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Abstract
Preferential attachment graphs are random graphs designed to mimic properties of real word
networks. They are constructed by a random process that iteratively adds vertices and attaches
them preferentially to vertices that already have high degree. We prove various structural asymptotic
properties of this graph model. In particular, we show that the size of the largest r-shallow clique
minor in Gn

m is at most log(n)O(r2)mO(r). Furthermore, there exists a one-subdivided clique of size
log(n)1/4. Therefore, preferential attachment graphs are asymptotically almost surely somewhere
dense and algorithmic techniques developed for structurally sparse graph classes are not directly
applicable. However, they are just barely somewhere dense. The removal of just slightly more than a
polylogarithmic number of vertices asymptotically almost surely yields a graph with locally bounded
treewidth.
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1 Introduction

Large scale complex networks occur for example in the context of social-, biological, and
technical networks. Even though these are vastly different environments, all these networks
follow the same common laws. Many models [18, 23, 19, 8, 20] have been proposed that aim
to mimic complex networks. The most prominent model might be the preferential attachment
graph model (also called Barabási–Albert model) [3]. These graphs are created by a random
process that iteratively adds new vertices and randomly connects them to already existing
ones. Every time a new vertex is added, it is connected to the remaining graph via m
random edges. Thereby, the probability that an edge from the new vertex to another vertex
v is drawn is proportional to the current degree of v (see Section 2.3 for a more rigorous
definition). The vertices are denoted by v1, v2, v3, . . . in order of insertion. We denote the
preferential attachment graph with n vertices and nm edges by Gnm.

This process creates a certain imbalance: The degree of low-degree vertices is unlikely
to increase and the degree of high-degree vertices is likely to increase even further. This so
called “the rich get richer”-effect has has been widely recognized as a reasonable explanation
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of the heavy tailed degree distribution of real networks. The preferential attachment model
is particularly interesting from the point of mathematical analysis because of its simple
formulation and interesting characteristics.

1.1 Previous Results
There exists a wide range of results on the asymptotic structure of preferential attachment
graphs (for an overview see [31]). The radius of these graphs has been shown to be logar-
ithmic [5, 12], which means they exhibit small world behavior [1, 21]. Various aspects of their
degrees have been studied [13, 2, 24, 29, 28]. In particular, the degree distribution follows a
power-law with exponent three [6]. However, unlike many real networks [32, 30], preferential
attachment graphs have a vanishing clustering coefficient [7]. This result has been obtained
by bounding the number of certain subgraphs in preferential attachment graphs. For example,
the expected number of triangles or l-cycles in Gnm has been shown to be log(n)Θ(1) for fixed
l and m [7], which is lower than what is to be expected in real networks [22].

1.2 Our Results
In this work, we obtain new insights to the clustering behavior of preferential attachment
graphs. We show that there is a cluster centered around a logarithmic number of tightly
connected hubs that has previously not been discussed. On the other hand, removing these
central hubs asymptotically yields a graph in which every r-neighborhood is a tree with
at most one extra edge. In particular, at most two neighbors of a vertex are connected.
This drastically bounds the local clustering coefficient. In summary, we show that the first
logarithmically many vertices are the main source of structural complexity in preferential
attachment graphs and removing them yields a locally extremely sparse graph.

We prove these results one by one. At first, we show that preferential attachment
graphs contain one-subdivisions of cliques of logarithmic size. A one-subdivision is the graph
obtained by replacing every edge with a path of length two.

I Theorem 9. There exists a constant c such that for m,n ∈ N, m ≥ 2, n ≥ c, the
preferential attachment graph Gnm contains a one-subdivided clique of size at least log(n)1/4

with a probability of at least 1− e− log(n)1/4/c.

Graph classes which contain subdivided cliques of logarithmic size cannot for example
be planar or have bounded treewidth. In fact, they are somewhere dense, as we will
discuss later on. The previous theorem is complemented by showing that removing the first
polylogarithmically many vertices of a preferential attachment graph leaves a graph with a
locally extremely sparse, tree-like structure.

I Corollary 13. There exists a constant c such that for l, n,m ∈ N+ and b = dlog(n)cl2mcle
the graph Gnm[vb+1, . . . , vn] contains a.a.s. no subgraph with up to l vertices and more edges
than vertices.

