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Abstract
A recent palette sparsification theorem of Assadi, Chen, and Khanna [SODA’19] states that in every
n-vertex graph G with maximum degree ∆, sampling O(logn) colors per each vertex independently
from ∆ + 1 colors almost certainly allows for proper coloring of G from the sampled colors. Besides
being a combinatorial statement of its own independent interest, this theorem was shown to have
various applications to design of algorithms for (∆ + 1) coloring in different models of computation
on massive graphs such as streaming or sublinear-time algorithms.

In this paper, we focus on palette sparsification beyond (∆ + 1) coloring, in both regimes when
the number of available colors is much larger than (∆+1), and when it is much smaller. In particular,

We prove that for (1 + ε)∆ coloring, sampling only Oε(
√

logn) colors per vertex is sufficient and
necessary to obtain a proper coloring from the sampled colors – this shows a separation between
(1 + ε)∆ and (∆ + 1) coloring in the context of palette sparsification.
A natural family of graphs with chromatic number much smaller than (∆ + 1) are triangle-free
graphs which are O( ∆

ln ∆ ) colorable. We prove a palette sparsification theorem tailored to these
graphs: Sampling O(∆γ +

√
logn) colors per vertex is sufficient and necessary to obtain a proper

Oγ( ∆
ln ∆ ) coloring of triangle-free graphs.

We also consider the “local version” of graph coloring where every vertex v can only be colored
from a list of colors with size proportional to the degree deg(v) of v. We show that sampling
Oε(logn) colors per vertex is sufficient for proper coloring of any graph with high probability
whenever each vertex is sampling from a list of (1 + ε) · deg(v) arbitrary colors, or even only
deg(v) + 1 colors when the lists are the sets {1, . . . , deg(v) + 1}.

Our new palette sparsification results naturally lead to a host of new and/or improved algorithms
for vertex coloring in different models including streaming and sublinear-time algorithms.
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6:2 Palette Sparsification Beyond (∆ + 1) Vertex Coloring

1 Introduction

Given a graph G(V,E), let n := |V | be the number of vertices and ∆ denote the maximum
degree. A proper c-coloring of G is an assignment of colors to vertices from the palette of
colors {1, . . . , c} such that adjacent vertices receive distinct colors. The minimum number
of colors needed for proper coloring of G is referred to as the chromatic number of G and
is denoted by χ(G). An interesting variant of graph coloring is list-coloring whereby every
vertex v is given a set S(v) of available colors and the goal is to find a proper coloring of
G such that the color of every v belongs to S(v). When this is possible, we say that G is
list-colorable from the lists S.

It is well-known that χ(G) ≤ ∆ + 1 for every graph G; the algorithmic problem of
finding such a coloring – the (∆ + 1) coloring problem – can also be solved via a text-book
greedy algorithm. Very recently, Assadi, Chen, and Khanna [5] proved the following palette
sparsification theorem for the (∆ + 1) coloring problem: Suppose for every vertex v of
a graph G, we independently sample O(logn) colors L(v) uniformly at random from the
palette {1, . . . ,∆ + 1}; then G is almost-certainly list-colorable from the sampled lists L.

The palette sparsification theorem of [5], besides being a purely graph-theoretic result
of its own independent interest, also had several interesting algorithmic implications for
the (∆ + 1) coloring problem owing to its “sparsification” nature: it is easy to see that by
sampling only O(logn) colors per vertex, the total number of edges that can ever become
monochromatic while coloring G from lists L is with high probability only O(n · log2 n); at
the same time we can safely ignore all other edges of G. This theorem thus reduces the
(∆ + 1) coloring problem, in a non-adaptive way, to a list-coloring problem on a graph with
(potentially) much smaller number of edges.

The aforementioned aspect of this palette sparsification is particularly appealing for the
design of sublinear algorithms – these are algorithms which require computational resources
that are substantially smaller than the size of their input. Indeed, one of the interesting
applications of this theorem, proven (among other things) in [5], is a randomized algorithm
for the (∆ + 1) coloring problem that runs in Õ(n

√
n)1 time; for sufficiently dense graphs,

this is faster than even reading the entire input once!
Palette sparsification in [5] was tailored to the (∆ + 1) coloring problem. Motivated by

the ubiquity of graph coloring problems on one hand, and the wide range of applications of
this palette sparsification result on the other hand, the following question is natural:

What other graph coloring problems admit (similar) palette sparsification theorems?

This is precisely the question we study in this work from both upper and lower bound fronts.

1.1 Our Contributions
We consider palette sparsification beyond (∆ + 1) coloring: when the number of available
colors is much larger than ∆ + 1, when it is much smaller, and when the number of available
colors for vertices depend on “local” parameters of the graph.

(1 + ε)∆ Coloring. The palette sparsification theorem of [5] is shown to be tight in the
sense that on some graphs, sampling o(logn) colors per vertex from {1, . . . ,∆ + 1}, results
in the sampled list-coloring instance to have no proper coloring with high probability. We
prove that in contrast to this, if one allows for a larger number of available colors, then
indeed we can obtain a palette sparsification with asymptotically smaller sampled lists.

1 Here and throughout the paper, we use the notation Õ(f) := O(f · polylog(f)) to suppress log-factors.
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I Result 1 (Informal – Formalized in Theorem 5). For any graph G(V,E), sampling
Oε(
√

logn) colors per vertex from a set of size (1 + ε)∆ colors with high probability
allows for a proper list-coloring of G from the sampled lists.

Result 1, combined with the lower bound of [5], provides a separation between (∆ + 1)
coloring and (1 + ε)∆ coloring in the context of palette sparsification. We also prove that
the bound of Θ(

√
logn) sampled colors is (asymptotically) optimal in Result 1.

To prove Result 1, we unveil a new connection between palette sparsification theorems and
some of the classical list-coloring problems in the literature. In particular, several works in
the past (see, e.g. [31, 20, 32] and [3, Proposition 5.5.3]) have studied the following question:
Suppose in a list-coloring instance on a graph G, we define the c-degree of a vertex-color
pair (v, c) as the number of neighbors of v that also contain c in their list; what conditions
on maximum c-degrees and minimum list sizes imply that G is list-colorable from such lists?

Palette sparsification theorems turned out to be closely related to these questions as the
sampled lists in these results can be viewed through the lens of these list-coloring results. In
particular, Reed and Sudakov [32] proved that in the above question if the size of each list
is larger than the maximum c-degree by a (1 + o(1)) factor, then G is always list-colorable.
The question here is then whether or not the lists sampled in Result 1 satisfy this condition
with high probability. The answer turns out to be no as sampling only O(

√
logn) colors

does not provide the proper concentration needed for this guarantee. Despite this, we show
that one can still use [32] to prove Result 1 with a more delicate argument by applying [32]
to carefully chosen subsets of the sampled lists.

