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Abstract

We study graph computations in an enhanced data streaming setting, where a space-bounded client
reading the edge stream of a massive graph may delegate some of its work to a cloud service. We
seek algorithms that allow the client to verify a purported proof sent by the cloud service that the
work done in the cloud is correct. A line of work starting with Chakrabarti et al. (ICALP 2009)
has provided such algorithms, which we call schemes, for several statistical and graph-theoretic
problems, many of which exhibit a tradeoff between the length of the proof and the space used by
the streaming verifier.

This work designs new schemes for a number of basic graph problems – including triangle
counting, maximum matching, topological sorting, and single-source shortest paths – where past
work had either failed to obtain smooth tradeoffs between these two key complexity measures or only
obtained suboptimal tradeoffs. Our key innovation is having the verifier compute certain nonlinear
sketches of the input stream, leading to either new or improved tradeoffs. In many cases, our schemes
in fact provide optimal tradeoffs up to logarithmic factors.

Specifically, for most graph problems that we study, it is known that the product of the verifier’s
space cost v and the proof length h must be at least Ω(n2) for n-vertex graphs. However, matching
upper bounds are only known for a handful of settings of h and v on the curve h · v = Θ̃(n2). For
example, for counting triangles and maximum matching, schemes with costs lying on this curve are
only known for (h = Õ(n2), v = Õ(1)), (h = Õ(n), v = Õ(n)), and the trivial (h = Õ(1), v = Õ(n2)).
A major message of this work is that by exploiting nonlinear sketches, a significant “portion” of
costs on the tradeoff curve h · v = n2 can be achieved.
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22:2 Streaming Verification for Graph Problems

1 Introduction

It is far easier to verify a proof than to find one. This intuitively clear fact has been
given precise meanings in several settings , leading to such landmark results as the IP =
PSPACE [36] and PCP Theorems [3, 4]. There is a growing body of work on results of this
flavor for space-efficient computations on large data streams [35]. In this setting, a space-
bounded client (henceforth named Verifier) that can only process inputs in the restrictive
data streaming setting has access to a computationally powerful entity (henceforth named
Prover), such as cloud computing service, that has no such space limitations. As past work
has shown, many fundamental problems that are intractable in the plain data-streaming
model – in the sense that they cannot be solved using sublinear space – do admit nontrivial
solutions in this Verifier/Prover model, without Verifier having to trust Prover blindly.

An algorithm in this model specifies a protocol to be followed by Verifier and Prover
so that the former may compute some function f(σ) of the input stream σ. Prover, by
performing the specified actions honestly, convinces Verifier to output the correct value f(σ).
However, if Prover fails to follow the protocol, whether out of malice or error (modeling
hardware, software, or network faults in the cloud service), then Verifier is highly likely to
detect this and reject. Past work has considered a few different instances of this setup, such
as (a) annotated data streaming algorithms [12, 30] – also called online schemes – where
the parties read σ together and the protocol consists of Prover streaming a “help message”
(a.k.a. proof) to Verifier either during stream processing and/or at the end; (b) prescient
schemes [11], which are a variant of the above where Prover knows all of σ before Verifier
sees it; (c) streaming interactive proofs (SIPs) [13, 19], where Verifier and Prover engage in
multiple rounds of communication.

This work focuses on the first and arguably best-motivated of these models, namely, online
schemes. We simply call them schemes. We give new and improved schemes for several graph-
theoretic problems, including triangle counting, maximum matching, topological sorting, and
shortest paths. In all cases, the input is a huge n-vertex graph G given as a stream σ of edge
insertions and/or deletions. While most of our problems have been studied before, we give
schemes that (a) have better complexity parameters, in some cases achieving optimality, and
(b) use cleverer algebraic encodings of the relevant combinatorial problems, often exploiting
the ability of a streaming algorithm to compute nonlinear sketches.

1.1 Setup, Terminology, and Motivation
We formalize the setup described above. A scheme for a function f specifies three things:
(i) a space-bounded data streaming algorithm used by Verifier to process the input σ and
compute a summary VR(σ), using random coins R; (ii) a help function used by Prover to
send a message H(σ) to Verifier as a “proof stream” after the input stream ends;1 and (iii) an
output algorithm outR(VR(σ),H(σ)) capturing Verifier’s work during and after the proof
stream, which produces values in range(f) ∪ {⊥}, where an output of ⊥ indicates “reject.” If
VR and outR run in O(v) bits of space and H provides O(h) bits of help, then this scheme
is called an (h, v)-scheme. A scheme is interesting if we can use h > 0 to achieve a value
of v asymptotically smaller than what is feasible or known for a basic streaming algorithm,
where h = 0. A scheme is said to have

completeness error εc if ∀σ ∃H : PrR[outR(VR(σ),H(σ)) = f(σ)] > 1− εc;
soundness error εs if ∀σ,H′ : PrR[outR(VR(σ),H′(σ)) /∈ {f(σ),⊥}] 6 εs.

1 A more general (though seldom used) model allows Prover to send help messages after each data item
in σ.
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In designing schemes, we will aim for εs 6 1/3, which can be reduced further via parallel
repetition in standard ways. We will also achieve perfect completeness, i.e., εc = 0. For an
(h, v)-scheme we refer to h as its hcost (short for “help cost”) and v as its vcost (“verification
cost”). We use the notation [h, v]-scheme as a shorthand for an (Õ(h), Õ(v))-scheme.2

It is intuitive that the parameters h and v are in tension, suggesting that they can
be traded off against one another. Most of our algorithms do obtain such tradeoffs. We
emphasize that actually obtaining a smooth tradeoff for large ranges of h and v values is not
automatic: indeed, an important contribution of this work is to obtain such tradeoffs for
problems where past work gave comparable results only for specific settings of h and v.

When studying the results discussed below, it is useful to keep a few cost regimes in
mind. We focus on graph problems on n-vertex inputs. An (h, v)-scheme for such a problem
is sublinear if h = o(n2) and v = o(n2); frugal if it is sublinear and achieves the stronger
guarantee v = o(n); and laconic if it is sublinear and achieves the stronger guarantee h = o(n).

Many graph problems are intractable in the basic one-pass streaming model, meaning that
they provably require Ω(n2) space. Past work [12] implies that any (h, v)-scheme for such a
problem must have hv = Ω(n2). Thus, an [h, v]-scheme with hv = O(n2) for an intractable
problem has achieved an optimal tradeoff, up to logarithmic factors. All of the problems we
consider in this paper (except for counting connected components) are intractable for dense
graphs (i.e., graphs with Ω(n2) edges).

Frugal schemes are important when Verifier is so starved for space that it cannot afford
to store even a constant fraction of the vertices. They are also very interesting from a
theoretical standpoint, since even “easy” graph problems require at least Ω(n) space in the
basic streaming model. On the other hand, laconic schemes are naturally motivated by
settings where Verifier does not have streaming access to the proof and has to store it in full.
Consider for example a retail client that uploads transactions to the cloud as they occur. It
makes sense to have uploaded even terabytes of information in total over a long period of
time: days, months, or years. However, it might not be reasonable for the cloud to transfer a
proof consisting of, say, tens of gigabytes to the client. From a theoretical standpoint, in
solving an intractable problem, if Verifier has to store the proof, there is no reason to ever
try to reduce vcost to o(n), since hcost will then blow up to ω(n).

1.2 Problems, Results, and Comparisons with Related Work
Throughout, the input graph G will be on the fixed vertex set V = [n] := {1, . . . , n} and will
have m edges. Many results will be stated in terms of tunable parameters t, s ∈ Z+ that
must satisfy ts > n. Since bounds are asymptotic, this condition can be read as ts = n.

Triangle Counting. Our starting point is the triangle counting problem (henceforth, Tri-
angleCount), studied heavily in past work on graph streaming [7, 8, 10, 24, 25, 27, 34, 38].
Given a multigraph G as a dynamic stream (i.e., insertions and deletions), the goal is to
compute T , the number of triangles in G. The exact counting version studied in this paper is
an intractable problem in the sense of Section 1.1: it requires Ω(n2) space in basic streaming.

