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Abstract
We generalize the expander Chernoff bound to high-dimensional expanders. The expander Chernoff
bound is an essential property of expanders, first proved by Gillman [9]. Given a graph G and a
function f on the vertices, it states that the probability of f ’s mean sampled via a random walk on
G to deviate from its actual mean, has a bound that depends on the spectral gap of the walk and
decreases exponentially as the walk’s length increases.

We are interested in obtaining an analog Chernoff bound for high order walks on high-dimensional
expanders. A naive generalization of the expander Chernoff bound from expander graphs to high-
dimensional expanders gives a very poor bound due to obstructions that occur in high-dimensional
expanders and are not present in (one-dimensional) expander graphs. Because of these obstructions,
the spectral gap of high-order random walks is inherently small.

A natural question that arises is how to get a meaningful Chernoff bound for high-dimensional
expanders. In this paper, we manage to get a strong Chernoff bound for high-dimensional expanders
by looking beyond the spectral gap.

First, we prove an expander Chernoff bound that depends on a notion that we call the “shrinkage
of a function” instead of the spectral gap. In one-dimensional expanders, the shrinkage of any
function with zero-mean is bounded by λ(M). Therefore, the spectral gap is just the one-dimensional
manifestation of the shrinkage.

Next, we show that in good high-dimensional expanders, the shrinkage of functions that “do not
come from below” is good. A function does not come from below if from any local point of view
(called “link”) its mean is zero.

Finally, we prove a high-dimensional Chernoff bound that captures the expansion of the complex.
When the function on the faces has a small variance and does not “come from below”, our bound is
better than the naive high-dimensional expander Chernoff bound.
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1 Introduction

Expander graphs have been studied extensively for several decades. Essentially, these are
graphs that are sparse yet highly connected. They have countless applications in computer
science, mathematics and physics (see e.g. the surveys of [13] and [19]).

Since expanders are such a marvelous tool, it is believed that their generalization to
higher dimensions is promising. Expanders consist of edges, which are sets of two vertices.
In contrast, high-dimensional (abbreviated as HD) expanders consist of faces, which are sets
of any amount of vertices, like edges, triangles, pyramids, and more. Since HD expanders
expand at all dimensions, they are much stronger objects than expander graphs, which only
expand at one dimension.
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25:2 Chernoff Bound for High-Dimensional Expanders

Recently, HD expanders have attracted a lot of attention. A notable example is the paper
of [1] which solves a major open problem on counting the bases of matroids. The algorithms
and proofs in their paper build on recent results about random walks on HD expanders
(e.g. [16] and [15]).

In this paper, we study further aspects of random walks on HD expanders. In particular,
we generalize the expander Chernoff bound to HD expanders. Generally speaking, this bound
states that a random walk on an expander acts “as expected”.

Let us present the (one-dimensional) expander Chernoff bound in a more precise way.
There are many forms for this bound (see e.g. [10, 14, 18, 21, 12, 20, 5]), the form we present
appears in [10] and is considered standard.

Let G be an undirected connected graph on vertices V := {1, . . . , n} with positive weights
on its edges. The graph is equivalent to a connected random walk with transition matrix M .
Let π be the stationary distribution of M and let {wi}ti=1 be a random walk according to M
with initial distribution π. Let f : V → [0, 1] be a function on the vertices.

The general form of the graph generalization of Chernoff bound is as follows: for all
0 ≤ ε ≤ 1,

P
[∣∣1
t

t∑
i=1

f(wi)− Eπ[f ]
∣∣ ≥ ε] ≤ 4 · exp

(
−Ω(ε2st)

)
. (1)

Note that for a better bound, we want s to be bigger.
The expander Chernoff bound states that inequality (1) holds for s = 1− λ2(M), where

λ2(M) is the second largest eigenvalue of M . This bound works best for graphs with λ2 as
close to 0 as possible. By Definition 7, these are exactly (one-sided) expander graphs.

As thoroughly explained in [21], this bound is a very useful tool in theoretical computer
science. It has applications in a variety of areas like construction of efficient error-correcting
codes, hardness of approximation, deterministic amplification, security amplification in
cryptography, extractor construction, and more.

Since high-dimensional expanders are very promising, and the Chernoff bound for expander
graphs is fundamental and extremely useful, we see great potential in further generalizing it
to higher dimensions.

Such a generalization should provide a Chernoff bound for random walks on high-di-
mensional faces, that is similar to the bound we have for walks on vertices. Since high-
dimensional expanders are better than one-dimensional, one could expect to obtain a
generalization simply by applying the existing expander Chernoff bound to high-order walks.

However, this method results in a surprisingly poor bound, due to natural obstructions that
occur even in the best high-dimensional expanders, and do not happen for one-dimensional
expanders. Because of these obstructions, the spectral gap 1− λ(M) of high-order random
walks is inherently small.

In this paper, we manage to overcome this problem by looking beyond the spectral gap.
First, we prove an expander Chernoff bound that depends on the “shrinkage of the function”
f (see Definition 3) instead of the spectral gap. In one-dimensional expanders, the shrinkage
of any function with zero-mean is bounded by λ(M). Therefore, the spectral gap is just the
one-dimensional manifestation of the shrinkage.

Next, we show that in good high-dimensional expanders, the shrinkage of functions that
“do not come from below” (see Definition 1) is good. A function does not come from below
if its mean is zero from any local point of view (called “link”, see Definition 11). This
criterion naturally generalizes zero-mean functions since there is only one local point of view
on vertices and it includes all of them.
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Thus, we obtain a high-dimensional expander Chernoff bound that works well for functions
that have a small variance and do not come from below.

1.1 Background
Let us provide a simplified version of the definitions we need in order to present our results.
The detailed definitions are deferred to Section 2.

Given a weighted undirected connected graph G, its normalized second largest eigenvalue
in absolute value is denoted λ(G). We say that G is a (two-sided) λ-spectral expander if
λ(G) < λ.

We study a generalization of the above definition to higher dimensions, based on simplicial
complexes. A pure d-dimensional simplicial complex X consists of sets of size d+ 1 and all of
their subsets. These sets are called faces, and X(i) denotes the set of faces of size i+ 1. Our
complexes are equipped with a probability distribution πd over the d-faces, which induces
probability distributions πk over k-faces. In addition, each πk induces an inner-product on
the subspace of k-cochains (functions from X(k) to R) denoted Ck(X).

There are several different ways to define high-dimensional expanders. We use a notion
called (two-sided) local-spectral expander, defined in [7], since it is the generalization of
spectral-expanders to higher dimensions. Given a face τ ∈ X(i), the link of τ , denoted Xτ ,
is its local point of view. Formally, it is a simplicial complex obtained by taking the faces of
X that contain τ and removing τ from them. A pure complex is a γ-local-spectral expander
if for any link, the underlying graph is a γ-spectral expander (see Definition 13).

The high-order random walk we study is called the lazy upper random walk on k-faces,
defined in [15] and denoted M+

k . This walk naturally generalizes the standard lazy walk on
graphs. It can move between two k-faces if they are both contained in the same (k + 1)-face.

Given a function f : X(k)→ R and a face τ ∈ X(j), the localization of f on Xτ is the
function fτ : Xτ (k − j − 1)→ R defined by fτ (σ) = f(τ ∪ σ).

I Definition 1. We say that a function f : X(k)→ R is from level j + 1 if its expectation
on the links of j-faces is zero. Formally, f is from level j + 1 if Eπτ [fτ ] = 0 for all τ ∈ X(j).

Informally, we say that f does not come from below if it is from a high level (e.g. from
level k). Our high-dimensional Chernoff bound works best for functions f that do not come
from below and have a small variance.

1.2 Our Contribution: Approach and Considerations
A bound for high-order random walks. Observe that the graph Chernoff bound is actually
a bound for random walks on graphs. Hence, what we are looking for is a bound for random
walks on high-dimensional expanders. Specifically, we study the lazy upper random walk,
since it is highly related to the structure of the HD expander (see Definition 17).

Capturing the expansion. Given a HD γ-local-spectral expander X (see Definition 13),
we want a bound that captures the expansion of X. We can apply the graph Chernoff
bound (1) to the random walk M+

k and get a bound where s = 1−λ(M+
k ) (see Definitions 7).

Unfortunately, this value of s is bounded away from 1 (in fact, it behaves like 1/k, so it
approaches 0 as k increases) and hence does not capture the expansion of X well.

According to [17], λ(M+
k ) is large due to natural obstructions that occur in HD expanders

and not in one-dimensional expander graphs. To bypass the obstructions, our Chernoff bound
takes into account the entire spectrum of M+

k .

