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Abstract
Motivated by the question of data quantization and “binning,” we revisit the problem of identity
testing of discrete probability distributions. Identity testing (a.k.a. one-sample testing), a fundamen-
tal and by now well-understood problem in distribution testing, asks, given a reference distribution
(model) q and samples from an unknown distribution p, both over [n] = {1, 2, . . . , n}, whether p
equals q, or is significantly different from it.

In this paper, we introduce the related question of identity up to binning, where the reference
distribution q is over k � n elements: the question is then whether there exists a suitable binning
of the domain [n] into k intervals such that, once “binned,” p is equal to q. We provide nearly tight
upper and lower bounds on the sample complexity of this new question, showing both a quantitative
and qualitative difference with the vanilla identity testing one, and answering an open question of
Canonne [6]. Finally, we discuss several extensions and related research directions.
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1 Introduction

Distribution testing [3], an area at the intersection of computer science, data science, and
statistics which emerged as an offspring of the field of property testing [19, 15], concerns itself
with the following type of questions: “upon observing independent data points originating
from some unknown process or probability distribution p, can we quickly and efficiently
decide whether p satisfies some desirable property, or significantly violates this property?”
One of the prototypical instances of this is the question of identity testing (also commonly
known as one-sample testing, or goodness-of-fit), where one is given a reference distribution
q and aims to test whether the unknown p is equal to this purported model q, or far from it
in statistical distance.

The sample and time complexity of identity testing have been thoroughly studied, and
this question is now well-understood with regard to all parameters at play (see [16, 2, 18,
13, 11, 14, 10, 21, 4], or the surveys [5, 1]). However, at the very heart of the question’s
formulation lies a significant assumption: namely, that the domain of the distributions,
generally taken to be the set [n] := {1, 2, . . . , n}, is the “right” representation of the data. In
many situations, this is not the case: the observations are made with a given (often arbitrary)
level of granularity, e.g., imposed by the accuracy of the measuring equipment; this may lead
to falsely (over)accurate measurements, with non-significant precision in the observations. In
such cases, the domain [n] of both the model q and the distribution of the measurements p
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24:2 Testing Data Binnings

are somewhat of a red herring, and relying on it to perform identity testing may lead to
a wrong answer, by introducing discrepancies where there is none. Instead, a more robust
approach is to decide if p conforms to q on some suitable quantization of the data: which
leads to the question, first suggested as an open question in [6] and introduced in this work,
of testing identity up to binning.

In more detail, the question we consider is the following:

Identity-Up-To-Binning(n,q, k, ε): Given a target number of bins k and a reference
distribution q over [k], a distance parameter ε, and i.i.d. samples from an unknown
distribution p over [n], is there a partition1 of the domain in k intervals I1, . . . , Ik such
that p(Ij) = q(j) for all 1 ≤ j ≤ k, or is p at total variation distance at least ε from all
distributions for which such a binning exists?

Before proceeding further, let us discuss some aspects of this formulation (which is illus-
trated in Figure 1). First of all, this formulation is intrinsically tied to discrete distributions
(which aligns with the motivations laid out earlier, relating to discretization of observations):
indeed, if p is continuous, then for all choices of q there always exists a suitable partition
of the domain; so that p trivially satisfies the property. This formulation also allows us
to test for some underlying structure, without caring about other irrelevant details of the
distribution. For instance, setting q = (1/3, 1/3, 1/3) captures all distributions p with three
disjoint groups of elements, separated by an arbitrary number of zero-probability elements,
each with total probability mass 1/3.

In terms of the range of parameters, we encourage the reader to keep in mind the setting
where k � n (or even where k is a relatively small constant), which captures fitting an
over-accurate set of measurements to a simple model. Yet, we emphasize that even the case
k = n is of interest and does not collapse to identity testing. Indeed, due to our allowing
empty intervals, the problem is both qualitatively and quantitatively different from identity
testing, and can be interpreted as identity testing up to merging some clusters of adjacent
domain elements and having zero-probability elements in the reference distributions for data
points considered irrelevant (see Figure 2 for a simple illustration).

(a) Distribution p on [n]. (b) Distribution q on [k].

Figure 1 An example, for n = 20 and k = 4. Here, q = (3/10, 0, 1/2, 1/5), and p =
1

50 (1, 2, 3, 0, 3, 3, 2, 1, 4, 3, 5, 4, 2, 0, 0, 3, 4, 2, 4, 4). A possible partitioning is I1 = {1, 2, . . . , 8}, I2 = ∅,
I3 = {9, . . . , 17}, and I4 = {18, 19, 20}.