O( ∆
ln ∆) Coloring of Triangle-Free Graphs. Even though χ(G) in general can be ∆ + 1,

many natural families of graphs have chromatic number (much) smaller than ∆ + 1. One
key example is the set of triangle-free graphs which are O( ∆

ln ∆ ) colorable by a celebrated
result of Johansson [21] (which was recently simplified and improved to (1 + o(1)) · ∆

ln ∆ by
Molloy [24]; see also [29, 8]). We prove a palette sparsification theorem for these graphs.

I Result 2 (Informal – Formalized in Theorem 6). For any triangle-free graph G(V,E),
sampling O(∆γ +

√
logn) colors per vertex from a set of size Oγ( ∆

ln ∆ ) colors with high
probability allows for a proper list-coloring of G from the sampled lists.

Unlike Result 1 of our paper and the theorem of [5], in this result we also have a dependence
of ∆γ on the number of sampled colors (where the exponent depends on the number of
available colors). We prove that this dependence is also necessary (Proposition 8).

The proof of Result 2 is also based on the aforementioned connection to list-coloring
problems based on c-degrees. However, unlike the case for Result 1, here we are not aware of
any such list-coloring result that allows us to infer Result 2. As such, a key part of the proof
of Result 2 is exactly to establish such a result. Our proof for the corresponding list-coloring
problem is by the probabilistic method and in particular a version of the so-called “Rödl
Nibble” or the “semi-random method”; see, e.g. [33, 26]. Similar to previous work on coloring
triangle-free graphs, the main challenge here is to establish the desired concentration bounds.
We do this following the approach of Pettie and Su [29] in their distributed algorithm for
coloring triangle-free graphs.

We shall note that our proofs of Results 1 and 2 are almost entirely disjoint from the
techniques in [5] and instead build on classical work on list-coloring problems in graph theory.

APPROX/RANDOM 2020
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Coloring with Local Lists Size. Finally, we consider a coloring problem with “local” list
sizes where the number of available colors for vertices depends on a local parameter, namely
their degree as opposed to a global parameter such as maximum degree.

I Result 3 (Informal – Formalized in Theorem 12). For any graph G(V,E), sampling
Oε(logn) colors for each vertex v with degree deg(v) from a set S(v) of (1 + ε) · deg(v)
arbitrary colors or only deg(v) + 1 colors when the lists are the sets {1, . . . ,deg(v) + 1},
allows for a proper coloring of G from the sampled colors.

Coloring problems with local lists size have been studied before in both the graph theory
literature, e.g. in [14, 11] for coloring triangle-free graphs (and as pointed out by [14], the
general idea goes all the way back to the notion of degree-choosability in one of the original
list-coloring papers [16]), and theoretical computer science, e.g. in [13].

To be more precise, the first part of Result 3 refers to the standard (1 + ε) deg list-
coloring problem and the second part corresponds to the so-called (deg +1) coloring problem
introduced first (to our knowledge) in the recent work of Chang, Li, and Pettie [13] (see
also [4] for an application of this problem). We remark that the (deg +1) coloring problem
is a generalization of the (∆ + 1) coloring problem and hence our Result 3 generalizes that
of [5] (although we build on many of the ideas and tools developed in [5] for ∆ + 1 coloring).

Our proof of Result 3 takes a different route than Results 1 and 2 that were based on
list-coloring and instead we follow the approach of [5] for (∆ + 1) coloring. A fundamental
challenge here is that the graph decomposition for partitioning vertices into sparse and dense
parts that played a key role in [5] is no longer applicable to the (deg +1) coloring problem.
We address this by “relaxing” the requirements of the decomposition and develop a new
one that despite being somewhat “weaker” than the ones for (∆ + 1) coloring in [18, 13, 5]
(themselves based on [30]), takes into account the disparity between degrees of vertices in
the (deg +1) coloring problem. Similar to [5], we then handle “sparse”2 and dense vertices of
this decomposition separately but unlike [5], here the main part of the argument is to handle
these “sparse” vertices and the result for the dense part follows more or less directly from [5].

We conclude this section by noting that our proof for (1 + ε) deg-list coloring problem
also immediately gives a palette sparsification result for obtaining a (1 + ε)κ-list coloring
with sampling Oε(logn) colors, where κ is the degeneracy of the graph. This problem was
studied very recently in the context of sublinear or “space conscious” algorithms by Bera,
Chakrabarti, and Ghosh [7] who also proved, among other interesting results, that (κ+ 1)
coloring cannot be achieved via palette sparsification – our result thus complements their
lower bound. We postpone the details of this result to the full version of the paper.

1.2 Implication to Sublinear Algorithms for Graph Coloring
As stated earlier, one motivation in studying palette sparsification is in its application
to design of sublinear algorithms. As was shown in [5], these theorems imply sublinear
algorithms in various models in “almost” a black-box way (see Section 5 for details). For
concreteness, in this paper, we stick to their application to the two canonical examples of
streaming and sublinear-time algorithms. We only note in passing that exactly as in [5], our
results also imply new algorithms in models such as massively parallel computation (MPC)
or distributed/linear sketching; see also [12, 7] for more recent results on graph coloring
problems in these and related models.

2 Technically speaking, this decomposition allows for vertices that are neither sparse nor dense and are
key to extending the decomposition from (∆ + 1) coloring to (deg +1) coloring.
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Table 1 A sample of our sublinear algorithms as corollaries of Results 1, 2, and 3, and the
previous work in [5] and [7] (for brevity, we assume ε, γ are constants). All streaming algorithms
here are single-pass and all sublinear-time algorithms except for (1 + ε)κ coloring are non-adaptive.

Problem Graph Family Streaming Sublinear-Time Source

(∆ + 1) Coloring General O(n log2 n) space Õ(n3/2) time [5]

(1 + ε)κ Coloring κ-Degenerate O(n logn) space Õ(n3/2) time [7]

Oγ( ∆
ln ∆ ) Coloring Triangle-Free O(n ·∆γ) space O(n3/2+γ) time our work

(1 + ε) deg List-Coloring General O(n · log2 n) space Õ(n3/2) time our work

(deg +1) Coloring General O(n · log2 n) space Õ(n3/2) time our work

Our results in this part appear in Section 5. Table 1 presents a summary of our sublinear
algorithms and the directly related previous work (even though our Result 1 implies a
separation between (∆ + 1) and (1 + ε)∆ coloring, the resulting sublinear algorithms from
Result 1 are subsumed by the previous work in [7] and hence are omitted from Table 1).