APPROX/RANDOM 2020



25:4 Chernoff Bound for High-Dimensional Expanders

Generalizing a one-dimensional Chernoff bound. We prove our high-dimensional Chernoff
bound by generalizing a one-dimensional Chernoff bound. Given an expander graph G and
a function f on the vertices (as in (1)), our key idea is to only look at eigenvalues λi that
correspond to eigenvectors that are part of the orthogonal decomposition of f into eigenspaces.
We prove a Chernoff bound that depends on the shrinkage of f , denoted λ(f) = maxi|λi|
(see Definition 3), instead of λ(G). When f is “good” (not an obstruction), λ(f) is a small
eigenvalue of G. By applying our one-dimensional Chernoff bound to M+

k , we obtain a
high-dimensional Chernoff bound that can see beyond λ(M+

k ) and therefore capture the
expansion of X well.

A bound for functions that do not come from below. The standard one-dimensional
expander Chernoff bound depends on λ(G), which is the largest eigenvalue in absolute
value except for 1. Namely, the bound only considers eigenspaces orthogonal to span{1}.
Equivalently, it considers eigenspaces of zero-mean functions. These are exactly functions
that their expectation on the links of (−1)-faces is zero (since the only (−1)-face is the empty
face and its link is the entire set of vertices), which we call functions from level 0. Therefore,
the existing bound is in fact an expander Chernoff bound for functions from level 0. Similarly,
our HD expander Chernoff bound applies to functions from level j.

Moreover, as we will prove in Corollary 37, given a good enough γ-local-spectral expander,
a function is from level j + 1 if and only if its orthogonal decomposition into eigenspaces of
M+
k only includes eigenvectors matching eigenvalues smaller than k−j

k+2 + oγ(1). Namely, a
function does not come from below if and only if its shrinkage is small. Hence, considering
functions that do not come from below is highly natural.

Irregularity matters. Some expander Chernoff bounds apply only to regular graphs (see
e.g. [12, 8]). In the case of HD expanders, even when the weights of the largest faces are
uniform, the weights of other k-dimensional faces are usually not uniform, and hence M+

k is
usually irregular. Therefore, it is important that our bound applies to irregular graphs too.

1.3 Results and Technique
Our main result is a Chernoff bound for HD expanders. When the function on the k-faces
has a small variance and does not “come from below”, our bound captures the expansion of
the complex well. Namely, we present a Chernoff bound for M+

k in the form of (1), where s
approaches 1 as k increases, as opposed to the naive bound where s approaches 0.

I Theorem 2 (Main theorem, HD expander Chernoff bound, informal, for formal see Theorem 48).
Let X be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and assume that γ is small
enough. Let π = πk be the probability distribution over X(k) and denote π∗ := min πi. Let
w1, . . . , wt be a random walk according to M+

k with initial distribution π. Let f : X(k)→ R
such that f is from level j + 1 for some −1 ≤ j < k, and assume ‖f‖∞ = 1. Then the
following hold:
1. If Varπ(f) ≤ π∗ε

2c for a constant c ∈ R then inequality (1) holds for s =
(

1− k − j
k + 2 +

oγ(1)
)2

. In particular, for j = k − 1, inequality (1) holds for s =
(

1− 1
k + 2 + oγ(1)

)2
.

2. If Varπ(f) ≤ π∗ε2c such that 4c ≤
( k + 2
k − j + oγ(1)

)2
, then inequality (1) holds for s = 1.

In particular, for j = k − 1, if c ≤ (k + 2)2

4 + oγ(1) then inequality (1) holds for s = 1.

Note that oγ(1) refers to a value that approaches 0 as γ goes to 0.
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Extensions of the theorem. In the detailed version of this theorem, stated in Theorem 48,
we also provide a bound for larger Varπ(f). Additionally, in Remark 49 we provide a bound
for cases where f does come from below, but its mass on the lower eigenspaces is small.1

Comparison with the naive bound. One could try to achieve a similar bound by applying
to M+

k a standard expander Chernoff bound like [10]. However, this standard bound depends
on the spectral gap, which is low even in the best HD expanders. This method would give
s ≈ 1/(k + 2), which approaches 0 as k increases. We successfully overcome this problem
by considering the shrinkage of f in functions that do not come from below, instead of the
spectral gap. Indeed, we achieve a value of s that is either 1 or it approaches 1 as k grows.

Proof overview. To prove this theorem, we first define the shrinkage of a vector by an
operator (Definition 3). The shrinkage is key to overcoming the obstructions which make
λ(M+

k ) large. We then prove a (one-dimensional) expander Chernoff bound that depends on
the shrinkage of the function on the vertices, instead of on the graph’s expansion (Theorem 4).
Next, we apply to M+

k our expander Chernoff bound for shrinking functions. Finally, we
bound the shrinkage of k-cochains (Proposition 5) to prove the HD expander Chernoff bound.

1.3.1 Defining the Shrinkage of a Vector
Let W be a finite-dimensional vector-space with inner-product 〈· , ·〉. Let M : W →W be a
self-adjoint operator. By the spectral theorem, W =

⊕
iEλi where Eλi is the eigenspace of

M associated with the eigenvalue λi ∈ R. Moreover, there exists an orthonormal basis of W
that consists of eigenvectors of M .

I Definition 3. Let w ∈ W . The shrinkage of w is λM (w) := maxi{|λi| | w 6⊥ Eλi}. Equi-
valently, λM (w) is the largest eigenvalue of M (in absolute value) that matches an eigenvector
that spans w. Formally, let B be any orthonormal basis of W consisting of eigenvectors φi
corresponding to eigenvalues λi respectively. Then λM (w) := maxi{|λi| | w 6⊥ φi}. For ease
of notation, when M is clear from context, we simply write λ(w).

1.3.2 Expander Chernoff Bound for Shrinking Functions
We prove an expander Chernoff bound that depends on the shrinkage of the function on the
vertices, λ(f), instead of on the graph’s expansion, λ(G). As far as we are aware, this is the
first bound of this kind. The bound is a generalization of a similar bound from [8].

I Theorem 4 (Expander Chernoff bound that depends on λ(f) instead of λ(G), informal, for
formal see Theorem 29). In the setting of inequality (1), assume the function f : V → R
satisfies Eπ[f ] = 0 and ‖f‖∞ = 1, and denote π∗ := min πi. Then the following hold:
1. If Varπ(f) ≤ π∗ε2c for some constant c ∈ R then inequality (1) holds for s = (1− λ(f))2.

2. Moreover, if Varπ(f) ≤ π∗ε2c such that c ≤ 1
4λ(f)2 then inequality (1) holds for s = 1.

In the detailed version of this theorem, stated in Theorem 29, we also provide a bound for
when Varπ(f) is larger.

1 Namely, denote Pk,j := P(Im dj↗k)⊥ the orthogonal projection on the upper subspaces and ` := ‖f −
Pk,jf‖π. Then the bound above holds if ` < ε

√
π∗/2 and Varπ(f) ≤ (ε√π∗ − 2`)2c.

APPROX/RANDOM 2020



25:6 Chernoff Bound for High-Dimensional Expanders

The proof is by showing a generic reduction from the problem of concentration for
random walks to the well-studied problem of concentration for martingales (see e.g. [4]). This
reduction is a generalization of [8, Theorem 1.6] and it may be of independent interest. As
in [8], we then use Azuma’s inequality to finish the proof.

1.3.3 Bounding the Shrinkage of k-cochains
The following proposition shows that functions that do not “come from below” shrink well,
thereby relating the structure of a complex and its spectral properties.

I Proposition 5 (Shrinkage of k-cochains, informal, for formal see Proposition 41). Let X be
a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and assume γ is small enough. Let
f : X(k)→ R such that f is from level j + 1 for some −1 ≤ j < k. Then

λM+
k

(f) ≤ k − j
k + 2 + oγ(1).

We prove the proposition by showing that the spectral decomposition (see Definition 24)
and the combinatorial decomposition (see Definition 23) of Ck(X), both originally defined
in [17], are identical (see Theorem 36).

Furthermore, we calculate the number of functions that do not come from below and
hence shrink well (see Corollary 45), to show that they are very common.

1.4 Related Work and Comparison
First of all, let us compare our expander Chernoff bound, stated in Theorem 29, to other
related results. Compared to the bound from [8, Theorem 1.6], our bound improves and
generalizes their proof in a few ways. First, our proof applies to any stationary distribution,
not necessarily a uniform one. Secondly, our bound depends on λ(f) (see Definition 3) instead
of λ(G). Thirdly, we provide a better bound for the case where Varπ(f) is small enough.
Lastly, we maintain the dependence of the bound on Varπ(f)/π∗ instead of bounding it by n.
Note that the proof of [8] applies to vector-valued functions f : V → RN , but we only prove
the case of N = 1 for simplicity.