1 Throughout this paper, by partitions we refer to ordered partitions with possibly empty subsets: i.e., a
partition of [n] in k sets is a sequence of pairwise disjoint sets (I1, . . . , Ik) such that ∪k

j=1Ij = [n], with
|Ij | ≥ 0 for all j.
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Figure 2 An example for n = k = 6. Here, q = (0, 1/2, 0, 0, 1/2, 0) (on the right), and
p = (1/20, 2/5, 1/20, 1/80, 37/80, 1/40) (on the left). The reference distribution q focuses on the two
modes of the distribution (writing off the other elements as “noise” or spurious), while the sampled
distribution p also features those elements.

We further note that one could consider variants of this problem, each with a slightly
different focus. The first variant, simultaneous binning, would feature a reference distribu-
tion q over [n] (instead of a set of bin probabilities q on [k]), and ask about the existence of
an interval partition I1, . . . , Ik such that p(Ij) = q(Ij) for all j. One interesting aspect of
this variant is that it generalizes non-trivially to continuous distributions (or mixtures of
continuous and discrete). However, even insisting for non-empty intervals Ij ’s, this formula-
tion is only interesting for distributions putting significant probability mass on the first k− 1
elements.2 For k = o(n), and in particular constant n, this is a significant restriction. A
second variant, which suffers the same drawback but allows more flexibility, also provides a
reference distribution q over [n], but only asks about the existence of independent binnings:
two interval partitions I1, . . . , Ik and I ′1, . . . , I ′k such that p(Ij) = q(I ′j) for all j.

We note that our upper bound (Theorem 1) easily extends to these two different variants
as well; and our lower bound (Theorem 2) applies to the last independent binnings variant
as well.

1.1 Our results and techniques
In this paper, we establish nearly matching upper and lower bounds on the Identity-Up-
To-Binning problem. Our first result is an efficient algorithm for testing the property:

I Theorem 1. For every domain size n, number of bins 1 ≤ k ≤ n, and fixed reference
distribution q over [k], there exists a (computationally efficient) algorithm for testing identity-
up-to-binning to q with sample complexity O

(
k/ε2), where ε ∈ (0, 1] is the distance parameter.

Crucially, this upper bound is independent of the underlying domain size n of the unknown
distribution, and only depends, linearly, on the target number of bins k. This is to be
compared to the “standard” identity testing problem, which is known to have sample
complexity Θ(

√
n). One may wonder if the dependence on the number of bins in the above

theorem is necessary, or if one could hope to achieve a sublinear dependence on k. Our next
(and main) result shows that a near-linear dependence is unavoidable, ruling out any strongly
sublinear dependence on k:

2 Indeed, unless both the reference q and the unknown p put Ω(ε) mass on {1, 2, . . . , k − 1}, a trivial
partitioning with Ij = {j} for 1 ≤ j ≤ k − 1 and Ik = {k, . . . , n} provides an immediate answer to the
problem.
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24:4 Testing Data Binnings

I Theorem 2 (Informal version of Theorem 6). For every k ≥ 1, there exists n = n(k) and an
absolute constant ε0 > 0 such that the following holds. There exists a reference distribution q
over [k] such that any algorithm for testing identity-up-to-binning to q to distance ε0 must
have sample complexity Ω

(
k1−o(1)).

Note that by standard techniques, this readily implies a lower bound of Ω
(
k1−o(1)/ε

)
, for

all ε ∈ (0, ε0]. We further conjecture the tight bound to be Ω
(
k/ε2) (i.e., matching our

upper bound). It is worth noting that the obvious and natural approach, a reduction from
(standard) identity testing, would fall short of this goal, as it would only lead to a much
weaker Ω(

√
k/ε2) lower bound.

Our techniques

Our upper bound proceeds via the “testing-by-learning” paradigm. Specifically, given a
reference distribution q over [k], and sample access to an unknown distribution p over [n],
we learn a hypothesis distribution p̂ such that, informally, for every binning of [n] into k
intervals, the distributions p and p̂ are close. (More formally, the distribution p̂ is close to p
in Ak-distance, which we define later.) Since we have exact access to p̂, we can enumeratively
test every potential binning. Although this does not save on the query complexity, we are
able to use dynamic programming to find the best binning in time polynomial in n and k.

The proof of our lower bound is significantly more involved and proceeds in three stages,
which we outline here. We first show that, if n is sufficiently large as a function of k, then
we may assume that the algorithm only looks at the ordering of the samples received from
[n], instead of at their actual “names” (we refer to the ordering as the ordered fingerprint of
the sample). Our bound uses a Ramsey theory argument very similar to that of [12].