Sublinear Algorithms from Graph Partitioning. Motivated by our results on sublinear
algorithms for triangle-free graphs, we also consider sublinear algorithms for coloring other
“locally sparse” graphs such as Kr-free graphs, locally r-colorable graphs, and graphs with
sparse neighborhood. We give several results for these problems through a general algorithm
based on the graph partitioning technique (see, e.g. [12, 27, 28, 7]). Our results in this part
are presented in Appendix B.

2 Preliminaries

Notation. For any integer t ≥ 1, we define [t] := {1, . . . , t}. For a graph G(V,E), we use
V (G) := V and E(G) := E to denote the vertex-set and edge-set respectively. For a vertex
v ∈ V , NG(v) denotes the neighborhood of v in G and degG(v) := |NG(v)| denotes the
degree of v (when clear from the context, we may drop the subscript G). For a vertex-set
U ⊆ V , G[U ] denotes the induced subgraph of G on U . When there are lists of colors S(v)
given to vertices v, we use the term c-degree of v to mean the number of neighbors u of v
of with color c in their list S(u) and denote this by degS(v, c). We use the term “with high
probability” (w.h.p.) for an event to mean that the probability of this event happening is at
least 1− 1/nc where c is a sufficiently large constant.

List-Coloring with Constraints on Color-Degrees. We use the following result of Reed and
Sudakov [32] on list-coloring of graphs with constraints on c-degrees of vertices.

I Proposition 4 ([32]). For every ε > 0 there exists a d0 := d0(ε) such that for all d ≥ d0
the following is true. Suppose G(V,E) is a graph with lists S(v) for every v ∈ V such that:
1. for every vertex v, |S(v)| ≥ (1 + ε) · d, and
2. for every vertex v and color c ∈ S(v), degS(v, c) ≤ d (recall that degS(v, c) denotes the

c-degree of v which is the number of neighbors u of v with color c ∈ S(u)).
Then, there exists a proper coloring of G from these lists.

A weaker version of this result obtained by replacing (1 + ε) above with some absolute
constant appeared earlier in [31] (see also [3, Proposition 5.5.3] and [20]).

APPROX/RANDOM 2020



6:6 Palette Sparsification Beyond (∆ + 1) Vertex Coloring

3 Two New Palette Sparsification Theorems

We present our new palette sparsification theorems in Result 1 and Result 2 in this section.
We postpone the proof of the optimality of Result 1 (the lower bound on sampled-list sizes)
to the full version of the paper as it is a basic argument. Instead we give the more interesting
proof of the optimality of Result 2 in almost full details in this section.

3.1 Palette Sparsification for (1 + ε)∆ Coloring
We start with our improved palette sparsification theorem for (1 + ε)∆ coloring.

I Theorem 5. For every ε ∈ (0, 1/2), there exists an integer n(ε) ≥ 1 such that the following
is true. Let G(V,E) be any graph with n ≥ n(ε) vertices and maximum degree ∆, and define
C := C(ε) = (1 + ε) ·∆. Suppose for every vertex v ∈ V , we independently sample a set L(v)
of colors of size ` :=

(
10
√

logn/ε1.5) uniformly at random from colors {1, . . . , C}. Then,
with high probability, there exists a proper coloring of G from lists L(v) for every v ∈ V .

We shall note that in contrast to Theorem 5, it was shown in [5] that for the more
stringent problem of (∆ + 1) coloring, sampling Ω(logn) colors per vertex is necessary. As
such, Theorem 5 presents a separation between these two problems in palette sparsification.

Proof of Theorem 5
The proof of this theorem is by showing that the lists sampled for vertices can be adjusted so
that they satisfy the requirement of Proposition 4; we then apply this proposition to obtain
a list-coloring of G from the sampled lists.

Recall that degL(v, c) is the c-degree of vertex v in lists L. For every c ∈ L(v),

E [degL(v, c)] :=
∑

u∈N(v)

P (u samples c in L(u)) ≤ ∆ · `
C

= `

1 + ε
. (1)

Now if degL(v, c) was concentrated enough so that maxv,c degL(v, c) = (1 − Θ(ε)) · `,
we would have been done already: by Proposition 4, there is always a proper coloring of
G from such lists (take the parameter d to be maxv,c degL(v, c) and so size of each list is
(1 + Θ(ε))d). Unfortunately however, it is easy to see that as ` = Θ(

√
logn) in general no

such concentration is guaranteed.
We fix the issue above by showing existence of a subset L̂(v) of each list L(v) such

that these new lists can indeed be used in Proposition 4. The argument is intuitively
as follows: the probability that degL(v, c) deviates significantly from its expectation is
2−Θ(`) = 2−Θ(

√
logn) by a simple Chernoff bound. Moreover, the probability that Ω(

√
logn)

colors in L(v) all deviate from their expectation can be bounded by
(

2−Θ(
√

logn)
)Ω(
√

logn)

(ignoring dependency issues for the moment). This probability is now n−Θ(1), enough for us
to take a union bound over all vertices. As such, by removing some fraction of the colors from
the list of each vertex, we can satisfy the c-degree requirements for applying Proposition 4
and conclude the proof. We now formalize this.

We say that a color c ∈ L(v) is bad for v iff degL(v, c) > (1 + ε/2) · E [degL(v, c)]. As the
choice of color c for each vertex u ∈ N(v) is independent, by Eq (1) and Chernoff bound
(Proposition 28),

P
(

degL(v, c) > (1 + ε/2) · E [degL(v, c)]
)
≤ exp

(
− ε

2

12 ·
`

1 + ε

)
. (2)
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Define bad(v) as the number of colors c in L(v) that are bad for vertex v. We note that
by the sampling process in Theorem 5, conditioning on some colors being bad for v can only
reduce the chance of the remaining colors being bad for v. As such, by Eq (2),

P
(
bad(v) ≥ ε/4 · `

)
≤
(

`

ε/4 · `

)
· exp

(
− ε

2

12 ·
`

1 + ε

)ε·`/4
≤ 2` · exp

(
− ε

3

72 · `
2
)
≤ exp (−20 logn) .