As noted in Table 1, we give several new algorithms for TriangleCount. Our [nt2, s]-
scheme improves upon the best known frugal scheme for the problem: for a fixed hcost > n,
it improves the vcost from v4/3 to v, and for a fixed vcost v 6 n, it improves the hcost from
n3/v3/2 to n3/v2. Our [t, ns]-scheme is not only the first laconic scheme for the problem but

2 The notation Õ(·) hides factors polynomial in logn.
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Table 1 Summary of results on the problems considered in this paper. A scheme is deemed
optimal if it has help cost at most h and space cost at most v for at least one pair h, v such
that h · v 6 Õ(L), whereas it is known that any (h, v) scheme that applies to all graphs requires
h · v > Ω(L). A blank space in the Tradeoff column indicates that it remains open whether the
scheme can be strictly improved. Here, α′ is the size of a maximum matching in the input graph, K
is the length of a shortest vs–vt path, D is the maximum distance from the source to the any other
reachable vertex, and W is the maximum weight of an edge.

Problem Scheme Tradeoff Reference

[h, v];hv = n3 Suboptimal [12]
[n2, 1] Optimal [12]
[n, n] Optimal [38]

[t3, s2]; ts = n Suboptimal [14]
TriangleCount [nt2, s]; ts = n Theorem 4

[t, ns]; ts = n Optimal Theorem 5

[mn/
√
v, v] Suboptimal [11]

[m+ h, v]; hv = n2 Theorem 10

TriangleCount-Adj [h, v]; hv = n2 Theorem 11

[m, 1] Optimal [18]
[n, n] Optimal [38]

MaxMatching [t3, s2]; ts = n Suboptimal [14]
[nt, s]; ts = n Optimal Theorem 8

[α′ + h, v]; hv = n2 Theorem 9

MIS [nt, s]; ts = n Optimal Theorem 12

Acyclicity/TopoSort [m, 1] Optimal [18]
[nt, s]; ts = n Optimal Theorem 13; Corollary 14

[Dnt, s]; ts = n [18]
st-ShortestPath [Kn, n] [14]

[Knt, s]; ts = n Corollary 18

Unweighted SSSP [Dnt, s]; ts = n Theorem 17

[m+ n, 1] Optimal [18]
Weighted SSSP [DWn, n] Theorem 19

[Dn,Wn] Theorem 20

also achieves smooth optimal tradeoff in its parameter range; thus, it settles the complexity
of the problem in the laconic regime. The [m+h, v]-scheme whenever hv = n2 generalizes the
[n2, 1]-scheme from prior work for any m-edge graph (for the setting h = m and v = n2/m)
and is interesting in the frugal regime for sparse graphs.

The problem has also been studied in the adjacency-list model (call it TriangleCount-
Adj) [10, 26, 31, 34], where the stream presents the full neighbor list for each vertex
contiguously. We give an [h, v]-scheme for any hv = n2 for TriangleCount-Adj (again,
exact counting). In basic streaming, there is no nontrivial algorithm for computing T

exactly, or even approximately when T is small; in fact, under a long-standing conjecture in
communication complexity, these problems require Ω(m) space [26].
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Maximum Matching. There is a recent and ongoing flurry of activity on streaming al-
gorithms for MaxMatching, the problem of computing the cardinality α′(G) of a maximum-
sized matching3 in G [6, 16, 21, 22, 28, 33, 20, 29]. The exact version of the problem (which
is what we study here) is intractable. For the special case of detecting whether a bipartite
graph has a perfect matching, there is a frugal [nt, s]-scheme [12], which achieves optimal
tradeoff. See Table 1 for previous results for the general problem.

In this work, we give (i) the first optimal frugal [nt, s]-scheme for the general MaxMatch-
ing problem, settling its complexity in the frugal regime, and (ii) an [α′ + h, v]-scheme
whenever hv = n2, which yields a laconic scheme provided α′(G) = o(n). Obtaining a fully
general laconic scheme remains an interesting open problem and we suspect that it will
require a breakthrough in exploiting the problem’s combinatorial structure.

Further Graph Problems and a Common Framework. We obtain new schemes for the
MIS problem, which asks for an inclusion-wise maximal independent set of vertices; the
Acyclicity problem, which asks whether the input digraph is acyclic; and the TopoSort
problem, which asks for a vertex ordering of the input DAG that orients all edges “forwards.”
In each case, we give an [nt, s]-scheme. Recent results show that MIS [5, 17] and TopoSort
[15] are intractable in basic streaming, so our schemes are optimal in the frugal regime.
Importantly, these schemes, the frugal MaxMatching scheme, and two of the Triangle-
Count schemes all fit a common framework: they boil the problem down to counting the
number of edges in one or more induced subgraphs of the input graph. Our scheme for this
InducedEdgeCount problem could be a useful technical result for future work.

Shortest Paths. The single-source shortest path (SSSP) problem is perhaps the most basic
problem in classic graph algorithms. In the streaming setting, even the special case of
undirected vs–vt connectivity in constant-diameter graphs is intractable [21]. As Table 1
shows, our [Dnt, s]-scheme for unweighted SSSP (where D is the maximum distance from the
source vertex vs to any vertex reachable from it) generalizes the result of Cormode et al. [18]
from st-ShortestPath to SSSP. Again, as a corollary, we obtain a [Knt, s]-scheme for
st-ShortestPath, where K is the length of a shortest vs–vt path. This result generalizes
the [Kn, n]-scheme of Chakrabarti and Ghosh [14] and improves upon the [Dnt, s]-scheme of
Cormode et al. [18], since K can be arbitrarily smaller than D. The schemes for the weighted
version are interesting for small D and W , where W is the maximum weight of any edge.

1.3 Other Related Works
Abdullah et al. [1] studied the TriangleCount and MaxMatching problems in the
stronger SIP model that allows rounds of interaction between Prover and Verifier. For
TriangleCount, they gave a (log2 n, log2 n)-SIP using logn rounds of interaction. They also
designed an (n1/γ logn, logn)-SIP with γ = O(1) rounds. For the weighted MaxMatching
problem, they gave a (ρ+ n1/γ′ logn, logn)-SIP using γ rounds of interaction, where γ′ is a
linear function of γ, and ρ is the weight of an optimal matching.

Early works on the concept of annotated streams include Tucker et al. [39] and Yi
et al. [41], who studied stream punctuations and stream outsourcing respectively. Motivated
by these works, Chakrabarti et al. [12] then formalised the model theoretically as the
annotated streaming model and gave schemes for statistical streaming problems including

3 The notation α′(G) is by analogy with α(G), which denotes the cardinality of a maximum independent
set of vertices. It can be found, e.g., in the textbook by West [40].
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frequency moments and heavy hitters, along with some basic results for graph problems.
This non-interactive model was subsequently studied by multiple works including Klauck
and Prakash [30], Cormode et al. [18], and Chakrabarti et al. [11]. Subsequent works
considered generalized versions of the model, allowing rounds of interaction. These include
Arthur-Merlin streaming protocols of Gur and Raz [23] and the streaming interactive proofs
(SIP) of Cormode et al. [19]. Chakrabarti et al. [13] and Abdullah et al. [1] further studied
this generalized setting. We refer to the expository article of Thaler [37] for a more detailed
survey of this area.

1.4 Our Techniques
Sum-Check and Polynomial Encodings. As with much prior work in this area (and prob-
abilistic proof systems more generally), our schemes are variants of the famous sum-check
protocol of Lund et al. [32]. Specialized to our (non-interactive) schemes, this protocol allows
Verifier to make Prover honestly compute

∑
x∈X g(x) for some low-degree polynomial g(X)

derived from the input data and some designated set X . Verifier has no space to compute g
explicitly, nor all values 〈g(x) : x ∈ X〉, but he can afford to evaluate g(r) at a random point
r. The Prover steps in by explicitly providing ĝ(X), a polynomial claimed to equal g(X):
this is cheap since g has low degree. Verifier can be convinced of this claim by checking that
ĝ(r) = g(r).

Hence, the main challenge in applying the sum-check technique is to find a way to encode
the data stream problem’s output as the sum of the evaluations of a low-degree polynomial
g so that Verifier can, in small space, evaluate g at a random point r.

Sketches: Linearity and Beyond. A streaming Verifier evaluates g(r) by suitably summar-
izing the input in a sketch. Viewing the input as updates to a data vector f = (f1, . . . , fN ),
such a sketch v is linear if v = Sf for some matrix S ∈ Fv×N , for some field F.4 Typically,
S is implicit in the sketching algorithm and enables stream processing in Õ(v) space by
translating a stream update fi ← fi + ∆ into the sketch update v ← v + ∆Sei, where ei
is the ith standard basis vector. In essentially all prior works on stream verification, the
polynomial g was such that g(r) could be derived from such a linear sketch v.