We then show, for every integer m, the existence of two different distributions p′ and q′
over [poly(m) ·2m] such that (i) p′ and q′ are far in total variation distance, and (ii) given the
ordered fingerprint of m samples generated by one of p′ and q′, it is information-theoretically
impossible to determine which of p′ and q′ generated the ordered fingerprint. There are 2m
such ordered fingerprints, one for every composition of m, so it is unclear if the support size
of the distributions in this claim can be significantly reduced. While this is an independently
interesting problem, any progress on this problem would only directly result in a decrease of
the o(1) exponent in our main theorem.

Finally, using the above pair of distributions as “buckets” of two distributions p and q,
respectively, we show that any algorithm distinguishes p and q and only considers ordered
fingerprints must have access to at least m+ 1 samples from at least one of the (assuming m
is independent of k) Ω(k) buckets. By collision bounds for the generalized birthday problem
(see also [20] for more formal statements), with high probability we need a sample size of
Ω(k1−1/(m+1)) to ensure that the algorithm succeeds.

1.2 Future directions
We conclude with a few research directions we deem particularly promising. A first natural
question is to understand the analogue of the Identity-Up-To-Binning problem for close-
ness testing, that is, when both p (over [n]) and q (over [k]) are unknown and available only
through i.i.d. samples. This would in particular capture situations where data is collected
from two different sources (or sensors), each using a different discretization scheme or with
different precision, and one aims at deciding whether the underlying distributon is the same.



C. L. Canonne and K. Wimmer 24:5

Another avenue is to consider the tolerant testing version of the problem, that is, to
decide whether p is close to a binning of q (versus far from any such binning). It is
known that tolerant identity testing has significantly larger (namely, nearly linear in the
domain size) sample complexity than identity testing; whether this is still the case for their
identity-up-to-binning analogues is an intriguing question.

Lastly, it would be interesting to generalize the question to other partially-ordered
domains (e.g., the hypergrid [n]d, or the Boolean hypercube {0, 1}n), for the suitable notion
of “interval” in these posets.

2 Preliminaries

All throughout the paper, we write log for the binary logarithm. Given integers n and k, we
write Jn,k for the set of all

(
n+k−1
n

)
partitions of [n] in k consecutive (and possibly empty)

pairwise disjoint intervals. Recall that the total variation distance between two distributions
p,p′ over [n] is dTV(p1,p2) = supS⊆[n](p(S)− p′(S)), and is equal to 1

2
∑n
i=1|p(i)− p′(i)|,

half the `1 distance between their probability mass functions.
The Identity-Up-To-Binning(n,q, k, ε) problem we consider in this paper is then

formally defined as follows. Given a reference distribution q on [k], we consider the property

Pq :=
{

p′ distribution on [n] : ∃(I1, . . . , Ik) ∈ Jn,k , max
j∈[k]

|p′(Ij)− q(j)| = 0
}

(1)

The question is then, given a distance parameter ε ∈ (0, 1], to distinguish (i) p ∈ Pq from
(ii) dTV(p,Pq) > ε, where dTV(p,Pq) = minp′∈Pq dTV(p,p′). We will rely extensively, for
our lower bounds, on the below fact, which allows us to lower bound dTV(p,Pq) by a more
actionable quantity.

B Claim 3. For any distributions p and q (over [n] and [k], respectively) we have

dTV(p,Pq) ≥ 1
2 dist(p,q) := min

f

k∑
j=1

∣∣q(j)−
∑

t:f(t)=j

p(t)
∣∣,

where the minimum is taken over all nondecreasing functions f : [n]→ [k].

Proof. Fix p,q as in the statement. One can think of such a nondecreasing f as defining
a decomposition of [n] into k disjoint (and possible empty) intervals I1, . . . , Ik, where
Ij = f−1(j). In particular, let p∗ ∈ Pq such that dTV(p,p∗) = dTV(p,Pq), and I∗1 , . . . , I∗k
the corresponding partition for p∗. Define f∗ : [n] → [k] from this partition by setting
f(t) :=

∑k
j=1 j1I∗j (t): f∗ is then non-decreasing, and

k∑
j=1

∣∣q(j)−
∑

t:f∗(t)=j

p(t)
∣∣ =

k∑
j=1

∣∣q(j)− p(I∗j )
∣∣ =

k∑
j=1

∣∣p∗(I∗j )− p(I∗j )
∣∣ ≤ n∑

i=1

∣∣p∗(i)− p(i)
∣∣

where the last equality is due to the fact that p∗(I∗j ) = q(j) for all j ∈ [k] (since p∗ ∈ Pq),
and last inequality is the triangle inequality. Since the RHS equals 2dTV(p,p∗), we get
minf

∑k
j=1 |q(j)−

∑
t:f(t)=j p(t)| ≤ 2dTV(p,Pq). C
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3 Algorithms

In this section, we prove Theorem 1, restated below:

I Theorem 4. For any fixed reference distribution q over [k] and number of bins 1 ≤ k ≤ n,
there exists a (computationally efficient) algorithm for Identity-Up-To-Binning(n,q, k, ε)
with sample complexity O

(
k/ε2).