Compared to other similar bounds, the first advantage of our bound is that it depends
on λ(f) instead of λ(G). Secondly, our proof has the advantage of being elementary
and not use perturbation theory. Lastly, our bound includes a special case concerning
Varπ(f) ≤ π∗ε2/4λ(f)2, in which the bound does not depend on the spectral gap at all and
therefore it is better than any other bound that we know of.

Since our bound depends on ln(4 Varπ(f)/ε2π∗), it is a better fit for cases where Varπ(f)
is small enough compared to ε (or, equivalently, ε is large enough), and where the stationary
distribution is close to being uniform.

For example, compared to [10] (see (1)), the main advantage of our bound is that it
depends on (1− λ(f))2, which can sometimes be much larger than 1− λ2(G). Moreover, our
proof is elementary whereas their proof is based on perturbation theory. However, their bound
does not depend on Varπ(f) at all, so it is better when Varπ(f)/π∗ is large compared to ε.

Compared to [18, Theorem 1.1], both bounds are influenced by the variance of f , but our
bound depends on ln(4 Varπ(f)/ε2π∗) whereas their bound depends on ‖f‖2

2. So for most
values of ‖f‖2, π∗ and ε, e.g. when ‖f‖2 > 8, π∗ = 1/|V | and ε > 0.01, our bound is better.
Other than that, as with [10], their bound has 1− λ2(G) while our bound has (1− λ(f))2,
and their proof is based on the non-elementary perturbation theory while our method has
the advantage of being elementary.
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Compared to [18, Section 4], their bound depends on ‖f‖2
2, whereas our bound depends

on ln(4 Varπ(f)/ε2π∗), which is mostly better when ε is not too small. Moreover, their bound
is only applicable for ε ≤ ‖f‖2

2. Lastly, as before, their bound depends on 1− λ(G), and our
bound depends on (1− λ(f))2 which can be significantly smaller.

Secondly, let us compare our Chernoff bound for high-dimensional expanders, stated in
Theorem 48, to related results. As far as we know, there are no existing high-dimensional
Chernoff bounds. However, we can still compare our bound to the bounds we get by applying
the existing (one-dimensional) graph Chernoff bounds to M+

k . This comparison is covered
in depth by the above paragraphs. In short, if f has a small enough variance and does not
“come from below”, our bound is better since it depends on λ(f) instead of λ(M+

k ) or λ2(M+
k ).

Note that since all of the eigenvalues of M+
k are non-negative, λ(f) ≤ λ(M+

k ) = λ2(M+
k ).

Finally, our work in Section 5 improves some results from [17]. Corollary 39 improves [17,
Theorem 5.9] (stated here as Proposition 19). It shows that the set containing the spectrum
of M+

k is even smaller than what was known before. As a consequence, corollary 40, which
gives an upper bound on ‖(M+

k )iφ‖, improves [17, Corollary 5.11].

1.5 Organization

This paper is organized as follows. Section 2 provides the relevant background in detail.
In Section 3 we study the shrinkage of a vector denoted λ(w). In Section 4 we provide a
Chernoff bound for expander graphs which depends on the shrinkage of the function on
the vertices. In Section 5 we study the shrinkage of vectors by high-order random walks
and also improve some existing results. In Section 6 we prove our main result regarding
Chernoff bound for high-dimensional expanders. In Appendix A we prove the the bound
from Section 4. Due to space restrictions, some of the proofs are omitted and can be found
in the full version of the paper.

2 Preliminaries

In this section, we present the relevant background about expander graphs, high-dimensional
expanders, random walks, and decompositions of the subspace of k-cochains. We provide
more details in the full version of this paper.

2.1 Expander Graphs and Random Walks

In this subsection, we define walk operators and the inner product-space they act on. Then,
we define λ-spectral expander graphs.

In this paper, we will consider only finite state-spaces and only time-homogeneous Markov
chains. A random walk M is a finite reversible Markov chain. A sequence of random variables
according to M is also called random walk. Throughout this paper, for ease of presentation
and connection with graphs, we say that a random walk is connected instead of irreducible. By
the book of [11], a connected random walk has a positive and unique stationary distribution.

I Definition 6 (Walk operator, l2(π)). Let M be a connected random walk over state-
space V and let π be its stationary distribution. We denote by l2(π) the vector-space of
functions f : V → R with inner product 〈f, g〉π =

∑
i∈V π(i)f(i)g(i). It is indeed an

inner product since π is positive. The walk operator M : l2(π) → l2(π) is defined by
(Mf)(i) :=

∑
j∈V M(i, j)f(j).

APPROX/RANDOM 2020



25:8 Chernoff Bound for High-Dimensional Expanders

It is easy to see that a connected random walk operator M is self-adjoint. Therefore, by
the spectral theorem, there is an orthonormal basis of l2(π) consisting of eigenvectors of M ,
and each eigenvalue of M is real. We are now ready to define expanders:

I Definition 7 (λ-spectral expander graph). Let G be an undirected connected graph with
n vertices and let λ1 ≥ · · · ≥ λn be its (real) eigenvalues. G is a λ-spectral expander if
λ(G) ≤ λ where λ(G) := max{|λ2|, |λn|}. Alternatively, G is a one-sided λ-spectral expander
if λ2 ≤ λ.

A small value of λ means that the graph is a better expander. λ also controls how well M
shrinks functions, since ‖Mf‖π ≤ λ‖f‖π for any f such that Eπ[f ] = 0 (again by the spectral
theorem). Therefore good expanders shrink functions well. The following proposition is
well-known:

I Proposition 8. Let G be an undirected connected graph. G is non-bipartite if and only if
λ(G) < 1.

2.2 High-Dimensional Expanders
High-dimensional expanders are a special type of abstract simplicial complexes. They are
similar to graphs, but they consist of faces instead of just edges. Faces can be edges, but
they can also be vertices, triangles, pyramids, etc. Let us provide the formal definitions.

A face τ is a set of vertices. The dimension of τ is defined by dim(τ) := |τ | − 1. Let X
be a set of faces. X is an abstract simplicial complex if for every face τ ∈ X, if σ ⊂ τ then
σ ∈ X. We denote by X(k) the set of faces of dimension k ≥ −1. The dimension of X is
max{dim(τ) | τ ∈ X}.

I Definition 9 (Pure simplicial complex). Let X be a d-dimensional abstract simplicial
complex. X is called pure if for every σ ∈ X, there is a d-dimensional face τ such that
σ ⊂ τ .

As a generalization of weighted graphs, we have weighted simplicial complexes. The weight
of smaller faces is induced by the weight of larger faces to comply with the high-dimensional
structure.

I Definition 10 (Weighted simplicial complex). Let X be a pure d-dimensional simplicial
complex. Let πd be a positive probability distribution over its d-dimensional faces. For each
−1 ≤ k ≤ d, the induced probability distribution over the k-faces is denoted πk, where πk(σ)
is the probability to choose a d-face τ according to πd and then get σ when uniformly choosing
a k-face contained by τ . A pure simplicial complex equipped with a distribution is called a
weighted simplicial complex.

There are a few related but not equivalent definitions of HD expanders. Each one of
them generalizes a different aspect of expander graphs. We stick to the definition that is
related to random walks, called local-spectral expander. Basically, it says that from any local
point of view (or link), the complex should be expanding.

I Definition 11 (Link). Let X be a pure d-dimensional simplicial complex. Let τ ∈ X(k) be
a k-dimensional face. The link of τ , denoted Xτ , is a pure (d− k− 1)-dimensional simplicial
complex obtained by taking every face that contains τ and removing τ ’s vertices from it.
Formally speaking, Xτ := {σ \ τ | τ ⊆ σ ∈ X}.

If X is weighted, we give each top face in Xτ a probability proportional to its probability
in X, normalized so that the sum of the probabilities is 1. The probability is well-defined
since every face in Xτ is also a face in X.
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I Definition 12 (Skeleton). Let X be an abstract simplicial complex. The skeleton of X,
also called the underlying graph, is an undirected graph with X(0) as its vertices and X(1)
as its edges. If X is weighted, the skeleton inherits its weights.

I Definition 13 (High-dimensional expander). Let X be a pure complex. If the skeleton of
every one of its links is a γ-spectral expander then X is a γ-local-spectral expander.

I Definition 14 (Degree). Let X be an abstract simplicial complex and let v ∈ X(0) be a
vertex in X. The degree of v is the number of faces that contain it, namely, |Xv|. The
degree of X is maxv∈X(0)|Xv|.

