
Vector-Matrix-Vector Queries for Solving Linear
Algebra, Statistics, and Graph Problems
Cyrus Rashtchian
Department of Computer Science & Engineering, UC San Diego, CA, USA
crashtchian@eng.ucsd.edu

David P. Woodruff
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
dwoodruf@cs.cmu.edu

Hanlin Zhu
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
zhuhl17@mails.tsinghua.edu.cn

Abstract
We consider the general problem of learning about a matrix through vector-matrix-vector queries.
These queries provide the value of uTMv over a fixed field F for a specified pair of vectors u, v ∈ Fn.
To motivate these queries, we observe that they generalize many previously studied models, such as
independent set queries, cut queries, and standard graph queries. They also specialize the recently
studied matrix-vector query model. Our work is exploratory and broad, and we provide new upper
and lower bounds for a wide variety of problems, spanning linear algebra, statistics, and graphs.
Many of our results are nearly tight, and we use diverse techniques from linear algebra, randomized
algorithms, and communication complexity.

2012 ACM Subject Classification Theory of computation → Stochastic approximation

Keywords and phrases Query complexity, property testing, vector-matrix-vector, linear algebra,
statistics, graph parameter estimation

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.26

Category RANDOM

Funding David P. Woodruff : D. Woodruff would like to thank support in part by the Office of Naval
Research (ONR) grant N00014-18-1-2562.

1 Introduction

In the past few decades, there has been a significant amount of research on query-based
algorithms, motivated by compressed sensing, streaming, sketching, distributed methods,
graph parameter estimation, and property testing [14, 23, 26, 43, 45]. Most of this work
focuses on local queries that only access a small portion of the unknown data at a time. For
example, prior work on graph parameter estimation has considered degree queries (which
output the degree of a vertex v), edge existence queries (which answer whether a pair {u, v}
forms an edge), and neighbor queries (which provide the i th neighbor of a vertex v). Not
surprisingly, such queries have limited utility for certain problems. Even estimating the
number of edges in a graph is known to require a polynomial number of edge existence,
degree, and neighbor queries [24, 25].

This has led researchers to consider queries that still reveal a small amount of information,
while being more global in nature. For example, bipartite independent set queries (which
indicate whether or not there is at least one edge between two disjoint sets of vertices) can
be used to estimate the number of edges with only polylog(n) queries [9, 19]. Similarly, cut
queries (which provide the number of edges crossing a graph cut) can be used to find the

© Cyrus Rashtchian, David P. Woodruff, and Hanlin Zhu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 26; pp. 26:1–26:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:crashtchian@eng.ucsd.edu
mailto:dwoodruf@cs.cmu.edu
mailto:zhuhl17@mails.tsinghua.edu.cn
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.26
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Vector-Matrix-Vector Queries

exact minimum cut in a graph [39, 35]. Augmenting edge existence, degree, and neighbor
queries with access to an edge sampling oracle (which provides a uniformly random edge)
leads to elegant algorithms for estimating the number of certain subgraphs (e.g., triangles or
cliques) [5], which was a major open problem (without edge sampling) until recently [21, 40].

As the diversity of queries increases (along with the range of applicable problems), it is
natural to wonder whether there is a more general framework for understanding the power
and limitations of query-based algorithms. In this work, we initiate the study of querying a
matrix through bilinear forms, which generalizes the above mentioned queries and several
more (sometimes with an O(logn) factor overhead). Formally, let M be an n× n matrix
over a field F. We consider vector-matrix-vector queries, which we call uTMv queries for
short. Given a pair of vectors u,v ∈ Fn, these queries return the value of uTMv over F.
For graph applications, we often let the matrix M be the adjacency matrix of a graph. We
later explain how to simulate standard graph queries with uTMv queries. Allowing M to
take values in other fields enables us to consider a greater variety of linear algebra, statistics,
and data analytic problems. The underlying field F will play an important role in our results,
where working over F2 or R will change the query complexity of certain problems. We assume
that the entries have O(logn) bit-complexity, and therefore, the output of one uTMv query
provides only O(logn) bits of information. We strive for algorithms using a subquadratic
number of queries, which allows us to solve the problem without trivially learning the whole
matrix. Unless we specify otherwise, we allow the queries to be randomized and adaptive.

From a practical point of view, algorithms based on uTMv queries would most likely be
useful in the context of specialized hardware or distributed environments. Computing a
query only requires a weighted sum of entries of M , and hence, it would be easy to execute
in a massively parallel fashion. For example, if each processor handled a single row, then
the local memory would be bounded by O(n logn) for storing u and v. In a shared-nothing
system, the number of communication rounds would be proportional to the number of queries.
Similarly, in a streaming environment where single entries of M are changed at each step,
the memory would be O(logn) times the number of queries. Working over a finite field F
would reduce the memory overhead to O(log |F|).

That being said, our focus is on the theoretical aspects of the uTMv query model. We
consider many problems, spanning linear algebra, statistics, and graph properties. Part of our
motivation comes from finding algorithms that are query-efficient in the uTMv model, while
surpassing lower bounds for more restricted models. For example, we consider properties
that depend on the whole matrix (e.g., having low rank, being unitary or doubly stochastic)
or the entire graph (e.g., being a perfect matching or a star). As these are global properties,
it is intuitively challenging to verify them using local queries without simply learning the
whole matrix or graph. Overall, the uTMv query model opens up many theoretical directions,
and it facilitates new connections between linear algebra, randomized algorithms, and
communication complexity.

1.1 Related work and other queries
The uTMv model provides a unifying lens and generalizes many previously studied queries.
We give a brief overview of how to simulate other models and mention other related work.

Standard Graph Queries. To gain intuition about uTMv queries, we note that if
M is the adjacency matrix of a graph, then a single query over a large field (e.g.,
Q or R) provides the exact edge count. It is also easy to show that O(logn) uTMv
queries suffice to simulate degree, edge existence, neighbor, or edge sampling queries

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:3

(see Section A.1 for details). Therefore, uTMv queries achieve a variety of previous results
with only an O(logn) factor overhead, such as estimating the number of cliques of different
sizes [2, 5, 21, 22, 40], the number of stars [27], and the minimum vertex cover [37].

Independent Set Queries. Another line of work considers independent set oracles
for graphs (which return whether a given set of vertices induces an independent set or
contains at least one edge), mostly in the context of estimating the number of edges
in a graph [9, 17, 18, 19]. Interestingly, bipartite independent set queries are known
to be much stronger than independent set queries [9, 17]. A special case of bipartite
independent set query (where one of the bipartition sets is a singleton) has been used for
testing k-colorability of graphs [10], and high degree vertex discovery [44]. While these
algorithms are randomized and approximate, prior work also studies exact graph learning
problems [1, 3, 4]. When M is a binary matrix over a large enough field (e.g., Q or R),
then uTMv queries generalize both independent and bipartite independent set queries
by taking u and v to be indicator vectors for the sets. In particular, the power of the
bipartite version motivates allowing u and v to differ in the uTMv model.

Fine-Grained Complexity. Independent set queries are partially motivated by studying
the complexity of decision vs. counting problems [18, 19]. While we do not know of a
(natural) use of uTMv queries in this area, future work could consider using our algorithms
for a similar complexity-theoretic reduction. Our model could also be extended to tensors,
where queries are k-linear forms, analogous the generalization to k-partite independent set
queries for counting k-cliques, which has applications to k-SUM and related problems [19].

Cut Queries. Another global graph query model considers cut queries (which provide
the number of edges in a graph G = (V,E) crossing a cut (S, V \ S)). It is known that
Õ(n) cut queries suffice to exactly compute a minimum cut in a graph, and Õ(n5/3)
suffice to compute an s-t cut [39]. This has also been extended to multigraphs [35]. We
can directly simulate cut queries via indicator vectors u = 1S and v = 1{V \S}, when
M is the adjacency matrix of the graph. As the uTMv model is more general than cut
queries, it an interesting open question whether a sublinear number of queries suffice for
these problems.