Forbidding subgraphs with more edges than vertices is quite restrictive. The previous
statement states that for a fixed m, removing log(n)O(l2) vertices leads asymptotically to a
graph in which all connected subgraphs with l vertices have either l or l − 1 edges, i.e., they
are either a tree or a tree with one extra edge. This means for example that the removal of
log(n)O(1) vertices yields asymptotically a graph with no cliques of size four. It also yields
the following statement about tree-like neighborhoods in preferential attachment graphs.
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I Theorem 16. There exists a constant c such that for r, n,m ∈ N+ and b = dlog(n)cr2
mrce,

a.a.s. every r-neighborhood of Gnm[vb+1, . . . , vn] is either a tree or a tree with one additional
edge.

1.3 Sparsity
An often observed property of real networks is a relatively low average degree. For example
in a social network, the vast majority of members only has relatively few neighbors, especially
compared to the set of all potential neighbors. This leads us to a concept called structural
sparsity [25]. Sparsity has been deeply studied and has lead to many interesting results. In
particular, there exists a large body of work focusing on algorithmic applications of sparsity
(for example [4, 9, 14, 16, 17]). Many graph problems that are hard for general graphs
become easier on structurally sparse graph classes.

Sparsity is not a property of single graphs, but a property of graph classes. An import-
ant cornerstone of sparsity theory are nowhere dense and somewhere dense graph classes
introduced by Nešetřil and Ossona de Mendez [25]. These graph classes are defined using
shallow topological clique minors. A graph G contains an r-shallow topological clique minor
of size k if a subgraph of G is isomorphic to a graph obtained by subdividing a k-clique
up to 2r times. The size of the largest r-shallow topological clique minor of a graph G is
denoted by ω(G Õ r). A graph class is nowhere dense if for every radius r and every graph
G in the graph class, ω(G Õ r) ≤ f(r) for some function f(r) independent of the graph size.
Conversely, if ω(G Õ r) is unbounded for some r, the graph class is said to be somewhere
dense. Every graph class is either nowhere or somewhere dense. For a rigorous definition of
these two concepts see Section 2.4.

Nowhere dense graph classes generalize many different sparse graph properties such as
bounded degree, planarity, bounded treewidth, bounded genus or bounded expansion [25]. An
important algorithmic result is that every problem definable in first-order logic can be solved
in almost linear time on nowhere dense graph classes [16]. On the other hand, somewhere
density defines for many problems a natural barrier in tractability. The model checking
problem for first-order logic on monotone somewhere dense graph classes is AW[∗]-complete
and therefore as hard as on general graphs [16].

In order to lift deep algorithmic results for sparse graph classes to random graphs, people
started analyzing which random graph models are somewhere or nowhere dense in the
limit. Roughly speaking, a random graph model is asymptotically almost surely (a.a.s.)
nowhere dense if for large graphs ω(G Õ r) is with probability one bounded by some function
f(r) independent of the graph size and a.a.s. somewhere dense if it is with probability one
unbounded. If a random graph model is a.a.s. nowhere dense it is not a.a.s. somewhere
dense, and vice versa. However, it is possible that a random graph model is neither a.a.s.
somewhere nor a.a.s. nowhere dense. Again, for more details see Section 2.4.

Erdős–Rényi graphs, random intersection graphs, Chung–Lu graphs, and the configuration
model have been classified with respect to a.a.s. somewhere and nowhere density [26, 10, 15].
This has lead directly to efficient algorithms on random graphs. Preferential attachment
graphs are known not to be a.a.s. nowhere dense [10] but a complete classification remained
open. In this work, we show that shallow topological clique minors have polylogarithmic size
and therefore that the preferential attachment model is a.a.s. somewhere dense.

I Theorem 1. Let r ∈ N+, m ≥ 2. Then a.a.s. log(n)1/4 ≤ ω(Gnm Õ r) ≤ log(n)O(r2)mO(r).
In particular Gnm is a.a.s. somewhere dense.

APPROX/RANDOM 2020
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This is a direct consequence of Theorem 9 and Theorem 15. Our result implies that algorithmic
techniques developed for nowhere dense graph classes do not directly transfer to preferential
attachment graphs. However, shallow topological clique minors have only polylogarithmic
size. Hence, preferential attachment graphs are “just barely” somewhere dense. In particular,
the removal of few vertices places the random graph model a.a.s. in a very sparse graph
class, where all connected subgraphs of bounded diameter are “tree-like.” Note that locally
bounded treewidth implies nowhere denseness [25].

I Theorem 17. Let m ∈ N+ and g(n) : N → N be a function with g(n) = ω(1). If we
remove the first log(n)g(n) vertices from Gnm the remaining graph has a.a.s. locally bounded
treewidth.