Proof. We will use the following notion of A`-distance, which interpolates between Kol-
mogorov distance (` = 2) and (twice the) total variation (` = n) [9, 7, 13, 12]: for any two
distributions p′,q′ over [n],

‖p′ − q′‖A`
:= max

(I1,...,I`)∈Jn,`

∑̀
j=1
|p′(Ij)− q′(Ij)| (2)

One can check that this defines a bona fide norm. Further, it is known, from the VC inequality,
that O

(
`/ε2) samples are sufficient to learn any distribution in A`-distance ε (and with

failure probability 1/6) [9, 7], and, further, that the empirical estimator achieves this bound.
Using this, the algorithm is as follows:
1. Learn the unknown p to Ak-distance ε, with failure probability 1/6. Call the result (the

empirical estimator, which is a distribution over [n]) p̂.
2. Compute the minimum ∆q(I, p̂) :=

∑k
j=1 |p̂(Ij)− q(j)| over all partitions (I1, . . . , Ik) ∈

Jn,k in intervals such that |Ij | > 0 whenever q(j) > 0.
3. If there exists I such that ∆q(I, p̂) ≤ ε, return accept; otherwise, return reject.
Note that only the first step requires samples from p, so that the sample complexity is
indeed O

(
k/ε2). The second step is purely computational, and can be implemented in time

poly(n, k) via a simple dynamic programming approach.
We now argue correctness. With probability at least 5/6, the first step produced a correct

p̂, i.e., one that is ε-close to p in Ak-distance; we hereafter assume this holds.

Completeness. Suppose p ∈ Pq, and let I∗ = (I∗1 , . . . , I∗k) ∈ Jn,k be any partition witnessing
it. Note that this partition then satisfies |I∗j | > 0 for all j such that q(j) > 0, as otherwise
the distance after binning is positive. Then,

∆q(I∗, p̂) =
k∑
j=1

∣∣p̂(I∗j )− q(j)
∣∣ ≤ k∑

j=1

∣∣p̂(I∗j )− p(I∗j )
∣∣+ k∑

j=1

∣∣p(I∗j )− q(j)
∣∣ ≤ ‖p̂−p‖Ak

≤ ε

the second-to-last inequality by definition of Ak-distance and the fact that
∑k
j=1|p(I∗j )−

q(j)| = 0. Therefore, the algorithm will find a good partition and output accept.

Soundness. Suppose now by contrapositive that the algorithm outputs accept. This means
it found, in step 2, some partition I∗ = (I∗1 , . . . , I∗k) ∈ Jn,k such that ∆q(I∗, p̂) ≤ ε/4. But
then,

k∑
j=1

∣∣p(I∗j )− q(j)
∣∣ ≤ k∑

j=1

∣∣p(I∗j )− p̂(I∗j )
∣∣+ k∑

j=1

∣∣p̂(I∗j )− q(j)
∣∣ ≤ ‖p̂−p‖Ak

+∆q(I∗, p̂) ≤ 2ε

the second-to-last inequality again by definition of Ak-distance. We claim that this implies
that p is ε-close (in total variation distance) to some p∗ ∈ Pq. Indeed, we can build p∗
in a greedy fashion from p: as long as there exist I∗j1

, I∗j2
such that p(I∗j1

) > q(j1) but
p(I∗j2

) < q(j2), we move δ := min(|p(I∗j1
) − q(j1)|, |p(I∗j2

) − q(j2)|) probability mass from
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(arbitrary) elements of I∗j1
to an arbitrary element of I∗j2

. Here, we used our condition on
the partition found in step 2, which ensures I∗j2

is non-empty. This incurs total variation δ
(from p), and reduces

∑k
j=1|p(I∗j )− q(j)| by 2δ. Repeating until it is no longer possible, we

obtain the claimed p∗, and therefore that dTV(p,Pq) ≤ ε. J

I Remark 5. As mentioned in the introduction, it is straightforward to adapt the algorithm
and argument to either the “simultaneous binning” and “independent binnings” variants of
the problem, leading to the same sample complexity upper bound (and time complexity) for
these related questions.