Matrix-Vector Queries. A similar but more powerful query model considered by
previous work involves matrix-vector queries [42]. In this case, the queries return a vector
of n values vTM or Mv when given a vector v ∈ Fn. We study many of the same
problems as this prior work. In some cases, we show that certain problems (such as
determining if a matrix is symmetric or diagonal) have constant query complexity in
both models, even though uTMv queries reveal much less information than matrix-vector
queries. Previous work also considers lower bounds for the operator norm in the matrix-
vector model [13]. There is also work on the query complexity of computing PCA in this
model [41]. Finally, we provide examples where matrix-vector queries are more powerful
because there are lower bounds for uTMv queries (see, e.g., Section 3.1).

uTMv Data Structures. A complementary line of work considers the data structure
complexity of uTMv queries [15, 16, 20, 30, 36]. More precisely, the goal is to preprocess
M using a small amount space so that the value of uTMv can be obtained with a small
query time (e.g., in the cell-probe model or natural restrictions of that model). Since
there are connections between such data structures and challenging complexity theoretic
problems (e.g., matrix rigidity, see [20, 36]), it is an outstanding question to further
explore whether our results have implications for uTMv data structures or vice versa.

APPROX/RANDOM 2020

26:4 Vector-Matrix-Vector Queries

Table 1 Our upper and lower bounds on the query complexity in the uTMv model for n × n

matrices and constant success probability. Results hold over any field unless stated otherwise.

Linear Algebra Problems
Schatten p-norm Ω(

√
n) for p ∈ [0, 4), const. factor approx. over R Theorem 2

Ω(n1−2/p) for p ≥ 4, const. factor approx. over R Theorem 2
Rank testing Ω(k2) to distinguish rank k vs. k + 1 over Fp Theorem 3

Ω(n2−O(ε)) for (1± ε) approx. over R, non-adaptive Theorem 4
Trace estimation Ω(n/ logn) and O(n) for entries in {0, 1, 2, . . . , n3} Theorem 5
Diagonal matrix O(1) Theorem 6
Symmetric matrix O(1) Theorem 7
Unitary matrix Ω(n/ logn) and O(n) for randomized queries over C Theorem 8

Ω(n2/ logn) for deterministic queries over C Theorem 10
Statistics Problems
All ones column Ω(n/ logn) and O(n) over R Section 4.1
Two identical columns Ω(n) and O(n logn) over F2 Section 4.2

O(n) over R Section 4.2
Column-wise majority Θ(n2) over F2 Corollary 15
Permutation matrix O(1) over R Theorem 16

Ω(n) over F2 Theorem 17
Doubly stochastic matrix O(1) over R Theorem 18
Negative entry detection Ω(n2/ logn) over R Theorem 19
Graph Problems
Triangle detection Ω(n2/ logn) Theorem 20
Star graph O(1) over R Theorem 21
Local graph queries O(logn) Lemma 22

1.2 Our Results

We provide new upper and lower bounds on the query complexity of various problems in
the uTMv model. Table 1 summarizes our results. Many of the bounds are nearly tight:
for some problems O(1) queries suffice, and for others, either Θ̃(n) or Θ̃(n2) are necessary
and sufficient. For brevity, we defer formal definitions to the relevant subsections. Here we
highlight some interesting results.

Linear Algebra Problems. Section 3.1 provides lower bounds for approximately computing
many matrix norms, such as the trace norm, Frobenius norm, and operator norm (in general,
we study Schatten p-norms; see Section 3.1 for the definition). To prove this result, we
develop a general simulation result that allows us to establish lower bounds for adaptive
uTMv queries by reducing them to lower bounds for non-adaptive entry-wise queries. The
key idea is that such a simulation result holds whenever the input matrix distribution is
rotationally invariant (under row permutations). Then, we utilize known sketching lower
bounds for matrix norms that identify a hard distribution that is rotationally invariant [31].

We give constant-query algorithms for testing if a matrix is diagonal (Section 3.4) or
symmetric (Section 3.5). While these algorithms are fairly straightforward, they exhibit
the power of uTMv queries to efficiently test for global properties of the matrix. We prove
nearly-matching bounds for testing if a matrix is orthonormal (over R) or unitary (over C).
The lower bound uses an encoding of information via the Hadamard matrix.

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:5

Statistics Problems. Turning to other matrix problems, we consider properties of one or
more columns (our results also hold for rows, by symmetry of the query model). For example,
Section 4.1 and Section 4.2 provide nearly matching upper and lower bounds for testing
if there is an all ones column or two identical columns. Many of our lower bounds follow
from communication complexity via Disjointness. While this may be technically simple,
we note that our reductions require certain gadgets that seem to be new in the context of
query complexity; for example, see our lower bounds for permutation matrices (Theorem 17).
This also led us to study negative entry detection in its own right, because a lower bound of
Ω(n2/ logn) from Theorem 19 essentially provides the reason why certain results for binary
matrices (e.g., graphs) cannot be generalized.

Graph Problems. Our upper bound on permutation matrices (Theorem 16) gives a constant-
query algorithm for detecting whether a graph is a perfect matching. We also provide a
constant-query upper bound for testing whether a graph is a star on n vertices (Theorem 21).
Both of these are global properties that would be difficult to verify using standard graph
queries. They also complement previous results for learning hidden matchings or other
structures using independent set queries [3, 4]. As mentioned previously, being able to
simulate local graph queries with O(logn) uTMv queries gives rise to a number of results on
graph parameter estimation in the uTMv model (see, e.g., [2, 5, 21, 22, 27, 40, 37]).

Organization. We start with preliminaries in Section 2. We provide results for linear
algebra problems in Section 3, for statistics problems in Section 4, and for graph problems in
Section 5. We conclude in Section 6.

2 Preliminaries

We use capital bold letters (A,B,X,Y ,M , . . .) to represent matrices, lower-case bold letters
(u,v,x,y, . . .) to represent column vectors. We use non-bold lower-case letters (x, y, . . .) to
represent strings. For a matrix M , we let Mij denote the entry in i th row and j th column.
For a vector v, we use vi to denote the i th entry. For a string x, we use xi to denote the i th

entry. We use F to represent arbitrary fields, and use Fp to represent the finite field with
p elements where p is prime, and R to denote the reals. We use G = (V,E) to represent
a simple graph, where V denotes the set of vertices and E denotes the set of edges. We
query the adjacency matrix. Some of our lower bounds use the communication complexity
of Disjointness, where Alice has x ∈ {0, 1}n, Bob has y ∈ {0, 1}n, and they decide if
there exists an index i with xi = yi = 1. The randomized communication complexity is
Ω(n) [29, 38]. We also use the following result: if x and y contain exactly n/4 ones, then the
randomized complexity is still Ω(n) [7, 28].

3 Linear Algebra Problems

3.1 Lower Bounds for Approximating Matrix Norms
Say that a distribution over matrices X ∈ Rn×n is orthonormal and rotationally invariant if
all rows of each X in the support are orthonormal and the distribution remains the same
under any permutation of the rows of X. We will consider distributions over matrices M

formed by fixing a diagonal matrix Σ, sampling two matrices X and Y from orthonormal
and rotationally invariant distributions, and letting M = XΣY T. At a high level, are
interested in algorithms for computing functions of the singular values Σ, which remain
invariant over matrices in such distributions.

APPROX/RANDOM 2020

26:6 Vector-Matrix-Vector Queries

Our first goal is to prove a structural result relating uTMv queries to entry-wise queries
of M . Then, we use this reduction to prove new lower bounds. To do so, we utilize known
streaming lower bounds, and we take advantage of the fact that these lower bounds are
based on hard distributions that are orthonormal and rotationally invariant. Recall that
[s] = {1, 2, . . . , s} and that ei ∈ {0, 1}n denotes the i th standard basis vector.

I Lemma 1. Let M = XΣY T be a random n× n real-valued matrix, where Σ is diagonal,
and X and Y are sampled from orthonormal and rotationally invariant distributions. Any
s ≤ n deterministic, adaptive queries in the uTMv model can be simulated by s2 non-adaptive
entry-wise queries to the values of eT

i Mej for i, j ∈ [s].