2 Preliminaries

2.1 Graph Notation
We use common graph theory notation [11]. Furthermore, an r-neighborhood is an induced
subgraph with radius at most r.

2.2 Probabilities and Random Graph Models
In this work, a random graph model (such as the preferential attachment model) is a sequence
G = (Gn)n∈N, where Gn is a probability distribution over undirected simple graphs with n
vertices (this means graphs have no self-loops or multi-edges). In slight abuse of notation,
we also write Gn for the random variable which is distributed according to Gn. This way, we
can lift graph notation to notation for random variables of graphs: For example edge set and
clique number of a random graph Gn are represented by random variables E(Gn) and ω(Gn).

2.3 The Preferential Attachment Graph Model
In this work we focus on the preferential attachment random graph model which we describe
in this subsection. It has been ambiguously defined in the original article by Barabási and
Albert [3]. The model generates random graphs by iteratively inserting new vertices and
edges. It depends on a parameter, usually denoted by m, which indicates the number of edges
attached to each newly created vertex. We follow the rigorous definition of Bollobás et al. [6]:
For a fixed parameter m the random process is defined by starting with a single vertex and
iteratively adding vertices, thereby constructing a sequence of graphs Ḡ1

m, Ḡ
2
m, . . . ,Ḡtm, where

Ḡtm has t vertices and mt edges (of which some may be self-loops). We define dtm(v) to be
the degree of vertex v in the graph Ḡtm. The random process for m = 1 works as follows. A
random graph is started with one vertex v1 that has exactly one self-loop. This graph is Ḡ1

1.
We then define the graph process inductively: Given Ḡt−1

1 with vertex set {v1, . . . , vt−1}, we
create Ḡt1 by adding a new vertex vt together with a single edge from vt to vi, where i is
chosen at random from {1, . . . , t} with

Pr[i = s] =


dt−1

1 (vs)
2t− 1 1 ≤ s ≤ t

1
2t− 1 s = t.

This means we add an edge to a random vertex with a probability proportional to its degree
at the time.
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For m > 1, the process can be defined by merging sets of m consecutive vertices in Ḡmt1
to single vertices in Ḡtm [6]. Let v′1, . . . , v′mt be the vertices of Ḡmt1 . The graph Ḡtm with
vertices v1, . . . , vt is constructing by merging v′(i−1)m+1, . . . , v

′
im into a single vertex vi. The

graph Ḡtm is a multigraph. The number of edges between vertices v′i and v′j in Ḡtm equals the
number of edges between the corresponding sets of vertices in Ḡmt1 . Self-loops are allowed.
We obtain a simple random graph Gnm from Ḡnm by removing all self-loops and replacing
multiple edges with a single edge.

2.4 Sparsity
At first, we define nowhere and somewhere density as a property of graph classes and then
lift the notation to random graph models. There are various equivalent definitions and we
use the most common definition based on shallow topological minors.

I Definition 2 (Shallow topological minor [27]). A graph H is an r-shallow topological minor
of a graph G if a graph obtained from H by subdividing every edge up to 2r times is isomorphic
to a subgraph of G. The set of all r-shallow topological minors of a graph G is denoted by
G Õ r. We define the maximum clique size over all shallow topological minors of G as

ω(G Õ r) = max
H∈G Õ r

ω(H).

I Definition 3 (Nowhere dense, somewhere dense [25]). A graph class G is nowhere dense
if there exists a function f , such that for all r and all G ∈ G, ω(G Õ r) ≤ f(r). A graph
class G is somewhere dense if for all functions f there exists an r and a G ∈ G, such that
ω(G Õ r) > f(r).

Observe that a graph class is somewhere dense if and only if it is not nowhere dense. We
lift these notions to random graph models using the following two definitions.

I Definition 4 (a.a.s. nowhere dense, a.a.s. somewhere dense). A random graph model G is
a.a.s. nowhere dense if there exists a function f such that for all r

lim
n→∞

Pr[ω(Gn Õ r) ≤ f(r)] = 1.

A random graph model G is a.a.s. somewhere dense if for all functions f there is an r such
that

lim
n→∞

Pr[ω(Gn Õ r) > f(r)] = 1.

While for graph classes the concepts are complementary, a random graph model can be
neither a.a.s. somewhere dense nor a.a.s. nowhere dense (e.g., if the random graph model is
either the empty or the complete graph, both with a probability of 1/2).