(by the choice of ` = 10
√

logn/ε1.5 and as ε < 1/2 is sufficiently smaller than n)

By a union bound over all n vertices, with high probability, for every vertex v, bad(v) ≤
ε · `/4. We let L̂(v) to be a subset of L(v) obtained by removing all bad colors from L(v).
For any c ∈ L̂(v):

deg
L̂

(v, c) ≤ degL(v, c) ≤ (1 + ε/2) · `

1 + ε
≤ (1− ε/3) · `. (for ε < 1/2)

On the other hand, as bad(v) ≤ ε·`/4, we have
∣∣∣L̂(v)

∣∣∣ ≥ (1−ε/4)·`. As such, by Proposition 4

(as ε is a constant with respect to `), we can list-color G from lists L̂ and consequently also
L, finalizing the proof. J

3.2 Palette Sparsification for Triangle-Free Graphs
We now prove a palette sparsification theorem for triangle-free graphs.

I Theorem 6. Let G(V,E) be any n-vertex triangle-free graph with maximum degree ∆. Let
γ ∈ (0, 1) be a parameter and define C := C(γ) =

(
9∆

γ·ln ∆

)
. Suppose for every vertex v ∈ V ,

we independently sample a set L(v) of size b · (∆γ +
√

logn) uniformly at random from colors
{1, . . . , C} for an appropriate absolute positive constant b. Then, with high probability there
exists a proper coloring of G from lists L(v) for every vertex v ∈ V .

It is known that there are triangle-free graphs with chromatic number Ω( ∆
ln ∆ ) [10] (In fact

this bound holds even for graphs with arbitrarily large girth not only girth > 3). Theorem 6
then shows that one can match the chromatic number of these graphs asymptotically by
sampling a small number of colors per vertex (almost as small as O(∆o(1) +

√
logn)).

Proof of Theorem 6
As we already saw in the proof of Theorem 5, looking at the sampled lists L(v) of vertices
as a list-coloring problem with constraints on c-degrees can be quite helpful in proving the
corresponding palette sparsification result. We take the same approach in proving Theorem 6
as well. However, unlike for (1 + ε)∆ coloring, to the best of our knowledge, no such
list-coloring results (with constraints on c-degrees instead of maximum degree) are known
for coloring triangle-free graphs. Our main task here is then exactly to prove such a result
formalized as follows.

I Proposition 7. There exists an absolute constant d0 such that for all d ≥ d0 the following
holds. Suppose G(V,E) is a triangle-free graph with lists S(v) for every v ∈ V such that:
1. for every vertex v, |S(v)| ≥ 8 · d

ln d , and
2. for every vertex v and color c ∈ S(v), degS(v, c) ≤ d.
Then, there exists a proper coloring of G from these lists.

APPROX/RANDOM 2020



6:8 Palette Sparsification Beyond (∆ + 1) Vertex Coloring

We give the proof of Theorem 6 assuming Proposition 7 here. The proof of Proposition 7
itself is technical and detailed and thus even though interesting on its own, we opted to
postpone it to the full version to preserve the flow of the paper here.

Proof of Theorem 6. We prove this theorem with the weaker bound of O(∆γ + logn) (as
opposed to O(∆γ+

√
logn)) for the number of sampled colors. The extension to the improved

bound with O(
√

logn) dependence is exactly as in the proof of Theorem 5 and is thus omitted.
Let ` := (∆γ + 100 lnn) and suppose each vertex samples ` colors from {1, . . . , C} for

C := C(γ) =
(

9∆
γ·ln ∆

)
. Let p := `/C which is equal to the probability that any vertex v

samples a particular color in L(v). We have,

E [degL(v, c)] =
∑

u∈N(v)

P (u samples c in L(u)) ≤ p ·∆.

Note that as p · ∆ ≥ p · C = ` ≥ 100 lnn, a simple application of Chernoff bound plus
union bound ensures that, for every vertex v and color c, degL(v, c) ≤ (1.1) · p∆ with high
probability. In the following, we condition on this event.

Let d := (1.1) ·p∆. By the above conditioning, c-degree of every vertex v ∈ V is at most d.
In order to apply Proposition 7 to graph G with lists L, we only need to prove that ` ≥ 8d

ln d .
We prove that in fact ` · ln ` ≥ 8d which implies the desired bound as ` = p · C ≤ p ·∆ ≤ d.
We have,

` · ln ` ≥ (p · C) · ln (∆γ) = p ·
(

9∆
γ · ln ∆

)
· γ · ln ∆ = 9 · p∆ > 8d.

(as ∆γ < ` = p · C and by the choice of C)

The proof now follows from applying Proposition 7 to lists L. J

Asymptotic Optimality of the Bounds in Theorem 6
We now prove the optimality of Theorem 6 up to constant factors.

I Proposition 8. There exists a distribution on n-vertex graphs with maximum degree
∆ = Θ(n1/3) such that for every γ < 1/16 and C := C(γ) = ∆

16γ·ln ∆ the following is true.
Suppose we sample a graph G(V,E) from this distribution and then for each vertex v ∈ V ,
we independently pick a set L(v) of colors with size ∆γ uniformly at random from colors
{1, . . . , C}; then, with high probability there exists no proper coloring of G wherein the color
of every vertex v ∈ V sis chosen from L(v).

Let Gn,p denote the Erdős-Rényi distribution of random graphs on n vertices in which
each edge is chosen independently with probability p. Define the following distribution G−K3

n,p

on triangle-free graphs: Sample a graph G from Gn,p, then remove every edge that was part
of a triangle originally. Clearly, the graphs output by G−K3

n,p are triangle-free. Throughout
this section, we take p = Θ(n−2/3) (the choice of the constant will be determined later).

We prove Proposition 8 by considering the distribution G−K3
n,p . However, we first present

some basic properties of distribution Gn,p needed for our purpose. The proofs are simple
exercises in random graph theory and can be found in the full version of the paper. In
the following, let t(G) denote the number of triangles in G and α(G) denote the maximum
independent set size, and recall that ∆(G) denotes the maximum degree of G.

I Lemma 9. For G ∼ Gn,p, E [t(G)] ≤ (np)3, and t(G) ≤ (1 + o(1))E [t(G)] w.h.p.

I Lemma 10. For G ∼ Gn,p, E [α(G)] ≤ 3·ln (np)
p , and α(G) ≤ 3·ln (np)

p w.h.p.
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I Lemma 11. For G ∼ Gn,p, ∆(G) ≤ 2np w.h.p.

Proof of Proposition 8. Let p := 1
3 · (n)−2/3 for this proof and consider the distribution

G−K3
n,p . Moreover, let L denote the distribution of lists of colors sampled for vertices. By

Lemma 11, the maximum degree of G ∼ Gn,p and consequently G ∼ G−K3
n,p is at most

∆̃ := 2np with high probability. Throughout the following argument, we condition on this
event. This can only change the probability calculations by a negligible factor (that we
ignore for the simplicity of exposition). This way, the number of colors sampled in L can be
assumed to be at most C := ∆̃

16γ·ln ∆̃
. We further use q := ∆̃γ/C to denote the probability

that a color c is sampled in list L(v) of a vertex v.