Proof. We proceed by induction on the number of queries s ≥ 1. For the base case, consider
a query u1Mv1, where u1,v1 are arbitrary unit vectors. Observe that uT

1 X and Y Tv1
are random unit vectors, and moreover, they follow the same distribution as eT

1 X and
Y Te1, respectively. Since M = XΣY T, we see that the values of uT

1 Mv1 and eT
1 Me1 are

identically distributed as well.
Suppose the lemma holds for any s− 1 uTMv queries. Consider a sequence of s queries

uT
1 Mv1, uT

2 Mv2, . . . , uT
s Mvs, (1)

for unit vectors ui,vi for i ∈ [s] that may depend adaptively on the previous queries. Assume
without loss of generality that u1, . . . ,us and v1, . . . ,vs are respectively linearly independent.
For the final query vectors us and vs, decompose them as

us = as + bs and vs = cs + ds,

where

as ∈ span{u1,u2, . . . ,us−1} and cs ∈ span{v1,v2, . . . ,vs−1},

and where as is orthogonal to bs, and cs is orthogonal to ds.
Invoking the inductive hypothesis, this decomposition implies that aT

s Mcs can be
simulated using eT

i Mej for i, j ∈ [s− 1]. Furthermore, by the orthogonality assumptions, we
have that bT

s Mds follows the same distribution as eT
s Mes, even conditioned on the previous

queries.
It remains to argue about aT

s Mds and bT
s Mcs. We begin with the former, noting that

the latter follows by a symmetric argument. Let w1,w2, . . . ,ws−1 denote an orthonormal
basis for span{u1,u2, . . . ,us−1}. Considering the expansion of as in this basis, we observe
that, by linearity, it suffices to simulate

wT
1 Mds, wT

2 Mds, . . . , wT
s−1Mds (2)

using only the information from eT
i Mes for i ∈ [s− 1]. To establish this, consider any vector

wi for i ∈ [s− 1]. By assumption, X and Y are drawn from orthonormal and rotationally
invariant distributions. Since w1,w2, . . . ,ws form an orthonormal basis, we have that wT

i X

is a random unit vector following the same distribution as eT
i X. Moreover, by orthogonality,

for any i ≥ 2, the distribution of wT
i X remains the same as eT

i X even conditioned on

wT
1 X, wT

2 X, . . . , wT
i−1X.

an analogous argument implies that Y Tds follows the same distribution as Y Tes, even
conditioned on the previous queries. Therefore, we have that wT

i Mds is identically distributed
as eT

i Mes. As this holds for all i ∈ [s−1], the queries in Eq. (2) can be simulated by eT
i Mes

for i ∈ [s− 1]. By symmetry, a similar result holds for simulating bT
s Mcs. Therefore, we

have shown that all s deterministic queries in Eq. (1) can be simulated by the s2 entry-wise
non-adaptive queries to eT

i Mej for i, j ∈ [s], as desired. J

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:7

We use this structural result to prove lower bounds for computing certain matrix norms
by applying sketching lower bounds due to Li, Nguyen, and Woodruff [31]. For p ∈ (0,∞),
the Schatten p-norm of a real matrix M ∈ Rn×n with singular values σ1, . . . , σn is defined as

‖M‖p =
(

n∑
i=1

σpi

)1/p

.

By convention, the Schatten 0-norm is the rank of the matrix, and the Schatten ∞-norm
equals the largest singular value (a.k.a., operator norm). We have the following result for
the uTMv model.

I Theorem 2. Let M ∈ Rn×n be a matrix. For any value p ∈ [0, 4), computing a constant-
factor approximation to the Schatten p-norm of M requires Ω(

√
n) uTMv queries. For p ≥ 4,

computing a constant-factor approximation to the Schatten p-norm of M requires Ω(n1−2/p)
uTMv queries. Both results hold for randomized, adaptive queries with constant success
probability.

We sketch the proof of this theorem, which now follows directly from previous results.
Before applying Lemma 1, we use Yao’s principle [46] to show that it suffices to consider
deterministic query algorithms for distributions over input matrices. Also, the query vectors
can be taken to be unit vectors without loss of generality, as the algorithm can rescale
the results. Then, we note that the previous lower bounds use hard distributions that are
orthonormal and rotationally invariant [31]. As a result, the distribution of matrices M

satisfies the conditions of Lemma 1.
The previous results hold over the bilinear sketching model, where the sketches correspond

to an r × n matrix U and an s× n matrix V , and the goal is to approximate ‖M‖p up to
a constant factor using UMV T. Applying Lemma 1, we see that any algorithm making s
queries in the uTMv model corresponds to a bilinear sketch with both matrices being s× n.
Moreover, as the conclusion of the lemma only uses entry-wise queries, the corresponding
matrices consist of the s× s identity matrix in the upper left-hand corner, while the rest of
the matrix is all zeroes. The lower bound on bilinear sketches implies

s2 = Ω(n) for approximating the Schatten p-norm with p ∈ [0, 4)
s2 = Ω(n2−4/p) for approximating the Schatten p-norm with p ≥ 4.

Taking a square root leads to the bounds in Theorem 2.
The above provides separations between the uTMv and matrix-vector models [42]. Indeed,

it is known that there exist non-trivial bilinear sketching matrices for approximating the
Schatten p-norm whenever p is an even integer. Denoting such sketching matrices as U and
V , it suffices for U and V T to each have O(n1−2/p) rows [31] to approximate the Schatten
p-norm up to a constant factor. Observe that the Schatten p-norm of a matrix M is the
same as the Schatten p/2-norm of the matrix MMT. Thus, if p is an integer multiple of 4,
then in the matrix-vector model one can first compute UM and then compute MTV , and
then multiply these together to obtain UMMTV , where U and V are the corresponding
sketching matrices for the Schatten p/2-norm. The total cost is O(n1−4/p) queries in the
matrix-vector model.

On the other hand, Theorem 2 implies that Ω(n1−2/p) queries are necessary in the uTMv
model, thus providing a separation for integers p ≥ 4 which are multiples of 4. We also
directly get an Ω(n) lower bound for approximating the operator norm up to a constant
factor, using the Ω(n2) lower bound bound for general sketches in [33]. For recent work on
actually finding the top eigenvector and solving a linear system in the matrix-vector model
in the high accuracy regime, see [13].

APPROX/RANDOM 2020

26:8 Vector-Matrix-Vector Queries

3.2 Rank Testing
Given a matrix M ∈ Fn×n, a natural problem is to determine the rank of M . We first
consider matrices over a finite field Fp for a prime p.

I Theorem 3. Given a matrix M ∈ Fn×np and an integer k, at least Ω(k2) adaptive queries
are necessary to decide the rank whether the rank of M is k or k+ 1 with constant probability.

Proof. We reduce this problem to a communication complexity problem. Alice holds a matrix
A ∈ Fn×np and Bob holds a matrix B ∈ Fn×np , where M = A + B and rank(M) ∈ {k, k+ 1}.
Corollary 23 in [32] implies that the randomized communication complexity is Ω(k2 log p)
to determine whether the rank of M is k or k + 1. Alice and Bob can simulate the query
algorithm using O(log p) bits of communication per query. Let q(n, k) be the query complexity
of this problem in the uTMv model. Then q(n, k) log p = Ω(k2 log p), and we conclude that
q(n, k) = Ω(k2). J

Now consider the real-valued version of rank testing with M ∈ Rn×n. It is known
that if we want to compute the rank of M up to a factor of (1 ± ε), then this requires
Ω(n2−O(ε)) space in the streaming model [6]. Assadi et. al. [6] has shown that even for
some special matrices of which the entries are only in {−1, 0, 1}, there exists an Ω(n2−O(ε))
space lower bound for (1 + ε)-approximation of the rank. Notice that for uTMv queries, if
we choose u = (1, 3, 32, . . . , 3m−1)T and v = (1, 3m, 32m, . . . , 3m(m−1))T, then we can exactly
reconstruct M using the value of uTMv. Therefore, we assume that the matrix and the
query vectors have integral values bounded by a polynomial in n. Under this assumption, we
prove the following theorem:

I Theorem 4. Given a matrix M ∈ Rn×n, if we restrict that the entry of query vectors
can be chosen only from {0, 1, 2, . . . , nc} for some constant c, then Ω(n2−O(ε)) non-adaptive
queries are necessary to obtain a (1 + ε)-estimation of rank(M).