As with expander graphs, we are interested in infinite families of d-dimensional bounded
degree γ-local-spectral expanders. Explicit constructions of such families exist, see [7,
Lemma 1.5] for example. Moreover, we know that explicit constructions with a D-flat top
distribution exist:

I Definition 15 (D-flat). Let π be a probability distribution over V and let D ∈ N. We say
that π is D-flat if there exists some R ∈ R such that πv ∈ { 1

R ,
2
R , . . . ,

D
R } for all v ∈ V .

I Proposition 16 ([6, Claim 6.2]). For every γ > 0 and d ∈ N there exists an explicit infinite
family of bounded degree d-dimensional complexes which are γ-local-spectral expanders. They
have top distribution πd that is D-flat, for D ≤ (1/γ)O(d2/γ2).

2.2.1 Random Walks on High-Dimensional Expanders
One can define many different random walks on a given HD expander. We are specifically
interested in a walk that captures the expanding structure of the complex. Such walks were
defined for the first time by [15].

I Definition 17 (Lazy upper random walk). Let X be a weighted pure d-dimensional simplicial
complex. Let 0 ≤ k < d. Define M+

k to be the lazy upper random walk on the k-dimensional
faces: For each σ, τ ∈ X(k), M+

k (σ, τ) is the probability to choose a (k + 1)-face η ⊃
σ according to πk+1 and then get τ when uniformly choosing a k-face contained by η.
Equivalently, M+

k : X(k)×X(k)→ R is:

M+
k (σ, τ) :=



1
k + 2 σ = τ

πk+1(σ ∪ τ)
(k + 2)πk(σ) σ ∪ τ ∈ X(k + 1)

0 otherwise

This walk is called lazy since M(σ, σ) > 0 so it considers standing-still a possible move.

Let us provide the following definition from [17, Theorem 5.6]:

I Definition 18. Let X be a weighted pure d-dimensional γ-local-spectral expander. Define
ε0 = γ and εk = 2k(1 + 2k

√
k)εk−1 + (k + 1)γ for all 0 < k < d. We say that γ is small

enough with respect to d if εk−1 ≤ 1
2(1+2k

√
k) for all 0 < k < d, and εd−1 <

1
2
√
d
.

Note that limγ→0 εk = 0. Therefore, we can construct a γ-local-spectral expander with a
small enough γ by using the explicit construction from Proposition 16 with a sufficiently
small γ.

The following proposition shows that even though the second largest eigenvalue of M+
k

goes to 1 as k increases, we can go beyond that eigenvalue to achieve much better results.
For example, when γ is small enough, the smallest eigenvalue of M+

k goes to 0 as k increases.
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I Proposition 19 ([17, Theorem 5.9]). Let X be a weighted d-dimensional γ-local-spectral
expander. If γ is small enough with respect to d then for every 0 ≤ k < d:

Spec(M+
k ) ⊆ {1} ∪

k⋃
j=0

[
k + 1− j
k + 2 −

√
k + 1
k + 2 εk,

k + 1− j
k + 2 +

√
k + 1
k + 2 εk

]
where Spec(M+

k ) is the set of eigenvalues of M+
k .

2.2.2 Decompositions of the Subspace of k-Cochains
Let X be an d-dimensional γ-local-spectral expander. For all −1 ≤ k ≤ d, define Ck(X) to
be the subspace of k-cochains, i.e., functions φ : X(k)→ R. Let π = πk be the probability
distribution over X(k). Let the inner-product of Ck(X) be 〈φ, ψ〉 :=

∑
i∈X(k) π(i)φ(i)ψ(i)

and let ‖·‖ be the induced norm. Note that as a walk operator, M+
k : Ck(X)→ Ck(X).

For all −1 ≤ k ≤ d, define Ck0 (X) := {φ ∈ Ck(X) | φ ⊥ 1} where 1 is the constant 1
function. For all −1 ≤ j ≤ k ≤ d, the operator dj↗k : Cj(X)→ Ck(X) is defined by:

dj↗kφ(σ) :=
∑

τ∈X(j)
τ⊆σ

φ(τ)

for all φ ∈ Cj(X) and σ ∈ Ck(X). Note that dk↗k is the identity function. In addition, for
k < d, we denote dk := dk↗k+1.

I Lemma 20 ([17, Section 5.3]). Let 0 ≤ j ≤ k. Then dj−1↗k(Cj−1
0 (X)) ⊆ dj↗k(Cj0(X)).

This operator is highly related to the lazy upper random walk:

I Lemma 21 ([17, Corollary 3.7]). d∗kdk = (k + 2)M+
k for all −1 ≤ k < d.

In addition, dj↗k and dj are related in the following way:

I Lemma 22 ([17, Proposition 5.5]). dj↗k = 1
(k−j)!dk−1 . . . dj for all −1 ≤ j < k ≤ d.

The following definition implies a combinatorial orthogonal decomposition of Ck(X).

I Definition 23. For all 0 ≤ j ≤ k ≤ d, let U jk be a subspaces of Ck0 that contains k-cochains
that come from j-cochains but not from (j − 1)-cochains. Formally,

U jk := dj↗k(Cj0(X)) ∩ (dj−1↗k(Cj−1
0 (X)))⊥

By [17, Section 5.3], the following is an orthogonal decomposition:

Ck(X) = span{1} ⊕ Ukk ⊕ Uk−1
k ⊕ · · · ⊕ U0

k .

This decomposition is combinatorial in the sense that each subspace U jk is related to the
structure of X. Let us provide the definition of another orthogonal decomposition of Ck(X),
which is a spectral decomposition, relying on Proposition 19.

I Definition 24. For all 0 ≤ j ≤ k < d, we define the neighborhoods of M+
k to be:

W j
k := span

{
φ
∣∣∣M+

k φ = µφ, µ ∈
[
k + 1− j
k + 2 −

√
k + 1
k + 2 εk,

k + 1− j
k + 2 +

√
k + 1
k + 2 εk

]}
If γ is small enough then these subspaces intersect trivially and hence:

Ck(X) = span{1} ⊕W k
k ⊕W k−1

k ⊕ · · · ⊕W 0
k .
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3 The Shrinkage of a Vector

Let W be a finite-dimensional vector-space with inner-product 〈· , ·〉 and induced norm ‖·‖.
Given u,w ∈W , we say that u is perpendicular to w and denote by u ⊥ w, if 〈u,w〉 = 0.

Similarly, u 6⊥ w if 〈u,w〉 6= 0. Moreover, given a subspace U , we denote w ⊥ U if w ⊥ u for
all u ∈ U . We denote w 6⊥ U if there exists a vector u ∈ U such that w 6⊥ u.

Let M : W →W be a self-adjoint operator. By the spectral theorem, there exists an
orthonormal basis of W that consists of eigenvectors of M .

I Lemma 25. Let w ∈W and k ≥ 0. Then λ(Mkw) = λ(w).

Proof. Let k ≥ 0. By the definition of λ(w) it is enough to show that w ⊥ φ ⇐⇒
(Mkw) ⊥ φ where φ is an eigenvector of M with eigenvalue λ 6= 0. This is true because
〈Mkw, φ〉 = 〈w,Mkφ〉 = 〈w, λkφ〉 = λk〈w, φ〉 since Mk is self-adjoint. J

The following lemmas explains why the shrinkage of a vector is called this way. They
show that λ(w) is an upper bound for how much M shrinks w.

I Lemma 26. Let w ∈W . Then ‖Mw‖ ≤ λ(w)‖w‖.

I Lemma 27. Let w ∈W and k ≥ 0. Then ‖Mkw‖ ≤ λ(w)k‖w‖.

Proof. The proof is by induction on k together with Lemma 25 and Lemma 26. J

I Lemma 28. Let w ∈ W and let B = {φi} be an orthogonal basis of eigenvectors of M
matching eigenvalues λi respectively. Let C ⊆ B such that w ∈ span(C). Then λ(w) ≤
maxφi∈C |λi|.

Proof. By definition λ(w) = |λj | for some index j such that w 6⊥ φj . This implies that
φj ∈ C since w ∈ span(C). Therefore λ(w) = |λj | ≤ maxφi∈C |λi|. J

4 Expander Chernoff Bound for Shrinking Functions

In the following section, we show an expander Chernoff bound that depends on the shrinkage
of the function on the vertices λ(f), instead of the graph’s expansion. It allows us to see
beyond the spectral gap and instead consider the entire spectrum of the expander. As far as
we are concerned, it is the only bound of this kind. The proof is deferred to the Appendix.