4 Lower Bounds

In this section, we prove our main theorem (Theorem 2), restated below:

I Theorem 6. For every k ≥ 1, there exists n = n(k) such that the following holds. There
exists a reference distribution q over [k] such that any algorithm for Identity-Up-To-
Binning(n,q, k, ε) must have sample complexity k

2O(
√

log k)
.

At a high level, the proof of Theorem 6 consists of three parts:
(1) First, we show that, for every n, there is an N(n) such that, if there is a algorithm

that succeeds in the data binning problem over [N(n)] with s samples, then there is
an algorithm that succeeds in the data binning problem over [n] with s samples, such
that this latter algorithm only considers the “ordered fingerprint” of the sample. This
approach, analogous to that of [12], uses Ramsey theory, and enables us to restrict
ourselves to (simpler to analyze) order-based algorithms. (Proposition 9)

(2) Second, we show for every constant m, there exist b(m) and two distributions p′ and
q′ on [b(m)] that (i) are “far from being cyclic shifts” of one another (which will allow
us to argue about distance to being a binning on k intervals later), and (ii) cannot be
distinguished from ordered fingerprints from s samples. The function b(m) is exponential
in m. (Lemma 12)

(3) Third, we consider the distributions p and q on [k] constructed such that the distribution
restricted to each block of b(m) elements is p′ and q′, respectively, in the natural way.
We show that (i) p is “far” from any binning of q, and (ii) distinguishing these two
distributions with ordered fingerprints requires seeing m+ 1 samples from one particular
block. By folklore collision bounds, this implies a Ω(k1−1/(m+1)) sample lower bound for
distinguishing p and q from ordered fingerprints. (Corollary 16)

Combining the three (applying 1 with n set to k, and m in 3 set to
√

log k) then yields the
theorem.

4.1 From samples to ordered fingerprints
The first step of our reduction will consist in “hiding” information from the algorithms.
Roughly speaking, for the sake of our lower bound analysis we would like to argue that,
without loss of generality, any testing algorithm can be assumed to only be given the
order relations between the samples from the unknown distribution, instead of the samples
themselves. For instance, instead of seeing four samples 12, 7, 98, 7, we wish to restrict our
analysis to algorithms which only see that x(1) = x(2) < x(3) < x(4). Since we are drawing
i.i.d. samples from the distribution, the order that the samples come in does not matter.

APPROX/RANDOM 2020
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However, this simplifying assumption is not actually without loss of generality, and does
not quite hold as stated: an algorithm can sometimes infer more information from the values
of the samples from p than from their ordered relations alone. We will prove a weaker
statement, sufficient for our purposes; in order to do so, we start by introducing some notions
formalizing the aforementioned “order relations.”

I Definition 7 (Ordered fingerprints). The ordered fingerprint of a sequence of s values in [n]
is an ordered frequency vector of the elements occurring in the sequence, with labels removed.
Formally, for each element i ∈ [n], let F i be the number of times element i appears, and let
j1 < j2 < . . . < jt be the indices such that F ji

is positive (so that t is the number of distinct
elements in the sequence). The ordered fingerprint is then the ordered collection of positive
integers (F j1 ,F j2 , . . . ,F jt

) such that
∑t
i=1 F ji

= s.

To later argue about indistinguishability of our instances, we will also rely on the below
notion of s-way moments (induced by an ordered fingerprint):

I Definition 8 (s-way moments). Given a distribution p over [n] and an ordered tuple of
positive integers F = (F1, F2, . . . , Ft) such that

∑t
i=1 Fi = s, the probability that the ordered

fingerprint on s samples is (F1, F2, . . . , Ft) is given by

pF :=
(

s

F1, F2, . . . , Ft

) ∑
1≤i1<i2<···<it≤n

t∏
j=1

p(ij)Fj (3)

We call such an expression an s-way moment of p. Note that the s-way moments of p
completely determine the distribution of the ordered fingerprint of s random samples drawn
from p. Thus, for two distributions p and q, if pF = qF for all F such that |F | = s, then p
and q cannot be distinguished from ordered fingerprints on s samples.3

We now state and prove the following lemma, which captures the intuition discussed above
and will be the first component of our lower bound:

I Proposition 9. For every n ≥ 1 and s ≥ 1, there exists N ≥ 1 such that the following
holds for every k ≥ 1, reference distribution q over [k], and ε ∈ (0, 1]. If there exists an
algorithm AN that, for every distribution p′ over [N ], solves the problem Identity-Up-To-
Binning(N,q, k, ε) with s samples from p′, then there exists an algorithm An that, for
every distribution p over [n], solves the problem Identity-Up-To-Binning(n,q, k, ε) with
s samples from p. Moreover, An only considers the ordered fingerprint of the s samples.

