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Abstract
The balls-into-bins model randomly allocates n sequential balls into n bins, as follows: each ball
selects a set D of d > 2 bins, independently and uniformly at random, then the ball is allocated to a
least-loaded bin from D (ties broken randomly). The maximum load is the maximum number of balls
in any bin. In 1999, Azar et al. showed that, provided ties are broken randomly, after n balls have
been placed the maximum load, is logd logn+O(1), with high probability. We consider this popular
paradigm in a dynamic environment where the bins are structured as a dynamic hypergraph. A
dynamic hypergraph is a sequence of hypergraphs, say H(t), arriving over discrete times t = 1, 2, . . .,
such that the vertex set of H(t)’s is the set of n bins, but (hyper)edges may change over time. In
our model, the t-th ball chooses an edge from H(t) uniformly at random, and then chooses a set
D of d > 2 random bins from the selected edge. The ball is allocated to a least-loaded bin from
D, with ties broken randomly. We quantify the dynamicity of the model by introducing the notion
of pair visibility, which measures the number of rounds in which a pair of bins appears within a
(hyper)edge. We prove that if, for some ε > 0, a dynamic hypergraph has pair visibility at most n1−ε,
and some mild additional conditions hold, then with high probability the process has maximum
load O(logd logn). Our proof is based on a variation of the witness tree technique, which is of
independent interest. The model can also be seen as an adversarial model where an adversary
decides the structure of the possible sets of d bins available to each ball.
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1 Introduction

The standard balls-into-bins model is a process that randomly allocates m sequential balls
into n bins, where each ball chooses a set D of d bins, independently and uniformly at random,
then the ball is allocated to a least-loaded bin from D (with ties broken randomly). When
m = n and d = 1, it is well known that at the end of process the maximum number of balls
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11:2 Balanced Allocation on Dynamic Hypergraphs

at any bin, the maximum load, is (1 + o(1)) logn
log logn , with high probability. Surprisingly, Azar

et al. [2] showed that for this d-choice process with d > 2, provided ties are broken randomly,
the maximum load exponentially decreases to logd logn+O(1). This phenomenon is known
as the power of d choices. The multiple-choice paradigm has been successfully applied in a
wide range of problems from nearby server selection, and load-balanced file placement in the
distributed hash table, to the performance analysis of dictionary data structures (e.g., see
[21]). In the classical setting, all

(
n
d

)
sets of d bins are available to each ball. However, in

many realistic scenarios such as cache networks, peer-to-peer or cloud-based systems, the
balls (requested files, jobs, items,..) have to be allocated to bins (servers, processors,...) that
are close to them, in order to minimize the access latencies. On the other hand, the lack
of perfect randomness stimulates the de-randomization of the d-choice process, which also
requires the study of non-uniform distributions over choices (e.g. [1, 6, 7, 11]). Hence in
many settings, allowing all possibilities for the set D of d bins is costly, and may not be
practical. This motivates the investigation of the effect of distributions of the set D on the
maximum load. In this regard, Kenthapadi and Panigrahy [13] proposed balanced allocation
on graphs, where bins form the vertices of a ∆-regular graph and each ball chooses an edge of
the graph uniformly at random. The ball is then placed in an endpoint of the selected edge
with smaller load (ties are broken randomly). Kenthapadi and Panigrahy showed that the
maximum load is Θ(log logn) if and only if ∆ = nΩ(1/ log logn). Here, one may see that the
possibilities for the set D (the two chosen bins) is restricted to the set of n∆/2 edges of the
graph. In the standard balls-into-bins model with d = 2, the underlying graph is a complete
graph (all

(
n
2
)
edges present). Following the study of balls-into-bins with related choices,

Godfrey [12] utilized hypergraphs to model the structure of bins. In this model, each ball
picks a random edge of a given hypergraph that contain Ω(logn) bins and the hypergraph
satisfies some mild conditions. Then, the ball is allocated to a least-loaded bin contained in
the edge, with ties broken randomly. Godfrey showed that the maximum load is constant.
Balanced allocation on graphs and hypergraphs has been further studied in [3, 4, 17, 18].
In the aforementioned works, either the underlying graph is fixed during the process or, in
the hypergraph setting, the number d of choices satisfies d = Ω(logn). However, in many
real-world systems the structure may change over time, and probing the load of Ω(logn)
bins might be a costly task. Seeking a more realistic model, this paper studies the d-choice
process in dynamic graphs and hypergraphs, where 2 6 d = o(logn).

Balanced allocation on dynamic hypergraphs can also be seen as an adversarial model,
where the set D of potential choices is proposed by an adversary (environment) whose goal
is to increase the maximum load. Here we want to understand the conditions under which
the balanced allocation on dynamic (hyper)graphs still benefits from the effect of the power
of d choices.

1.1 Our Results

We propose balanced allocation algorithms on different dynamic environments, namely
dynamic graph and hypergraph models. In order to measure the dynamicity, we introduce
the notion of pair visibility. For a pair {i, j} of distinct vertices, the visibility of {i, j},
denoted by vis(i, j), is the number of rounds t ∈ {1, . . . , n} such {i, j} is contained in the
edge chosen at round t. (A more formal definition is given below.) When ball i is placed into
a bin, the height of ball i is the number of balls that were allocated to the bin before ball
i. We say that event En holds with high probability (w.h.p.) if Pr [En] > 1− n−c for every
constant c > 0.
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Write [n] = {1, . . . , n} to be the set of n bins. A hypergraph H = ([n], E) is s-uniform
if |H| = s for every H ∈ E . For every integer n > 1, let s = s(n) be an integer such
2 6 s 6 n. A dynamic s-uniform hypergraph, denoted by (H(1),H(2), . . . ,H(n)), is a sequence
of s-uniform hypergraphs H(t) = ([n], Et) with vertex set [n]. The edge sets Et may change
with t. A hypergraph is regular if every vertex is contained in the same number of edges.

In this paper, we are interested in the following properties which dynamic hypergraphs
may satisfy. We refer to these properties as the balancedness, visibility, and size properties.
The balancedness property is adapted from [3, 12].

Balancedness: Let Ht denote a randomly chosen edge from Et. If there exists a constant
β > 1 such that Pr [i ∈ Ht] 6 βs/n for every 1 6 t 6 n and each bin i ∈ [n], then the
dynamic hypergraph (H(1), . . .H(n)) is β-balanced. A dynamic hypergraph is balanced if
it is β-balanced for some constant β > 1. Every regular hypergraph is 1-balanced.

Visibility: For every pair of distinct vertices {i, j} ⊂ [n], the visibility of {i, j} is

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ⊂ H ∈ Et}| .

If there exists a constant ε ∈ (0, 1) such that vis(i, j) 6 sn1−ε for all pairs {i, j} ⊆ [n]
of distinct bins then the dynamic hypergraph (H(1), . . . ,H(n)) is ε-visible. A dynamic
hypergraph satisfies the visibility property if it is ε-visible for some constant ε ∈ (0, 1).

Size: If s = Ω(logn) and there exists a positive constant c0 > 1 such that |Et| 6 nc0 for
every t > 1, then the dynamic hypergraph (H(1), . . . ,H(n)) satisfies the c0-size property.
A dynamic hypergraph satisfies the size property if it satisfies the c0-size property for
some constant c0 > 1.

I Definition 1 (Balanced Allocation on Dynamic Hypergraphs). Suppose that (H(1), . . . ,H(n))
is an s-uniform hypergraph and fix d = d(n) with 2 6 d = o(logn) and d 6 s. The balanced
allocation algorithm on (H(1), . . . ,H(n)) proceeds in rounds (t = 1, 2, . . . , n), sequentially
allocating n balls to n bins. In round t, the t-th ball chooses an edge Ht uniformly at random
from Et, then it randomly chooses a set Dt of d bins from Ht (without repetition) and allocates
itself to a least-loaded bin from Dt, with ties broken randomly.

I Theorem 2. Let (H(1), . . . ,H(n)) be a dynamic s-uniform hypergraph which satisfies the
balancedness, ε-visibility and size properties. Fix d = d(n) such that 2 6 d = o(logn). There
exists Θ(n) 6 m 6 n such that after the balanced allocation process on (H(1), . . . ,H(n)) has
allocated m balls, the maximum load is logd logn+O(1/ε) with high probability. Moreover,
for every fixed positive integer γ with γm 6 n, after allocating γm balls the maximum load is
at most γ(logd logn+O(1/ε)), w.h.p..