I Theorem 29 (Expander Chernoff bound that depends on λ(f) instead of λ(M)). Let
M : l2(π)→ l2(π) be a connected non-bipartite random walk operator over state-space V =
{1, . . . , n} with a stationary distribution π. Let w1, . . . , wt be a random walk according to M
with initial distribution π and denote π∗ := mini πi. Let f ∈ l2(π) be a function satisfying
Eπ[f ] = 0. Then for every ε > 0:

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤ ε2π∗

4λ(f)2

2 exp
(
− tε2

32‖f‖2
∞L2

)
otherwise

where L :=
⌈

ln(4 Varπ(f)/ε2π∗)
1− λ(f)

⌉
.
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25:12 Chernoff Bound for High-Dimensional Expanders

I Remark 30. We can prove a more general version of Theorem 29, appropriate for functions
that have a small mass on eigenspaces associated with a large eigenvalue. The proof is the
same, except we use the generalized version of Proposition 52 which appears in Remark 62.
Define P as the orthogonal projection on eigenspaces associated with small eigenvalues, and
denote ` := ‖f − Pf‖π. If ` < ε

√
π∗/2, then we get the following expander Chernoff bound.

For all ε > 0:

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤

(ε√π∗ − 2`
2λ(Pf)

)2

2 exp
(
− tε2

32‖f‖2
∞L2

)
otherwise

where L :=
⌈

ln(4 Varπ(f)/(ε√π∗ − 2`)2)
1− λ(Pf)

⌉
.

5 Shrinking Functions Do Not Come From Below

In this section, we discuss which functions M+
k shrinks well. We prove that these are exactly

functions that do not come from below. In addition, we find what it means to “come from
below” and how rare it is, by studying the two decompositions of Ck0 (X) and the spectrum
of M+

k .
First, we provide an equivalent definition for functions from level j + 1 (and for functions

that do not come from below). The following lemmas relate functions that do not come from
below to the subspace (Im dj↗k)⊥.

I Lemma 31. Let X be a d-dimensional γ-local-spectral expander. Let −1 ≤ j ≤ k ≤ d and
f ∈ Ck(X). Then d∗j↗kf(τ) = Eπτ [fτ ] for all τ ∈ X(j).

Proof. We prove by induction on j. For j = k, we have that d∗k↗kf(τ) = f(τ). On the other
hand, Xτ = ∅ and πτ (∅) = 1. Therefore, Eπτ [fτ ] = fτ (∅) = f(τ ∪∅) = f(τ) = d∗k↗kf(τ)
as needed. Next, we assume that the lemma holds for all j < m ≤ k and prove for j. Note
that

Eπτ [fτ ] =
∑

σ∈Xτ (k−j−1)

πτ (σ)fτ (σ) =
∑

ν∈X(k),τ⊆ν

π(ν)
π(τ)f(ν)

And by the induction assumption,

d∗j↗kf(τ) = 1
k − j

· d∗jd∗j+1↗kf(τ) = 1
k − j

·
∑

η∈X(j+1),τ⊆η

π(η)
π(τ)d

∗
j+1↗kf(η)

= 1
k − j

·
∑

η∈X(j+1),τ⊆η

π(η)
π(τ)Eπη [fη]

= 1
k − j

·
∑

η∈X(j+1),τ⊆η

π(η)
π(τ)

∑
ν∈X(k),η⊆ν

π(ν)
π(η)f(ν)

=
∑

ν∈X(k),τ⊆ν

π(ν)
π(τ)f(ν) = Eπτ [fτ ]. J

I Lemma 32. Let X be a d-dimensional γ-local-spectral expander. Let −1 ≤ j ≤ k ≤ d and
f ∈ Ck(X). Then f ∈ (Im dj↗k)⊥ if and only if f is from level j + 1.
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Proof. First note that f ∈ (Im dj↗k)⊥ if and only if f ∈ ker d∗j↗k, if and only if d∗j↗kf = 0.
Therefore, by Lemma 31, Eπτ [fτ ] = 0 for all τ ∈ X(j), which means f is from level j+ 1. J

Next, we provide a lemma that formulates the relation between functions that do not
“come from below” and the subspaces U jk . But first, we need the following lemma.

I Lemma 33. Let X be a d-dimensional γ-local-spectral expander. For all −1 ≤ j ≤ k ≤ d:

Ck0 (X) ∩ (dj↗kCj0(X))⊥ = (Im dj↗k)⊥

Note that Im dj↗k := dj↗k(Cj(X)) = {dj↗k(ψ) | ψ ∈ Cj(X)} is the subspace of all
k-cochains that come from j-cochain.

Proof. Since (Ck0 (X)∩ (dj↗kCj0(X))⊥)⊥ = span{1k}+ dj↗kC
j
0(X), the lemma follows from

the following equality: dj↗k1j =
(
k+1
j+1
)
1k . J

The following lemma shows that functions belong to
⊕

j<m≤k U
m
k if and only if they are

from level j + 1.

I Lemma 34. Let X be a d-dimensional γ-local-spectral expander. For all −1 ≤ j ≤ k ≤ d:⊕
j<m≤k

Umk = (Im dj↗k)⊥

(we define the left-hand side to be the zero subspace when j = k).

Proof. The Lemma follows from Lemma 20, the definition of U jk , and Lemma 33. J

Now, let us study how well M+
k shrinks functions that do not come from below. By the

above lemmas, we already know that if a function does not come from below, it does not
belong to U jk where j is low. Additionally, by the definition of W j

k , we know that M+
k shrinks

f ∈W j
k well when j is high. Therefore, our next step is to show how the two decompositions

of Ck0 (X): the spectral decomposition denoted W j
k , and the combinatorial decomposition

denoted U jk , are related.
From the work of [17] we already know that the projection of φ onW j

k can be approximated
by its projection on U jk :

I Proposition 35 ([17, Theorem 5.10, simplified]). Let X be a d-dimensional γ-local-spectral
expander, let 0 ≤ k < d, and assume γ is small enough. For all 0 ≤ j ≤ k and φ ∈ Ck0 (X):

(1− b(k)γ)‖PUj
k
φ‖ ≤ ‖PW j

k
φ‖ ≤ (1 + b(k)γ)‖PUj

k
φ‖

where b(k) is an explicit positive constant such that b(k)γ < 1, and P is the orthogonal
projection.

Let us prove that the two decompositions are actually identical:

I Theorem 36 (Spectral decomposition and combinatorial decomposition are identical). Let X
be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and assume γ is small enough.
Then W j

k = U jk for all 0 ≤ j ≤ k.

Proof. Let 0 ≤ j ≤ k. We will prove that U jk = W j
k by showing that (U jk)⊥ = (W j

k )⊥.
Let φ ∈ (U jk)⊥. Then PUj

k
φ = 0 and by Proposition 35 we get that PW j

k
φ = 0, and hence

φ ∈ (W j
k )⊥. Conversely, assume that φ ∈ (W j

k )⊥, so PW j
k
φ = 0. By Proposition 35:

1
1 + b(k)γ ‖PW

j
k
φ‖ ≤ ‖PUj

k
φ‖ ≤ 1

1− b(k)γ ‖PW
j
k
φ‖.

Hence ‖PUj
k
φ‖ = 0, and therefore φ ∈ (U jk)⊥. J
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I Corollary 37. Let X be a d-dimensional γ-local-spectral expander and assume γ is small
enough. Let −1 ≤ j < k ≤ d and f ∈ Ck(X). Then f is from level j + 1 if and only if
f ∈W j+1

k ⊕ · · · ⊕W k
k .

Proof. The Corollary follows from Lemma 34, Lemma 32, and Theorem 36. J

Therefore, functions from “good neighborhoods” do not “come from below”. By good
neighborhoods we mean the subspaces W j

k related to small eigenvalues of M+
k .

We will now use Theorem 36 to improve some existing results. First, the following
result improves the spectral decomposition of Ck(X) for the case where X is a good enough
expander. It easily follows from [17, Corollary 5.8]

I Proposition 38. Let X be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and
assume γ is small enough. Then for all 0 ≤ j ≤ k:

W j
k = span

{
φ
∣∣∣M+

k φ = µφ, µ ∈
[
k + 1− j
k + 2 − εk

k + 2 ,
k + 1− j
k + 2 + εk

k + 2 .
]}

Next, the following corollary improves [17, Theorem 5.9].

I Corollary 39. Let X be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and
assume γ is small enough. Then

Spec(M+
k ) ⊆ {1} ∪

k⋃
j=0

[
k + 1− j
k + 2 − εk

k + 2 ,
k + 1− j
k + 2 + εk

k + 2

]
.

Finally, the following corollary of Proposition 38 and Theorem 36 improves [17, Corol-
lary 5.11].