Proof. Let q(n) be the number of uTMv queries sufficient to estimate the rank up to a
factor of (1± ε). Consider a streaming model with updates of the form uT

1 Mv1, uT
2 Mv2,

. . ., uT
q(n)Mvq(n), where ui and vi are the i th queries made in the uTMv model for i =

1, 2, . . . , q(n). We can store these queries using O(q(n) · logn) bits of space (as the matrix
and vector entries are polynomially bounded). Using the previous results of [6], we see that
Ω(n2−O(ε)) bits of space are necessary. This implies that q(n)O(logn) = Ω(n2−O(ε)), and
hence, q(n) = Ω(n2−O(ε)/ logn) = Ω(n2−O(ε)). J

3.3 Trace Estimation
Estimating the trace of a matrix presents a simple problem where uTMv queries are just as
powerful as matrix-vector queries, even though the latter obtains much more information per
query. Sun et. al. [42] proves an Ω(n/ logn) lower bound for trace estimation of symmetric
matrix, of which the entries are in {0, 1, 2, . . . , n3}, using matrix-vector queries. Since Mv

contains all information of uTMv, it is also a lower bound for the uTMv model. Of course,
n queries suffice to obtain all the diagonal elements of matrix M , i.e., tr(M) =

∑n
i=1Mii =∑n

i=1 eT
i Mei, where ei is the i th standard basis vector. Thus, for trace estimation, we

obtain an Ω(n/ logn) lower bound and an O(n) upper bound. We formalize this as the
following theorem.

I Theorem 5. Let M be an n× n matrix over R with entries in {0, 1, 2, . . . , n3}. Assume
the query vectors have entries in {0, 1, 2, . . . , nc} for a constant c > 0. Computing a constant
factor approximation to the trace tr(M) has query complexity between Ω(n/ logn) and O(n).

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:9

3.4 Deciding if a Matrix is Diagonal
In this section, we show that over any field F, O(log(1

ε)) queries suffice to test whether a
matrix is a diagonal matrix with error probability at most ε ∈ (0, 1). Actually, it is equivalent
that 1 uTMv query can test with constant error probability.

For each test, we randomly and uniformly choose a subset S of [n] = {1, 2, 3, . . . , n} with
size |S| = n

2 . We select a subset G of size |G| = 2 from F. Construct the query vectors u

and v as follows. For each i ∈ [n], if i ∈ S, then let ui be randomly and uniformly sampled
from G, and vi = 0; otherwise let vi be randomly and uniformly sampled from G and ui = 0.
If uTMv = 0, then output ’Success’, otherwise output ’Fail’. The whole algorithm outputs
’Success’ iff every test outputs ’Success’. The proof of Theorem 6 is presented in Appendix A.

I Theorem 6. Let M be an n× n matrix over any field F. Then with O(log(1
ε)) queries,

one can test whether M is a diagonal matrix with probability at least 1− ε.

3.5 Deciding if a Matrix is Symmetric
Sun et. al. [42] has shown an O(log(1

ε)) query upper bound in the matrix-vector model to
test whether an n × n matrix M is symmetric with probability 1 − ε. We can simulate
their method in the uTMv model. To do so, repeat the following process O(log(1

ε)) times:
choose two random vectors u and v and test whether uTMv = vTMu. Using the previous
results [42], we see that the error probability is at most ε. We formalize this as follows:

I Theorem 7. Let M be an n× n matrix over any field F. Then with O(log(1
ε)) queries,

one can test whether M is a symmetric matrix with probability at least 1− ε.

3.6 Deciding if a Matrix is Unitary
The results on query complexity in this subsection also apply for testing if a matrix is
orthonormal over R, since orthonormal is a special case of unitary.

3.6.1 Randomized Queries
Given an n× n complex matrix M , a single matrix-vector query can determine whether M

is unitary with probability one [42]. Hence in the uTMv model, n randomized queries suffice,
by obtaining the entries of the vector Mv using u = ei for 1 ≤ i ≤ n.

Now we show that the O(n) algorithm is nearly optimal by proving a lower bound
Ω(n/ logn) in random case.

I Theorem 8. Let M be an n × n matrix over C. Then to determine whether M is a
unitary matrix with a constant probability, the lower bound of query complexity is Ω(n/ logn)
and the upper bound is O(n).

Proof. WLOG, let n = 2k, and then this problem can be reduced to Disjointness. Suppose
Alice has a string x ∈ {0, 1}n, and Bob has a string y ∈ {0, 1}n. Moreover, x and y both
contain exactly n

4 ones, i.e. |{i ∈ [n] | xi = 1}| = n
4 and |{i ∈ [n] | yi = 1}| = n

4 . Now
Alice and Bob want to find whether there exists an index i such that xi = yi = 1. The
communication complexity of this problem is Ω(n) [7, 28]. Now we show a protocol of the
communication. First, let’s recall one construction of a Hadamard matrix.

I Definition 9. Let H1 =
[

1
]
, and H2k =

[
H2k−1 H2k−1

H2k−1 −H2k−1

]
be a Hadamard matrix,

then we define G2k = 1√
2k

H2k for any k ≥ 1.

APPROX/RANDOM 2020

26:10 Vector-Matrix-Vector Queries

By the definition, G∗n/4Gn/4 = In/4, which means Gn/4 is a unitary matrix. Also, we
denote the element of row i and column j of matrix Gn/4 by gi,j . Then Alice constructs an
n× n matrix X with the following method. Let ai denote the i th smallest position of string
x of which the value is 1. For example, if x = 00100010, then a1 = 3, a2 = 7. Then Alice fills
exactly (n/4)× (n/4) elements of matrix X, i.e.

Xai,aj =
{

gi,j , i 6= j

gi,j − 1 , i = j,
where 1 ≤ i, j ≤ n/4.

Other elements of X are all 0s. Alice then constructs another matrix X ′, which is the
same as X except that

X ′ai,aj =
{

−gi,j , i 6= j

−gi,j − 1 , i = j,
where 1 ≤ i, j ≤ n/4.

Let X1 = X and X2 = X ′. Bob uses the similar method to construct matrices Y 1 and
Y 2 using his string y. If x and y are not intersected, i.e. there does not exist an index
k, such that xk = yk = 1, then the four matrices M ij = Xi + Y j + I are all unitary for
1 ≤ i, j ≤ 2, where I is the identity matrix. However, if x and y intersects, then there exists
an index k such that xk = yk = 1, so there exists i, j ∈ {1, 2}, such that the element of k th

row and k th column of matrix M ij equals

(− 1√
n/4
− 1) + (− 1√

n/4
− 1) + 1 = −1− 2√

n/4
< −1,

so M ij is not unitary.
Therefore, Alice and Bob can compute uTM ijv by sending uTXiv and uTY jv, which

take O(logn) bits by one communication. Assume that q(n) queries can determine whether
an n × n matrix is unitary, since Disjointness requires Ω(n) bits, q(n)O(logn) = Ω(n),
which demonstrates that q(n) = Ω(n/ logn). We summarize the above results and obtain
the following theorem. J

3.6.2 Deterministic Queries
For deterministic case, a trivial upper bound is O(n2) by retrieving all the entries of matrix
M one by one. Now we show a strong lower bound Ω(n2/ logn), which demonstrates that
the trivial algorithm can nearly perform the best.

I Theorem 10. Let M be an n × n matrix over C. Then to determine whether M is a
unitary matrix in deterministic case, the lower bound of query complexity is Ω(n2/ logn).

Proof. We reduce the problem to Disjointness. Without loss of generality, let n = 2k.
One can calculate easily that there are n− = n(n−1)

2 (-1)s in matrix Hn, and n+ = n(n+1)
2

1s. We denote the element of row i and column j of matrix Hn by hi,j . Then, let Z be the
matrix of n× n, which satisfies that

Zi,j =
{
−1, hi,j = −1

0, hi,j = 1.