There is one exception: Thaler [38] introduced an optimal [n, n]-scheme for Triangle-
Count in which Verifier computes a nonlinear sketch.5 Roughly speaking, the verifier in
Thaler’s protocol maintains two n-dimensional linear sketches v(1) and v(2), plus a value
C that is not a linear function of the input stream but instead depends quadratically on
v(1) and v(2). Moreover, the jth increment to C uses information that is available while
processing the jth stream update, but not after the stream is gone. This is in contrast to
linear sketches themselves, where the jth sketch update depends only on the jth stream
update and no others.

The Shaping Technique. Another ubiquitous idea in streaming verification is the shaping
technique, which transforms a data vector into a multidimensional array. This trick realizes
g(X) as a summation of an even simpler multivariate polynomial: the latter can be evaluated
directly by Verifier at several points, which forms the basis for his sketching. When applied
to graph problems, this technique was historically used to reshape the

(
n
2
)
-dimensional vector

4 This field is finite in the streaming verification literature, whereas traditional data streaming uses R.
5 Simliar nonlinearity was used recently in the more powerful model of 2-pass schemes [14].
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of edge multiplicities. Recently, Chakrabarti and Ghosh [14] introduced the idea of reshaping
the graph’s vertex space, rather than just the edge space, thereby transforming the adjacency
matrix into a 4-dimensional array. This trick was crucial to obtaining the first frugal schemes
for TriangleCount and MaxMatching.

Our Contributions. The new schemes in this work make the following contributions.
We design new polynomial encodings for the graph-theoretic problems we study.
We prominently employ nonlinear sketches, in the above sense, for almost all of our
scheme designs.
We use the shaping technique on the vertex space, often combining it with nonlinear
sketching, thus expanding the applications of this very recent innovation.

Our solutions for TriangleCount are particularly good illustrations of all of these
ideas. Where Thaler’s nonlinear-sketch protocol treated each vertex as monolithic, our
view of each vertex as an object in [t]× [s] (for some pair t, s with t · s = n) let us do two
things. In the laconic regime, we get to use Verifier’s increased space allowance in a way that
Thaler’s protocol cannot, thereby extending his [n, n]-scheme to get an optimal tradeoff. In
the frugal regime, it is significantly harder to exploit vertex-space shaping because Verifier
cannot even afford to devote one entry per vertex in his linear sketches. We overcome this by
finding a way for many vertices to “share” each entry of each linear sketch (see the string of
equations culminating in Equation (7)), thus extending Thaler’s protocol to smoothly trade
off communication for space.

We also extend the applicability of nonlinear sketching by identifying many further
graph problems for which it yields significant improvements. Specifically, in Section 3,
we describe two technical problems called InducedEdgeCountand CrossEdgeCount,
which are later used as primitives to optimally solve several important graph problems,
including MaxMatching. We show how to apply sum-check with a nonlinear Verifier (see,
e.g, Equation (11)) to optimally solve InducedEdgeCount and CrossEdgeCount.

Finally, our schemes for SSSP feature a different kind of innovation on top of vertex-space
shaping and new, clever encodings of shortest-path problems in a manner amenable to
sum-check. They overcome the frugal Verifier’s space limitation by exploiting the Prover’s
room to generate a proof stream that mimics an iterative algorithm. For the Verifier to
play along with such an iterative algorithm while lacking even one bit of space per vertex,
a careful layering of fingerprint-based checks is needed on top of the sum-checks. We hope
that our work here opens up possibilities for other instances of porting iterative algorithms
to a streaming setting with the help of a prover.

1.5 Preliminaries
In this work, the input graph, multigraph, or digraph is denoted G and defined on a fixed
vertex set V = [n]. In the vanilla streaming model, G is given as a stream of (u, v) tokens,
where u, v ∈ V : the token is interpreted as an insertion of edge {u, v} or directed edge (u, v).
If G is edge-weighted, the tokens are of the form (u, v, w), where w ∈ Z+ is a weight. In the
turnstile streaming model, tokens are of the form (u, v,∆), denoting that the quantity ∆ ∈ Z
(which can be negative) is added either to the multiplicity or the weight of the edge {u, v}.

An important primitive in all our schemes is sketching a data vector by evaluating
its low-degree extension at a random point. Let us explain what this means. Suppose
our data vector, which has dimensionality N , is shaped into a k-dimensional array f with

APPROX/RANDOM 2020
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dimensions (s1, . . . , sk), where s1s2 · · · sk > N . Equivalently, we have a function f on domain
[s1]× · · · × [sk]. We work over a suitable finite field6 F. By Lagrange interpolation, there is
a unique polynomial f̃(X1, . . . , Xk) ∈ F[X1, . . . , Xk] such that

for all (x1, . . . , xk) ∈ [s1]× · · · [sk], we have f̃(x1, . . . , xk) = f(x1, . . . , xk), and
for all i ∈ [k], we have degXi

f̃ 6 si − 1.
We call f̃ the low-degree F-extension of f . Since f 7→ f̃ is a linear map, we can write f̃ as a
linear combination of “unit impulse” functions (also known as Lagrange basis polynomials):

δu1,...,uk
(X1, . . . , Xk) :=

k∏
i=1

∏
xi∈[si]\{ui}

(ui − xi)−1(Xi − xi) . (1)

To be precise, f̃(X1, . . . , Xk) =
∑

(u1,...,uk)∈[s1]×···×[sk] f(u1, . . . , uk) δu1,...,uk
(X1, . . . , Xk). In

particular, if f is built up from a stream of pointwise updates, where the jth update adds
∆j to entry (u1, . . . , uk)j of the array, then

f̃(X1, . . . , Xk) =
∑
j

∆j δ(u1,...,uk)j
(X1, . . . , Xk) . (2)

I Fact 1. Given p = (p1, . . . , pk) ∈ Fk and a stream of pointwise updates to an initially-zero
array with dimensions (s1, . . . , sk), we can maintain the evaluation f̃(p) using O(log |F|)
space, performing O(k) field arithmetic operations per update. In applications, we usually
take p ∈R Fk.7 For details and implementation considerations, see Cormode et al. [19]. J

Another useful primitive is fingerprinting, used prominently in our SSSP scheme and
subtly in subroutines within other schemes. Its goal is to check equality between two vectors
a = (a1, . . . , aN ) and b = (b1, . . . , bN ) that are provided via turnstile streams in some
possibly intermixed order. This is achieved by checking that ϕa(r) = ϕb(r) for r ∈R F,
where ϕa(X) =

∑N
j=1 ajX

j is the fingerprint polynomial of a and has degree at most N .
Both fingerprinting and the eventual uses of Fact 1 in sum-check protocols depend upon the
following basic but powerful result.

I Fact 2 (Schwartz–Zippel Lemma). For a nonzero polynomial P (X1, . . . , Xn) ∈ F[X1, . . . , Xn]
of total degree d, where F is a finite field, Pr(r1,...,rn)∈RFn [P (r1, . . . , rn) = 0] 6 d/|F|. J

At various points, we shall use a couple of schemes from Chakrabarti et al. [11, 12].

I Fact 3 (subset and intersection schemes; Prop. 4.1 of [12] and Thm. 5.3 of [11]). Given
a stream of elements of sets S, T ⊆ [N ] interleaved arbitrarily, for any h, v with hv > N ,
there are [h, v]-schemes to compute |S ∩ T | and to determine whether S ⊆ T . J

2 The Triangle Counting Problem

A triangle in a (multi)graph is a set of three edges of the form {{u, v}, {v, w}, {u,w}}. The
TriangleCount problem asks for the number of such triangles in the input graph. We
solve this problem for multigraphs given by a turnstile stream, establishing the following two
theorems. The first gives improved (but possibly still not tight) tradeoffs between hcost h
and vcost v in the parameter regime where h > n and v 6 n. The second gives optimal

6 The characteristic of F must be large enough to avoid “wrap around” problems under arithmetic in F.
7 The notation r ∈R A means that r is drawn uniformly at random from the finite set A.
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tradeoffs (up to logarithmic factors) in the regime where h 6 n and v > n, based on the
known lower bound that hv must be Ω(n2). Both results were previously only known when
h = Θ(n).

We remind the reader that parameters t, s ∈ Z+ are tunable, subject to ts = n.

I Theorem 4 (Improved frugal schemes). There is an [nt2, s]-scheme for TriangleCount.