I Corollary 40. Let X be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and
assume that γ is small enough. Then for all i ∈ N and φ ∈ Ck0 (X):

k∑
j=0

(
k + 1− j
k + 2 − εk

k + 2

)2i ∥∥∥PUj
k
φ
∥∥∥2
≤ ‖(M+

k )iφ‖2 ≤
k∑
j=0

(
k + 1− j
k + 2 + εk

k + 2

)2i ∥∥∥PUj
k
φ
∥∥∥2

where P is the orthogonal projection.

Therefore if φ does not come from below then M+
k will shrink it better. For example, the

best shrinking functions are from Ukk .
Now, let us bound the shrinkage of f in a way that depends on its neighborhood.

I Proposition 41. Let X be a d-dimensional γ-local-spectral expander, let 0 ≤ k < d, and
assume γ is small enough. Let f ∈ (Im dj↗k)⊥ for some −1 ≤ j < k. Then

λM+
k

(f) ≤ k − j
k + 2 + εk

k + 2 .

Proof. By Lemma 34, Theorem 36 and Proposition 38:

f ∈ (Im dj↗k)⊥ =
⊕

j<m≤k

Umk =
⊕

j<m≤k

Wm
k

= span
{
φ
∣∣∣M+

k φ = µφ, µ ∈
[

1
k + 2 −

εk
k + 2 ,

k − j
k + 2 + εk

k + 2

]}
.

Lemma 28 finishes the proof. J
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Next, our goal is to prove that there are many functions that shrink well. Therefore, we
want to calculate the dimension of each W j

k . First, let us prove the following lemmas.

I Lemma 42. Let X be a d-dimensional γ-local-spectral expander and let −1 ≤ k < d. If γ
is small enough then dk is one-to-one.

Proof. Let µ be the smallest eigenvalue of M+
k . By Corollary 39, µ ≥ 1− εk

k + 2 . Since γ is

small enough, by Definition 18, εk < 1 and therefore µ > 0. Hence, M+
k is invertible. By

Lemma 21, d∗kdk = (k + 2)M+
k and therefore dk is one-to-one. J

I Lemma 43. Let X be a d-dimensional γ-local-spectral expander and let −1 ≤ j ≤ k ≤ d.
If γ is small enough then dim Im dj↗k = dimCj(X) and dim(Im dj↗k)⊥ = dimCk(X) −
dimCj(X).

Proof. By Lemma 22, dj↗k = 1
(k−j)!dk−1 . . . dj . Therefore, since γ is small enough, by

Lemma 42, dj↗k is one-to-one. Hence, dim ker dj↗k = 0. By the rank-nullity theorem,
dim Im dj↗k + dim ker dj↗k = dimCj(X) and therefore dim Im dj↗k = dimCj(X). Next,
(Im dj↗k)⊥ ⊕ Im dj↗k = Ck(X) implies that dim(Im dj↗k)⊥ = dimCk(X) − dim Im dj↗k.
Therefore, dim(Im dj↗k)⊥ = dimCk(X)− Cj(X). J

Since the combinatorial and spectral decompositions are equal, we can calculate the
dimension of U jk instead of finding the dimension of W j

k .

I Proposition 44. Let X be a d-dimensional γ-local-spectral expander and let 0 ≤ j ≤ k ≤ d.
If γ is small enough then dimU jk = |X(j)| − |X(j − 1)|.

Proof. By [2, Proposition 2.43], dim(U jk ⊕ · · · ⊕ Ukk ) = dimU jk + dim(U j+1
k ⊕ · · · ⊕ Ukk ).

Applying Lemma 34, we get: dim(Im d(j−1)↗k)⊥ = dimU jk + dim(Im dj↗k)⊥. And by
Lemma 43: dimCk(X) − dimCj−1(X) = dimU jk + dimCk(X) − dimCj(X). Therefore,
dimU jk = dimCj(X)− dimCj−1(X) = |X(j)| − |X(j − 1)|. J

I Corollary 45. Let X be a d-dimensional γ-local-spectral expander and let 0 ≤ j ≤ k < d.
If γ is small enough then dimW j

k = |X(j)| − |X(j − 1)|.

The above corollary shows that the amount of eigenvalues of M+
k in each neighborhood is

not affected by the dimension k. We conclude that as j increases, W j
k becomes much bigger,

and hence most of the functions do not come from below.
Finally, we show how neighborhoods of different dimensions are connected.

I Proposition 46. Let X be a d-dimensional γ-local-spectral expander and let 0 ≤ j ≤ k < d.
If γ is small enough then dkU jk = U jk+1 and d∗kU

j
k+1 = U jk .

The following corollary unravels what it means to “come from below” and provides a
simpler decomposition of Ck(X).

I Corollary 47. Let X be a d-dimensional γ-local-spectral expander and let 0 ≤ j ≤ m ≤
k < d. If γ is small enough then:

dm↗kW
j
m = dm↗kU

j
m = U jk = W j

k and d∗m↗kW
j
k = d∗m↗kU

j
k = U jm = W j

m.

In particular, for m = j, W j
k = dj↗k ker d∗j−1 and therefore

Ck(X) = span{1} ⊕ d0↗k ker d∗−1 ⊕ d1↗k ker d∗0 ⊕ · · · ⊕ dk−1↗k ker d∗k−2 ⊕ ker d∗k−1.
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6 Chernoff Bound for High-Dimensional Expanders

In this section, we apply our findings regarding high-order random walks and the Chernoff
bound, to get a Chernoff bound for high-dimensional expander graphs. For functions that do
not “come from below” and have a small variance, our bound is better than the naive HD
Chernoff bound.

I Theorem 48 (HD expander Chernoff bound). Let X be a weighted d-dimensional γ-local-
spectral expander, let 0 ≤ k < d, and assume that γ is small enough. Let π = πk be the
probability distribution over X(k) and denote π∗ := mini πi. Let w1, . . . , wt be a random walk
according to M+

k with initial distribution π. Let f : X(k)→ R such that f is from level j + 1
(see Definition 1) for some −1 ≤ j < k. Then for all ε > 0:

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤ ε2π∗

4hk(j)2

2 exp
(
− tε2

32‖f‖2
∞L2

)
otherwise

where L :=
⌈ ln(4 Varπ(f)/ε2π∗)

1− hk(j)

⌉
, and hk(j) := k − j

k + 2 + εk
k + 2 where limγ→0 εk = 0 (see

Definition 18).

Proof. First note that by Lemma 32, f ∈ (Im dj↗k)⊥. By Lemma 34, f ∈ Ck0 (X). By
definition of Ck0 (X), we know that Eπ[f ] = 0. Hence, by Theorem 29, for every ε > 0:

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤ ε2π∗

4λ(f)2

2 exp
(
− tε2

32‖f‖2
∞Q2

)
otherwise

where Q :=
⌈

ln(4 Varπ(f)/ε2π∗)
1− λ(f)

⌉
. Now, by Proposition 41: λ(f) ≤ k − j

k + 2 + εk
k + 2 = hk(j).

Therefore Q ≤ L and the theorem follows. J

I Remark 49. We can prove a more general version of this theorem, which applies to cases
where f does come from below, but its mass on the lower subspaces is small. Denote Pk,j :=
P(Im dj↗k)⊥ the orthogonal projection on the upper subspaces. Denote ` := ‖f −Pk,jf‖π and
assume ` < ε

√
π∗/2. Then for all ε > 0:

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤

(ε√π∗ − 2`
2hk(j)

)2

2 exp
(
− tε2

32‖f‖2
∞L2

)
otherwise

where L :=
⌈ ln(4 Varπ(f)/(ε√π∗ − 2`)2)

1− hk(j)

⌉
.
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A Proving the Expander Chernoff Bound

Our proof is a generalization of [8]. As in [8], the proof is by reduction to the well-studied
subject of martingales. First, let us provide the relevant definitions.

A.1 Preliminaries
Let (Ω,F ,P) be a probability-space: Ω is the sample space which is the set of possible
outcomes of an experiment; F is a σ-algebra that is a set of events, where each event is a set
of outcomes; and P is a probability measure function that assigns a probability to each event.

For example, in our case, the experiment is a random walk of length t on a graph
G = (V,E). A single outcome is a sequence of t vertices. The sample space is the set of
possible sequences. The σ-algebra of our probability-space is the power set of the sample
space. A set in this power set is an event (a set of walks), and the probability of an event is
the probability that one of the walks in that event has occurred.

A probability-space can be equipped with a filtration, which is a monotone sequence of
sub-σ-algebras F0 ⊆ F1 ⊆ · · · ⊆ F . Intuitively, each sub-σ-algebra Fi is the information
known at time i (which includes what was known before that).