Denote the positions in which elements are 1s in Hn by 1, 2, 3, ..., n+ respectively. Now
Alice holds a string x and Bob holds a string y, where x, y ∈ {0, 1}n+ . Each of them has
exactly n+

2 1s. In the deterministic case, it requires Ω(n+) = Ω(n2) bits of communication
to decide whether the two strings intersect. Alice then constructs a matrix X of n× n, and
initially, all the entries of X are zero. Next, for each i, where 1 ≤ i ≤ n+, if xi = 1, then
Alice fills in 1 at position i in X. Bob constructs a matrix Y with the same method. Let
M = 1√

n
(X + Y + Z). Then x and y do not intersect if and only if M is unitary. To

exchange uTXv or uTY v needs only O(logn) bits, so the lower bound is Ω(n2/ logn). J

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:11

4 Statistics Problems

4.1 All Ones Column
Let M ∈ {0, 1}n×n be a binary matrix. Sun et. al. [42] show a lower bound of Ω(n/ logn)
for matrix-vector queries over R when restricting the entries in the query vector to [nc] =
{1, 2, . . . , nc} for some constant c. This lower bound can be applied directly to the uTMv
model. The following theorem shows that this is tight (up to logarithmic factors) and the
proof is presented in Appendix A.

I Theorem 11. Given a matrix M ∈ {0, 1}n×n over R, then O(n) queries suffice to test
whether there exists an all ones column in M with probability one.

4.2 Identical Columns
Let M ∈ {0, 1}n×n. Rearrange M in the following way: M =

[
c1 c2 · · · cn

]
. Our

task is to determine whether there exists i, j, such that 1 ≤ i < j ≤ n and ci = cj .
We consider the lower bound of query complexity over F2 first.

I Theorem 12. Let M ∈ {0, 1}n×n be a binary matrix over F2. Let ε be a real number such
that 0 < ε < 1 and n ≥ 2(1 + log n2

ε), then Ω(n) queries are necessary to detect whether there
exist two identical columns in M with probability at least 1− ε.

Proof. We reduce this problem to Disjointness. Assume Alice has a string x ∈ {0, 1}n−1,
and Bob has a string y ∈ {0, 1}n−1. Now Alice could construct a matrix X ∈ {0, 1}n2×n,
where

X =
[

x a1 a2 · · · an
2−1

1 1 1 · · · 1

]T

.

We denote the j th element of vector ai as aij . For each aij , when xj = 1, we let aij = 1; and
when xj = 0, we let aij be a random variable drawn from a uniform distribution in {0, 1}.
Bob constructs Y by the same method. Then let

M =
[

X

Y

]
be an n× n matrix. If x and y intersect, then the corresponding column of M is all ones.
Since the last column of M is also all ones, M contains two identical columns. If x and y
do not intersect, then for every two columns, the probability that they are identical is at
most 1

2
n
2 −1 . By a union bound, the probability that there exist two identical columns is less

than
(
n
2
)
× 1

2
n
2 −1 ≤ n2

2
n
2 −1 ≤ ε, since n ≥ 2(1 + log n2

ε). Alice and Bob must communicate
Ω(n) bits, and sending uTXv and uTY v each need only one bit over F2, so Ω(n) queries
are necessary to detect two identical columns. J

For the upper bounds over F2 and R we have the following theorem.

I Theorem 13. Let M ∈ {0, 1}n×n be a binary matrix.
O(n log(n/ε)) queries over F2 suffice to detect two identical columns with probability 1−ε.
O(n) queries over R suffice to detect two identical columns with probability one.

APPROX/RANDOM 2020

26:12 Vector-Matrix-Vector Queries

Proof. We choose a random n-dimensional vector u, where each ui is independent. Over R,
let ui be chosen from a standard normal distribution N(0, 1); and over F2, let ui be chosen
uniformly from {0, 1}. Notice that n queries suffice to obtain 〈u, ci〉 for 1 ≤ i ≤ n, where ci
is the i th column of M . If there are two identical columns ci and cj , then 〈u, ci〉 = 〈u, cj〉
always holds.

Now we analyze the probability that 〈u, ci〉 = 〈u, cj〉 holds for two columns that are not
equal. For convenience, let v = ci − cj . Since ci 6= cj , we know that v 6= 0. Assume vk 6= 0
for some index k such that 1 ≤ k ≤ n. When querying over R, we have that

〈u, ci〉 − 〈u, cj〉 = 〈u, ci − cj〉 = 〈u,v〉 =
n∑
i=1

uivi = ukvk +
∑
i 6=k

uivi.

Since uk ∼ N(0, 1) and vk 6= 0, we have that ukvk +
∑
i 6=k uivi = 0 with probability 0, which

means that 〈u, ci〉 6= 〈u, cj〉 with probability one. Therefore, O(n) queries suffice over R to
detect identical columns with probability one.

Working over the field F2, we see that ukvk +
∑
i 6=k uivi = 0 with probability 1

2 . This
means that 〈u, ci〉 = 〈u, cj〉 with probability 1

2 . If we choose log(n2/ε) = O(log(n/ε))
independent vectors u, then this equality holds for every u with probability ε

n2 . Since there
are

(
n
2
)
≤ n2 pairs (i, j), the overall error probability is less than ε

n2 · n2 = ε by a union
bound. Therefore, the query complexity in the uTMv model over F2 is O(n log(n/ε)). J

4.3 Majority
Given an n× n matrix M over F2, we consider computing the column-wise majority of M .
That is, for each column, we compute whether it contains at least n/2 ones or not. We prove
that Θ(n2) queries are necessary and sufficient, even for randomized algorithms.

I Theorem 14. Let M ∈ Fn×n2 be a binary matrix. Computing the column-wise majority
of M requires Ω(n2) queries, even for constant success probability.

Proof. We reduce this problem to Disjointness. Assume Alice has n binary strings of
length n, i.e. x1, x2, . . . , xn, each of which contains exactly n

4 1s. Bob has n binary strings
of length n, i.e. y1, y2, . . . , yn, each of which contains exactly n

4 1s as well. We define
f : {0, 1}n × {0, 1}n → {0, 1} as follows:

f(x, y) =
{

0, x and y have non-empty intersection,
1, otherwise.

By a direct sum theorem in communication complexity, Ω(n2) bits of communication
are required to decide (f(x1, y1), f(x2, y2), . . . , f(xn, yn)) simultaneously [34]. Let xi be the
corresponding n-dimensional column vector of string xi. Also, let yi be the corresponding
column vector of string yi. Alice and Bob construct matrices X and Y , where

X =
[

x1 x2 · · · xn
]

and Y =
[

y1 y2 · · · yn
]
.

Let M = X +Y . Then xi and yi intersect if and only if the majority of i th column of M is 0
since the elements are over F2. Furthermore, uTMv can be computed by the communication
of uTXv and uTY v, each communication requiring one bit. Thus, the number of queries
needed to decide the majority of every column is q(n) = Ω(n2). J

I Corollary 15. Given a matrix M ∈ {0, 1}n×n over F2, then the query complexity of
computing the column-wise majority is Θ(n2), for both deterministic and randomized queries.

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:13

4.4 Permutation Matrix
A matrix M ∈ {0, 1}n×n is a permutation matrix if each column and each row contains
exactly one entry equal to 1. We consider the query complexity over both R and F2, which
are very different.

We observe checking if a graph G is a perfect matching is equivalent to checking if the
adjacency matrix is a permutation matrix. This also holds for the bipartite version: for a
graph on 2n vertices, let Mij = 1 when the i th vertex on the left is connected to the j th

vertex on the right. The following theorem states that O(1) queries suffice over the reals to
check whether M is a permutation matrix with constant probability.

I Theorem 16. Let M ∈ {0, 1}n×n be a binary matrix over R. Then, O(1) queries suffice
to check whether M is a permutation matrix with constant probability.

Proof. Using a single query u = v = (1, 1, . . . , 1)T, we first verify that M contains exactly
n ones. Assume this holds. Also, assume without loss of generality that n is even.

We first describe an algorithm to test with constant probability whether each column
contains a single one. Reversing the roles of columns and rows will establish the same for rows.
The algorithm repeats the following process a constant number of times. Randomly select a
subset A ⊆ [n] of exactly n/2 columns. Let u be the all ones vector, and let v = 1A and
v′ = 1A\[n] be the indicator vectors for A and its complement. Reject if either uTMv 6= n/2
or uTMv′ 6= n/2.