I Remark 3. In our result we only consider the case where d = o(logn), because when
d = Ω(logn), a constant upper bound is obtained by [12]. The size property is mainly
assumed for technical reasons. For instance, |Et| 6 poly(n) is not necessary. Roughly
speaking, balanced allocation on a dynamic hypergraph with large |Et| resembles the standard
balls-into-bins process. So it might be possible that having more structural information
about a dynamic hypergraph would enable us to extend our result to allow an arbitrary
number of edges |Et|. Another possible extension of Theorem 2 would be to allow s to be a
function of d.

APPROX/RANDOM 2020
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Proof Technique. The proof of our main result (i.e., Theorem 2) is based on the witness
tree technique, which has been applied in [1, 11, 13, 16, 20]. The standard 2-choice process
simulates a random graph process, where any 2-element subset of bins chosen by a ball can
be viewed as a random edge chosen from a complete graph. Kenthapadi and Panigrahi [13]
replaced the underlying complete graph by a dense graph, say G, and each ball chooses
a random edge from the graph. In this model, after allocating all n balls, the union of
the chosen random edges builds a random subgraph of G. They showed that, with high
probability, there does not exist a connected and random subgraph of size Ω(logn) whose
nodes (bins) each contain a constant number of balls. A rooted spanning tree contained in
the subgraph is the witness structure. Now, if the maximum load is higher than a certain
threshold, then a deterministic construction yields the witness graph, which is a rooted tree.
Thus, the maximum load is bounded from above by the threshold. In this work, although
we follow the same steps as [13], the witness structure is not as straightforward since the
underlying structure is a dynamic hypergraph, (H(1), . . . ,H(n)), and each ball chooses d > 2
bins. Here, the witness structure is a d-uniform hypergraph, say H = (V,E), where (1) each
node (bin) in V contains a constant number of balls, (2) |V | = Ω(logn) and (3) H has an
expansion property which means there is an ordering of the hyperedges of H so that with
respect to this ordering, all but a constant number of hyperedges only shares one bin with the
union of the preceding hyperedges. Applying the visibility condition we conclude that, with
high probability, there does not exist a structure satisfying these three properties. Assuming
a maximum load higher than a certain threshold, we recursively build the witness structure
and the proof follows.

The following theorem presents a lower bound for the maximum load attained by the
balanced allocation on some dynamic hypergraphs in terms of ε-visibility.

I Theorem 4. Let s = s(n) = nε, where ε ∈ (0, 1) is an arbitrary small real number. There
exists a dynamic s-uniform hypergraph, say (H(1), . . . ,H(n)), which satisfies the balancedness
condition and (trivially) satisfies the ε-visibility condition. Let 2 6 d 6 s be any integer which
is constant. Suppose that the balanced allocation process on (H(1), . . . ,H(n)) has allocated n
balls, then the maximum load is at least min{Ω(1/ε), Ω(logn/ log logn)} with high probability.

Balanced Allocation on Dynamic Graphs
A dynamic graph is a special case of a dynamic hypergraph, where s = s(n) = 2 for all n.
Write (G(1), . . . , G(n)) to denote a dynamic graph, where G(t) = ([n], Et) for t = 1, 2, . . . , n.
Theorem 2 does not cover the case of graphs (s = 2), due to the size property. We will prove
a result on balanced allocation for regular dynamic graphs.

I Definition 5 (Balanced Allocation on Dynamic Graphs). Suppose that (G(1), . . . , G(n)) is a
regular dynamic graph on vertex set [n]. The balanced allocation algorithm on (G(1), . . . , G(n))
proceeds in rounds (t = 1, . . . , n). In each round t, the t-th ball chooses an edge of G(t)

uniformly at random, and the ball is then placed in one of the bins incident to the edge with
a lesser load, with ties broken randomly.

Say that the dynamic graph is regular if G(t) is ∆t-regular for some positive integer ∆t

and all t = 1, 2, . . . , n. For every pair of distinct bins {i, j} ⊂ [n], we will assume that the
visibility vis(i, j) satisfies

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ∈ Et}| 6 2n1−ε

for some constant ε ∈ (0, 1). This property is called ε-visibility.
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I Theorem 6. Let (G(1), . . . , G(n)) be a regular dynamic graph which satisfies the ε-visibility
condition, for some ε ∈ (0, 1). Suppose that the balanced allocation process on (G(1), . . . , G(n))
has allocated n balls. Then the maximum load is at most log2 logn + O(1/ε), with high
probability.

The proof, which can be found in Section 4, is again based on the witness tree technique.
We remark that Theorem 6 can be extended to the case where the dynamic graph is almost
regular, meaning that the ratio of the minimum and maximum degree of G(t) is bounded
above by an absolute constant for t = 1, . . . , n.

Dynamic Graphs and Hypergraphs with Low Pair Visibility
In order to show the ubiquity of the visibility condition, we will describe some dynamic
graphs with low pair visibility. One can easily construct a dynamic hypergraph from a
dynamic graph by considering the r-neighborhood of each vertex of the t-th graph as a
hyperedge in the t-th hypergraph, for t = 1, . . . , n.

Dynamic Cycle. For t = 1, . . . , n define the edge set

Et = {{i, j} ⊂ {0, . . . , n− 1} | j = i+ dt/
√
ne (mod n) or i = j + dt/

√
ne (mod n)},

where calculations are performed modulo n (that is, in the additive group Zn). In modular
addition, for every pair {i, j} ⊂ {0, . . . , n − 1}, the equation i = j + k (mod n) has at
most one solution 1 6 k 6

√
n and hence

vis(i, j) = |{t ∈ {1, 2, . . . , n} | {i, j} ∈ Et}| 6
√
n.

Now C(t) = ({0, 1, . . . , n − 1}, Et) is 2-regular, so it is either a Hamilton cycle or a
union of two or more disjoint cycles (depending on whether t and n are coprime). By
Theorem 6, the maximum load attained by the algorithm on {C(t), t = 1, . . . , n} is at most
log2 logn+O(1). The analysis of the balanced allocation algorithm on ∆-regular graphs
given by Kenthapadi and Panigrahy [13] showed that the balanced allocation process on
arbitrary ∆-regular graphs has maximum load Θ(log logn) only when ∆ = nΩ(1/ log logn).
By contrast, here each C(t) has degree at most 2, but the visibility condition keeps the
maximum load as low as the standard two-choice process.
I Remark 7. By Theorem 6, w.h.p., the balanced allocation process on the dynamic cycle
achieves the maximum load at most log2 logn+O(1). Since |Et| = n for t = 1, . . . , n, each
ball requires log2 n random bits. However, in the standard power-of-two-choices process,
each ball chooses two independent and random bins, which requires 2 logn random bits.
Therefore, the dynamic cycle can be used to reduce (by half) the number of random bits
required in the standard two-choice process.

Dynamic Modular Hypergraph. Suppose that n is a prime number and fix s = s(n) such
that logn 6 s 6 n1/5. (Here n is large enough so that this range is non-empty.) For
t = 1, . . . , n, let kt = d

√
ne+ d t

n3/4 e and for each α ∈ Zn define

Ht(α) = {α+ jkt (mod n) | j = 0, 1, . . . , s− 1 }.

Then Ht(α) is a subset of Zn of size s, as n is prime. Now for each t = 1, . . . , n we define
the dynamic s-uniform hypergraph H(t) = (Zn, Et), where Et = {Ht(α) | α ∈ Zn}. Then
H(t) is s-regular, and hence 1-balanced, and it satisfies the 1-size property as |Et| = n.

APPROX/RANDOM 2020
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Suppose that {β1, β2} ⊂ Ht(α) for some α ∈ Zn, with β1 6= β2. Then there exists
j1, j2 ∈ {0, . . . , s− 1} such that β1 = α+ j1kt (mod n) and β2 = α+ j2kt (mod n). Thus,
β2−β1 = (j2−j1)kt (mod n). Note that j1, j2 must be distinct as β1, β2 are distinct. Next
suppose that kt1 6= kt2 for some t1, t2 ∈ {1, . . . , n}, and take any j1, j2 ∈ {1, . . . , s− 1}.
By definition of kt and working in Z, we see that

1 6 |j2kt2 − j1kt1 | 6 (s− 1)
(
d
√
ne+ dn1/4e

)
< n,

and it follows that

j1kt1 6= j2kt2 (mod n). (1)

Finally, suppose that some distinct β1, β2 satisfy {β1, β2} ⊂ Ht1(α)∩Ht2(α) where kt1 6=
kt2 . Then β2−β1 = jkt1 (mod n) for some j1 ∈ {1, . . . , s−1}, and β2−β1 = j2kt2 (mod n)
for some j2 ∈ {1, . . . , s− 1}, but this contradicts (1). Therefore, by definition of kt, for
every {β1, β2} ⊂ Zn, we have

vis(β1, β2) = |{t ∈ {1, 2, . . . , n} | {β1, β2} ⊂ Ht(α) for some α ∈ Zn}| 6 O(n3/4).