In our case, we are interested in the filtration generated by a random walk on the graph.
Let w1, . . . , wt denote a random walk. Each wi is a random variable from our sample space
Ω to V = {1, . . . , n}. The value of wi given a sequence from Ω, is the i-th vertex in that
sequence. The σ-algebra generated by w1, . . . , wi represents the information known after i
steps and is denoted by σ(w1, . . . , wi). This σ-algebra is generated by the events Ev1,...,vi for
all possible walks (v1, . . . , vi) ∈ V i, where Ev1,...,vi denotes the event of all possible outcomes
that start with v1, . . . , vi.

A sequence {Xn} of random variables is said to be adapted to a filtration {Fn} if Xn

is Fn-measurable for all n. Informally, Xn is Fn-measurable if Xn is known at time n. A
random variable wi is Fj-measurable if w−1

i (v) ∈ Fj for all v ∈ V , which means that wi is
known after j steps. Note that wi is Fj-measurable for i ≤ j, and therefore w1, . . . , wt is
adapted to the filtration {σ(w1, . . . , wi)}ti=1.

We can now provide the definition of martingales and martingale difference sequences.

I Definition 50 (Martingale, MDS). Let (Ω,F ,P) be a probability-space and let {Fn} be a
filtration. Let {Xn} be a sequence of random variables such that {Xn} is adapted to {Fn}
and E[|Xn|] <∞ for all n.
1. If E[Xn+1 | Fn] = Xn for all n then {Xn} is a martingale with respect to {Fn}.
2. If E[Xn+1 | Fn] = 0 for all n then {Xn} is an MDS (martingale difference sequence)

with respect to the filtration {Fn}.

The following inequality is a generalization of the Chernoff bound to martingales.

I Proposition 51 (Azuma’s inequality [3]). Let X0, . . . , Xt be a martingale and suppose there
is c > 0 such that |Xi −Xi−1| ≤ c for all 1 ≤ i ≤ t a.s. Then for all ε > 0:

P(|Xt −X0| ≥ ε) ≤ 2 exp
(
−ε2

2tc2

)
.

A.2 Reduction to Martingales
In this subsection we prove the following reduction from the problem of concentration for
random walks to the problem of concentration for martingales. The proof is a generalization
of the proof from [8, Theorem 1.6].
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I Proposition 52 (Reduction to martingales). Let M : l2(π) → l2(π) be a connected non-
bipartite random walk operator over state-space V = {1, . . . , n} with a stationary distribution
π. Let w1, . . . , wt be a random walk according to M with initial distribution π and denote
π∗ := mini πi. Let f ∈ l2(π) be a function satisfying Eπ[f ] = 0. Then for every ε > 0, there
is a martingale difference sequence Z1, . . . , Zt (see Definition 50) with respect to the filtration

{σ(w1, . . . , wi)}ti=1 such that 1
t

t∑
i=1

f(wi) = W + 1
t

t∑
i=1

Zi, where |W | ≤ ε and each term Zi

satisfies |Zi| ≤ 2‖f‖∞
⌈

max
{

ln(‖f‖π/ε
√
π∗)

− ln(λ(f)) , 1
}⌉

.

In order to prove this proposition, we first need to prove several lemmas. Let K ∈ N. We
will set it to its optimal value later in the subsection.

Our goal is to show that the sum
∑t
i=1 f(wi) is a martingale difference sequence with

respect to the filtration {σ(w1, . . . , wi)}ti=1, with a small error W . Ideally, we would have
wanted E[f(wi+1) | wi] to be equal to 0. But in fact, the following holds:

I Lemma 53. Let 1 ≤ k ≤ K and 1 ≤ i ≤ t−k. Then (Mkf)(wi) = E
[
(Mk−1f)(wi+1)

∣∣ wi].
Proof. By definition of conditional expectation with respect to an event, we get that:
E
[
(Mk−1f)(wi+1)

∣∣ wi] =
∑n
j=1 P[wi+1 = j | wi](Mk−1f)(j) =

∑n
j=1 M(wi, j)(Mk−1f)(j)

=
(
M(Mk−1f)

)
(wi) = (Mkf)(wi). J

Therefore, to create an MDS out of
∑t
i=1 f(wi) we define the following random variables:

Y
(k)

1 := (Mk−1f)(w1) for all 1 ≤ k ≤ K, and Y (k)
i := (Mk−1f)(wi) − (Mkf)(wi−1) for all

1 < i ≤ t− k + 1.

I Lemma 54. The following holds:
t∑
i=1

f(wi) =
K∑
k=1

t−k+1∑
i=1

Y
(k)
i +

t−K∑
i=1

(MKf)(wi).

Proof. Let 1 ≤ m ≤ t and 1 ≤ k ≤ K. Then
m∑
i=1

(Mk−1f)(wi) =
m∑
i=1

Y
(k)
i +

m−1∑
i=1

(Mkf)(wi),

and the lemma is easy to prove by induction on K. J

The following corollary separates
∑t
i=1 f(wi) to an MDS part and an error part W . Later

in this subsection, we will show that {Zi} is indeed an MDS and that W is small.

I Corollary 55. Denote W := 1
t

t−K∑
i=1

(MKf)(wi), and Zi :=
min{t−i+1,K}∑

k=1
Y

(k)
i for all 1 ≤ i ≤

t. Then 1
t

t∑
i=1

f(wi) = W + 1
t

t∑
i=1

Zi.

Proof. By interchanging the order of summation,

K∑
k=1

t−k+1∑
i=1

Y
(k)
i =

t∑
i=1

min{t−i+1,K}∑
k=1

Y
(k)
i =

t∑
i=1

Zi.

Lemma 54 finishes the proof. J

Our next step is to show that {Zi} is a martingale difference sequence with respect to
the filtration {σ(w1, . . . , wi)}ti=1. We prove it by showing that {Yi} is an MDS.

APPROX/RANDOM 2020
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I Lemma 56. For all 1 ≤ k ≤ K, Y (k)
1 , . . . , Y

(k)
t−k+1 is an MDS with respect to the filtration

{σ(w1, . . . , wi)}t−k+1
i=1 .

Proof. First note that for all 0 ≤ k ≤ K and 1 ≤ i ≤ t− k:
1. (Mkf)(wi) is σ(w1, . . . , wi)-measurable.
2. By the Markov property, E

[
(Mkf)(wi+1)

∣∣ w1, . . . , wi
]

= E
[
(Mkf)(wi+1)

∣∣ wi].
Let 1 ≤ k ≤ K. By 1, Y (k)

i is σ(w1, . . . , wi)-measurable.
Secondly, we should prove that Y (k)

1 , . . . , Y
(k)
t−k+1 has the MDS property. Let 1 ≤ i ≤ t−k.

By 1, (Mkf)(wi) is σ(w1, . . . , wi)-measurable, hence by the stability property of conditional
expectation:

E
[
(Mkf)(wi)

∣∣ w1, . . . , wi
]

= (Mkf)(wi). (2)

Therefore, we have E
[
Y

(k)
i+1

∣∣ w1, . . . , wi
]

= E
[
(Mk−1f)(wi+1)− (Mkf)(wi)

∣∣ w1, . . . , wi
]

=
E
[
(Mk−1f)(wi+1)

∣∣ wi]− E
[
(Mkf)(wi)

∣∣ w1, . . . , wi
]

= (Mkf)(wi)− (Mkf)(wi) = 0 where
the second equality is by 2 and the third equality is by Lemma 53 and (2). J

I Corollary 57. Z1, . . . , Zt is an MDS with respect to {σ(w1, . . . , wi)}ti=1.

Now, let us bound the size of each Zi. We need the following lemma:

I Lemma 58. Let M be a connected random walk and let f ∈ l2(π). Then ‖Mf‖∞ ≤ ‖f‖∞.

Proof. Let 1 ≤ i ≤ n. Then we have |(Mf)(i)| ≤
∑
j |M(i, j)f(j)| =

∑
jM(i, j)|f(j)| ≤∑

jM(i, j)‖f‖∞ = ‖f‖∞, and therefore ‖Mf‖∞ ≤ ‖f‖∞. J

I Corollary 59. Let 1 ≤ i ≤ t. Then |Zi| ≤ 2K‖f‖∞.

Proof. Since |Zi| = |
min{t−i+1,K}∑

k=1
Y

(k)
i | ≤

min{t−i+1,K}∑
k=1

|Y (k)
i | ≤

K∑
k=1
|Y (k)
i |, we have

|Zi| ≤
K∑
k=1

∣∣(Mk−1f)(wi)− (Mkf)(wi−1)
∣∣ ≤ K∑

k=1

(
|(Mk−1f)(wi)|+ |(Mkf)(wi−1)|

)
≤

K∑
k=1

(‖Mk−1f‖∞ + ‖Mkf‖∞) ≤
K∑
k=1

(‖f‖∞ + ‖f‖∞) = 2K‖f‖∞

where the last inequality is by Lemma 58. J

Our last step before proving Proposition 52 is to bound the error |W |. First note that

I Lemma 60. Let 1 ≤ i ≤ n. Then √πi|(MKf)(i)| ≤ λ(f)K‖f‖π.