I Theorem 5 (Optimal tradeoff for laconic schemes). There is a [t, ns]-scheme for Triangle-
Count. This is optimal up to logarithmic factors.

Overview of Our Methods. Consider an adjacency matrix A of a graph on vertex set V .
The addition of a new edge {u, v} creates

∑
z∈V A(u, z)A(v, z) new triangles.

Suppose that the input stream consists of L edge updates, the jth being (v1j , v2j ,∆j);
recall that its effect is to add ∆j to the multiplicity of edge {v1j , v2j}. Suppose that the
cumulative effect of the first j updates is to produce a multigraph Gj whose adjacency matrix
is Aj and which has Tj triangles (counting multiplicity). As in Thaler’s protocol [38], we can
then account for the number of triangles added by the jth update:

Tj − Tj−1 =
∑
v3∈V

∆j Aj−1(v1j , v3)Aj−1(v2j , v3) .

As a result, the number of triangles T in the final graph G = GL is

T =
∑
j∈[L]

∑
v3∈V

∆j Aj−1(v1j , v3)Aj−1(v2j , v3) . (3)

Our two new families of schemes for TriangleCount apply the shaping technique to the
above equation in two distinct ways, resulting in markedly different complexity behaviors.

The Laconic Schemes Regime (Proof of Theorem 5). Let t, s ∈ N be parameters with
ts = n. We first consider rewriting the variable v3 in Equation (3) as a pair of integers
(x3, y3) ∈ [t] × [s] using some canonical bijection. This shapes each matrix Aj−1 into a
3-dimensional array aj−1, i.e., a function with domain [n]× [t]× [s]. Let ã be the F-extension
of a for a sufficiently large finite field F to be chosen later. Then Equation (3) becomes

T =
∑
j∈[L]

∑
x3∈[t]

∑
y3∈[s]

∆j ãj−1(v1j , x3, y3) ãj−1(v2j , x3, y3) =
∑
x3∈[t]

p(x3) , where (4)

p(X3) =
∑
j∈[L]

∑
y3∈[s]

∆j ãj−1(v1j , X3, y3) ãj−1(v2j , X3, y3) . (5)

By the properties of F-extensions observed above, we have the bound deg p 6 2(t− 1).
We now design our scheme as follows.
Stream processing. Verifier starts by picking r3 ∈R F. As the stream arrives, he maintains a

2-dimensional array of values ãj−1(v, r3, y), for all (v, y) ∈ [n]× [s], using Fact 1. He also
maintains an accumulator that starts at zero and, after the jth update, is incremented
by ∆j

∑
y3∈[s] ãj−1(v1j , r3, y3) ãj−1(v2j , r3, y3). By Equation (5), the final value of this

accumulator is p(r3).
Help message. Prover sends Verifier a polynomial p̂(X3) of degree 6 2(t−1) that she claims

equals p(X3).
Verification and output. Using Prover’s message, Verifier computes the check value C :=

p̂(r3) and the result value T̂ :=
∑
x3∈[t] p̂(x3). If he finds that C 6= p(r3), he outputs ⊥.

Otherwise, he believes that p̂ ≡ p and accordingly, based on Equation (4), outputs T̂ as
the answer.
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The analysis of this scheme proceeds along standard lines long established in the literature.
Error probability. An honest Prover (p̂ ≡ p) clearly ensures perfect completeness. The

soundness error is the probability that Verifier’s check passes despite p̂ 6≡ p, i.e., that
the random point r3 ∈ F is a root of the nonzero degree-(2t− 2) polynomial p̂− p. By
the Schwartz–Zippel Lemma (Fact 2), this probability is at most (2t− 2)/|F| < 1/n, by
choosing |F| large enough.

Help and Verification costs. Prover describes p̂ by listing its O(t) many coefficients, spend-
ing O(t logn) bits, since each is an element of F and |F| = nO(1) suffices above. Verifier
maintains an n× s array whose entries are in F, for a vcost of O(ns logn). Overall, we
get a [t, ns]-scheme, as required.

The Frugal Schemes Regime (Proof of Theorem 4). Designing frugal schemes on the
basis of Equation (3) is more intricate. This time we rewrite the variables v1j and v2j as pairs
(x1j , y1j) and (x2j , y2j), each in [t]× [s] for parameters t, s with ts = n. The matrices Aj−1
are now shaped into 3-dimensional arrays bj−1 that can be seen as functions on the domain
[t]× [s]× [n]. As before, let b̃ be an appropriate F-extension. Working from Equation (3)
and cleverly using the “unit impulse” function δ seen in Equation (1),

T =
∑
v3∈V

∑
j∈[L]

∆j b̃j−1(x1j , y1j , v3) b̃j−1(x2j , y2j , v3)

=
∑
v3∈V

∑
w1,w2∈[t]

∑
j∈[L]

∆j b̃j−1(w1, y1j , v3) b̃j−1(w2, y2j , v3) δx1j
(w1) δx2j

(w2)

=
∑
v3∈V

∑
w1,w2∈[t]

q(w1, w2, v3) , where (6)

q(W1,W2, V3) =
∑
j∈[L]

∆j b̃j−1(W1, y1j , V3) b̃j−1(W2, y2j , V3) δx1j
(W1) δx2j

(W2) . (7)

In contrast to the laconic case, we have a multivariate polynomial q(W1,W2, V3). We
have the bounds degW1 q 6 2(t − 1), degW2 q 6 2(t − 1), and degV3 q 6 2(n − 1), for a
total degree of O(t + n) = O(n). Importantly, the number of monomials in q is at most
(2t− 1)2(2n− 1) = O(nt2). We now present the corresponding scheme and its analysis.

Stream processing. Verifier picks r1, r2, r3 ∈R F. As the stream arrives, he maintains two 1-
dimensional arrays: b̃j−1(r1, y, r3) and b̃j−1(r2, y, r3), for all y ∈ [s] (using Fact 1). He also
maintains an accumulator that starts at zero and, after the jth update (x1j , y1j , x2j , y2j),
is incremented by ∆j b̃j−1(r1, y1j , r3)b̃j−1(r2, y2j , r3)δx1j (r1)δx2j (r2). By Equation (7),
the final value of this accumulator is q(r1, r2, r3).
Notice that the accumulator is a nonlinear sketch of the input.

Help message. Prover sends Verifier a polynomial q̂(W1,W2, V3) that she claims equals
q(W1,W2, V3). It should satisfy the degree bounds noted above. He lacks the space to
store q̂, so she streams the coefficients of q̂ in some canonical order.

Verification and output. As q̂ is streamed in, Verifier computes the check value C :=
q̂(r1, r2, r3) and the result value T̂ :=

∑
v3∈[n]

∑
w1,w2∈[t] q̂(w1, w2, v3). If he finds that

C 6= q(r1, r2, r3), he outputs ⊥. Otherwise, he believes that q̂ ≡ q and accordingly, based
on Equation (6), outputs T̂ as the answer.

Error probability. As before, we have perfect completeness and by the Schwartz–Zippel
Lemma (Fact 2, this time using its full multivariate strength), this soundness error is at
most deg q/|F| = O(n)/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. Prover can describe q̂ by listing its O(nt2) coefficients. Verifier
maintains two s-length arrays. Overall, we get an [nt2, s]-scheme, as required.
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3 A Technical Result: Counting Edges in Induced Subgraphs

We introduce two somewhat technical, though still natural, graph problems: InducedEdge-
Count and CrossEdgeCount. We design schemes for these problems giving optimal
tradeoffs (as usual, up to logarithmic factors). These schemes are key subroutines in our
schemes for more standard, well-studied graph problems – such as MaxMatching– con-
sidered in Section 4.

The InducedEdgeCount problem is defined as follows. The input is a stream of edges
of a graph G = (V,E) followed by a stream of vertex subsets 〈U1, . . . U`〉 for some ` ∈ N,
where Ui ⊆ V for i ∈ [`]. To be precise, the latter portion of the stream consists of the
vertices of U1 in arbitrary order, followed by a delimiter, followed by the vertices of U2 in
arbitrary order, and so on. The desired output is

∑`
i=1 |E(G[Ui])|, the sum of the numbers of

edges in the induced subgraphs G[U1], . . . , G[U`]. Note that U1, . . . , U` need not be pairwise
disjoint, so the sum may count some edges more than once.