For a graph G(V,E) ∼ G−K3
n,p and lists L ∼ L, let V1, . . . , VC be a collection of subsets of

V (not necessarily disjoint) where for every c ∈ [C], Vc denotes the vertices v that sampled
the color c in their list L(v). As each color is sampled with probability q by a vertex, and
the choices are independent across vertices, a simple application of Chernoff bound ensures
that with high probability, |Vc| ≤ 2q · n for all c. We also condition on this event in the
following (and similarly as before ignore the negligible contribution of this conditioning to
the probability calculations below).

Let δ denote the probability of “error” i.e., the event that the sampled colors do not lead
to a proper coloring of the graph. An averaging argument implies that there exists a fixed
set of lists L ∼ L such that for G sampled from G−K3

n,p , the error probability of L on G is at
most δ. Fix such a choice of L in the following. We will show that δ = 1− o(1).

Recall that G ∼ G−K3
n,p is chosen independent of the lists L (by definition of palette

sparsification). For any graph G, define:

µL(G) := max(U1,...,UC)
∑C
c=1 |Uc| where all Uc’s are disjoint, each Uc ⊆ Vc, and G[Uc] is

an independent set.

As we have fixed the choice of the lists L, the function µL(·) is fixed at this point and its
value only depends on G. A necessary condition for G to be colorable from the lists L is that
µL(G) = n. This is because (i) any proper coloring of G from lists L necessarily induces an
independent set inside each Vc; (ii) these independent sets are disjoint and hence we can
take them as a feasible solution (U1, . . . , UC) to µL(G); (iii) these independent sets cover all
vertices of G. Our task is now to bound the probability that µ(G) = n to lower bound δ.

Firstly, we can switch from the distribution G−K3
n,p to Gn,p using the following equation

(recall that t(G) denotes the number of triangles):

E
G∼G−K3

n,p

[µL(G)] ≤ E
H∼Gn,p

[µL(H) + 3 · t(H)] . (3)

This is because any graph G ∼ G−K3
n,p is obtained by removing edges of every triangle in a

graph H ∼ Gn,p and removing these edges can only increase the total size of a collection of
disjoint independent sets (namely, the value of µL) by the number of vertices in the triangles
(in fact, by at most two vertices from each triangle). We can upper bound the second-term
in Eq (3) using Lemma 9. We now bound the first term. In the following, let nc := |Vc| for
c ∈ [C]. We have,
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E
H∼Gn,p

[µL(H)] ≤ E
H∼Gn,p

[
C∑
c=1

α(H[Vc])
]
,

(by removing the disjointness condition between sets Uc’s we can only increase value of µL(H))

=
C∑
c=1

E
Hc∼Gnc,p

[α(Hc)]

(by linearity of expectation and as for every c ∈ [C], H[Vc] is sampled from Gnc,p)

≤
C∑
c=1

3 · ln (ncp)
p

(by Lemma 10)

≤ C · 3 · ln (2qn · p)
p

(as we conditioned on nc ≤ 2q · n)

= ∆̃
16γ · ln ∆̃

· 3 · ln (q · ∆̃)
(∆̃/2n)

(by definitions of C and ∆̃)

= 6n
16 ·

ln (q · ∆̃)
ln (∆̃γ)

(by a simple re-arranging of terms)

<
6n
8 . (as ln

(
q · ∆̃

)
= ln

(
∆̃γ · 16γ · ln ∆̃

)
< 2 ln

(
∆̃γ
)
)

Plugging this in Eq (3) together with Lemma 9 to bound the second term, implies that:

E
G∼G−K3

n,p

[µL(G)] ≤ 6n
8 + 3 · (n

1/3

3 )3 <
7n
8 .

Finally, by Lemmas 9 and 10, µL(G) < n w.h.p. This implies that δ = 1−o(1) as needed. J

4 A Local Version of Palette Sparsification

We now give a “local version” (see, e.g. [14, 11]) of the palette sparsification theorem.

I Theorem 12. Let G(V,E) be any n-vertex graph and assume each vertex v ∈ V is given a
list S(v) of colors. Suppose for every vertex v ∈ V , we independently sample a set L(v) of
colors of size ` uniformly at random from colors in S(v). Then,
1. if S(v) is any arbitrary set of (1 + ε) · deg(v) colors and ` = Θ(ε−1 · logn) for ε > 0,
2. or if S(v) = {1, . . . ,deg(v) + 1} and ` = Θ(logn),
then, with high probability, there exists a proper coloring of G from lists L(v) for v ∈ V .

The main part of the proof of Theorem 12 is Part 2 as the proof of the first part follows
almost directly from this proof. However, we start with a standalone proof of Part 1 for
intuition and then sketch the proof of Part 2, which involves the bulk of our effort.

Proof of Theorem 12 – Part 1. Fix any ε > 0 and suppose we sample ` := 10
ε · lnn colors

L(v) from S(v) for every vertex v ∈ V . Consider the following process:

1. Iterate over vertices v in an arbitrary order and for each vertex v, let N<(v) denote
the neighbors of v that appear before v in this ordering.

2. For each vertex v, if there exists a color c(v) in L(v) that is not used to color any
vertex u ∈ N<(v), color v with c(v). Otherwise abort.
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We argue that this procedure will terminate with high probability without having to abort.
This ensures that G is colorable from sampled lists L, thus proving Part 1 of Theorem 12.

P (abort) ≤
∑
v

P
(
L(v) is a subset of colors chosen for N<(v)

)
(by union bound)

≤
∑
v

(
|N<(v)|
|S(v)|

)`
≤ n ·

(
deg(v)

(1 + ε) · deg(v)

)`
≤ n · (1− ε/2)`

(by the sampling without replacement procedure of Theorem 12)

≤ n · exp
(
−ε2 ·

10
ε
· lnn

)
= n−4. (by the choice of `)

This concludes the proof of Part 1 of Theorem 12. J

Proof Sketch of Theorem 12 – Part 2. In order to prove the second part of Theorem 12,
we follow the approach of [5] for (∆ + 1) coloring problem. The key difference is that the
graph decomposition of the graph into sparse and dense parts that played a key role in [5]
is no longer applicable to (deg +1) coloring. In the following, we first give a new graph
decomposition tailored to (deg +1) coloring and states its main properties as well as its
differences with similar decompositions for (∆ + 1) coloring in [18, 13, 5] (themselves based
on [30]). The next step is then to show that this decomposition, even though “weaker” than
the one for (∆ + 1) coloring, still has enough structure to carry out the proof for (deg +1)
coloring along the lines of the one for (∆ + 1) coloring in [5] with the main difference being
on how we handle the “sparse” vertices.