Proof. The argument is similar to that of Diakonikolas, Kane, and Nikishkin [12], and relies
on a result of Conlon, Fox, and Sudakov:

I Lemma 10 ([8]). Given a set S and an integer t, let
(
S
t

)
denote the set of subsets of

cardinality t. For all positive integers, a, b, and c, there exists a positive integer N so that
for any function χ :

([N ]
a

)
→ [b], there exists S ⊆ [N ] with |S| = c such that χ is constant

on
(
S
a

)
.

As in the proof of [12, Theorem 13], given n, s, we will invoke Lemma 10 to obtain a new
domain size N , in a way detailed below: loosely speaking, a corresponds to the number
of samples s, b to the number of possible decision (binary) functions from a given set of s

3 Indeed, for every s, the (s− 1)-way moments are linear combinations of s-way moments; we omit the
details.
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samples which only depend on the ordered fingerprint of those samples, and c to the target
domain size s. We will use this to, given AN (which induces a mapping χ from sets of s
samples to such order-based decision functions), find a set S ⊆ [N ] of size n, and a monotone
function f : [n] → [N ] such that f([n]) = S. The algorithm As then runs the promised
algorithm AN on the distribution f(p) obtained by applying f to the s samples. Since f is
order-preserving, the distances will not change. Since we can assume that AN is deterministic
once we know which distinct samples we get from [n], the fact that the induced χ is constant
on
(
f([n])
s

)
guarantees the output will be a function of the ordered fingerprint only.

However, we have an issue that [12] does not. When we draw a total of s samples, we
likely will not get s distinct samples. [12] gets around this issue by “dividing” all elements of
[n] into sub-elements, and upon seeing an element in the sample, assign it to a uniformly
random one of its sub-elements. However, our main parameter of interest k differs from
theirs: if we applied this procedure to our problem, the bounds obtained would deteriorate.
That is, while the Ak-distance (the focus of [12]) would not change, the coarsening distance
we consider here would.

We handle this issue as follows. Given an integer s, we will color all nonempty subsets of
[N ] with at most s elements. This color associates to a set of s samples the function that
AN uses to accept or reject given the ordered fingerprint that accompanies these samples.
Now, we apply Lemma 10 repeatedly. In our first application, we find a subset Ss ⊆ [N ]
such that, conditioning on distinct samples, AN has consistent behavior.4 Now we remove
all subsets that contain elements outside of Ss, and we apply Lemma 10 again to find a
set Ss−1 ⊆ Ss such that AN ’s behavior only depends on the ordered fingerprint given that
in the s samples, there are at least s − 1 distinct values seen. Continuing in this fashion,
after applying Lemma 10 a total of s times, we arrive at a set S1 (with S1 ⊆ S2 ⊆ · · · ⊆ Ss)
such that, conditioned on samples coming only from S1, AN depends only on the ordered
fingerprint of the samples seen. In every application of the lemma, we have a ≤ s, and since
there are 2s possible ordered fingerprints given s samples, we have b ≤ 22s . We set c = n in
our final application. J

4.2 Sequences far from being shifts of each other
As a building block from our lower bound construction, we will require the existence of
(non-negative) sequences which are “far” from each other, in that any circular shift of the
first remains far, in Hamming distance, from the second.

I Definition 11 (Partial shifts). Given an alphabet Σ and two strings x and y in Σn, we say
that y is an r-partial cyclic shift of x if there exist an integer ` and a nondecreasing function
f : [n]→ [n] such that, for at least r indices i of [n], xi = y(f(i)+`) mod n. That is, thinking of
the symbols of y placed in a circle, y contains a substring of length r of x (without wrapping
around more than once).

For two distributions p and q over [n], we then say that q is an r-partial cyclic shift of p
if the string q(1)q(2) · · ·q(n) is an r-partial cyclic shift of p(1)p(2) · · ·p(n).

We observe that finding a witness to x and y being r-partial cyclic shifts of each other is
equivalent to finding the cyclic longest common subsequence between x and y, which is a
problem with applications in DNA sequencing [17]. With these notions in hand, we are ready
to prove the key technical lemma underlying part 2 of our argument:

4 In this case, the ordered fingerprint is the all ones vector of length s, so the functions are not very
interesting.
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I Lemma 12. Let m > 4 be a positive integer, and b = 5m22m. Then there exist two
distributions p′ and q′ over [b] such that (i) p′ and q′ are not (99b/100)-partial cyclic shifts
of each other, and (ii) p′ and q′ agree on all m-way moments.

