a β-approximate solution S of NUkC under β-PR for the Euclidean instance.
Thereafter, we construct a solution S′ for the problem on T from the solution S in the
following way. For any node x of T , if S contains a ball centered at f(x) with radius r, then
we add the ball at x of radius Dc(f) · r to S′, where Dc(f) is the contraction of f . First, we
show that the solution S′ constructed in this way covers all the nodes of T . Consider any
node x of T . Then, there is a ball in S centered at some point f(y) that covers f(x). Let r
be the radius of this ball. It follows that S′ contains the ball B centered at y having radius
Dc(f) · r. Now,

d(x, y) ≤ Dc(f) · df (f(x), f(y)) ≤ Dc(f) · r.

Hence, the ball B contains x, and thus S′ is a feasible solution. Now, we show that the
dilation α(S′) of the balls in S′ is at most γ times the optimum dilation. To this end, let OPT
and OPTf be the optimum dilation for the tree and the Euclidean instance, respectively.
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Then, the dilation α(S′) is at most β ·OPTf ·Dc(f). Now, as the distances between the points
can get expanded by a factor of at most De(f) due to the embedding, OPTf ≤ De(f) ·OPT .
Here De(f) is the expansion of f . Hence,

α(S′) ≤ β ·De(f) ·OPT ·Dc(f) = β ·D(f) ·OPT ≤ β ·∆ ·OPT ≤ γ ·OPT.

This completes the proof of the theorem. J
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