3 Lower Bounds

In this section we show that preferential attachment graphs are a.a.s. somewhere dense. We
do so by analyzing the probability that a preferential attachment graph of size n contains a
one-subdivided clique of size at least k = log(n)1/4 as a subgraph. Let this probability be pn.
We show that limn→∞ pn = 1. The proof works as follows: We start with a small preferential
attachment graph and pick a set of k vertices with high degree. These will be the principal
vertices of the one-subdivided clique. We then add vertices to the graph according to the

APPROX/RANDOM 2020



14:6 Maximum Shallow Clique Minors in Preferential Attachment Graphs

preferential attachment process. A one-subdivided clique of size k arises if for every pair of
principal vertices v and w, a new vertex u is added that is adjacent to both v and w. We
show that after n = k42k3 vertices have been inserted, with high probability there is at least
one connecting vertex for every pair of principal vertices.

We now describe an urn experiment that illustrates for a pair of principal vertices v,w
the probability that a new vertex u is connected to both u and v. This experiment has no
connection to Pólya Urns and is solely used for illustrative purposes. The experiment consists
of multiple rounds. In the ith round (we assume i ≥ 10), we define an urn containing i balls,
where

√
die balls are red,

√
die balls are blue, and the rest is black. In each round we draw

two balls uniformly at random from the urn. The experiment succeeds if we draw a red and
a blue ball in the same round. It is easy to see that the probability of success in the ith
round equals 2(

√
die/i)2. We observe that eventually the experiment succeeds because

1−
∞∏
i=10

(
1− 2

(√i
i

)2
)

= 1.

This experiment behaves similarly to the process of connecting two principal vertices. Two
principal vertices are connected in round i if the vertex vi is connected to both principal
vertices. The expected degree of the first vertex in a preferential attachment graph of size i
is proportional to

√
i. If we (naively) assume that the degrees of u and v at time i are at all

times exactly
√
i then a new vertex throws an edge to v or w with probability proportional to√

i/i and is connected to both with probability roughly 2(
√
i/i)2. Therefore, the probability

that in the ith step a new vertex u connects both v and w is proportional to the probability
that in the ith round of the urn experiment a red and a blue ball is drawn. Using similar
arguments we show in this section that the success probability of building a one-subdivided
clique also is high.

If we however alter the urn experiment and assume that in the ith round there are only
about

√
i/ log(i) red or blue balls we cannot guarantee success because

1−
∞∏
i=10

(
1− 2

(√i/ log(i)
i

)2
)
6= 1.

This means if the expected value of the degrees were just a logarithmic factor smaller then
our proof would not work. This suggests that preferential attachment graphs are “just barely”
a.a.s. somewhere dense. This also means we need lower bounds which guarantee that the
degrees of our principal vertices are not much smaller than their expected value, e.g., at most
a constant factor off. Bounds which guarantee a factor of 1/ log(i) would not be sufficient.

Unfortunately the probability distribution of the degree of a vertex is only well centered
around its expected value if its initial degree is already large (Proposition 5). We therefore
use Lemma 6 to find in a graph of size k4 with high probability k vertices with a degree of
roughly k. These vertices will be our principal vertices. For large k, their degree is centered
closely around its expected value for our technique to work.

In our proof of Theorem 9 we argue that with high probability for every pair of principal
vertices there will eventually be a vertex which is connected to both. One may try to prove
this by showing that with high probability the degrees of the principal vertices are well
centered at all times of the random process (roughly

√
i in the ith round for every i) and

then showing that the probability that the principal vertices will be connected under this
condition is high. However, it is highly non-trivial to bound the probability that an edge is
inserted during the preferential attachment process under the condition that something else
will happen afterwards. Therefore this approach does not work easily. It is much easier to
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condition under events that happen before in the random process. We therefore analyze the
random process over time and interleave the concentration bounds of the principal vertices
with bounds on the event that a new vertex connects a pair of principal vertices. This
interleaved analysis works as follows: Let Bi be the event that the degree of the principal
vertices is at least half their expected degree at time step i of the random process. We
prove Bi to be likely. For j slightly larger than i, one can easily obtain a good bound on
the probability that a new edge of the jth vertex is connected to a principal vertex under
the assumption Bi. Our calculations work in a way where whenever we assume a new event
Bi the small probability Pr[B̄i] is added to our failure probability (see Lemma 8). So if
we were to assume all events Bi, Bi+1, Bi+2, . . . our bound quickly becomes meaningless
as the sum Pr[B̄i] + Pr[B̄i+1] + Pr[B̄i+2] + · · · quickly becomes larger than one. But if we
assume exponentially spaced events Bi, B2i, B4i, B8i, . . . our bound on the failure probability
stays small enough and new vertices are still likely to be connected to our principal vertices,
allowing us to show in Theorem 9 that Gn2 contains a large one-subdivided clique.