Proof. Let p be a probability distribution over [b] such that its probability mass function
takes the values 2/( 5

2b) and 3/( 5
2b) each on b/2 of the elements of [b]. Each m-way moment

pF can be expressed as a homogeneous polynomial in the b values p(i) of total degree m,
such that each coefficient is 0 or KF :=

(
s

F1,F2,...,Ft

)
; note that KF is independent of p. The

number of terms of such a polynomial is at most
(
b+m−1
m

)
≤ (b+m− 1)m ≤ (2b)m. Thus,

every m-way moment of p evaluates to an expression of the form qKF /( 5
2b)

m, where q is a
integer such that 0 ≤ q ≤ (6b)m. Since there are 2m m-way moments of p, there are at most
(6b)m2m possible values of the m-way moments of p.

For the claim about cyclic shifts, we use a counting argument. We will show that for any
string x ∈ {2, 3}b, there are at most 2b/5 other strings that are (99b/100)-partial cyclic shifts
of x. Indeed, any (99b/100)-partial cyclic shift y of x can be constructed by the following
process: first, select 99b/100 positions of x that will be present in y–these positions will form
a witness. Next, select 99b/100 positions of y that these bits of x will appear in, and a cyclic
shift for these bits. Finally, select any values in {2, 3} for the remaining b/100 positions of y.
Thus, the number of possible y’s is at most(

b

b/100

)2
(99b/100)2b/100 ≤ 22h(1/100)2b/50 ≤ 2b/5

where we have used the bound
(
n
αn

)
≤ 2nh(α), where h(α) = α logα+ (1− α) log(1− α) is

the binary entropy. Since there are a total of
(
b
b/2
)
≥ 2b/b strings of length b with an equal

number of 2’s and 3’s, then for every b, we can find a set S of 24b/5/b strings of length b such
that no two of them are (99b/100)-partial cyclic shifts of each other. We map strings over
{2, 3}b to distributions over [b] in a natural way: given x ∈ S, we define the corresponding
distribution p such that p(i) = xi/( 5

2b). Thus, we have 24b/5/b distributions over [b], no two
of which are (99b/100)-partial cyclic shifts of each other. Setting b = 5m22m, we then have

1
b

24b/5 = 24m22m

5m22m ≥ 23m22m

= (23m)m2m

> (30m22m)m2m

= (6b)m2m

.

Thus, by the pigeonhole principle there exist two distributions p′ and q′ over [b] that are
not (99b/100)-partial cyclic shifts of each other, yet such that p′ and q′ agree on all m-way
moments. J

4.3 Constructing the hard-to-distinguish instances over [n]

For a fixed integer m > 1 (to be determined later) and sufficiently large k, let p′ and q′ be
the two distributions over [b] promised by Lemma 12, where b = 5m22m; and let k′ := k/b.
We will define p and q to be distributions over [bk′] in the following way: We partition [bk′]
into blocks B1, B2, . . . , Bk′ , where Bj = {b(j − 1) + 1, b(j − 1) + 2, . . . , bj}. Now p (resp. q)
is the distribution resulting from the following process:

Pick a uniformly random element i ∈ [k′] and a random sample j from p′ (resp. q′).
Output, as resulting sample from p (resp. q), the element (i− 1)k′ + j.

Since p′(i) and q′(i) are in {4/(5b), 6/(5b)} for i ∈ [b], we have that p(i) and q(i) are always
in {4/(5bk′), 6/(5bk′)} for all i ∈ [bk′].
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We will prove that dTV(p,Pq) is large. To facilitate this, recalling Claim 3 we will lower
bound the distance of p to a binning of q in the following way:

dTV(p,Pq) ≥ 1
2 dist(p,q) = 1

2 min
f

bk′∑
i=1

∣∣q(i)−
∑

t:f(t)=i

p(t)
∣∣, (4)

where the minimum is taken over all nondecreasing functions f : [bk′] → [bk′]. To use the
language of a partition5, the interval Ii is simply f−1(i). We show the following:

B Claim 13. There exists ε0 > 0 such that, for p and q as described above, dTV(p,Pq) ≥ ε0.
(Moreover, one can take ε0 = 10−7.)