If M is a permutation matrix, then uTMv = uTMv′ = n/2 holds. If M is not a
permutation matrix, there must be a pair of columns (or rows), one with all zeros, and one
with at least two ones. Suppose column c contains all zeros, and column c′ contains at least
two ones. With constant probability in choosing A, we have c ∈ A and c′ /∈ A or vice versa.
Conditioned on this, we claim that either uTMv 6= n/2 or uTMv′ 6= n/2 with constant
probability as well.

To see this, consider randomly partitioning the n− 2 columns (excluding c and c′) into
two groups of size n

2 −1. Let s1 and s2 be the number of ones in Groups 1 and 2, respectively.
Without loss of generality, assume s1 ≤ s2. Now, consider adding c and c′ to the two groups,
conditioned on them being separated. If c′ is in Group 2, then Group 2 will have more ones
than Group 1. Thus, one of the groups must not have n/2 ones, and our algorithm rejects
with constant probability. J

Interestingly, the query complexity depends on the field. If M ∈ {0, 1}n×n is over F2,
then O(1) queries are far from enough.

I Theorem 17. Let M ∈ Fn×n2 be a matrix. Then, Ω(n) queries are necessary to determine
whether M is a permutation matrix with constant probability.

Proof. We reduce this problem to Disjointness. Alice holds a string x ∈ {0, 1}n and Bob
holds a string y ∈ {0, 1}n. Now Alice constructs a 3n× 3n matrix

A =

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · An

 where Ai =

 0 0 1
1 0 0
0 1 0

 if xi = 0

 1 0 0
0 1 0
0 0 1

 if xi = 1.

APPROX/RANDOM 2020

26:14 Vector-Matrix-Vector Queries

Bob constructs a 3n× 3n matrix

B =

B1 0 · · · 0
0 B2 · · · 0
...

...
. . .

...
0 0 · · · Bn

 where Bi =

 0 0 0
0 0 0
0 0 0

 if yi = 0

 0 1 1
1 0 1
1 1 0

 if yi = 1.

Let M = A + B, with addition over F2. Then M is a permutation matrix if and only if x
and y are disjoint. Thus, the query complexity is Ω(n) since uTAv and uTBv are both a
single bit. J

4.5 Doubly Stochastic Matrix
A non-negative real-valued matrix is doubly stochastic if all rows and columns sum to one.

I Theorem 18. Let M ∈ (R+ ∪ {0})n×n be a non-negative real matrix. Then O(1) queries
suffices to check whether M is doubly stochastic with constant probability.

Proof. First, check whether the sum of all entries is n by choosing u = v = (1, 1, . . . , 1)T

and checking whether uTMv = n. Assume equality holds. If M is not doubly stochastic,
then some column c (or row r) has sum > 1 and another column c′ (or row r′ respectively)
has sum < 1. Partition the columns (rows) into two groups of size n

2 . By the argument in
the proof of Theorem 16, two groups sum to different values with constant probability. J

4.6 Matrix with Negative Entries
In our previous result for doubly stochastic matrices, we assumed that all the entries are
non-negative. This assumption is necessary. If we allow negative entries in a matrix, then
even checking whether or not there exists a negative entry requires Ω(n2/ logn) queries.

I Theorem 19. Let M ∈ Rn×n be a matrix. Then Ω(n2/ logn) queries are necessary to
test if M contains a negative entry using query vectors with entries in {0,±1,±2, . . . ,±nc}
for a constant c.

Proof. We reduce this problem to Disjointness. Alice holds a bit-string x with size n2,
and Bob holds a bit-string y with the same size. Alice and Bob construct n× n matrices A

and B, where

Aij =
{

1, x(i−1)n+j = 0
0, x(i−1)n+j = 1 and Bij =

{
0, y(i−1)n+j = 0
−1, y(i−1)n+j = 1

Let M = A+B, and notice that M contains negative entries if and only if x and y intersect. If
the query complexity is q(n), then by the Disjointness lower bound, q(n) logn = Ω(n2). J

5 Graph Problems

5.1 Triangle Detection
Triangle detection task means that a simple graph G is given in the form of adjacency matrix
M ∈ {0, 1}n×n, where n is the number of vertices in G, and we want to decide whether there
exists a triangle, i.e. there exists 1 ≤ i < j < k ≤ n, such that Mij = Mjk = Mki = 1. The
following theorem shows a lower bound on the number of uTMv queries to detect a triangle.

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:15

I Theorem 20. Given a simple graph G consisting of n vertices in the form of its adjacency
matrix M ∈ {0, 1}n×n, then even with a constant probability, Ω(n2/ logn) queries are
necessary to determine whether there exists a triangle in G.

Proof. We reduce this problem to a communication complexity problem, that is [8], given a
graph G with n vertices, where Alice holds some edges of G, and Bob holds the remaining
edges of G, then Ω(n2) bits of communication is required to determine whether there exists
a triangle in G, even in the random case with a constant probability.

Now suppose the graph is G, and its adjacency matrix is M ∈ {0, 1}n×n. Alice holds
some edges represented by the matrix X, and Bob holds the remaining edges represented by
the matrix Y . Obviously M = X + Y . Then Alice and Bob can communicate by sending
uTXv and uTY v, and uTMv can be obtained immediately since uTMv = uTXv+uTY v.
Assume q(n) queries can determine whether there exists a triangle, then q(n) logn = Ω(n2).
Thus q(n) = Ω(n2/ logn). J

5.2 Deciding if a Graph is a Star
Star is a special kind of tree where there exists one vertex adjacent to all the other vertices.

I Theorem 21. M ∈ {0, 1}n×n is the adjacency matrix of a simple graph G. Then O(1)
queries suffice to determine whether G is a star with constant probability.

The proof of Theorem 21 is shown in Appendix A.

6 Conclusion

In this paper, we undertook an exploratory study of a new query model that considers
querying a matrix through vector-matrix-vector queries. We provided new algorithms and
lower bounds for problems spanning three domains: linear algebra, statistics, and graphs. For
many of our results, we showed nearly matching bounds on the query complexity, sometimes
up to logarithmic factors. We also demonstrated that many previously studied queries can be
viewed as special cases or variants of the uTMv model, and therefore, uTMv queries provide
a unified way to study the query complexity of various graph and matrix problems.

In terms of open questions, an interesting direction would be to identify cases where
uTMv queries are much more efficient than previously studied models. Some options include:
determining the minimum cut more efficiently than cut queries [39, 35] or estimating subgraph
counts (e.g., triangles) more efficiently than local graph queries [6, 21, 40]. It could also
be interesting to study the generalization of our model to k-linear forms (i.e., querying a
k-tensor by specifying k vectors), comparing against k-partite independent set queries for
counting k-cliques [12, 11, 19].

References
1 Hasan Abasi and Bshouty Nader. On Learning Graphs with Edge-Detecting Queries. In

Algorithmic Learning Theory, pages 3–30, 2019.
2 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt

Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via
edge sampling. Algorithmica, 80(2):668–697, 2018. doi:10.1007/s00453-017-0287-3.

3 Noga Alon and Vera Asodi. Learning a Hidden Subgraph. SIAM Journal on Discrete
Mathematics, 18(4):697–712, 2005.

APPROX/RANDOM 2020

https://doi.org/10.1007/s00453-017-0287-3

26:16 Vector-Matrix-Vector Queries

4 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a
hidden matching. SIAM Journal on Computing, 33(2):487–501, 2004.

5 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm
for Counting Arbitrary Subgraphs via Edge Sampling. In Proc. 10th Innovations in Theoretical
Computer Science Conference (ITCS), 2019.

6 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1723–1742. SIAM, 2017.

7 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004.

8 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 623–632. Society for Industrial and Applied
Mathematics, 2002.

9 P. Beame, S. Har-Peled, S. Natarajan Ramamoorthy, C. Rashtchian, and M. Sinha. Edge
estimation with independent set oracles. In Anna R. Karlin, editor, Proc. Innov. Theo. Comp.
Sci. (ITCS), volume 94 of LIPIcs, pages 38:1–38:21, 2018.