The results of this section build upon the following concentration bound for vertex degrees.
We define dnm(S) =

∑
v∈S d

n
m(v) as the summed degree of S in Gnm.

I Proposition 5 ([13], Theorem 19). For t,m, d ∈ N+, 0 < ε ≤ 1/2, S ⊆ {v1, . . . , vt} with
Pr[dtm(S) = d] 6= 0 and d ≥ log(log(3tm))ε−200

Pr
[
(1− ε)

√
n

t
d < dnm(S) < (1 + ε)

√
n

t
d for all n ≥ t

∣∣∣ dtm(S) = d
]
≥ 1− e−ε

200d.

This bound is strong if the initial degree dtm(S) is large. At first, we show that there are
some vertices which have a reasonably high degree after a short number of steps.

I Lemma 6. There exists a constant c such that for k,m ∈ N, k ≥ c with probability at least
1− ke−k/c there exists a set of vertices X ⊆ {v1, . . . , vk2}, |X| = k such that dk4

m (x) ≥ mk/2
for all x ∈ X.

Proof. We partition the first k2 vertices into k sets of k vertices. Let S be one of these sets.
Since |S| = k and every vertex has at least degree m, we know that dk2

m (S) ≥ mk. Therefore

Pr
[
dk

4

m (S) ≤ 1
2mk

2
]
≤
∞∑

d=mk
Pr
[
dk

2

m (S) = d
]
· Pr
[
dk

4

m (S) ≤ 1
2

√
k4

k2 d
k2

m (S)
∣∣∣ dk2

m (S) = d
]
.

Since k ≥ c, we can choose c sufficiently large to always guarantee c ≥ 2200 and mk ≥
2200 log log(mk2). Using t = k2, n = k4, and ε = 1/2, Proposition 5 bounds the term above
by at most

∞∑
d=mk

Pr
[
dk

2

m (S) = d
]
· e−ε

200d ≤ e−k/c.

With a probability of at least 1− ke−k/c each of the k sets have at time k4 a total degree of
at least mk2/2 by the union bound. We define xi to be the vertex in the ith set that has the
highest degree after k4 steps. Since the set contains k vertices, xi has a degree of at least
mk/2. We set X = {x1, . . . , xk}. J

We now bound the probability that two principal vertices va, vb become connected under
the condition that they have high degree.

APPROX/RANDOM 2020
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I Lemma 7. We consider the preferential attachment process with m ≥ 2. Let k ∈ N and
a, b ≤ k4. Let Bi be the event that dim(va), dim(vb) ≥ m

√
i/4k. Let Aj,i with k4 < j ≤ i be

the event that the first two edges of at least one of the vertices vj , . . . , vi are incident to va
and vb, respectively. Then Pr[Āi+1,2i | Āj,i, Bi] ≤ e−

1
256k2 for k4 ≤ i and j ≤ i.

Proof. Let u > 0. Pr[Ai+u,i+u | Bi] is the probability that vertex vi+u is adjacent to both
va and vb under the condition that va and vb have degree at least m

√
i/4k at some earlier

time i. When vertex vi+u is inserted, the random process draws m ≥ 2 edges from vi+u to
earlier vertices. The probability that some vertex is chosen equals its degree divided by the
total number of edges in the graph at this time. The degree of va and vb is at least m

√
i/4k

at this point in time. Also there is a total of at most 2(i+ u)m edges in the graph. We can
therefore bound

Pr[Ai+u,i+u | Bi] ≥
( m
√
i/4k

2(i+ u)m

)2
=
( √

i

8(i+ u)k

)2
.

The same argument holds if we additionally assume some of the earlier vertices not to be
adjacent to both va and vb. Let j < i. Then

Pr[Ai+u,i+u | Āj,i+u−1, Bi] ≥
( √

i

8(i+ u)k

)2
.

We now consider the probability that no vertex in a sequence of vertices is adjacent to both
va and vb. The chain rule yields

Pr[Āi+1,2i | Āj,i, Bi] =
i∏

u=1
Pr[Āi+u,i+u | Āj,i+u−1, Bi]

≤
i∏

u=1

(
1−

( √
i

8(i+ u)k

)2)
≤
(

1−
( √i

16ik

)2)i
≤
(

1− 1
256ik2

)i
≤ e−

1
256k2 . J

Imagine a sequence of events A0, . . . ,Al−1 such that a preferential attachment graph
contains a large subdivided clique if any one of these events occurs. This means it is sufficient
to show that the probability Pr[Ā0 ∩ · · · ∩ Āl−1] is small. Assume we can only bound the
probability of event Āi under the condition Bi. The following technical observation gives a
good approximation of Pr[Ā0 ∩ · · · ∩ Āl−1] if the events Bi have a high probability.