A Graph Decomposition for (deg +1) Coloring. Let ε ∈ (0, 1) be a parameter. We define
the following structures for any graph G(V,E).

I Definition 13. We say that an induced subgraph K of G is an ε-almost-clique iff:
1. For every v ∈ K, degG(v) ≥ (1− 8ε) ·∆(K) where we define ∆(K) := maxv∈K degG(v);
2. (1− ε) ·∆(K) ≤ |V (K)| ≤ (1 + 8ε) ·∆(K);
3. Any vertex v ∈ K has at most 8ε ·∆(K) non-neighbors (in G) inside K;
4. Any vertex v ∈ K has at most 9ε ·∆(K) neighbors (in G) outside K.

Definition 13 can be seen as a natural analogue of (∆, ε)-almost-cliques defined in [5].
The main difference is that instead of having dependence on the global parameter ∆ in a
(∆, ε)-almost-clique of [5], our ε-almost-cliques only depend on ∆(K) which is a (1 + Θ(ε))-
approximation of the degree of every vertex in K (thus can be much smaller than ∆).

I Definition 14. We say a vertex v ∈ G is ε-sparse iff there are at least ε2 ·
(deg(v)

2
)

non-edges in the neighborhood of v.

Again, Definition 14 is a natural analogue of sparse vertices in [5, 18, 13] by replacing
the dependence on ∆ with deg(v) instead.

I Definition 15. We say a vertex v ∈ G is ε-uneven iff for at least ε · deg(v) neighbors u
of v, we have deg(v) < (1− ε) · deg(u).

Roughly speaking, a vertex v is considered uneven if it has a “sufficiently large” number
of neighbors with “sufficiently larger” degree than v. Definition 15 is tailored specifically to
(deg +1) coloring problem and does not have an analogue in [5, 18, 13] for (∆ + 1) coloring.
We prove the following decomposition result using the definitions above.
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I Lemma 16 (Graph Decomposition for (deg +1) Coloring). For any sufficiently small ε > 0,
any graph G(V,E) can be partitioned into V := V uneven t V sparse tK1 t . . . tKk such that:
1. For every i ∈ [k], the induced subgraph G[Ki] is an ε-almost-clique;
2. Every vertex in V sparse is (ε/2)-sparse;
3. Every vertex in V uneven is (ε/4)-uneven.

The key difference of Lemma 16 with prior decompositions for (∆+1) coloring in [30, 5, 18,
13] is the introduction of V uneven that captures vertices with “sufficiently large” higher degree
neighbors. Allowing for such vertices is (seemingly) crucial for this type of decomposition
that depends on the local degrees of vertices as opposed to maximum degree3. We postpone
the proof of this lemma to the full version of the paper.

Coloring the Graph Using the Decomposition. For the rest of the proof, fix a decompo-
sition of the graph G(V,E) with some sufficiently small absolute constant ε > 0 (taking
ε = 10−4 would certainly suffice). In the following, we show that we can handle both
V uneven and V sparse vertices first, and then color the almost-cliques using a result of [5] almost
in a black-box way. As such, the main difference between our work and [5] (beside the
decomposition) is in the treatment of vertices in V uneven ∪ V sparse.

As in [5], the proof consists of two parts. We first show that V uneven ∪ V sparse can be
colored from the sampled lists, and then show how to color each almost-clique given any
arbitrary coloring of vertices outside the almost-clique. Before we move on, we make an
assumption (without loss of generality) that is used in our concentration bounds.

I Assumption 17. We may and will assume that degree of every vertex is at least Dmin :=
α · ε10 · logn for some sufficiently large absolute constant α > 0. This is without loss of
generality as by sampling Θ(logn) colors, any vertex with lower degree will have L(v) = S(v)
and hence we can greedily color these vertices after finding a coloring of the rest of the graph.

Step one. The main part of the argument is the following lemma.

I Lemma 18. Suppose for every vertex v ∈ V sparse ∪ V uneven, we sample a set L(v) of
Θ(ε−6 · logn) colors independently and uniformly at random from S(v) := {1, . . . ,deg(v) + 1}.
Then, with high probability, the induced subgraph G[V sparse ∪ V uneven] can be properly colored
from the sampled lists.

We construct the coloring of Lemma 18 in two steps. The first step is to create “excess”
colors on vertices, reducing the problem essentially to (1 + ε) deg coloring, and then using
the simple argument for the proof of Part 1 of Theorem 12) to finalize this case as well. One
important bit is that the first step of this argument should be done simultaneously for both
V uneven and V sparse. We now sketch some the key ideas of the proof.

For the proof of Lemma 18, we need to partition vertices in V sparse and V uneven further in
order to be able to handle the disparity in degree of vertices. As such, we define:

ψ := ε2/32: a parameter used throughout the definitions in this part for ease of notation.
V small: Let Small(v) := {u ∈ N(V ) : deg(u) < dsmall(v)} where dsmall(v) := ψ · deg(v).
We define V small ⊆ V sparse ∪ V uneven as all vertices v with |Small(v)| ≥ 2dsmall(v).
V large: Let Large(v) := {u ∈ N(v) : deg(u) > dlarge(v)} where dlarge(v) := 2 deg(v).
We define V large ⊆ V sparse ∪ V uneven as all vertices v with |Large(v)| ≥ ψ · deg(v).4

3 For instance, consider a vertex of degree d that is incident to d vertices of a 2d-clique. Such a vertex is
neither sparse (its neighborhood is a clique), nor belongs to an almost-clique for small ε < 1.

4 We remark that the change in the place where ψ used in the two definitions above is intentional and
not a typo.
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As stated earlier, the goal of our first step is to construct excess colors for vertices. As
it will become evident shortly, vertices in V small actually do not need require having excess
colors to begin with (roughly speaking, after coloring their very “low degree” neighbors in
Small(v), we are anyway left with many excess colors). Hence, we ignore these vertices in
the first step altogether and handle them directly in the second one. Another important
remark about the first step is that even though its goal is to color only V sparse ∪ V uneven

(minus V small), we assume all vertices of the graph (including almost-cliques) participate
in its coloring procedure. This is only to simplify the math and after this step we simply
uncolor all vertices that are not in V sparse ∪ V uneven.