10 I. Ben-Eliezer, T. Kaufman, M. Krivelevich, and D. Ron. Comparing the strength of query
types in property testing: The case of k-colorability. Computational Complexity, 22(1):89–135,
2013. doi:10.1007/s00037-012-0048-2.

11 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Hyperedge estimation
using polylogarithmic subset queries. CoRR, abs/1908.04196, 2019. arXiv:1908.04196.

12 Anup Bhattacharya, Arijit Bishnu, Arijit Ghosh, and Gopinath Mishra. Triangle estimation
using tripartite independent set queries. In Pinyan Lu and Guochuan Zhang, editors, Proc.
30th Annu. Internat. Sympos. Algorithms Comput. (ISAAC), volume 149 of LIPIcs, pages
19:1–19:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ISAAC.2019.19.

13 Mark Braverman, Elad Hazan, Max Simchowitz, and Blake E. Woodworth. The gradient
complexity of linear regression. CoRR, abs/1911.02212, 2019. arXiv:1911.02212.

14 Clément L Canonne. A survey on distribution testing: your data is big. but is it blue? In
Electronic Colloquium on Computational Complexity (ECCC), volume 22:63, pages 1–1, 2015.

15 Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. Tight Cell Probe Bounds
for Succinct Boolean Matrix-Vector Multiplication. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1297–1306, 2018.

16 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
Beats Richness: New Data-Structure Lower Bounds. In Proc. 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 1013–1020, 2018.

17 Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation with independent
set queries. In Shuchi Chawla, editor, Proc. 31st ACM-SIAM Sympos. Discrete Algs. (SODA),
pages 2916–2935. SIAM, 2020. doi:10.1137/1.9781611975994.177.

18 Holger Dell and John Lapinskas. Fine-grained reductions from approximate counting to
decision. In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors, Proc. 50th
Annu. ACM Sympos. Theory Comput. (STOC), pages 281–288. ACM, 2018. doi:10.1145/
3188745.3188920.

19 Holger Dell, John Lapinskas, and Kitty Meeks. Approximately counting and sampling
small witnesses using a colourful decision oracle. In Shuchi Chawla, editor, Proc. 31st
ACM-SIAM Sympos. Discrete Algs. (SODA), pages 2201–2211. SIAM, 2020. doi:10.1137/1.
9781611975994.135.

20 Zeev Dvir, Alexander Golovnev, and Omri Weinstein. Static Data Structure Lower Bounds
Imply Rigidity. In Proc. 51st Annual ACM SIGACT Symp. on Theory of Computing (STOC),
pages 967–978, 2019.

https://doi.org/10.1007/s00037-012-0048-2
http://arxiv.org/abs/1908.04196
https://doi.org/10.4230/LIPIcs.ISAAC.2019.19
https://doi.org/10.4230/LIPIcs.ISAAC.2019.19
http://arxiv.org/abs/1911.02212
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1145/3188745.3188920
https://doi.org/10.1145/3188745.3188920
https://doi.org/10.1137/1.9781611975994.135
https://doi.org/10.1137/1.9781611975994.135

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:17

21 T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublinear
time. SIAM J. Comput., 46(5):1603–1646, 2017. doi:10.1137/15M1054389.

22 T. Eden, D. Ron, and C. Seshadhri. On Approximating the Number of k-cliques in Sublinear
Time. CoRR, abs/1707.04858, July 2017. arXiv:1707.04858.

23 Yonina C Eldar and Gitta Kutyniok. Compressed sensing: theory and applications. Cambridge
university press, 2012.

24 U. Feige. On sums of independent random variables with unbounded variance and estimating
the average degree in a graph. SIAM J. Comput., 35(4):964–984, 2006. doi:10.1137/
s0097539704447304.

25 O. Goldreich and D. Ron. Approximating average parameters of graphs. Random Struct.
Algo., 32(4):473–493, 2008. doi:10.1002/rsa.v32:4.

26 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
27 M. Gonen, D. Ron, and Y. Shavitt. Counting stars and other small subgraphs in sublinear-time.

SIAM J. Discrete Math, 25(3):1365–1411, 2011. doi:10.1137/100783066.
28 Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjoint-

ness. Theory of Computing, 3(1):211–219, 2007.
29 Bala Kalyanasundaram and Georg Schintger. The probabilistic communication complexity of

set intersection. SIAM Journal on Discrete Mathematics, 5(4):545–557, 1992.
30 Kasper Green Larsen and Ryan Williams. Faster Online Matrix-Vector Multiplication. In

Proc. 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2182–2189, 2017.
31 Yi Li, Huy L Nguyen, and David P Woodruff. On approximating matrix norms in data streams.

SIAM Journal on Computing, 48(6):1643–1697, 2019.
32 Yi Li, Xiaoming Sun, Chengu Wang, and David P Woodruff. On the communication complexity

of linear algebraic problems in the message passing model. In International Symposium on
Distributed Computing, pages 499–513. Springer, 2014.

33 Yi Li and David P. Woodruff. Tight bounds for sketching the operator norm, schatten norms,
and subspace embeddings. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France,
pages 39:1–39:11, 2016.

34 Marco Molinaro, David P Woodruff, and Grigory Yaroslavtsev. Beating the direct sum
theorem in communication complexity with implications for sketching. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1738–1756. SIAM,
2013.

35 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted Min-Cut: Sequential, Cut-Query
and Streaming Algorithms. In Proc. 52nd Annual ACM Symposium on Theory of Computing
(STOC), 2020.

36 Sivaramakrishnan Natarajan Ramamoorthy and Cyrus Rashtchian. Equivalence of Systematic
Linear Data Structures and Matrix Rigidity. In Proc. 11th Innovations in Theoretical Computer
Science Conference (ITCS), 2020.

37 K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time algorithm for
approximating the minimum vertex cover size. In Proc. 23rd ACM-SIAM Sympos. Discrete
Algs. (SODA), pages 1123–1131, 2012. URL: http://dl.acm.org/citation.cfm?id=2095116.
2095204.

38 AA Razborov. On the distributional complexity of disjointness. Theoretical Computer Science,
106:385–390, 1992.

39 Aviad Rubinstein, Tselil Schramm, and S Matthew Weinberg. Computing exact minimum
cuts without knowing the graph. In Proc. 9th Innovations in Theoretical Computer Science
Conference (ITCS), 2018.

40 C. Seshadhri. A simpler sublinear algorithm for approximating the triangle count. CoRR,
abs/1505.01927, May 2015. arXiv:1505.01927.

41 Max Simchowitz, Ahmed El Alaoui, and Benjamin Recht. Tight query complexity lower
bounds for PCA via finite sample deformed wigner law. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA,
June 25-29, 2018, pages 1249–1259, 2018.

APPROX/RANDOM 2020

https://doi.org/10.1137/15M1054389
http://arxiv.org/abs/1707.04858
https://doi.org/10.1137/s0097539704447304
https://doi.org/10.1137/s0097539704447304
https://doi.org/10.1002/rsa.v32:4
https://doi.org/10.1137/100783066
http://dl.acm.org/citation.cfm?id=2095116.2095204
http://dl.acm.org/citation.cfm?id=2095116.2095204
http://arxiv.org/abs/1505.01927

26:18 Vector-Matrix-Vector Queries

42 Xiaoming Sun, David P Woodruff, Guang Yang, and Jialin Zhang. Querying a matrix through
matrix-vector products. In 46th International Colloquium on Automata, Languages, and
Programming (ICALP 2019), 2019.

43 Dan Wang and Zhu Han. Sublinear algorithms for big data applications. Springer, 2015.
44 J. Wang, E. Lo, and M. L. Yiu. Identifying the most connected vertices in hidden bipartite

graphs using group testing. IEEE Tran. Knowl. Data Eng., 25(10):2245–2256, 2013. doi:
10.1109/TKDE.2012.178.

45 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®
in Theoretical Computer Science, 10(1–2):1–157, 2014.

46 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science, pages 222–227. IEEE, 1977.

A Remaining Proofs

Proof of Theorem 6. We show that for each query, if M is a diagonal matrix, then the test
will always succeed; if not, then the test will fail with constant probability. Then by error
reduction, O(log(1

ε)) queries suffice to achieve error probability at most ε.
For each query, we choose u, v as the above algorithm describes. Therefore,

uTMv =
∑

i∈S,j∈[n]−S

uivjMij .