Proof. By Lemma 27, we have that πi(MKf)(i)2 ≤
∑n
j=1 πj(MKf)(j)2 = ‖MKf‖2

π ≤
(λ(f)K‖f‖π)2 as needed. J

Let us now bound the error W .

I Proposition 61. |W | ≤ λ(f)K‖f‖π√
π∗

.
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Proof. From Lemma 60 we have:

|W | ≤ 1
t

t−K∑
i=1
|(MKf)(wi)| ≤

1
t

t−K∑
i=1

1
√
πwi

√
πwi |(MKf)(wi)|

≤ 1
t

t−K∑
i=1

1
√
πwi
· λ(f)K‖f‖π ≤

t−K
t

λ(f)K‖f‖π max
i

1
√
πi
≤ λ(f)K‖f‖π√

π∗

where the last inequality is by definition of π∗. J

We can now prove Proposition 52.

Proof of Proposition 52. By Corollary 55: 1
t

t∑
i=1

f(wi) = W + 1
t

t∑
i=1

Zi where

1. W := 1
t

t−K∑
i=1

(MKf)(wi).

2. Zi :=
min{t−i+1,K}∑

k=1
Y

(k)
i for all 1 ≤ i ≤ t.

By Proposition 61, |W | ≤ λ(f)K‖f‖π√
π∗

. In order for |W | ≤ ε to apply, we should choose K

such that λ(f)K‖f‖π√
π∗

≤ ε. Note that by Proposition 8, λ(f) < 1. Therefore

K ≥
ln(‖f‖π/ε

√
π∗)

− ln(λ(f)) . (3)

By Corollary 57, Z1, . . . , Zt is an MDS with respect to {σ(w1, . . . , wi)}ti=1. Moreover, by Co-
rollary 59, |Zi| ≤ 2K‖f‖∞ for all 1 ≤ i ≤ t. So to get the best bound on |Zi| we should choose

the smallest K possible. Therefore, to comply with (3): K :=
⌈

max
{

ln(‖f‖π/ε
√
π∗)

− ln(λ(f)) , 1
}⌉

which yields the advertised bound on |Zi|. J

I Remark 62. We can prove a more general version of this bound that applies to functions
that most of their mass is on eigenspaces of small eigenvalues, and a small portion of their
mass is on eigenspaces associated with large eigenvalues.

Let P be an orthogonal projection to a direct sum of some of the eigenspaces, such
that λ(Pf) is small and ` := ‖f − Pf‖π is small too. Then ‖MKf‖π ≤ ‖MKPf‖ +
‖MK(I − P )f‖π ≤ λ(Pf)K‖Pf‖π + ‖(I − P )f‖π ≤ λ(Pf)K‖f‖π + `. Therefore, in
Lemma 60 we would get √πi|(MKf)(i)| ≤ ‖MKf‖π ≤ λ(Pf)K‖f‖π + `. This means

we would get that |W | ≤ λ(Pf)K‖f‖π + `
√
π∗

and therefore, for ` < ε
√
π∗ we get |Zi| ≤

2‖f‖∞
⌈

max
{

ln(‖f‖π/(ε
√
π∗ − `))

− ln(λ(f)) , 1
}⌉

.

A.3 Proof of Theorem 29
Proof. We prove an Expander Chernoff bound that depends on λ(f). Let ε > 0. Applying
Proposition 52 with ε/2 we get that there is an MDS Z1, . . . , Zt with respect to the filtration
{σ(w1, . . . , wi)}ti=1 such that 1

t

∑t
i=1 f(wi) = W+ 1

t

∑t
i=1 Zi, where |W | ≤ ε/2 and each term

APPROX/RANDOM 2020
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Zi satisfies |Zi| ≤ 2‖f‖∞
⌈

max
{

ln(2‖f‖π/ε
√
π∗)

− ln(λ(f)) , 1
}⌉

. In order to use Azuma’s inequality,

we first need to define a martingale out of our MDS {Zi}. Let X0 = 0 and Xi := Xi−1 + Zi
for all i ≥ 1. Then

|Xi −Xi−1| = |Zi| ≤ 2‖f‖∞
⌈

max
{

ln(2‖f‖π/ε
√
π∗)

− ln(λ(f)) , 1
}⌉

, (4)

i∑
j=1

Zj =
i∑

j=1
(Xj −Xj−1) =

i∑
j=1

Xj −
i−1∑
j=0

Xj = Xi −X0. (5)

I Lemma 63. X1, . . . , Xt is a martingale with respect to {σ(w1, . . . , wi)}ti=1.

Proof. First we’ll prove that X1, . . . , Xt is adapted to the filtration, so we should prove
that for all i ≥ 1, Xi is σ(w1, . . . , wi)-measurable. Since Xi =

∑i
j=1 Zj , it’s enough

to show that each Zj is σ(w1, . . . , wi)-measurable when j ≤ i. From 57 we know that
Z1, . . . , Zt is an MDS with respect to our filtration, hence each Zj is σ(w1, . . . , wj)-measurable.
In addition, σ(w1, . . . , wj) ⊆ σ(w1, . . . , wi) so each Zj is also σ(w1, . . . , wi)-measurable.
Therefore X1, . . . , Xt is adapted to the filtration.

Next we will prove that X1, . . . , Xt has the martingale property. Let i ≥ 1. Since Xi is
σ(w1, . . . , wi)-measurable, E[Xi | w1, . . . , wi] = Xi by the stability property of conditional
expectation. In addition, since by Corollary 57 Z1, . . . , Zt is an MDS, E[Zi+1 | w1, . . . , wi] = 0.
Therefore, E[Xi+1 | w1, . . . , wi] = E[Xi + Zi+1 | w1, . . . , wi] = E[Xi | w1, . . . , wi] + E[Zi+1 |
w1, . . . , wi] = Xi. J

Continuing with the proof of Theorem 29, by equation (5) we have that

P
[∣∣∣1
t

t∑
i=1

f(wi)
∣∣∣ > ε

]
= P

[∣∣∣W + 1
t

t∑
i=1

Zi

∣∣∣ > ε
]
≤ P

[
|W |+

∣∣∣1
t

t∑
i=1

Zi

∣∣∣ > ε
]

≤ P
[∣∣∣1
t

t∑
i=1

Zi

∣∣∣ > ε

2

]
= P

[
|
t∑
i=1

Zi| >
tε

2

]
= P

[
|Xt −X0| >

tε

2

]
,

Let c := 2‖f‖∞
⌈

max
{

ln(2‖f‖π/ε
√
π∗)

− ln(λ(f)) , 1
}⌉

. By (4) we know that |Xi −Xi−1| ≤ c. Fur-

thermore, by Lemma 63, Xt is a martingale. Therefore we can apply Azuma’s inequality to

get: P[|1
t

t∑
i=1

f(wi)| > ε] ≤ 2 exp
(−( tε2 )2

2tc2

)
= 2 exp

(
− t

2ε2

8tc2

)
= 2 exp

(
− tε

2

8c2

)
.

Since Eπ[f ] = 0, we get Varπ(f) :=
∑
i πi(f(i)− Eπ[f ])2 =

∑
i πif(i)2 = ‖f‖2

π, so

c = 2‖f‖∞

⌈
max

{
ln(2

√
Varπ(f)/ε√π∗)
− ln(λ(f)) , 1

}⌉
= 2‖f‖∞

⌈
max

{
ln(4 Varπ(f)/ε2π∗)
−2 ln(λ(f)) , 1

}⌉
.

Note that c = 2‖f‖∞ if ln(4 Varπ(f)/ε2π∗) ≤ −2 ln(λ(f)), or Varπ(f) ≤ ε2π∗/4λ(f)2.

Moreover, c ≤ 2‖f‖∞
⌈

max
{

ln(4 Varπ(f)/ε2π∗)
1− λ(f) , 1

}⌉
since 2 ln(r) ≤ r − 1 for all 0 < r ≤ 1.

Hence,

P[|1
t

t∑
i=1

f(wi)| > ε] ≤


2 exp

(
− tε2

32‖f‖2
∞

)
Varπ(f) ≤ ε2π∗

4λ(f)2

2 exp
(
− tε2

32‖f‖2
∞L2

)
otherwise. J
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