Proof. We will show that dist(p,q) ≥ 1/(5 ·106). We first rewrite the distance as dist(p,q) =
minf

∑k′

j=1 d(Bj), where, using the same blocks as described earlier, we define

d(Bj) :=
∑
i∈Bj

∣∣q(i)−
∑

t:f(t)=i

p(t)
∣∣

(suppressing its dependence on p,q, and f). We will call a block Bj good if d(Bj) ≤ 1/(2500k′).
Note that f need not be a function that maps elements of Bj to other elements of Bj . Since
p(i) and q(i) are always in

{ 4
5bk′ ,

6
5bk′
}
, any element i ∈ Bj such that |f−1(i)| 6= 1 will

contribute at least 2
5bk′ to d(Bj). Thus, we call an element i good if there is a unique t such

that f(t) = i and q(i) = p(t). Since each element that is not good contributes 2
5bk′ to d(Bj),

it follows that, in a good block, at most 1/(2500k′)/( 2
5bk′ ) = b/1000 elements are not good,

and therefore a good block must contain at least 999b/1000 good elements.
Let Bj be a good block: it must be the case that for at least 999b/1000 values of g ∈ Bj ,

there exists a unique t such that f(t) = g. Let g1 < g2 < . . . < gv be the good elements in
Bj (where v ≥ 999b/1000), and let t1, t2, . . . , tv be such that f(ti) = gi for i = 1, 2, . . . , v. By
assumption, the distributions p and q are not (99b/100)-partial cyclic shifts of each other.
Thus, for every i′ and i′′ where i′ < i′′, if ti′′ − ti′ < b, then i′′ − i′ ≤ 99b/100, or else the
good elements of Bj and their preimages under f would be a witness to p′ and q′ being
(99b/100)-partial cyclic shifts of one another. It follows that

tv − t1 ≥ b+ (999b/1000− 99b/100) ≥ (1 + 1/1000)b.

That is, every good block “uses up” a bit more than b elements of the domain of f . Since

f : [bk′] → [bk′] must be a nondecreasing function, we can have at most bk′

(1 + 1/1000)b ≤

(1− 1/2000)k′ good blocks. Thus, at least k′/2000 of the blocks are not good. It follows that

dist(p,q) = min
f

k′∑
j=1

d(Bj) ≥ (k′/2000)(1/2500k′) = 1/(5 · 106),

as claimed. C

We are now in position to conclude the step 3 of our overall proof, establishing the
following lower bound:

5 Recall that the sets in the partition are allowed to be empty.
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I Theorem 14. There exists an absolute constant ε0 > 0 such that, for every suffi-
ciently large integers k,m ≥ 1, there exists q over [k for which testing Identity-Up-
To-Binning(k,q, k, ε0) from ordered fingerprints only requires Ω

(
(k/m22m)1−1/m) samples.

(Moreover, one can take ε0 = 10−7.)

Proof. Let p and q be the distributions described above, with k = bk′ and ε0 := 10−7 as
in Claim 13. We consider the problem Identity-Up-To-Binning(k,q, k, ε0). We will show
that any algorithm that takes too few samples, and only considers their ordered fingerprint,
can distinguish between p and q with probability at most 1/3. Since dTV(p,q) > ε0 := 10−7

(and, of course, dTV(q,q) = 0), this will establish our lower bound.
By Lemma 12, an ordered fingerprint from m samples from one of the k′ blocks of size b

gives no information in distinguishing p and q. Further, it is immediate to see, from the
definition of ordered fingerprints, that the following holds as well:

B Claim 15. Let p1 and p2 be two distributions over [n], such that the distribution
of fingerprints for pb is given by {F b

j}j∈[n]. Suppose there exists a partition of [n] into
(I1, I2, . . . , Im) such that the sequences {F 1

j}j∈Ii
and {F 2

j}j∈Ii
are identically distributed for

all i in [m]. Then p1 and p2 cannot be distinguished by ordered fingerprints.

This implies that if an algorithm sees at most m samples from every block, then it cannot
distinguish between p and q with ordered fingerprints from this sample. It follows that any
algorithm that distinguishes between p and q using ordered fingerprints must receive at least
m+ 1 samples from at least one of the k′ many blocks.

To conclude, note that the distribution over the blocks is uniform; thus, by folklore collision
estimates (see also Suzuki et al. [20]), the probability that one of the k′ blocks contains m+ 1
samples is at most 1/3, given O(k′1−1/(m+1)) samples. Since k′ = k/b = k/(5m22m), we get
the claimed lower bound. J

Setting m =
√

log k in Theorem 14, we get:

I Corollary 16. There exists an absolute constant ε0 > 0 such that, for every sufficiently large
integers k ≥ 1, there exists q over [k for which testing Identity-Up-To-Binning(k,q, k, ε0)
from ordered fingerprints only requires k

2O(
√

log k)
samples.
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