If M is diagonal, then uTMv = 0 always holds. If M is not diagonal, then we claim that
uTMv is non-zero with constant probability. In this case, there exists an off-diagonal element
Mk` 6= 0 with k 6= `. With probability at least 1

4 , k ∈ S and ` ∈ [n] \ S simultaneously.
Conditioning on this event, let ti =

∑
j∈[n]−S vjMij , and rewrite uTMv as

uTMv =
∑
i∈S

ui
∑

j∈[n]−S

vjMij =
∑
i∈S

uiti.

Since

tp =
∑

j∈[n]\S

vjMkj = v`Mk` +
∑

j∈[n]\S\{`}

vjMkj
∆= v`Mk` + T,

and Mk` 6= 0, v`Mk` has two different possible values. Moreover, at most one choice satisfies
v`Mk` + T = 0. So tk 6= 0 with probability at least 1

2 . Now under the condition that tk 6= 0,

uTMv =
∑
i∈S

uiti = uktk +
∑

i∈S\{k}

uiti
∆= uktk +R.

Since tk 6= 0, by the same argument, uTMv 6= 0 with probability at least 1
2 . Combining all

of these events, the test fails with probability at least 1
16 , which completes the proof. J

Proof of Theorem 11. We construct a random vector u ∈ Rn, where each entry ui is
independent and follows the standard Gaussian distribution. Let ei denote the n dimensional
vector with i th entry 1 and all other entries 0s, and let e =

∑n
i=1 ei be the all ones

n-dimensional vector. Also, let ci denote the i th column of matrix M . Since we have

uTMei = uT [c1 c2 · · · cn
]

ei = uTci =
n∑
j=1

ujcij ,

if we compute the sum of all entries of u, i.e., s =
∑n
i=1 ui, then when ci is an all ones

column, all cij = 1, so s = uTMei. Otherwise,

https://doi.org/10.1109/TKDE.2012.178
https://doi.org/10.1109/TKDE.2012.178

C. Rashtchian, D. P. Woodruff, and H. Zhu 26:19

s− uTMei =
∑

1≤j≤n,cij=0
uj .

The above quantity equals to 0 with probability 0, which means s 6= uTMei with probability
one. By querying uTMei for 1 ≤ i ≤ n, and comparing the result to s, we can detect
whether there is an all ones column with probability one using O(n) queries. J

Proof of Theorem 21. First, check whether M contains exact 2(n− 1) ones. If not, M is
obviously not a star. Now we assume that M contains exact 2(n− 1) ones, which means G
contains (n− 1) edges. Then equally divide the vertices into 2 groups of size n

2 randomly and
uniformly. We only need to check whether the sum of degrees in one group is n

2 , and another
3n
2 − 2. If this is true, the algorithm should report that G is a star. Otherwise, the algorithm
reports that G is not a star. We prove this algorithm has a constant error probability.

If G is a star, then the sum of degrees in one group is n
2 , and another 3n

2 − 2.
If G is not a star, we claim that there exists two vertices v1 and v2 with different degrees,

which satisfies |deg(v1)− deg(v2)| < n− 2.
Since G is not a star, then the degree of any vertex can be at most n− 2.

If there exists a vertex v1 with degree n− 2, then when n is large (e.g. n > 10), there
must exists another vertex v2 with degree 1. Therefore,

|deg(v1)− deg(v2)| = (n− 2)− 1 = n− 3 < n− 2.

If there does not exists a vertex with degree n− 2, then the degree of all vertices are in
{0, 1, 2, . . . , n− 3}. When n is large enough (e.g. n > 10), there must exist two vertices
v1 and v2 with different degrees, and

|deg(v1)− deg(v2)| ≤ (n− 3)− 0 = n− 3 < n− 2.

Now with probability at least 1
2 , v1 and v2 are in the different groups. Without loss of

generality, assume deg(v1) > deg(v2). Conditioned on this, we can decompose the random
partition procedure into 2 steps. First, we randomly and uniformly partition the other n− 2
vertices except v1 and v2 into 2 groups with size n

2 − 1. Assume in Group 1 the sum of
degrees in these vertices is s1 and in Group 2 the sum is s2. Without loss of generality,
assume s1 ≤ s2. The second step is to place v1 in Group 1, v2 in Group 2, or v2 in Group 2,
v1 in Group 1 both with probability 1

2 .
If we have that
s1 + deg(v1) = 3n

2 − 2, s2 + deg(v2) = n
2 ,

s1 + deg(v2) = n
2 , s2 + deg(v1) = 3n

2 − 2

hold simultaneously, then deg(v1)− deg(v2) = n− 2, a contradiction.
If
s1 + deg(v1) = n

2 , s2 + deg(v2) = 3n
2 − 2,

s1 + deg(v2) = n
2 , s2 + deg(v1) = 3n

2 − 2,

then deg(v1) = deg(v2), a contradiction.
Also, since s1 ≤ s2,deg(v1) > deg(v2) and 3n

2 −2 ≥ n
2 , it is impossible that s1 +deg(v2) =

3n
2 − 2 and s2 + deg(v1) = n

2 both holds.
So with probability at least 1

2 , the sums of the two groups will not be 3n
2 − 2 and n

2 .
Overall, with probability at least 1

4 , the sums of the two groups will not be 3n
2 − 2

and n
2 . J

APPROX/RANDOM 2020

26:20 Vector-Matrix-Vector Queries

A.1 Local Graph Queries and Estimating Subgraph Counts
The following four local graph queries can be implemented by O(logn) uTMv queries.

I Lemma 22. Given the adjacency matrix M ∈ {0, 1}n×n of a simple graph G = (V,E),
then the following four queries:

Degree query i: the degree of vertex i.
Neighbor query (i, j): the j th neighbor of vertex i.
Pair query (i, j): whether the edge (i, j) exists.
Edge-sample query: sample an edge e uniformly at random from E.

can be implemented by O(logn) uTMv queries.

As one application, we mention the problem of counting subgraphs. Given the adjacency
matrix M ∈ {0, 1}n×n of a simple graph G, we want to estimate the number of occurrences
of H in G, where H is a given subgraph (such as a triangle). Assadi et. al. [5] shows that
with

Õ

(
min

{
m,

mρ(H)

#H

})
of the above four standard graph queries, we can obtain a (1±ε)-approximation to the number
of occurrences of H in G with high probability. Here, #H is the number of occurrences of H
in G, m is the number of edges, and ρ(H) is the fractional edge-cover of H. Also, the Õ(·)
notation ignores ε and logn terms, as well as the size of graph H. By Lemma 22, the four
standard graph queries can be implemented by O(logn) uTMv queries. Therefore, we derive
the following result.

I Proposition 23. Given the adjacency matrix M ∈ {0, 1}n×n of a simple graph G and
an arbitrary small target graph H, Õ

(
min

{
m, m

ρ(H)

#H

})
uTMv queries suffice to obtain a

(1± ε)-approximation to the number of occurrences of H in G with high probability.

We briefly compare this to work on independent set queries [12, 11, 19]. Proposition 23
achieves a general result for uTMv queries, whereas estimating triangles or other subgraphs
with bipartite independent set queries is an open question. Moreover, estimating larger
subgraphs seems to require higher-order queries (e.g., tripartite independent set queries).
This suggests that, as expected, uTMv queries may be more powerful for a variety of problems.

	Introduction
	Related work and other queries
	Our Results

	Preliminaries
	Linear Algebra Problems
	Lower Bounds for Approximating Matrix Norms
	Rank Testing
	Trace Estimation
	Deciding if a Matrix is Diagonal
	Deciding if a Matrix is Symmetric
	Deciding if a Matrix is Unitary
	Randomized Queries
	Deterministic Queries

	Statistics Problems
	All Ones Column
	Identical Columns
	Majority
	Permutation Matrix
	Doubly Stochastic Matrix
	Matrix with Negative Entries

	Graph Problems
	Triangle Detection
	Deciding if a Graph is a Star

	Conclusion
	Remaining Proofs
	Local Graph Queries and Estimating Subgraph Counts