Stationary Geometric Mobile Network. Consider an R-dimensional torus Γ(n,R), which
is a graph whose vertex set is the Cartesian product of ZR` = Z` × . . .× Z`, where
` = n1/R ∈ Z, and two vertices (x1, . . . , xR) and (y1, . . . , yR) are connected if for some
j ∈ {1, 2 . . . , R} xj = yj ± 1 mod n and for all i 6= j we have xi = yi. Let π be the
stationary distribution of the following random walk on Γ(n,R): at each step, the walker
stays at the current vertex with probability p, and otherwise chooses a neighbour randomly
and moves to that neighbour. The transition probability from vertex u to a neighbouring
vertex w is (1 − p)/(2R), where 2R is the degree of vertex u in Γ(n,R). Now place n
agents on vertices of Γ(n,R) independently, each according to the distribution π. At
each time step, each agent independently performs a step of the random walk described
above (For random walks on a torus we refer the interested reader to [15]). For every
pair of distinct agents a and b, let dt(a, b) denote the Manhattan distance (in Γ) of the
locations of a and b at time t. For a given r > 1, we define the communication graph
process {G(t)

r | t = 0, 1, . . .} over the set of agents, say A, so that for every t > 0, agents a
and b are connected if and only if dt(a, b) 6 r. The model has been thoroughly studied
when R = 2 in the context of information spreading [9]. We present the following result
regarding the pair visibility of the communication graph process, proved in Appendix B.
I Proposition 8. Fix r = r(n) = no(1). Also let {G(t)

r = (A,Et) | 1 6 t 6 n} be the
communication graph process defined on an R-dimensional torus Γ(n,R). Then there
exists constant ε > 0 such that for every pair of agents, say {a, b} ⊂ A,

vis(a, b) = |{t ∈ {1, 2, . . . , n} | {a, b} ∈ Et}| = O(n1−ε).

1.2 Related Works
As we discussed, in the standard balls-into-bins, each ball picks a set of d choices from n

bins, independently and uniformly at random. One of the first algorithms considering a
different distribution over the bins is called always-go-left proposed by Vöcking [20]. In this
algorithm, the bins are partitioned into d groups of size n/d and each ball picks one random
bin from each group. The ball is then allocated to a least-loaded bin among the chosen
bins, with ties broken in favor of the bin from the least-indexed group. The algorithm uses
exponentially smaller number of choices and achieve a maximum load of log logn

dφd
+ O(1),
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where 1 6 φd 6 2 is an specified constant. Byers et al. [5] studied a model, where n bins are
uniformly at random placed on a geometric space. Then each ball, in turn, picks d locations
in the space. Corresponding to these d locations, the ball probes the load of d bins that
have the minimum distance from the locations. The ball then allocates itself to one of the
d bins with minimum load. In this scenario, the probability that a location close to a bin
is chosen depends on the distribution of other bins in the space and hence there is not a
uniform distribution over the potential choices. Here, the authors showed the maximum load
is logd logn+O(1). Later on, Kenthapadi and Panigrahy [13] proposed a graphical balanced
allocation in which bins are interconnected as a s-regular graph and each ball picks a random
edge of the graph. It is then placed in one of its endpoints with a smaller load. This allocation
algorithm results in a maximum load of log logn + O

(
logn

log(s/ log4 n)

)
+ O(1). Godfrey [12]

studied balanced allocation on hypergraphs where each ball probes the bins contained in a
random edge of size Ω(logn). In [3, 12], the balanced allocation process on hypergraphs was
studied where number of choices is d = Ω(logn). The analysis involves the second moment
method (Chernoff bounds), and lower bound on d is needed in order to achieve concentration.
Hence it is unlikely that the techniques of [3,12] can be extended to the range d = o(logn).
Peres et al. [17] also considered balanced allocation on graphs where the number of balls m
can be much larger than n (i.e., m� n) and the graph is not necessarily regular and dense.
Then, they established upper bound O(logn/σ) for the gap between the maximum and the
minimum loaded bin after allocating m balls, where σ is the edge expansion of the graph.
Bogdan et al. [4] studied a model where each ball picks a random vertex and performs a
local search from the vertex to find a vertex with local minimum load, where it is finally
placed. They showed that when the graph is a constant degree expander, the local search
guarantees a maximum load of Θ(log logn). Pourmiri [18] substitutes the local search by
non-backtracking random walks of length ` = o(logn) to sample the choices and then the
ball is allocated to a least-loaded bin. Provided the underlying graph has sufficiently large
girth and `, he showed the maximum load is a constant. In the context of hashing (e.g.,
[1, 11]), authors apply the witness graph techniques to analyze the maximum load in the
balls-into-bins process where the bins are picked based on tabulation.

2 Balanced Allocation on Dynamic Hypergraphs

In this section we establish an upper bound for the maximum load attained by the balanced
allocation on hypergraphs (i.e., Theorem 2). In order to analyze the process let us first define
a conflict graph. We write Dt for the set of d bins chosen by the t-th ball, and sometimes
refer to Dt as the d-choice of the t-th ball. We will slightly abuse the notation and write
Du ∩Dt, Du ∪Dt to denote the set of common bins, and the union of bins, chosen by balls
u and t, respectively.

I Definition 9 (Conflict Graph). For m = 1, . . . , n, the conflict graph Cm is a simple graph
with vertex set {D1, D2, . . . , Dm}. Vertices Du and Dt are connected by an edge in Cm if
and only if Du ∩Dt 6= ∅ (that is, the d-choices of the t-th ball and the u-th ball contain a
common bin).

We say a subgraph of Cm with vertex set {Dt1 , . . . , Dtk} is c-loaded if every bin in
Dt1 ∪Dt2 ∪ · · · ∪Dtk has at least c balls.

Our analysis will involve a useful combinatorial object, called an ordered tree. An ordered
tree is a rooted tree, together with a specified ordering of the children of every vertex. Recall
that 1

k+1
(2k
k

)
is the k-th Catalan number, which counts numerous combinatorial objects,

APPROX/RANDOM 2020
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including the number of ways to form k balanced parentheses. It is well known [19] that
ordered trees with k − 1 edges are counted by the (k − 1)-th Catalan number, leading easily
to the following proposition.

I Proposition 10. The number of k-vertex ordered trees is 1
k

(2k−2
k−1

)
6 4k−1.

More information regarding the enumeration of trees can be found in [14].
The following blue-red coloring will be very helpful in our analysis.

I Definition 11 (Blue-red coloring). Given m ∈ {1, 2, . . . , n}, suppose that T ⊂ Cm is a rooted
and ordered k-vertex tree contained in Cm. Let the vertex set of T be {Dt1 . . . , Dtk}, where
Dt1 is the root. Perform depth-first search starting from the root, respecting the specified
order of each vertex. For i = 1, . . . , k, let D(i) ∈ {Dt1 . . . , Dtk} be the vertex which is the
i-th visited vertex in the depth-first search. Then D(1) = Dt1 is the root. for j = 1, . . . , k.
We now define a blue-red coloring col : {D(2), . . . , D(k)} → {blue, red} as follows. For
i = 2, . . . , k,

col(D(i)) =
{
blue if | (∪i−1

j=1D(j)) ∩D(i)| = 1,
red if | (∪i−1

j=1D(j)) ∩D(i)| > 2.

The following key lemma presents a upper bound for the probability that a certain tree
can be found as a subgraph of Cm.

I Lemma 12 (Key Lemma). Let (H(1), . . . ,H(n)) be a dynamic s-uniform hypergraph which
satisfies the β-balanced, ε-visibility and c0-size properties. Suppose that c > 0 is an arbitrary
constant and k = C logn for some constant C > 1. There exists Θ(n) 6 m 6 n such that
the probability that Cm contains a c-loaded k-vertex tree with r red vertices in its blue-red
colouring is at most

nc0+3 exp{4k log(2βd)− rε log(n)/2− c(d− 1)(k − r − 1)}.

Moreover, with high probability, r = O(1/ε).

The proof, presented in Section 3, involves an extension of the witness tree technique. This
method might be of independent interest in the study of random hypergraphs.

We now explain how to recursively build a witness graph if there exists a bin whose load
is higher than a certain threshold. The minimum load of Dt is the number of balls in the
least-loaded bin in Dt (the set of d choices of Dt). Clearly, if ball t is placed at height h then
Dt has minimum load at least h.