I Lemma 8. Let A0, . . . ,Al,B0, . . . ,Bl be events. Then

Pr[Ā0 ∩ · · · ∩ Āl] ≤
l∑

0=1
Pr[B̄i] +

l∏
0=1

Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ Bi].

Proof. Let i ≤ l. We apply the chain rule and the law of total probability. Then

Pr[Ā0 ∩ · · · ∩ Āi] = Pr[Ā0 ∩ · · · ∩ Āi−1] Pr[Āi | Ā0 ∩ · · · ∩ Āi−1]
= Pr[Ā0 ∩ · · · ∩ Āi−1] Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ Bi] Pr[Bi]
+ Pr[Ā0 ∩ · · · ∩ Āi−1] Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ B̄i] Pr[B̄i]
≤Pr[Ā0 ∩ · · · ∩ Āi−1] Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ Bi] + Pr[B̄i].

We can now recursively apply this inequality, and use an upper bound of 1 for all factors in
front of Pr[B1], . . . ,Pr[Bl] when expanding the product, to get our claim. J
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We now use Lemma 6 and Lemma 7 to prove the main result of this section.

I Theorem 9. There exists a constant c such that for m,n ∈ N, m ≥ 2, n ≥ c, the
preferential attachment graph Gnm contains a one-subdivided clique of size at least log(n)1/4

with a probability of at least 1− e− log(n)1/4/c.

Proof. Let k ∈ N. We choose n = k42k3 which implies k ≥ log(n)1/4 for k ≥ 2. We will
prove this theorem by showing that k vertices in Gnm are with high probability pairwise
connected by a path of length two and thereby span a one-subdivided clique.

We know that if a vertex has high degree early on then their degree will be centered
closely around its expected values in the future (Proposition 5). Let us therefore assume
there is a set of vertices X ⊆ {v1, . . . , vk2}, |X| = k such that dk4

m (x) ≥ mk/2 for all x ∈ X.
We call these vertices principal vertices. Since n ≥ c, we have k ≥ log(c)1/4. We can choose
the constant c high enough such that according to Lemma 6 these principal vertices exist
with a probability of at least 1− ke−k/c.

Let us fix a pair of principal vertices va, vb and show that with high probability there is
a vertex that is adjacent to both va and vb. The higher the degree of va and vb the higher
the probability that a new vertex is adjacent. As in Lemma 7, we define for i ≥ k4, Bi
to be the event that dim(va), dim(vb) ≥ m

√
i/4k. Again using k ≥ log(c)1/4, we can assume

c large enough to guarantee mk/2 ≥ log(log(3k4m))2200. Since we have dk4

m (va) ≥ mk/2,
Proposition 5 states with t = k4, ε = 1/2 and d ≥ mk/2

Pr
[
dim(va) < m

√
i

4k = 1
2

√
i

k4mk/2
]
≤ e−ε

200mk/2 = e−|Ω(k)|.

This yields Pr[B̄i] = e−|Ω(k)|. We further define Aj,i with k4 < j ≤ i to be the event that
the first two edges of at least one of the vertices vj , . . . , vi is adjacent to both va and vb.
We will show that va and vb have a connecting vertex in Gnm by showing that Pr[Āk4+1,n]
converges to zero. We divide our vertices from k4 + 1 to n = k42k3 into k3 windows which
double in size. For 0 ≤ i < k3 we set Āi = Āk42i+1,k42i+1 and Bi = Bk42i . Lemma 7 states
Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ Bi] ≤ e−

1
256k2 . By Lemma 8

Pr[Āk4+1,n] = Pr[Āk4+1,k42k3 ] = Pr[Ā0 ∩ · · · ∩ Āk3−1]

≤
k3−1∑
i=0

Pr[B̄i] +
k3−1∏
i=0

Pr[Āi | Ā0 ∩ · · · ∩ Āi−1 ∩ Bi]

≤
k3−1∑
i=0

e−|Ω(k)| +
k3−1∏
i=0

e−
1

256k2

≤ k3e−|Ω(k)| + e−
k3

256k2 = k3e−|Ω(k)|.