The CrossEdgeCount problem is an analog of the above for induced bipartite subgraphs.
The input is a stream of edges followed by ` pairs of vertex subsets 〈(U1,W1), . . . , (U`,W`)〉,
where Ui ∩Wi = ∅ for i ∈ [`]. The desired output is

∑`
i=1 |E(G[Ui,Wi])|, the sum of the

number of cross-edges in the induced bipartite subgraphs G[U1,W1], . . . , G[U`,W`]. Note
that the Uis (or Wis) need not be disjoint among themselves.

Importantly, in both of these problems, the edges precede the vertex subsets in the stream.
This makes the problems intractable in the basic data streaming model. We shall prove the
following results.

I Lemma 6. For any h, v with hv = n2, there is an [h, v]-protocol for InducedEdgeCount.

I Lemma 7. For any h, v with hv = n2, there is an [h, v]-protocol for CrossEdgeCount.

Scheme for InducedEdgeCount (Proof of Lemma 6). For the given instance, letM denote
the desired output and let A be the adjacency matrix of G. For each i ∈ `, let Bi ∈ {0, 1}V
be the indicator vector of the set Ui, i.e., Bi(v) = 1 ⇐⇒ v ∈ Ui. Then,

M = 1
2
∑̀
i=1

∑
v1,v2∈V

Bi(v1)Bi(v2)A(v1, v2) . (8)

Let t, s be integer parameters such that ts = n. We apply the shaping technique to
Equation (8) by rewriting the variables vj as pairs of integers (xj , yj) ∈ [t]× [s], for j ∈ {1, 2}.
This transforms the matrix A into a 4-dimensional array a and each Bi into a 2-dimensional
array bi. Let ã and b̃i be the respective F-extensions. Equation (8) now gives

2M =
∑̀
i=1

∑
x1,x2∈[t]

∑
y1,y2∈[s]

b̃i(x1, y1) b̃i(x2, y2) ã(x1, y1, x2, y2) =
∑

x1,x2∈[t]

p(x1, x2) , (9)

where p(X1, X2) =
∑̀
i=1

∑
y1,y2∈[s]

b̃i(X1, y1) b̃i(X2, y2) ã(X1, y1, X2, y2) . (10)

Our scheme exploits this expression in the same general manner as the analogous expres-
sions for the TriangleCount schemes from Section 2 (e.g., Equation (4)). Prover sends a
bivariate polynomial p̂(X1, X2), which is claimed to be p, by streaming its coefficients. Since
degXj

p 6 2(t− 1) for j ∈ {1, 2}, Prover need only send O(t2) coefficients, for a help cost of
Õ(t2). Verifier computes his output using Equation (9), giving perfect completeness. On
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the soundness side, Verifier checks the condition p̂(r1, r2) = p(r1, r2) for randomly chosen
r1, r2 ∈R F. By the Schwartz-Zippel Lemma (Fact 2), the probability that he is fooled is
at most deg p/|F| = O(t)/|F| < 1/n, for the right choice of F. It remains to describe how
exactly Verifier evaluates p(r1, r2), which we now address.

Processing the stream of edges. This is straightforward: Verifier maintains the 2-dimensio-
nal array of values ã(r1, w, r2, z), for all w, z ∈ [s], using Fact 1.

Processing the stream of vertex subsets. Verifier initializes an accumulator to zero and
allocates workspace for two arrays of length s with entries in F. For each i ∈ [`], as
the vertices of Ui arrive, he maintains b̃i(r1, z) and b̃i(r2, z) for each z ∈ [s], using that
workspace. Upon seeing the delimiter marking the end of Ui, he computes∑

y1,y2∈[s]

b̃i(r1, y1) b̃i(r2, y2) ã(r1, y1, r2, y2) (11)

and adds this quantity to the accumulator. Note that the workspace is reused when the
stream moves on from Ui to Ui+1. By Equation (10), after the last set U` is streamed,
the accumulator holds p(r1, r2).

Help and verification costs. We argued above that the hcost is Õ(t2). Meanwhile, Verifier’s
storage is dominated by the s× s array he maintains, leading to a vcost of Õ(s2).

Therefore, we obtain a [t2, s2]-scheme for any parameters t, s with ts = n. In other words,
we get an [h, v]-scheme for any h, v with hv = n2.

Scheme for CrossEdgeCount (Proof of Lemma 7). Our solution for InducedEdgeCount
can easily be modified to obtain a protocol for CrossEdgeCount with the same costs. If
Bi and Ci are the indicator vectors of the sets Ui and Wi, respectively, then the desired
output is

M =
∑̀
i=1

∑
v1,v2∈V

Bi(v1)Ci(v2)A(v1, v2) , (12)

where we used the fact that each Ui ∩Wi = ∅. Since Equation (12) has essentially the same
form as Equation (8), a scheme very similar to the previous one solves CrossEdgeCount:
Verifier simply keeps track of arrays corresponding to Ci alongside ones corresponding to Bi.

4 Maximum Matching and Other Applications of Edge Counting

In this section, we show how InducedEdgeCount and CrossEdgeCount can be used
as subroutines to solve multiple problems that have been widely studied in the basic and
annotated data streaming models. These problems include Maximum Matching, Triangle-
Counting, Maximal Independent Set, Acyclicity Testing, Topological Sorting, and Graph
Connectivity. For the frugal regime where vcost = o(n), our schemes are often optimal. We
specifically discuss the application to MaxMatching in Section 4.1, state the results on the
other applications in Section 4.2, and give a detailed account on them in Appendix B.
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4.1 The Maximum Matching Problem

We give the first optimal frugal scheme for computing the cardinality α′(G) of a maximum
matching. As noted in prior works [14, 38], checking whether α′(G) > k for some k is not
hard, given Ω̃(k) bits of help: Prover can simply send a matching of size k and prove its
validity. The interesting part is to verify that α′(G) 6 k. For this, as in prior works, we
exploit the Tutte–Berge formula [9]:

α′(G) = 1
2 min
U⊆V

(
|U |+ |V | − odd(G \ U)

)
, (13)

where odd(G \ U) denotes the number of connected components in G \ U with an odd
number of vertices. Thus, to show that α′(G) 6 k, Prover needs to exhibit U∗ ⊆ V

such that k = 1
2 (|U∗| + |V | − odd(G \ U∗)). Set H := G \ U∗. To verify the value of

odd(H), the most important sub-check that Verifier must do is to check that all purported
connected components of H (sent by Prover) are actually disconnected from each other.
Thaler [38] gave an [n, n]-scheme for this subproblem (thus obtaining the first [n, n]-scheme
for MaxMatching), while Chakrabarti and Ghosh [14] gave a [t3, s2]-scheme for any ts = n

(thus designing the first frugal scheme for MaxMatching, though suboptimal). The latter
work notes that all other sub-checks for MaxMatching can be done by optimal frugal
schemes (see [14], Section 4).

Optimal Frugal Scheme. To optimally check that the purported connected components
of H are indeed disconnected from each other, we use the InducedEdgeCount scheme
as a subroutine. Prover streams the vertices in H by listing its connected components in
some order 〈U1, . . . , U`〉. Verifier uses Lemma 6 to count m1 := |E(H)| (invoking that lemma
with a single subset V (H)). In parallel, using the same scheme, Verifier computes the sum
m2 =

∑`
i=1 |E(G[Ui])|. The subsets Ui are pairwise disconnected iff m2 = m1, which Verifier

checks. The sub-checks of whether Uis are indeed pairwise disjoint (as sets) and whether
U∗ t V (H) = V (G) can be done via fingerprinting (as in Section 1.5).

Help and verification costs. Prover streams U∗ and the vertices in H in a certain order,
which adds O(n logn) bits to the hcost of the InducedEdgeCount protocol. The vcost
stays the same, asymptotically, giving us an [n+ h, v]-scheme for MaxMatching for any
h, v with hv = n2. Overall, we have established the following theorem.

I Theorem 8. There is an [nt, s]-scheme for MaxMatching. This is optimal up to
logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2) [12].

Protocol for Space Larger Than n. There is no laconic scheme known for the general
MaxMatching problem. The barrier seems to be that a natural witness for the problem is
an actual maximum matching of the graph, which can be of size Θ(n). We show that large
maximum matching size α′(G) is indeed the sole barrier to obtaining a laconic scheme. In
particular, for any graph G, we give a scheme for MaxMatching with hcost α′(G). This
yields a laconic scheme for the case when α′(G) = o(n). We defer the proof to Appendix A.