Construction of the Witness Graph

Suppose that there exists a bin with load `+ c+ 1. Let R be the d-choice corresponding to
the ball at height `+ c in this bin. Then the minimum load of R is `+ c. We start building
the witness tree in Cm whose root is R. For every bin i ∈ R, consider the ` balls in bin i
at height ` + c − j, for j = 1, . . . , `, and let Di

tj be the d-choice corresponding to the ball
in bin i with height ` + c − j. These ` balls exist as the minimum load of R is ` + c. We
refer to set {Di

tj | i ∈ R, 1 6 j 6 `} as the set of children of R, where the minimum load of
Di
tj is `+ c− j − 1. All children of R are connected to R in Cm. Order the children of R

arbitrarily, then blue-red colour the first level of the tree (the children of R). Recall that a
vertex is colored by blue if it only shares one bin with its predecessors in the ordering. So a
blue d-choice contains d− 1 bins that have not appeared in previous d-choices (with respect
to depth-first search, respecting the fixed ordering). We call these d− 1 bins fresh.
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Next, consider each blue vertex of the tree (if any), and recover the d-choices corresponding
to balls that are placed in fresh bins with height at least c. Then, blue-red color the children
of those d-choices, with respect to an arbitrary ordering. This recursion will continue until
either there are no balls remaining with height at least c, or there are no blue vertices. For
j = 1, . . . , `, let f(`− j) denote the number of d-choices that the recursive construction gives,
when the d-choice for the root has minimum load ` + c − j − 1. Provided all vertices are
colored blue, the recursive construction continues until no ball remains with height at least c.
Therefore, a simple calculation shows that

f(`) > (d− 1)(f(`− 1) + f(`− 2) + · · ·+ f(0) + 1),

where f(0) = 1. Solving the above recursive formula shows that f(`) > 2(d− 1)d`−1 > d`.

Proof of Theorem 2. Let (H(1), . . . ,H(n)) be a dynamic hypergraph which satisfies the
β-balanced, ε-visibility and c0-size properties. By Lemma 12, there exists Θ(n) = m 6 n

such that the following holds with high probability: after m balls have been allocated by the
balanced allocation process, if T ⊆ Cm is a c-loaded tree with k vertices and T is blue-red
coloured according to some arbitrary ordering of the children of each vertex, then the number
r of red vertices satisfies r = O(1/ε). So we are able to find a constant c2 > 0 such that,
with high probability, r < c2 · d.

Now suppose that after allocating m balls, there is a ball at height `+ c1 + c2 + 1. This
implies that there is a d-choice, denoted by R, whose minimum load is at least `+ c1 + c2 + 1.
Let us consider all balls placed in the bins contained in R with height at least ` + c1 + 1.
Recover the corresponding d-choices for these balls, say D1, D2, . . . , Dw, then colour them
blue-red with respect to the root R and an arbitrary ordering of the children of each vertex.
Since w > c2 · d, w.h.p., there are b > 1 blue vertices and w− b red vertices. We now consider
every blue vertex Dt ∈ {D1, D2, . . . , Dw} as a root and start the recursive construction of
the witness graph. Assuming that the number of red vertices is strictly less than c2 · d < w,
it follows that at least one recursive construction (with root Di) does not produce any red
vertex. Moreover, the recursion from Di gives a c1-loaded tree with at least k = d` vertices.
We take ` = logd logn, so that k = logn. Another application of Lemma 12 implies that a
c1-loaded k-vertex tree with no red vertices exists with probability at most

nc0+3 exp{4k log(2βd)− c1(d− 1)(k − 1)} 6 exp
{(
c0 + 4 + 4 log(2βd)− c1(d− 1)

)
logn

}
6 exp

{(
c0 + 4 + 4 log(4β)− c1

)
logn

}
,

using the fact that 2 6 d = o(logn) and k = logn. Setting c1 to be a large enough positive
constant, we conclude that with high probability the maximum load is at most

logd logn+O(1) + c2 = logd logn+O(1/ε),

where c2 = O(1/ε). This proves the first statement of Theorem 2.
In order to prove the second statement of Theorem 2 we show the sub-additivity of the

balanced allocation algorithm. We want to prove that for every constant integer γ > 1 with
γm 6 n, after allocating γm balls, the maximum load is at most γ(logd logn+O(1/ε)), with
high probability. First assume that 2m 6 n and suppose that the algorithm has allocated m
balls to H(t), t = 1, . . . ,m and let `∗ 6 logd logn+O(1) denote its maximum load. We now
consider two independent balanced allocation algorithms, say A and A0, on two dynamic
hypergraphs starting from step m. These dynamic hypergraphs are (H(m), . . . ,H(n)) and
(H(m)

0 , . . . ,H(n)
0 ), where H(t)

0 is an identical copy of H(t) for t = m, . . . , n. Moreover, we
assume that in round m, all bins contained in H(m)

0 have exactly `∗ balls. Let us couple
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11:10 Balanced Allocation on Dynamic Hypergraphs

algorithm A on H(t) and algorithm A0 on H(t)
0 . Write V = [n] for the set of n bins. To do

so, the coupled process allocates a pair of balls to bins as follows: for t = m+ 1, . . . , 2m, the
coupling chooses a one-to-one labeling function σt : V → {1, 2, . . . , n} uniformly at random,
where V is the ground set of both hypergraphs (i.e, set of n bins) and {1, 2, . . . , n} is
a set of labels. Next, the coupling chooses Dt randomly from H(t). Let D′t denote the
same set of d bins as Dt in H(t)

0 . Algorithm A allocates ball t+ 1 to a least-loaded vertex
of Dt, and algorithm A0 allocates ball t + 1 to a least-loaded vertex of D′t, with both
algorithms breaking ties in favour of the vertex v with the smallest load and minimum
label σt(v). Note that algorithm A is a faithful copy of the balanced allocation process on
(H(m), . . . ,H(n)), and algorithm A0 is a faithful copy of the balanced allocation process on
(H(m)

0 , . . . ,H(n)
0 ), respectively. (This follows as σt is chosen uniformly at random.) Let Xt

i

and Y ti , m+ 1 6 t 6 2m, denote the load of bin i in H(t) and H(t)
0 , respectively. We prove

by induction that for every integer m 6 t 6 2m and i ∈ V we have

Xt
i 6 Y ti . (2)

The inequality holds when by the assumption that Y mi = `∗ for every i ∈ V . Let us assume
that for every t′, t′ 6 t 6 2m, Inequality (2) holds, then we will show it for t + 1. Let
i ∈ Dt+1 and j ∈ D′t+1 denote the vertices (bins) that receive a ball in step t+ 1. We now
consider two cases:

Case 1: Xt
i < Y ti . Since algorithm A allocated ball t+ 1 to bin i, it follows that

Xt
i + 1 = Xt+1

i 6 Y ti 6 Y t+1
i .

So, Inequality (2) holds for t+ 1 and every bin i ∈ V .
Case 2: Xt

i = Y ti . Since D′t+1 is a copy of Dt+1, we have j ∈ Dt+1 and i ∈ D′t+1. We
know that no vertex (bin) in Dt+1 has smaller load than i, and no vertex (bin) in D′t+1
has smaller load than j. Hence

Xt
i 6 Xt

j 6 Y tj 6 Y ti ,

where the middle inequality follows from the inductive hypothesis (2) for bin j. So by
assumption of this case we obtain Xt

i = Xt
j = Y tj = Y ti . If i 6= j and σt+1(j) < σt+1(i),

then it contradicts the fact that ball t+ 1 is allocated to bin i by algorithm A. Similarly,
if σt+1(j) > σt+1(i), then it contradicts the fact that algorithm A0 allocated ball t to bin
j. Therefore i = j and hence

Xt+1
i = Xt

i + 1 = Y ti + 1 = Y t+1
i .

Thus, in both cases, Inequality (2) holds for every t > 0. By applying the first part of
the theorem, with high probability, using algorithm A0 to allocate m balls to the dynamic
hypergraph (H(m)

0 , . . . ,H(2m)
0 ) results in maximum load

`∗ + logd logn+O(1/ε) 6 2(logd logn+O(1/ε))

in H(2m)
0 . Therefore, by Inequality (2), after using algorithm A to allocate m balls to the

dynamic hypergraph (H(m), . . . ,H(n)), with high probability the maximum load in H(2m) is
at most 2(logd logn+O(1/ε)). Applying the union bound, we conclude that after allocating
γm balls, where γm 6 n, the maximum load is at most γ(logd logn + O(1/ε)), with high
probability. This completes the proof of Theorem 2. J
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3 Appearance Probability of a Certain Structure

In this section we work towards a proof of Lemma 12. First we will give some useful definition
and prove some helpful results. The definition was introduced in [18].

I Definition 13. Suppose that A is an allocation algorithm that sequentially allocates n balls
into n bins according to some mechanism. For a given constant α > 0, and for Θ(n) = m 6 n,
we say that A is (α,m)-uniform if for every ball 1 6 t 6 m = Θ(n) and every bin i ∈ [n],

Pr [ ball t is allocated to bin i by A | balls 1, 2, . . . , t− 1 have been allocated by A ] 6 α

n
.