Creating Excess Colors. We start with the following coloring procedure as our first step:

Algorithm 1 FirstStepColoring: A procedure for finding a (partial) coloring of G[V sparse ∪ V uneven].

1. Iterate over vertices of V in an arbitrary order.
2. For every vertex v, activiate v w.p. pactive := ψ/16 (= Θ(ε2)).
3. For every activated vertex v, pick a color c1(v) uniformly at random from L(v) and if

c(v) is not used to color any neighbor of v so far, color v with c1(v).

We shall note right away that distribution of c1(v) for every vertex v in FirstStepColoring
is simply uniform over S(v). For any vertex v ∈ V , let S1(v) denote the list of available
colors S(v) after removing the colors assigned to neighbors of v in this procedure. Similarly,
let deg1(v) denote the degree of v after removing the colored neighbors of v. We show that
S1(v) is “sufficiently larger” than deg1(v) for all vertices in V sparse∪V uneven \V small. Formally,

I Lemma 19. There exists an absolute constant α ∈ (0, 1) such that with high probability,
for every v ∈ V sparse ∪ V uneven \ V small, we have |S1(v)| ≥ deg1(v) + α · ε6 · deg(v).

The proof of of this lemma is given in three parts, each for coloring one of the sets V uneven,
V large and V sparse \ (V small ∪ V large) separately. The first two have an almost identical proof
and are based on a novel argument – the third part uses a different argument which on a
high level is similar to the approach of [5] (and [15, 18, 13], all rooted in an earlier work
of [25]) for coloring sparse vertices (according to a global definition of sparse based on ∆),
although several new challenges has to be addressed there as well.

I Lemma 20. W.h.p. for all v ∈ V uneven: |S1(v)| ≥ deg1(v) + α · ε4 · deg(v).

Proof. Let θ := (ε/4) and recall that all vertices in V uneven are θ-uneven by Lemma 16. Fix
a vertex v in V uneven and let U(v) be the neighbors u of v where deg(v) < (1− θ) ·deg(u). As
v is θ-uneven |U(v)| ≥ θ · deg(v). For any u ∈ U(v), let Sext(u) = S(u) \ S(v) denote the set
of colors that are available (originally) to u but not to v. For sext(u) := |Sext(u)|, we have,

sext(u) = deg(u)− deg(v) ≥ deg(u)− (1− θ) · deg(u) = θ · deg(u). (4)

We say that a vertex u ∈ U(v) is good iff u is colored from Sext(u) by FirstStepColoring.
Let ngood(v) denote the number of good neighbors of v. It is easy to see that |S1(v)| ≥
deg1(v) + ngood(v) as colors of good vertices are not removed from S(v). Our goal is to lower
bound ngood(v) then. Define the following two events:
Eactive: For every vertex u ∈ V , the number of active neighbors of u, denoted by degactive(u),
is between (pactive/2) · deg(u) and (2pactive) · deg(u).
EUactive(v): The set U active(v) of active vertices in U(v) has size at least (pactive/2)·θ ·deg(v).
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By our Assumption 17 and a simple application of Chernoff bound, both event Eactive and
EUactive(v) hold with high probability (recall the lower bound on size of U(v)) above. Note
that both these events are only a function of the probability of activating each vertex and
independent of choice of lists L. Hence, in the following we condition on these events (and
all coins tosses for activation probabilities) and only consider the randomness with respect
to choices in L.

Let u1, . . . , uk for k := (pactive/2) · θ · deg(v) be the first k vertices in U active(v) according
to the ordering of FirstStepColoring. Let R(ui) denote all the random choices that govern
whether ui will be good or not. Note that by the time we process ui at most degactive(ui)
colors from S(ui) may have been assigned to neighbors of ui. Even if all of these colors are
adversarially chosen to be in Sext(ui), the number of colors that if chosen by ui make ui a
good vertex is at least:

sext(ui)− degactive(ui) ≥ θ · deg(ui)− (2pactive) · deg(ui) > (θ/2) · deg(ui).
(by Eq (4) and event Eactive, respectively and since pactive = Θ(ε2) < θ/4)

Even conditioned on everything else, this choice is only a function of c1(ui) chosen uniformly
at random from S(ui). As such,

P (ui is good | R(u1), . . . ,R(ui−1)) ≥ (θ/2) · deg(ui)
deg(ui) + 1 ≥ (θ/3).

This implies that (i) E [ngood(v)] ≥ (θ/3) · k and (ii) the distribution of good vertices among
first k vertices in U active(v) stochastically dominates the binomial distribution B(k, θ/3). By a
basic concentration of binomial distributions (say by using Chernoff bound in Proposition 28):

P (ngood(v) < (θ/6) · k) ≤ exp (−Θ(1) · θ · k) = exp
(
−Θ(1) · ε4 · logn

)
� n−10.

(by the choice of θ = Θ(ε), pactive = Θ(ε2), k, and Assumption 17)

As k = Θ(ε3 · deg(v)) and θ = Θ(ε), we obtain that w.h.p. ngood(v) ≥ Θ(ε4) · deg(v). J

The following lemma has a similar proof as Lemma 20 and is postponed to the full version.

I Lemma 21. W.h.p. for all v ∈ V large: |S1(v)| ≥ deg1(v) + α · ε4 · deg(v).

Finally, the following lemma also has a relatively standard proof by-now and is postponed
to the full version.

I Lemma 22. Wh.p. for all v ∈ V sparse \ (V small ∪ V large): |S1(v)| ≥ deg1(v) +α · ε6 · deg(v).

Lemma 19 now follows directly from Lemmas 20, Lemma 21 and 22 and a union bound.

Exploiting Excess Colors. For the second step, consider the following procedure:

Algorithm 2 SecondStepColoring: A procedure for finishing the proper coloring of G[V sparse ∪
V uneven].

1. Iterate over uncolored vertices v ∈ V sparse ∪ V uneven in an arbitrary order and for each
vertex v, let N<(v) denote the neighbors of v that appear before v in this ordering plus
all neighbors of v that have been colored in the first step.

2. For each vertex v, if there exists a color in L(v) that is not used to color any vertex
u ∈ N<(v), color v with this color. Otherwise abort.

It is immediate that if SecondStepColoring does not abort, we find a proper coloring using
the sampled colors in lists L. We can prove that abort happens with a small probability
(the proof is postponed to the appendix).
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I Lemma 23. W.h.p. SecondStepColoring does not abort.

Lemma 18 now follows from Lemmas 19 and 23 and a union bound.