I Theorem 9. For any h, v with hv > n2 and v > n, there is an [α′ + h, v]-scheme for
MaxMatching, where α′ is the size of the maximum matching of the input graph. In
particular, there is an [α′, n2/α′]-scheme.
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4.2 Applications to Other Graph Problems
Here, we state the results we obtain for several graph problems by applying InducedEdge-
Count and CrossEdgeCount. The details and proofs appear in Appendix B.

We apply the edge-counting protocols to solve the triangle-counting problem in both the
standard edge arrival and the vertex arrival (adjacently list) streaming models and obtain
the following theorems.

I Theorem 10. For any h, v with hv > n2, there is an [m + h, v]-scheme for Triangle-
Count. In particular, there is an [m,n2/m]-scheme.

I Theorem 11. For any h, v with hv > n2, there is an [h, v]-scheme for TriangleCount-
Adj.

We obtain optimal frugal schemes for the fundamental graph problems of maximal
independent set (MIS) and for topological sorting and acyclicity testing in directed graph
streams.

I Theorem 12. For any t, s with ts = n, there is an [nt, s]-scheme for MIS. This is optimal
up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

I Theorem 13. For any t, s with ts = n, there is an [nt, s]-scheme for TopoSort. This is
optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

I Corollary 14. For any t, s with ts = n, there is an [nt, s]-scheme for Acyclicity. This
is optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

Finally, we show that we can apply edge-counting schemes to count the number of
connected components of a graph.

I Theorem 15. For any t, s with ts = n, there is an [nt, s]-scheme for counting the number
of connected components of an input graph.

5 The Single-Source Shortest Path Problem

In the single-source shortest path (SSSP) problem, the goal is to find the distances from a
source vertex vs to every other vertex reachable from it. In Section 5.1, we give a [Dnt, s]-
scheme for the unweighted version, whenever ts = n. If s = o(n), Verifier does not have
enough space to store the output; therefore, we aim for a protocol where Prover streams the
output, and Verifier checks that it is correct using o(n) space, thus achieving a frugal scheme.

In Section 5.2, we state our results for weighted SSSP for the two different weight update
models (vanilla and turnstile) described in Section 1.5. The proofs follow in Appendix C.

5.1 Unweighted SSSP
We shall design a scheme that works even if the same edge appears multiple times in the
stream (unlike prior work [18] that assumes that an edge appears at most once).

Prover sends distance labels d̂ist[v] for all v ∈ V , claiming that d̂ist[v] = dist(vs, v),
the actual distance from the source vertex vs to v. Let the radius-d ball around vs be
Bd := {v ∈ V : dist(vs, v) 6 d} and let B := {Bd : d ∈ [D]} be the family of such balls. Let
B̂d be the corresponding balls implied by Prover’s d̂ist labels, and B̂ := {B̂d : d ∈ [D]}.
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To check correctness, Verifier uses fingerprinting (Section 1.5) modified as follows. Letting
B, B̂ also denote the respective characteristic vectors, define fingerprint polynomials

ϕB(X,Y ) :=
∑
i∈[n]

∑
d∈[D]

Bd(i)XiY d , ϕB̂(X,Y ) :=
∑
i∈[n]

∑
d∈[D]

B̂d(i)XiY d ,

As the d̂ist labels are streamed, Verifier constructs the fingerprint ϕB̂(β1, β2) for some
β1, β2 ∈R F.

Over the course of the protocol, using further help from Prover, Verifier will construct
the sets Bd inductively and, in turn, the “actual” fingerprint ϕB(β1, β2). The next claim
shows that comparing this with ϕB̂(β1, β2) validates Prover’s d̂ist labels.

B Claim 16. If B̂d = Bd for all d, then d̂ist[v] = dist(vs, v) for all vertices v.

Proof. Suppose not. Let d∗ be the smallest d such that ∃u ∈ Bd∗ with d̂ist[u] 6= dist(vs, u).
Therefore, dist(vs, u) = d∗. Now, d∗ cannot be 0 since vs is the only vertex in B0 and Verifier
would reject immediately if d̂ist(vs) 6= 0. Since Bd∗ = B̂d∗ , we have u ∈ B̂d∗ . This means
d̂ist(u) 6 d∗. Since d̂ist(u) 6= d∗, we have d̂ist(u) 6 d∗− 1. Thus, u ∈ B̂d∗−1, i.e., u ∈ Bd∗−1,
which is a contradiction to the minimality of d∗. C

As before, A denotes the adjacency matrix of the graph. Putting

qd(u) :=
∑
v∈V

Bd(v)A(v, u) , for each u ∈ V , (14)

we have Bd+1 = {u ∈ V : qd(u) 6= 0} . (15)

To apply the shaping technique to (14), rewrite v as (x, y) ∈ [t]× [s]. This reshapes A into a
t × s × n array a(x, y, u) and Bd into a t × s array bd(x, y). As usual, let ã and b̃d be the
respective F-extensions for a suitable finite field F. Then, Equation (14) gives

qd(u) =
∑
x∈[t]

pd(x, u) , where (16)

pd(X,U) :=
∑
y∈[s]

b̃d(X, y) ã(X, y, U) . (17)

Stream processing. Verifier picks r1, r2 ∈R F and maintains ã(r1, y, r2). When he sees
vertices in B1, i.e., vs and its neighbors, he maintains b1(r1, y) for all y ∈ [s] and also
updates the fingerprint ϕB(β1, β2) accordingly.

Verifier wants to construct the values bd(r1, y) inductively for d ∈ [D]. For constructing
bd+1 values for some d, he wants all u such that qd(u) 6= 0 (Equation (15)) in streaming
order since he doesn’t have enough space to either store the entire polynomial of degree
n− 1 that agrees with qd (so as to go over all evaluations), or to parallelly evaluate it at n
values while its coefficients are streamed. Hence, he asks for the following help message.

Help message processing. Prover continues her proof stream by sending 〈p̂1,Q1,. . . ,p̂D, QD〉,
where Qd := 〈q̂d(u) : u ∈ V 〉, claiming that p̂d ≡ pd and q̂d(u) = qd(u) for each d ∈ [D]
and u ∈ [n].
While p̂d is streamed, Verifier computes the following in parallel:
p̂d(r1, r2);
pd(r1, r2), using Equation (17);
the fingerprint gd :=

∑
u∈[n]

∑
x∈[t] p̂d(x, u)βu (for some β ∈R F).
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After reading p̂d, he checks whether p̂d(r1, r2) = pd(r1, r2). If so, he believes that p̂d ≡ pd
and, in turn, that gd =

∑
u∈[n] qd(u)βu (by Equation (16)). Next, as Qd is streamed,

Verifier computes the fingerprint g′d :=
∑
u∈[n] q̂d(u)βu.

For each u with q̂d(u) 6= 0, due to Equation (15) (and assuming for now that the
q̂d values are correct), he treats u as a stream update for Bd+1, and (i) maintains
bd+1(r1, y) for all y ∈ [s], and (ii) accordingly updates the fingerprint ϕB(β1, β2).

After reading Qd, he checks if the fingerprints gd and g′d match. If they do, he believes
that all q̂d values in Qd were correct and hence, the bd+1 values he constructed are correct
as well. He moves on to the next iteration, i.e., starts reading p̂d+1.

Final Verification. After the Dth iteration, Verifier checks if the two fingerprints ϕB(β1, β2)
and ϕB̂(β1, β2) match. If the check passes, then he believes that the d̂ist labels were
correct, at least upto distance D (by Claim 16). Finally, he checks if fingerprints for BD
and BD+1 match to verify that vertices in V \BD are indeed unreachable.

Error probability. Verifier does O(D) fingerprint-checks and O(D) sum-checks, using degree-
O(n) polynomials. Using |F| > n3 (and a union bound), the soundness error is < 1/n.

Help and verification costs. The set of d̂ist labels sent by the Prover has size Õ(n). Each
polynomial p̂d has nt monomials and each Qd has O(n) field elements, and hence, size
Õ(n). Therefore, the total hcost is Õ(Dnt). Initially, the Ã and b̃1 values are stored
using Õ(s) space. Next, the b̃d and gd values are maintained reusing space of bd−1 and
gd−1 values respectively. We also use O(1) many other fingerprints that take O(logn)
space each. Hence, the total vcost is Õ(s).

I Theorem 17. There is a [Dnt, s]-scheme for unweighted SSSP, where D = max
v∈V

dist(vs, v).

I Corollary 18. There is a [Knt, s]-scheme for st-ShortestPath, where K = dist(vs, vt).