In the above definition, we condition on the allocations of balls 1, . . . , t− 1 into bins made
by A.

The following result will be proved in Appendix C.

I Lemma 14. Fix d = d(n) with 2 6 d = o(logn). Suppose that the dynamic s-uniform
hypergraph (H(1), . . . ,H(n)) satisfies the balancedness and size properties. There exists
m = Θ(n) with m < n such that with probability at least 1− n−2, the edge Ht chosen by the
t-th ball contains at least s/2 empty vertices for t = 1, . . . ,m.

Using this result we can prove that the balanced allocation process is uniform on dynamic
hypergraphs.

I Lemma 15 (Uniformity Lemma). Fix d = d(n) with 2 6 d = o(logn) and suppose that
for some constant β > 1, the s-uniform dynamic hypergraph (H(1), . . . ,H(n)) satisfies the
β-balanced and size properties, with d 6 s. Then there exists a constant α = α(β), which
depends only on β, and there exists m = Θ(n) with m < n, such that the balanced allocation
process on (H(1), . . . ,H(n)) is (α,m)-uniform. Specifically, we may take α = 44β.

Proof. Fix m = m(n) to equal the m provided by Lemma 14. For t = 1, . . . ,m, let Dt be
the d-element subset of Ht that is chosen by the t-th ball. Define the indicator random
variable It as follows:

It :=
{

1 if Dt contains at least d/6 empty vertices,
0 otherwise.

Let us fix an arbitrary bin i and then define A(t, i) to be the event that the t-th ball is
allocated to vertex i. (The first t − 1 balls have already been allocated, as the balanced
allocation process never fails.) Observe that if i 6∈ Dt then Pr [A(t, i)] = 0. It follows that

Pr [A(t, i)] = Pr [A(t, i) | i ∈ Dt and It = 1] ·Pr [i ∈ Dt and It = 1]
+ Pr [A(t, i) | i ∈ Dt and It = 0] ·Pr [i ∈ Dt and It = 0] .

Now there are at least d/6 empty vertices on Dt when It = 1, so

Pr [A(t, i) | i ∈ Dt and It = 1] 6 6/d.

It follows that

Pr [A(t, i)] 6 (6/d) Pr [i ∈ Dt and It = 1] + Pr [i ∈ Dt and It = 0]
6 (6/d) Pr [i ∈ Dt] + Pr [It = 0 | i ∈ Dt] ·Pr [i ∈ Dt] . (3)
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11:12 Balanced Allocation on Dynamic Hypergraphs

In order to have i ∈ Dt, first an edge containing i must be selected, and then the chosen
d-element subset of that edge must contain i. By the β-balancedness property,

Pr [i ∈ Dt] 6
βs

n
·
(
s−1
d−1
)(

s
d

) 6
β

n
.

Using the above inequality, we simplify Inequality (3) as follows:

Pr [A(t, i)] 6 6β
n

+ βd

n
Pr [It = 0 | i ∈ Dt] .

If d 6 6 then the above inequality immediately implies that Pr [A(t, i)] 6 12β/n. This
completes the proof when d 6 6. For the remainder of the proof we assume that d > 7, and
prove that

Pr [It = 0 | i ∈ Dt] 6 ĉ/d (4)

for some absolute constant ĉ > 0. From this, we see that Pr [A(t, i)] 6 α/n where α = β(6+ĉ).
As i was an arbitrary bin, this proves that the process is (α,m)-uniform.

Let F be the event that Ht contains at least s/2 empty vertices for all t = 1, . . . ,m. By
Lemma 14, we have Pr [F ] > 1− n−2. Then

Pr [It = 0 | i ∈ Dt]
= Pr [It = 0 | (i ∈ Dt) and F ] ·Pr [F ] + Pr [It = 0 | (i ∈ Dt) and ¬F ] ·Pr [¬F ]
6 Pr [It = 0 | (i ∈ Dt) and F ] + n−2 6 Pr [It = 0 | (i ∈ Dt) and F ] + 1/d. (5)

Let X be the random variable that counts the number of empty bins of a random (d− 1)-
element subset of Ht \ {i}, conditioned on the event that “(i ∈ Dt) and F” holds. Then X is
a hypergeometric random variable with parameters (s− 1,K, d− 1), where K is the number
of empty bins contained in Ht \ {i}. Thus

E [X] = (d− 1)K
s− 1 and Var [X] 6 (d− 1)K

s− 1 6 d.

Then E [X] > d/3, since K > s/2− 1 when i ∈ Dt and F holds (and using the size property
s = Ω(logn)) and the fact that d > 7). Therefore

Pr [It = 0 | (i ∈ Dt) and F ]

6 Pr [X < d/6] 6 Pr [|X −E [X] | 6 E [X] /2] < 4 Var [X]
E [X]2

6
36d
d2 = 36

d
,

using Chebychev’s inequality. Substituting the above upper bound in Inequality (5) establishes
(4) with ĉ = 38, which completes the proof. J

We are ready to prove Lemma 12.

I Lemma 16 (Restatement of Lemma 12). Fix d = d(n) with 2 6 d = o(logn). Let
(H(1), . . . ,H(n)) be a dynamic hypergraph which satisfies the β-balanced, ε-visibility and
c0-size properties. Suppose that c > 44βe2 is a sufficiently large constant, and let k = C logn
for some constant C > 1. There exists Θ(n) 6 m 6 n such that the probability that Cm
contains a c-loaded k-vertex tree is at most

exp
{

4k log(2βd)− c(d− 1)(k − r − 1) +
(
c0 + 3− rε/2

)
log(n)

}
where r is the number of red vertices in the blue-red coloring of the tree. Moreover, with high
probability, if Cm contains any such tree then r = O(1/ε).
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Proof. Fix m = m(n) to equal the m provided by Lemma 15. There are at most 4k ordered
trees with k vertices. (Proposition 10). Fix such a tree, say T , and label the vertices
{1, 2, . . . , k} such that vertex i is the i-th new vertex visited when performing depth-first
search in T starting from the root, and respecting the given ordering. In particular, the root
of T is vertex 1. Next, we will assign a d-choice to the root vertex of T , as a first step in
describing trees which may be present in the witness graph Cm. Let x count the number of
possible d-choices that can be assigned to the root of T . Then

x 6

(
s

d

)
·

∣∣∣∣∣
m⋃
t=1
Et

∣∣∣∣∣ ·m 6

(
s

d

)
· nc0+2,

where the last inequality follows from the size property and the inequality m 6 n. Therefore,
there are x possibilities for the root and hence there are at most 4k ·

(
s
d

)
· nc0+2 ordered trees

with the specified root. Fix an arbitrary d-choice Dt as the root for T .
Next we fix an arbitrary function col : {2, . . . , k} → {blue, red}, that gives a blue-red

coloring of 2, . . . , k. In what follows we establish an upper bound for the probability that Cm
contains the blue-red colored tree T ⊂ Cm, (according to Definition 11). Let q1(t) be the
probability that the t-th ball chooses the root of T (that is, that the d-choice made by the
t-th ball corresponds to the root of T ). Then

m∑
t=1

q1(t) 6
m∑
t=1

1(
s
d

) 6
n(
s
d

) , (6)

because H contains
(
s
d

)
distinct d-element sets for for every H ∈ Et. For every t = 2, . . . , k,

define qi(t, col(i)) to be the probability that the t-th ball chooses the i-th vertex of the tree
(i.e., i) with col(i). If col(i) is red then Dt must share at least two bins with ∪i−1

j=1Dtj , while
if col(i) is blue then Dt only shares one bin with its parent. For every i = 2, . . . , k, let us
derive an upper bound on qi(t,blue). Here, the i-th vertex share one bin with its parent in
T , say Dtj . Now Dtj has d bins and by the balancedness property we get

Pr
[
Dtj ∩Ht 6= ∅

]
6
∑
i∈Dtj

Pr [i ∈ Ht] 6
βds

n
,

where Ht is the edge chosen by ball t from H(t), uniformly at random. Suppose that for
some a > 1 we have |Dtj ∩Ht| = a 6 d. Then the total number of d-element subsets of Ht

which share only one bin with Dtj is a
(
s−a
d−1
)
6 d
(
s−1
d−1
)
. Thus, we get

m∑
t=1

qi(t, blue) 6
m∑
t=1

βds

n
· d
(
s−1
d−1
)(

s
d

) =
m∑
t=1

βd3

n
6 βd3, (7)

because m 6 n.
Next, for every i = 2, . . . , k, and every t = 2, . . . ,m, we need an upper bound on qi(t, red).