This means that in Gnm the probability that there exists a vertex which connects the principal
vertices va and vb is at least 1− k3e−|Ω(k)|. According to the union bound, the probability
that for all

(
k
2
)
pairs of principal vertices there exists a vertex which connects them is bounded

by 1 −
(
k
2
)
k3e−|Ω(k)|. In Lemma 7, only the first two edges of the connecting vertex are

considered. Therefore each connecting vertex may only connect a single pair of principal
vertices. This means every pair of principal vertices has a unique connecting vertex, i.e., the
principal vertices span a one-subdivided clique with probability 1−

(
k
2
)
k3e−|Ω(k)|.
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So far, all our calculations were based on the assumption that there are k principal
vertices with reasonably high degree in the beginning. According to Lemma 6, the probability
that k such vertices do not exist is at most ke−k/c. So by law of total probability, we can
add this error probability to the conditional bound to get an unconditional bound. This
means that Gnm contains no one-subdivided k clique with a probability of at most(

k

2

)
k3e−|Ω(k)| + ke−k/c = e−|Ω(log(n)1/4)|. J

We can restate Theorem 9 as a lower bound on 1/2-shallow clique minors.

I Corollary 10. Let m ≥ 2. Then a.a.s. ω(Gnm Õ 1
2 ) ≥ log(n)1/4. In particular, Gnm is a.a.s.

somewhere dense.

4 Upper Bounds

In this section we prove polylogarithmic upper bounds on the density of shallow topological
minors in preferential attachment graphs. In fact, we even show that it is sufficient to remove
a polylogarithmic number of vertices to make these graphs look locally almost like trees. Our
results are based on the following proposition that bounds the probability of edges occurring
between fixed vertices.

I Proposition 11 ([13], Lemma 10). Let n,m ∈ N+, n ≥ 2 and E ⊆
(
v1,...,vn

2
)
. Then

Pr[E ⊆ E(Gnm)] ≤ log(n)O(|E|)2
m2|E|

∏
vxvy∈E

1/√xy.

The main work is spend in Lemma 12, where we bound for l, b ∈ N the expected number
of dense subgraphs of size l after removing the first b vertices of the graph. This is done by
summing over all potential vertex sets

(
vb+1,...,vn

l

)
of a dense subgraph and using the previous

proposition to bound the probability that these vertices induce a graph with many edges.
This bound is quite strong and flexible, but its dependence on five parameters b, l, k, n,m
makes it a bit unwieldy. We simplify it to obtain statements abound the size of r-shallow
minors or the density of local regions.

I Lemma 12. Let b, l, k, n,m ∈ N+ with n ≥ 2. The expected number of subgraphs
of Gnm[vb+1, . . . , vn] with at most l vertices and k more edges than vertices is at most
log(n)O(l+k)2

mO(l+k)b−k.

Proof. Let H be a graph with at most l vertices and k more edges than vertices. Let p be
the expected number of subgraphs of Gnm[vb+1, . . . , vn] that are isomorphic to H. We want
to find an upper bound for p. We iteratively remove every degree-one vertex from H. The
resulting graph H ′ still has at most l vertices and k more edges than vertices. Let p′ the
expected number of subgraphs of Gnm[vb+1, . . . , vn] isomorphic to H ′. Since H ′ is a subgraph
of H, we have p ≤ p′.

Let V (H ′) = {u1, . . . , uγ} with γ ≤ l and let δ1, . . . , δγ be the degree sequence of V (H ′).
We state two inequalities that we will use later. Inequality (1) follows from δi ≥ 2 and (2)
holds since the number of edges in H ′ is γ + k =

∑γ
i=1 δi/2.

n∑
yi=b+1

1
√
yi
δi
≤
∫ n

b

1
√
x
δi
dx ≤ 2b1−δi/2 logn (1)

γ∑
i=1

(−δi/2 + 1) = −k (2)



J. Dreier, P. Kuinke, and P. Rossmanith 14:11

For integers b < x1, . . . , xγ ≤ n, we consider an embedding of H ′ into the graph
Gnm[vb+1, . . . , vn] that maps ui to vxi (for 1 ≤ i ≤ γ). According to Proposition 11, the
probability that this embedding of H ′ is a subgraph of Gnm is at most

log(n)O(l+k)2
mO(l+k)

γ∏
i=1

1
√
xi
δi
.