Proof. The protocol for SSSP incurs a factor of D in the hcost since it constructs Bd for
each d ∈ [D]. For the simpler st-ShortestPath problem, we can inductively construct
balls and stop as soon as we find the destination vertex vt in some Bd (i.e., get q̂d−1(vt) 6= 0).
We must find it in BK where K is the length of a shortest vs–vt path. Thus, we will only
incur a factor of K in the hcost, which implies a [Knt, s]-scheme for st-ShortestPath. J

Thus, we generalize the [Dnt, s]-scheme of Cormode et al. [18] from st-ShortestPath
to SSSP. Our result for st-ShortestPath generalizes the [Kn, n]-scheme of Chakrabarti
and Ghosh [14] by giving a smooth tradeoff and also improves upon the [Dnt, s]-scheme of
Cormode et al. [18], since K can be arbitrarily smaller than D.

5.2 Weighted SSSP

We consider the more general weighted version of SSSP in the turnstile and the vanilla weight
update models (see Section 1.5 for the definitions) and obtain the following results. The
details of the schemes along with the proofs of correctness appear in Appendix C.

I Theorem 19. There is a [DWn,n]-scheme for weighted SSSP in the turnstile weight
update model.

I Theorem 20. There is a [Dn,Wn]-scheme for weighted SSSP in the vanilla streaming
model.
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A Maximum Matching Redux (Proof of Theorem 9)

In Section 4.1, we gave a frugal scheme for MaxMatching, i.e., one that has hcost > n and
vcost 6 n. Here, we show that we can get a laconic scheme, i.e., one with hcost = o(n) and
vcost = ω(n) as long as the maximum matching size is o(n).

Let H = G \ U∗, where U∗ is as in the MaxMatching protocol in Section 4.1, and let
U1, . . . , U` be the connected components of H. By the Tutte-Berge formula (Equation (13)),
we have 2k = |U∗|+ (n− odd(H)). This leads to the following observations.

I Observation 21. |U∗| = O(k).

I Observation 22. The number of edges in a spanning forest of H is |V (H)| − ` 6 n −
odd(H) = O(k).

We now describe our protocol, which is along the lines of the protocol in Section 4.1, but
this time we crucially use the fact that we are allowing Verifier a space usage of v > n.

To show that α′(G) > k, Prover sends a matchingM of size k. Verifier storesM explicitly
and checks that it is indeed a matching. Then, he verifies that M ⊆ E using the Subset
Scheme (Fact 3). Therefore, this part of the scheme uses hcost Õ(k + h) and vcost Õ(v) for
any h, v with hv = n2 and v > n.

Recall from Section 4.1 that to show that α′(G) 6 k, it suffices to compute odd(H).
Prover sends the set U∗. By Observation 21, this takes Õ(k) hcost. Verifier has Ω(n) space,
and hence, he can store V \ U∗ = V (H). Next, Prover sends a spanning forest F of H. By
Observation 22, this again incurs hcost Õ(k). Verifier stores F and verifies that F ⊆ E using
the Subset Scheme (Fact 3). From F , Verifier explicitly knows the purported connected
components U1, . . . , U` of H. He finally verifies that Ui’s are disconnected from each other by
checking that all edges in H are contained in these components. He can do this by checking
whether |E ∩ (V (H)× V (H))| = |E ∩ (∪`i=1Ui × Ui)| using the Intersection Scheme (Fact 3).
If the check passes he goes over the Uis to compute odd(H) and thus, this part can also be
solved using a [k + h, v] scheme for any h, v with hv = n2 and v > n. Hence, we obtain the
following theorem.

I Theorem 9. For any h, v with hv > n2 and v > n, there is an [α′ + h, v]-scheme for
MaxMatching, where α′ is the size of the maximum matching of the input graph. In
particular, there is an [α′, n2/α′]-scheme.

B Applications of Edge-Counting to Other Graph Problems

In Section 4.1, we used a scheme for InducedEdgeCount to obtain an optimal frugal
scheme for MaxMatching. Below, we give applications of edge-counting schemes to several
other well-studied graph problems.

APPROX/RANDOM 2020
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Triangle-Counting. A scheme for TriangleCount follows immediately from
InducedEdgeCount. For v ∈ [n], set the subsets Uv = N(v), the neighborhood of
vertex v. Then, observe that InducedEdgeCount returns three times the total number
of triangles in the graph. The sets Uv, however, need to be sent in some order by Prover,
and so the additional hcost to InducedEdgeCount is Õ (

∑
v |N(v)|) = Õ(m). As Prover

basically repeats the edge stream in a different order, we can check if it’s consistent with the
input stream by fingerprinting (see Section 1.5). Hence, we get an [m+ h, v]-scheme for any
h, v with hv = n2.

I Theorem 10. For any h, v with hv > n2, there is an [m + h, v]-scheme for Triangle-
Count. In particular, there is an [m,n2/m]-scheme.

The only other scheme for TriangleCount achieving hv = n2 tradeoff with vcost = o(n)
was an [n2, 1]-scheme by Chakrabarti et al. [12]. Our result generalizes it for any graph with
m edges, thus achieving a better hcost and a smooth tradeoff for sparse graphs.

We note that in the above scheme, Prover needs to send the sets Uv = N(v) because the
InducedEdgeCount protocol needs the neighborhood of each vertex to arrive contiguously
in the stream. This is essentially the input stream order in the adjacency-list or the vertex-
arrival streaming model. Thus, for the problem TriangleCount-Adj, Verifier gets the Uvs
in the desired order as part of the input; so Prover need not repeat them, saving the huge
Õ(m) hcost. However, there is another issue in directly applying the InducedEdgeCount
subroutine in this case. In the definition of InducedEdgeCount, we assume that all the
edges in the graph arrive before the vertex subsets Ui. Here, the Uvs and the edges arrive
in interleaved manner (although each Uv arrives contiguously). But we show that we can
still apply the scheme for InducedEdgeCount to get the desired output. Let the order in
which the Uvs appear be 〈U1, . . . Un〉, and let Gv denote the graph consisting of edges seen
till the arrival of Uv = N(v). Then, applying InducedEdgeCount, what we count is∑

v∈[n]

|E(Gv[N(v)])| =
∑
v∈[n]

#{triangles incident on v in Gv} = 2T .

The last equality follows since every triangle whose vertices appear in the order 〈v1, v2, v3〉
will be counted twice: once when v2 arrives and once when v3 arrives. We therefore obtain
the following theorem.

I Theorem 11. For any h, v with hv > n2, there is an [h, v]-scheme for TriangleCount-
Adj.

Maximal Independent Set (MIS). Recent works [5, 17] have studied the problem of finding
a maximal independent set in the basic data streaming model. They show a lower bound
of Ω(n2) for a one-pass streaming algorithm. This implies a lower bound of hv > n2 for
any [h, v]-scheme for MIS. Hence, we aim for hv = n2 and describe a frugal scheme using
InducedEdgeCount. Since the output size of the problem can be Θ(n), it would only
make sense in the frugal regime if the Prover sends the output as a stream and the Verifier
checks that it is valid using o(n) space.

Let U be an MIS in the graph G. Prover sends U and Verifier uses InducedEdgeCount
to count the number of edges in G[U ] and verifies that it equals 0. If the check passes, U
is indeed an independent set. It remains to check the maximality of U . If U is maximal,
then, for each vertex v in G \ U , there must be a vertex u in U , such that (v, u) is an edge.
Prover points out such a vertex u ∈ U for each v ∈ G \ U . Let F denote this set of |G \ U |
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purported edges. Now, we use Subset Scheme (Fact 3) to verify that F ⊆ E, i.e., all these
edges are actually present in G. We can use fingerprinting (as in Section 1.5) to check that
F contains an edge for each vertex in G \ U and the Intersection Scheme to verify that the
set of their partners is disjoint from G \ U , i.e., belong to U . Thus, the additional hcost
to InducedEdgeCount, Subset, and Intersection Schemes is Õ(n), the number of bits
required to send U and F . Therefore, by Lemma 6, we get an [n+ h, v]-scheme for MIS for
any h, v with hv = n2. Thus, our scheme is optimal for the frugal regime.

I Theorem 12. For any t, s with ts = n, there is an [nt, s]-scheme for MIS. This is optimal
up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

Acyclicity Testing and Topological Sorting. We now turn to the Acyclicity problem in
directed graphs. It is easy to prove that a graph is not acyclic by showing the existence of a
cycle C. Verifier checks that C ⊆ E using Subset Scheme (Fact 3). Hence, this can be done
using an [h, v]-scheme for any h > |C|.