If the i-th vertex of the tree is the set Dt and is coloured red, then Dt is a d-element set of
bins which shares at least two bins with ∪i−1

j=1Dtj . One of these bins belongs to the (known)
parent, and the other belongs to Dt1 . . . , Dti−1 . So if U is the number of choices for this pair
of bins, then

U 6 d · (i− 1)d 6 kd2. (8)

Let {p1, p2 . . . , pU} be the set of such pairs of bins. For J = 1, . . . , U , write A(pJ , t) for the
event that the pair pJ is contained in a randomly chosen edge of Et. Observe that if pJ ⊂ Dt

then A(pJ , t) holds. Then, by the balancedness property we have
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Pr [pJ ⊂ Dt]
= Pr [pJ ⊂ Dt | A(pJ , t)] ·Pr [A(pJ , t)]

6 Pr [pJ ⊂ Ht] ·
(
s−2
d−2
)(

s
d

) ·Pr [A(pJ , t)]

6 Pr [pJ ∩Ht 6= ∅] ·
(
s−2
d−2
)(

s
d

) ·Pr [A(pJ , t)]

6
2βs
n
·
(
s−2
d−2
)(

s
d

) ·Pr [A(pJ , t)] = 2βd(d− 1)
(s− 1)n Pr [A(pJ , t)] ,

as
(
s−2
d−2
)
is the number of d-element subsets of Ht which contain the pair pJ . Then

qi(t, red) 6
U∑
J=1

2βd(d− 1)
(s− 1)n Pr [A(pJ , t)] .

Note that by (8) we have U 6 kd2 and hence,

m∑
t=1

qi(t, red) 6
U∑
J=1

n∑
t=1

2βd(d− 1)
(s− 1)n Pr [A(pJ , t)] 6

U∑
J=1

2βd(d− 1)
(s− 1)n vis(pJ) 6 2βkd4

nε
.

(9)

The final inequality follows from the visibility property, using the fact that d < s.
Write col−1(blue) for the set of blue vertices in T , and similarly for col−1(red). Then

|col−1(red)|+ |col−1(blue)| = k − 1.

Suppose that (t1, . . . , tk) is the sequence of balls that are going to select vertices 1, 2, . . . , k
of T . By applying (6), (7) and (9), we find that the probability that the edges of the colored
tree T appears in Cm at times (t1, . . . , tk), and the corresponding sets Dt1 , . . . , Dtk consistent
with chosen blue-red coloring scheme, is at most

∑
(t1,...,tk)

{
q1(t1)

k∏
i=2

qi(ti, col(i))
}

6

(
m∑
t=1

q1(t)
)

k∏
2=1

(
m∑
t=1

qi(t, col(i))
)

6
n(
s
d

)
 ∏
i∈col−1(blue)

m∑
t=1

qi(t, blue)

  ∏
i∈col−1(red)

m∑
t=1

qi(t, red)


6

n(
s
d

) (βd3)|col−1(blue)|
(

2βkd4

nε

)|col−1(red)|

6
nβkd4k(

s
d

) (
2k
nε

)|col−1(red)|
. (10)

There are at most 2k−1 coloring functions and 4kpoly(n)
(
s
d

)
rooted and ordered trees. So

by the upper bound (10), together with the union bound over all colored ordered trees, we
obtain

Pr [ Cm contains a valid blue-red colored k-vertex tree with r red vertices ]

6 4k2k−1 · nc0+2
(
s

d

)
· nβ

kd4k(
s
d

) (
2k
nε

)r
6 nc0+3 · (2βd)4k · n−rε/2 6 exp

(
4k log(2βd) + (c0 + 3− rε/2) logn

)
, (11)

using k = O(logn) for the penultimate inequality.



C. Greenhill, B. Mans, and A. Pourmiri 11:15

Let b = k − r − 1 be the number of blue vertices and let Ds1 , . . . , Dsb be the sorted list
of blue vertices such that s1 < s2 < · · · < sb. Then, by the definition of blue-red coloring,
for every j = 1, . . . , b we have |(∪j−1

g=1Dsg ) ∩Dsj | 6 1. This implies that

y = | ∪kj=1 Dtj | > | ∪bj=1 Dsj | > (d− 1)b = (d− 1)(k − 1− r),

since {s1, . . . , sb} ⊆ {t1, . . . , tk}. Applying Lemma 15 implies that the balanced allocation is
(α,m)-uniform, where α = 44β, say. Hence for any c > 44βe2, the probability that each bin
in ∪kj=1Dtj is allocated at least c balls (that is, the tree T is c-loaded) is at most(

m

cy

)(αy
n

)cy
6

(
em
cy

)cy (αy
n

)cy
6
(eα
c

)cy
6 e−c(d−1)(k−r−1),

where the last inequality follows from m 6 n and the fact that c > αe2. Since balls are
independent from each other, we can multiply the above inequality by (11) to show that the
probability that Cm contains a c-loaded k-vertex tree with r red vertices is at most

exp
{

4k log(2βd)− c(d− 1)(k − r − 1) +
(
c0 + 3− rε/2

)
logn

}
, (12)

proving the first statement of the lemma. Finally, suppose that rε→∞ as n→∞. Then
the upper bound in (12) can be written as

exp
{(

4 log(2βd)− c(d− 1)
)
k +O(logn) + o(r · logn)− (rε/2) logn

}
6 exp

{
O(logn) + o(r · logn)− (rε/2) logn

}
.

Since rε→∞, this term dominates and the probability that Cm contains a blue-red coloured
tree with r red vertices tends to zero. Therefore, if such a tree is present in Cm then
r = O(1/ε) with high probability. This completes the proof. J

4 Balanced Allocation on Dynamic Graphs

In this section we show an upper bound for maximum load attained by the balanced allocation
on regular dynamic graphs (i.e., Theorem 6). Suppose that the balanced allocation process
has allocated n balls to the dynamic regular graph (G(1), . . . , G(n)). Define the conflict graph
Cn formed by the edges selected by the n balls. The vertex set of Cn is the set [n] of bins,
and the loads of these bins are updated during the process.

Given a tree T which is a subgraph of Cn, and vertices u, v of the tree, if {u, v} is an
edge of Cn then we say it is a cycle-producing edge with respect to the tree T . The name
arises as adding this edge to the tree would produce a cycle, which may be a 2-cycle if the
edge {u, v} is already present in T . For a positive integer c > 0, a subgraph of Cn is called
c-loaded if each vertex (bin) contained in the subgraph has load at least c. The following
proposition presents some properties of connected components of Cn.

I Proposition 17. Let (G(1), . . . , G(n)) be a regular dynamic graph on vertex set [n] which is
ε-visible. Let that Cn be the conflict graph obtained after allocating n balls using the balanced
allocation process. Then for every given constant c > 0, with probability at least 1 − n−c,
every 12(c+ 1)-loaded connected component of Cn contains strictly fewer than logn vertices.
Moreover, the number of cycle-producing edges in the component is at most 2(c+ 1)/ε.

We will prove the proposition in Appendix D. We now explain how to recursively build a
witness graph, provided there exists a bin whose load is higher than a certain threshold.
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Construction of the Witness Graph

Let us start with a bin, say r, with ` + c balls. Clearly, if a ball is in bin r at height h
then the other bin it chose, as part of the balanced allocation procedure, had load at least
h. Starting from bin (vertex) r, let us recover all ` edges corresponding to the balls that
were placed in r with height at least c. Thus, the alternative bin choices have loads at least
`+ c− 1, . . . , c, respectively. These ` bins are all neighbours of r in Cn, and we refer to them
as the children of r. Next, we recover the edges corresponding to balls placed in the children
of r at height at least c. Recursively, we continue until there is no ball remaining at height
c or more. For every i = 1, . . . , `, let f(` − i) denote the number of vertices generated by
the recursive construction, starting with a bin which contains ` − i + c balls. Assume for
the moment that, for each vertex with load at least c, the recursive procedure always gives
produces distinct children. Then

f(`) > f(`− 1) + f(`− 2) + . . .+ f(0) + 1,

where f(0) = 1. A simple calculation shows that f(`) > 2`. Thus, the recursive procedure
gives a c-loaded tree with at least 2` vertices, under the assumption that the children of each
vertex considered by the recursion are all distinct.

We may now prove our main result on dynamic regular graphs.

Proof of Theorem 6. We want to show that after n balls have been allocated to the dynamic
regular graph (G(1), . . . , G(n)), which satisfies the ε-visibility property, the maximum load is
at most log2 logn+O(1/ε) with high probability.