We use the union bound over all valid embeddings, (1), and (2) to bound

p ≤ p′ ≤
n∑

x1=b+1
· · ·

n∑
xγ=b+1

log(n)O(l+k)2
mO(l+k)

γ∏
i=1

1
√
xi
δi

= log(n)O(l+k)2
mO(l+k)

n∑
x1=b+1

1
√
x1
δ1
· · ·

n∑
xγ=b+1

1
√
xγ

δγ

(1)
≤ log(n)O(l+k)2

mO(l+k)
γ∏
i=1

2b1−δi/2 log(n)

(2)
≤ log(n)O(l+k)2

mO(l+k)2γ log(n)γb−k ≤ log(n)O(l+k)2
mO(l+k)b−k.

For an arbitrary but fixed graph H with at most l vertices and k more edges than vertices
we have bounded the expected number of valid embeddings p. There are at most 2l2 graphs
with l vertices. Therefore, the expected number of subgraphs of Gnm[vb+1, . . . , vn] with at
most l vertices and k more edges than vertices is at most 2l2 log(n)O(l+k)2

mO(l+k)b−k =
log(n)O(l+k)2

mO(l+k)b−k. J

The following corollary simplifies the last lemma by choosing the specified value for b.

I Corollary 13. There exists a constant c such that for l, n,m ∈ N+ and b = dlog(n)cl2mcle
the graph Gnm[vb+1, . . . , vn] contains a.a.s. no subgraph with up to l vertices and more edges
than vertices.

I Lemma 14. There is a constant c such that for all r, n,m ∈ N+ and b = dlog(n)cr2l2mcrle,
Gnm[vb+1, . . . , vn] contains a.a.s. no r-shallow topological minor of a graph with l vertices and
more edges than vertices.

Proof. If a graph contains an r-shallow topological minor of a graph with l vertices and
more edges than vertices then it also contains a subgraph with at most (2r+ 1)(l+ 1) vertices
and more edges than vertices. Using this observation, this lemma follows directly from
Corollary 13. J

I Theorem 15. Let r, n,m ∈ N+. Every r-shallow topological clique minor in Gnm has a.a.s.
size at most log(n)O(r2)mO(r).

Proof. The previous lemma with l = 4 and b = dlog(n)16cr2
m4cre means that the graph

Gnm[vb+1, . . . , vn] contains a.a.s. no r-shallow clique minor of size four. Since adding the
vertices v1, . . . , vb to the graph can increase the size of the maximum r-shallow topological
clique minor by at most b, we immediately obtain this result. J

I Lemma 16. There is a constant c such that for all r, n,m ∈ N+ and b = dlog(n)cr2
mcre,

a.a.s. every r-neighborhood of Gnm[vb+1, . . . , vn] is either a tree or a tree with one additional
edge.
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Proof. Assume an r-neighborhood which is a tree with two or more additional edges. We
build a breadth-first spanning tree T of the r-neighborhood with root v and radius r. We
pick two edges a1, a2 and b1, b2 which are not in T . Now there are unique paths of length
at most 2r + 1 in T between v and a1, a2, b1, b2. The two edges together with these four
paths describe a graph with at most 4(2r+ 1) vertices and one more edge than vertices. The
statement now follows from Corollary 13. J

I Theorem 17. Let m ∈ N+ and g(n) : N → N be a function with g(n) = ω(1). If we
remove the first log(n)g(n) vertices from Gnm the remaining graph has a.a.s. locally bounded
treewidth.

Proof. Let G′nm be the graph obtained by removing the first log(n)g(n) many vertices from
Gnm and let c be the constant from Lemma 16. For every r ∈ N there exists an f(r) such that
for n ≥ f(r), G′nm was obtained by removing at least the first dlog(n)cr2

mrce vertices. Then
by Lemma 16, a.a.s. every r-neighborhood of G′nm is either a tree or a tree with an additional
edge and therefore has treewidth at most 2. If n ≤ f(r) then trivially every r-neighborhood
of G′nm has treewidth at most f(r). Thus, G′nm a.a.s. has locally bounded treewidth. J

5 Conclusion

In our analysis of preferential attachment graphs we obtained a logarithmic lower bound
on the size of shallow clique minors, that implies that preferential attachment graphs are
a.a.s. somewhere dense. This implies that algorithmic techniques developed for nowhere
dense graph classes are not directly applicable to preferential attachment graphs. This is
complemented by matching polylogarithmic upper bounds. We further observed that the
removal of a polylogarithmic number of vertices makes the graph locally extremely sparse.
Real networks however, do not have this extremely sparse structure after removal of very
few vertices. Our results therefore yield further evidence that the preferential attachment
process alone is not sufficient to explain the structure of complex networks.
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