The more interesting case is when the graph is indeed acyclic. Note that a directed
graph is acyclic if and only if it has a topological ordering. Thus, it suffices to show a valid
topological ordering of the vertices. TopoSort is a fundamental graph algorithmic problem
of independent interest. Acyclicity has a one-pass lower bound of Ω(n2) in the basic data
streaming model. Recently, Chakrabarti et al. [15] showed that TopoSort also requires
Ω(n2) space in one pass. These translate to a lower bound of hv > n2 for any [h, v]-scheme
for these problems. Hence, we aim for a scheme with hv = n2 and design a protocol for
TopoSort in the frugal regime. Since this problem has output size Θ̃(n), we aim for a
protocol where Prover sends a topological ordering of the graph and Verifier checks its validity
using o(n) space. Moreover, this protocol can be used for the YES case of Acyclicity.

Verifier uses CrossEdgeCount to solve this. As Prover sends the topological order
〈v1, . . . , vn〉, for each i ∈ [n − 1], Verifier sets Ui = {v1, . . . , vi} and Wi = {vi+1} for
CrossEdgeCount. Thus, the protocol counts precisely the number of forward edges
induced by the ordering. If it equals m, then the ordering is indeed a valid topological order.
Note that since Ui+1 = Ui ∪ {vi+1}, Prover doesn’t need to send Ui+1 afresh; just vi+1 is
enough for Verifier to update his sketch. Verifier can use fingerprinting (see Section 1.5)
to make sure that precisely the set V was sent in some order. Hence, the additional hcost
to CrossEdgeCount is the number of bits required to express the topological order, i.e.,
Õ(n). Therefore, by Lemma 7, we get a [n+ h, v]-scheme for any hv = n2.

I Theorem 13. For any t, s with ts = n, there is an [nt, s]-scheme for TopoSort. This is
optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

I Corollary 14. For any t, s with ts = n, there is an [nt, s]-scheme for Acyclicity. This
is optimal up to logarithmic factors, since any (h, v)-scheme is known to require hv = Ω(n2).

For dense graphs, our result generalizes the [m, 1]-scheme of Cormode et al. [18] for
Acyclicity by achieving a smooth tradeoff.

Graph Connectivity. The graph connectivity problem has garnered considerable attention in
the basic and annotated streaming settings [2, 12, 38]. For any t, s with ts = n, Chakrabarti
et al. [12] gave an [nt, s]-scheme that determines whether an input graph is connected or
not. Their scheme cannot, however, solve the more general problem of returning the number
of connected components. The [t3, s2]-scheme (for any ts = n) of Chakrabarti and Ghosh
[14] does solve this problem, but has a worse tradeoff. As noted in Section 4.1, we can
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use InducedEdgeCount to check that all purported connected components are indeed
disconnected from each other. On the other hand, the scheme of Chakrabarti et al. [12]
can check whether each component is actually connected. Hence, we can verify the number
of connected components claimed by Prover by running these schemes parallelly. Thus, we
generalize the result of Chakrabarti et al. [12] by obtaining an [nt, s]-scheme for counting
the number of connected components of a graph.

I Theorem 15. For any t, s with ts = n, there is an [nt, s]-scheme for counting the number
of connected components of an input graph.

C Details of Weighted SSSP Schemes

Here, we give full details of the schemes for weighted SSSP in our two streaming models,
thereby proving Theorems 19 and 20.

Turnstile weight update (Proof of Theorem 19). Assume that the edge weights are
positive integers. Each stream update increments/decrements the weight of an edge. The
distance from vertex u to vertex v refers to the weight of the shortest path from u to v. Let
D be the longest distance from the source s to any other vertex reachable from it, and W be
the maximum weight of an edge.

Define

δw(X) :=
∏

w′∈[W ]
w′ 6=w

(X − w′)
/ ∏
w′∈[W ]
w′ 6=w

(w − w′) .

Let A denote the adjacency matrix of the weighted graph G, i.e., A(u, v) is the weight
of the edge (u, v). Let Bd (resp. Nd) denote the set of vertices at a distance of at most
(resp. exactly) d from the source vertex vs. Then,

Nd+1 = {u ∈ V \Bd : pd(u) 6= 0} , (18)

where pd(U) =
∑
v∈Bd

δw(v)(Ã(v, U)) and w(v) = d+ 1− dist[v] . (19)

Stream processing. Verifier chooses r ∈R F and maintains Ã(v, r) for all v. He stores B1
with dist[v] labelled as 1 for each v ∈ B1.

Help message processing and verification. Prover sends polynomials p̂d and claims that
p̂d ≡ pd for each d ∈ [D]. Verifier computes Bd inductively for d ∈ [D] as follows.
Assume that, for some d ∈ [D − 1], he has the set Bd with dist[v] labeled on each vertex
v ∈ Bd; this holds initially as he has stored B1. He computes pd(r) using Equation (19)
and checks whether p̂d(r) = pd(r). If the check passes, he believes that p̂d ≡ pd and
evaluates p̂d(u) for each u ∈ V \ Bd and constructs Nd+1 using Equation (18). Then,
Bd+1 is given by Nd+1 ]Bd.
After BD is obtained, we get all vertices reachable from s along with their distances from s.
Finally, Verifier checks if the other vertices are indeed unreachable from s by verifying
that there is no cross-edge between BD and V \ BD, i.e., if E ∩ (BD × (V \ BD)) = ∅.
(Intersection scheme, see Fact 3)

Error probability. Verifier uses the same element r for O(D) invocations of the sum-check
protocol, where each application of the sum-check protocol is to a univariate polynomial
of degree O(Wn). Choosing |F| > DWn2, the soundness error for each invocation of the
sum-check protocol is at most 1/(Dn). Taking a union bound over all O(D) invocations,
we get that the total error probability of the protocol is at most O(1/n).
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Help and verification costs We have deg pd = O(Wn) for each d ∈ [D] and hence, hcost is
Õ(DWn). Verifier needs to store all vertices and Ã(v, r) for each v ∈ [n], and hence,
vcost is Õ(n). The final disjointness can be checked by an [n, n] intersection scheme.

I Theorem 19. There is a [DWn,n]-scheme for weighted SSSP in the turnstile weight
update model.

Vanilla Stream (Proof of Theorem 20). We now describe a protocol for SSSP in the
model where the edges arrive with their weights, without any further update on them. This
is the “vanilla” streaming model.

At the end of the stream, Prover sends the distances dist[v] and prev[v] – the parent of
v in the shortest path tree rooted at s – for all v ∈ V . Verifier checks whether the edges
and their weights implied by this proof are correct, using a [Wn,n] subset scheme. Thus, if
Prover is honest, we get the distance as well as shortest path from s to each vertex. But
we also need to check that there is no path to any vertex shorter than the ones claimed by
Prover. We describe a protocol for this.

For u, v ∈ V and w ∈ [W ], define the indicator function f as f(u, v, w) = 1 iff A(u, v) = w.
Let f̃ be the F-extension of f , for some large finite field F.

Retain the definitions of Bd and Nd from last section with the definition of the polynomial
pd changed to

pd(U) =
∑
v∈Bd

f̃(v, U, d+ 1− dists[v]) (20)

Hence, it still holds that

Nd+1 = {u ∈ V \Bd : pd(u) 6= 0} . (21)

Stream processing. The stream updates are of the form (u, v, w) denoting that A(u, v) = w.
Verifier picks r ∈R F and maintains f̃(v, r, w) for each v ∈ V and w ∈ [W ]. He also stores
the set B1 with dists labels set to 1 for each vertex in the set.

Help message processing and verification. This part is similar to the turnstile weight up-
date protocol. Of course, this time, the Verifier computes pd(r) using Equation (20).

Error probability. Each polynomial pd has degree O(n). Verifier does sum-checks for O(D)
such polynomials. Choosing |F| � Dn, we can make the error probability small by union
bound.

Help and Verification costs. Since the degree of each pd is at most n, the total hcost is
Õ(Dn). Verifier stores f̃(v, r, w) for each v ∈ V and w ∈ [W ], which requires Õ(Wn)
space. We also need to store all vertices as we go on assigning the distance labels. Hence,
the total vcost of this protocol is Õ(Wn).

I Theorem 20. There is a [Dn,Wn]-scheme for weighted SSSP in the vanilla streaming
model.
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