Let c > 0 be a given constant. By the second statement of Proposition 17, with probability
at least 1− n−c, the number of cycle-producing edges in a given component of Cn is at most
c2 = 2(c + 1)/ε. For a contradiction, suppose that there exists a bin, say r, which has at
least `+ c1 + c2 + 1 balls, where c1 = 12(c+ 1). Consider c2 + 1 balls in r at height at least
`+ c1. The children of r in Cn are the bins r1, r2, . . . , rc2+1 (which might not be distinct),
which were the alternative choice of these c2 + 1 balls. Each of these children ri has load
at least ` + c1. We start the recursive construction at each child ri of r. Assuming that
this component of Cn contains at most c2 cycle-producing edges, it follows that for at least
one child ri of r, the recursive procedure gives distinct children for each vertex which is
a descendent of ri. Hence we obtain a c1-loaded tree which has 2` vertices. Substituting
` = log2 logn and applying the first statement of Proposition 17, we conclude that with
probability at least 1− n−c such a structure does not exist in Cn. This contradiction shows
that with high probability, the maximum load after n balls have been allocated is at most
log2 logn+O(1/ε). J
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with girth logs n (e.g., see [10]). For each i ∈ [n], let N(i) be set of vertices adjacent to i.
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Also, let H = ([n], {N(i), i = 1, . . . , n}) denote a hypergraph obtained from G. We consider
the s-uniform dynamic hypergraph (H,H, . . . ,H). Clearly, for every {i, j} ⊂ [n] we have
that

vis(i, j) 6 n 6 sn1−ε

Therefore, the dynamic hypergraph is ε-visible. Fix an integer d such that 2 6 d 6 s and d
is constant. Since G does not contain any 4-cycle, we deduce that every d-subset of vertices
only appears in at most one hyperedge of H. Therefore, the probability that a d-subset is
chosen by any ball is 1/(n

(
s
d

)
). Let D = {i1, i2, . . . , id} ⊂ [n] be an arbitrary set of d vertices

contained in some hyperedge of H. Let X(D, k) be an indicator random variable taking one
if at least k balls choose D and zero otherwise. Then we have that

Pr [X(D, k) = 1] =
(
n

k

)(
1

n
(
s
d

))k
Also let Yk =

∑
DX(D, k) denote the number of d-subsets that are chosen by at least k balls.

By linearity of expectation we have that

E [Yk] =
∑
D

E [X(D, k)] = n

(
s

d

)(
n

k

)(
1

n
(
s
d

))k > n

(
s−d

k

)k
= n

(
n−dε

k

)k
, (13)

where the last inequality follows from
(
n
k

)
> (nk )k and

(
s
d

)
< sd. In what follows we show

that with high probability there exists k such that Yk > 1. Suppose that dε = Θ(1), then
if we set k = 1, then there is a d-subset which is picked by at least one ball and hence
Y1 > 1. If (log logn)/(3 logn) < dε and dε = o(1), then by setting k = 1/(6dε) we have
k < (logn)/(2 log logn) < logn and

E [Yk] > nk−kn−kdε > n(logn)− logn/(2 log logn)n−1/6 = n1/3 = ω(logn).

Moreover, if dε 6 log logn/(3 logn), then by letting k = logn/(2 log logn) we get that

E [Yk] > nk−kn−kdε > n(logn)− logn/(2 log logn)n−1/6 = n1/3 = ω(logn).

Therefore, there exists k = min{Ω(1/ε),Ω(logn/ log logn)} so that E [Yk] = ω(logn). As the
number of balls is n, it is easy to observe that for a given k, the random variables X(D, k) are
negatively correlated. Application of the Chernoff bound for negatively correlated random
variable implies that

Pr [Yk 6 E [Yk] /2] 6 exp(−E [Yk]/8) = exp(−ω(logn)).

It follows that there exists a d-subset D which is chosen by at least k balls and hence
there is at least one bin in D whose load is at least k/d. J

B Proof of Proposition 8

In this section we prove Proposition 8. First we restate a useful theorem from [8].

I Theorem 18 ([8, Theorem 3]). Let M be an ergodic Markov chain with finite state space Ω
and stationary distribution π. Let T = T (ε) be its ε-mixing time for ε < 1/8. Let (Z1, . . . , Zt)
denote a t-step random walk on M starting from an initial distribution ρ on Ω (that is, Z1 is
distributed according to ρ). For some positive constant µ and every i ∈ [t], let fi : Ω→ [0, 1] be
a weight function at step i such that the expected weight Eπ [fi(v)] =

∑
v∈Ω π(v)fi(v) satisfies

Eπ [fi(v)] = µ for all i. Define the total weight of the walk (Z1, ..., Zt) by X =
∑t
i=1 fi(Zi).

Write ||ρ||π =
√∑

x∈Ω ρ
2
x/πx. Then there exists some positive constant c (independent of µ

and ε) such that for all α > 0,



C. Greenhill, B. Mans, and A. Pourmiri 11:19

1. Pr [X > (1 + α)µt] 6 c||ρ||π e−α2µt/72T for 0 6 α 6 1.
2. Pr [X > (1 + α)µt] 6 c||ρ||π e−αµt/72T for α > 1.
3. Pr [X 6 (1− α)µt] 6 c||ρ||π e−α2µt/72T for 0 6 α 6 1.

Proof of Proposition 8. Let Ω be the vertex set of the R-dimensional torus Γ(n,R) and let
a and b denote two arbitrary agents. By definition of the communication graph process,
agents a and b are initially placed on two randomly chosen vertices of Γ, say u0 and v0. Note
that u0 and v0 are independently chosen according to the stationary distribution π of the
random walk on Γ(n,R). Now consider the trajectory of agents a and b, which give two
independent random walks u0, u1, . . . and v0, v1, . . . on Γ(n,R). Defining Xt = (ut, vt) for
t = 0, 1, . . . gives a finite, ergodic Markov chain with stationary distribution (π, π) on Ω× Ω.
For every t > 0, define f(Xt) = f(ut, vt) to equal 1 if d(ut, vt) 6 r, and equal 0 otherwise,
where d(·, ·) is the Manhattan distance for the given grid. Let u1

t and v1
t denote the projection

of the random walks ut and vt onto the 1-dimensional torus Γ(n1/R, 1), respectively, defined
by taking the first component of each of the random walks on Γ(n,R). Then X1

t = (u1
t , v

1
t )

is an ergodic Markov chain on Γ(n1/R, 1), and its initial distribution is stationary. We may
also define f(u1

t , v
1
t ) to be 1 if d(u1

t , v
1
t ) 6 r, and 0 otherwise. By the Manhattan distance

property, if f(ut, vt) = 1 then f(u1
t , v

1
t ) = 1. Therefore,

vis(a, b) =
n∑
t=0

f(Xt) 6
n∑
t=0

f(X1
t ).

Set δ = min{1/4, 1/R}. Let t0 be the first time when d(u1
t0 , v

1
t0) 6 nδ. Consider a moving

window W of length 2nδ + 1, which contains the locations of u1
t0 and v1

t0 . At time t0, the
vertices covered by W are labelled in increasing order, with the leftmost vertex labelled −nδ
and the rightmost vertex labelled nδ − 1. The window W stays at its initial location as long
as no agent hits a border of W (vertices labelled −nδ or nδ), or the middle vertex of W
(labelled 0). Let b be the first agent that hits a border or the centre of W . From this time
on, b and W are coupled so that they both move and/or stay, simultaneously. (If b moves
left then W also moves left, for example.) Each time the window W moves, a vertex u ∈ Γ1
is no longer covered by W and a new vertex, w ∈ Γ1, becomes covered by w. The new vertex
w is assigned the label of vertex u. This process always labels the vertices covered by W by
{−nδ−1, . . . , nδ − 1}, and the movement of agent b over these labeled vertices simulates a
random walk on the additive group Z2nδ+1. Define

S = {1 6 t 6 n | u1
t and v1

t ∈W}.

Assume that S 6= ∅ and define the chain Yt = (u1
t , v

1
t ), t ∈ S. Then Yt can be considered as

an ergodic Markov chain of length |S| 6 n over Z2nδ−1, or equivalently, as a Markov chain
on a (2nδ + 1)-cycle. By the proposition assumption we have r = O(no(1)) < nδ, and so

vis(a, b) =
n∑
t=0

f(Xt) 6
n∑
t=0

f(X1
t ) 6

∑
t∈S

f(Yt) 6
n∑
t=0

f(Yt).

The chain Yt converges to stationary distribution (π, π), where π is the uniform distribution of
a random walk on a (2nδ+1)-cycle. It follows that for all t = 0, 1, . . . we have E(π,π) [f(Yt)] =
µ = Θ(r/nδ), independently of t. It is well-known [15] that the ε-mixing time of the random
walk on a (2nδ + 1)-cycle is O(n2δ log(1/ε)). If ρ is the initial distribution Y0, then we have
that ||ρ||π 6 O(nδ). Applying Theorem 18 implies that

Pr
[
n∑
t=1

f(Yt) > µ · n

]
= O(nδ)e−Θ(rn1−3δ) = n−ω(1).
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Therefore, with probability 1− n−ω(1),

vis(a, b) 6
n∑
t=0

f(Yt) = O(rn1−δ) = O(n1−δ+o(1)) = O(n1−ε),

taking ε = δ/2, say. Taking the union bound over all pairs of agents completes the proof. J

C Proof of Lemma 14

Berenbrink et al. [3] proposed an allocation algorithm B such that for t = 1, 2, . . ., the t-th
ball chooses an edge of H(t) = ([n], Et), t = 1, . . ., uniformly at random, say Ht. The ball
is then allocated to an empty vertex (bin) of Ht, with ties broken randomly. If Ht does
not contain an empty bin then the process fails. The next lemma follows directly from [3,
Lemmas 4, 5].

I Lemma 19. Suppose that the dynamic s-uniform hypergraph (H(1), . . . ,H(n)) satisfies the
balancedness and size properties. There exists m = Θ(n) such that with probability at least
1− n−2, algorithm B successfully allocates m balls and there are at least s/2 empty vertices
in Ht for t = 1, . . . ,m.

We now apply the above result to prove Lemma 14.

Proof of Lemma 14. We apply a coupling technique between the balanced allocation process
on a dynamic hypergraph and B.

Let us first consider an identical copy of the set of bins, called B. The coupled process
sequentially allocates a ball to a pair of bins. In round t = 1, . . . ,m, the t-th ball chooses
an edge of H(t) uniformly at random, say Ht. Let H ′t be the corresponding set of bins,
chosen from B. Then the first ball is allocated to a bin, say i, contained in Ht according the
balanced allocation. If i ∈ H ′t is empty then the second ball is allocated to bin i ∈ H ′t as
well. If i ∈ H ′t is not empty then the second ball is allocated to an empty bin from H ′t, with
ties are broken randomly. If there is no empty bin in H ′t then the coupling fails. Note that
Ht and H ′t have the same set of bins but may have different loads. Observe that the coupled
process allocates balls to bins from B according to B. Next we show that for t = 1, . . . ,m,

Empty(Ht) > Empty(H ′t), (14)

where Empty(H) denotes the number of empty bins contained in H. For a contradiction,
assume that there is a first time t1 such that Empty(H ′t1) > Empty(Ht1). Then there
is vertex i ∈ H ′t1 which is empty, while i ∈ Ht1 has a ball at height zero: this is ball
t0, say, where 1 6 t0 6 t1. This implies that the coupled process has allocated ball t0
to bin i ∈ Ht1 , but it has not allocated any ball to bin i ∈ H ′t1 , since i was empty until
round t1. This contradicts the definition of the coupled process. So Inequality (14) holds
for t = 1, . . . ,m. Applying Lemma 19 yields that there exists m = Θ(n) such that for
t = 1, . . . ,m, Empty(Ht) > Empty(H ′t) > s/2. J

D Proof of Proposition 17

In this subsection we will prove two lemmas and then combine them to establish the
proposition. The lemmas and their proofs are inspired by [13, Lemma 2.1 and 2.2]. Recall
that a subgraph of Cn is c-loaded if every vertex (bin) in the subgraph has load at least c.
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I Lemma 20. Let k be a positive integer and let c1 > 0. The probability that conflict graph
Cn contains a c1-loaded connected component with k vertices is at most n · 8k ·

(
2e
c1

)c1k

.
Moreover, by setting c1 = 12(c+ 1), we conclude that with probability at least 1− n−c, the
conflict graph Cn does not contain a c1-loaded tree with at least logn vertices.

Proof. A connected component in Cn with k vertices contains a spanning tree with k vertices.
By Proposition 10, there are at most 4k−1 ordered trees with k vertices. For every ordered
tree, we can choose its root in n ways, as we have n bins (vertices). Hence there are at most
n · 4k−1 rooted and ordered trees. Let us fix an arbitrary ordered tree T with a specified
root. Also let (t1, . . . , tk−1) denote an arbitrary sequence of rounds, where ti ∈ {1, . . . , n}
is the round when the i-th edge of the ordered tree T is chosen. Notice that in an ordered
tree with specified root, the i-th edge always connects the i-th child to its parent, and the
parent is already known to us. Therefore, to build the tree, the i-th edge of the tree must
be chosen from edges of G(ti) that are adjacent to the known parent. This implies that the
algorithm chooses the i-th edge of T in round ti with probability ∆ti

n∆ti
/2 = 2

n . Since balls are
independent from each other, the tree T is constructed at the given times (t1, . . . , tk−1) with
probability(

2
n

)k−1
. (15)

On the other hand, ball t is allocated to a given bin with probability at most ∆t/(n∆t/2) =
2/n. Therefore, the probability that T is c1-loaded is at most(

n

ck

)(
2k
n

)c1k

6

(
en
c1k

)c1k (2k
n

)c1k

=
(

2e
c1

)c1k

, (16)

where we used the fact that
(
n
c1k

)
6
(

en
c1k

)c1k

. Since balls are independent, one can multiply
(15) by (16) and derive an upper bound for the probability that T is constructed at the
given times and is c-loaded. Taking the union bound over all rooted ordered trees and time
sequences gives

n4k−1
∑

(t1,...,tk−1)

{(
2
n

)k−1(2e
c1

)c1k
}

6 n4k−1nk−1 ·

{(
2
n

)k−1(2e
c1

)c1k
}

= n8k−1
(

2e
c1

)c1k

,

proving the first statement of the lemma. By setting c1 = 12(c + 1) and k = logn in the
above formula, we infer that the probability that Cn contains a c1-loaded tree with logn
vertices is at most

n8k−1
(

2e
c1

)c1k

< n23k2−12(c+1)k 6 n2−ck−9k 6 n−c,

completing the proof. J

I Lemma 21. Suppose that the conflict graph Cn contains a c-loaded k-vertex tree T , where
c > 4e is any constant and k is a positive integer. Let p denotes the number of cycle-
producing edges (with respect to T ) which have been added between vertices in this tree during
the allocation process. Then p < 2(c+ 1)/ε with probability at least 1− n−c.
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Proof. For a given connected component of k vertices, there are at most
(
k
2
)
edges whose

addition may produce a cycle. This includes edges already present in the component, as an
edge with multiplicity 2 (double edge) forms a 2-cycle. Thus, the p edges can be chosen in(
k
2
)p
< k2p ways. Let {e1, e2, . . . , ep} denote a set of p cycle-producing edges (some of these

may create 2-cycles). Also let (t1, . . . , tp) denote a sequence of rounds, where ti ∈ {1, . . . , n} is
the round in which the ti-th ball picks edge ei. For each round t = 1, 2, . . . , n and i = 1, . . . , p,
let us define It(ei) to equal 1 if ei ∈ Et, and 0 otherwise. It is easy to see that

Pr
[
ball t picks edge ei of G(t)

]
= It(ei)
|Et|

.

Now vis(ei) =
∑n
t=1 It(ei) for i = 1, . . . , p. Using this, and the fact that |Et| > n/2 for each

t (since G(t) is regular with degree at most 1), the probability that e1, e2, . . . , ep are chosen
is at most

∑
(t1,...,tp)

{
p∏
i=1

Iti(ei)
Eti

}
6

p∏
i=1

{
n∑
t=1

It(ei)
Et

}
6

p∏
i=1

4 vis(ei)
n

6

(
4n1−ε

n

)p
=
(

4
nε

)p
. (17)

Moreover, applying Lemma 20 shows that the probability that Cn contains a c-loaded k-vertex
tree is at most

n · 8k ·
(

2e
c

)ck
6 n · 2−k, (18)

as c > 4e. So, with high probability, Cn does not contain any c-loaded tree with at least
(logn)2 vertices. Now assume that k < (logn)2. Combining (17) and (18), and taking the
union bound over all choices for a set of p edges, we find that the probability that a c-loaded
k-vertex tree contains p cycle-producing edges is at most

k2p ·
(

4
nε

)p
· n · 2−k =

(
4 · k2

nε

)p
· n · 2−k 6 n−εp/2 · n · 2−k, (19)

where the inequality holds as k < (logn)2. Therefore the probability that p = d2(c+ 1)/εe
cycle-producing edges are present is at most n−c. We conclude that p < 2(c + 1)/ε with
probability at least 1− n−c. J

Proof of Proposition 17. Combining the Lemmas 20 and 21 establishes the proposition. J
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