Step two. In the second part of the proof, we are left with the coloring of almost-cliques
from the sampled lists after fixing the colors of remaining vertices. This is done by the
following lemma. This lemma is a simple generalization of a result of [5] for (∆ + 1) coloring
and the proof is via a simple “reduction” to the proof of the original lemma of [5].

Recall the definition of an ε-almost-cliques K in Definition 13. For a vertex v ∈ K, we
define out-deg(v) as the number of neighbors of v that are outside K. Note that by definition
of ε-almost-cliques, out-deg(v) ≤ 9ε ·∆(K). We prove the following lemma in the full version.

I Lemma 24. Let K be an ε-almost-clique in G according to Definition 13 for some
sufficiently small ε > 0 and define ∆(K) := maxv∈K deg(v). Suppose for every vertex
v ∈ K, we adversarially pick a set S(v) of size at most out-deg(v) ≤ 9ε ·∆(K) from colors
{1, . . . ,deg(v) + 1}. If for every vertex v ∈ V , we sample a set L(v) of Θ(ε−1 · logn) colors
independently from the set of colors {1, . . . ,deg(v) + 1}, then, with high probability, the
induced subgraph G[K] can be properly colored from the lists L(v) \ S(v) for v ∈ C.

Proof of Theorem 12 – Part 2. We fix a decomposition of the graph G according to Lemma
16 for some sufficiently small absolute constant ε > 0 (taking ε = 10−4 would certainly
suffice). Lemma 18 allows us to argue that with high probability, all vertices except for
almost-cliques in the decomposition can be properly colored using the sampled lists. We
fix such a coloring of those vertices. We then iterate over almost-cliques one by one, and
invoke Lemma 24 to each almost-clique Ki by letting S(v) for every v ∈ Ki to be the set of
colors used so far in this process for coloring neighbors of v outside this almost-clique. This
allows us to color this almost-clique in a way that its coloring can be extended to the partial
coloring computed so far (with high probability). Iterating over all almost-cliques this way
and using a union bound finalizes the proof. J

5 Sublinear Algorithms from Palette Sparsification

In this section, we describe some applications of our palette sparsification theorems to
sublinear algorithms following the work of [5]. In the following, we give the definition of each
of the two models of streaming algorithms and sublinear-time algorithms formally, followed
by the resulting algorithms from palette sparsification for each one separately.

Streaming Algorithms. In the streaming model, edges of the graph are presented one by
one to an algorithm that can make one or a few passes over the input and use a limited
memory to process the stream and has to output the answer at the end of the last pass. In
this paper, we only consider single-pass streaming algorithms. We can obtain the following
algorithms from Results 1, 2, and 3.

I Corollary 25. There exists randomized single-pass streaming algorithms for finding each
of the following colorings with high probability:

a (1 + ε)∆ coloring of any general graph with Oε(n logn) space;
an O( ∆

γ·ln ∆ ) coloring of any triangle-free graph with Õ(n ·∆2γ) space;
a (1 + ε) deg-list coloring of any general graph with Oε(n · log2 n) space;
a (deg +1) coloring of any general graph with O(n · log2 n) space.

APPROX/RANDOM 2020



6:16 Palette Sparsification Beyond (∆ + 1) Vertex Coloring

The streaming algorithms in Corollary 25 are basically as follows: we sample the colors
in L at the beginning of the stream and throughout the stream whenever an edge (u, v) is
presented, we check whether L(u) ∩ L(v) = ∅ or not; if not we store this edge explicitly.
At this point, obtaining the first two algorithms in Corollary 25 from Results 1 and 2
is straightforward (see also [5]). However, the results for the latter two parts does not
immediately follow from the argument for other two (or the one in [5]). This is due to the
fact that both (1 + ε) deg and (deg +1) problems are “local” problems with dependence on
deg instead of ∆. We postpone the proof of this corollary to the full version of the paper.
We conclude this part by noting that our results can be extended to dynamic streams where
edges can be both inserted to and deleted from the stream by increasing the space of the
algorithm with polylog(n) factors as was done in [5].

Sublinear-Time Algorithms. When designing sublinear-time algorithms, it is crucial to
specify the data model as the algorithm cannot even read the entire input once. We assume
the standard query model for sublinear-time algorithms on general graphs (see, e.g., [17,
Chapter 10]). In this model, we have the following three types of queries (i) what is the
degree of a vertex v; (ii) what is the i-th neighbor of a given vertex v; and (iii) whether
a given pair of vertices (u, v) are neighbor to each other or not. We say an algorithm is
non-adaptive if it asks all its queries in parallel in one go.

We can obtain the following algorithms from Results 1, 2, and 3.

I Corollary 26. There exists randomized non-adaptive sublinear-time algorithms for finding
each of the following colorings with high probability:

a (1 + ε)∆ coloring of any general graph in Õε(n3/2) time;
an O( ∆

γ·ln ∆ ) coloring of any triangle-free graph in Õ(n3/2+2γ) time;
a (1 + ε) deg-list coloring of any general graph in Õ(n3/2) time;
a (deg +1) coloring of any general graph in Õ(n3/2) time.

The sublinear-time algorithms in Corollary 26 are again based on finding the edges of the
conflict-graph Econflict using Õ(min

{
n∆, n2/∆

}
) queries for the case of (1 + ε)∆ coloring and

Õ(min
{
n∆, n2/∆1−2γ}) queries for triangle-free graphs. This can be done using the simple

approach of [5] but as before that does not work for the last two parts. As such, in the full
version of the paper, we give another simple way for finding edges of the conflict-graph using
a small number of queries, and conclude the proof of Corollary 26.

References

1 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring. CoRR,
abs/2006.10456, 2020. arXiv:2006.10456.

2 Noga Alon, Michael Krivelevich, and Benny Sudakov. Coloring graphs with sparse neighbor-
hoods. J. Comb. Theory, Ser. B, 77(1):73–82, 1999.

3 Noga Alon and Joel Spencer. The Probabilistic Method. Fourth Edition, Wiley, 2016.
4 Amihood Amir, Oren Kapah, Tsvi Kopelowitz, Moni Naor, and Ely Porat. The family holiday

gathering problem or fair and periodic scheduling of independent sets. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar
State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 367–375, 2016.

5 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 767–786, 2019.

http://arxiv.org/abs/2006.10456


N. Alon and S. Assadi 6:17

6 Nikhil Bansal, Anupam Gupta, and Guru Guruganesh. On the Lovász theta function for
independent sets in sparse graphs. In Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 193–200, 2015.

7 Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. CoRR, abs/1905.00566. To appear in ICALP
2020, 2019.

8 Anton Bernshteyn. The Johansson-Molloy theorem for DP-coloring. Random Structures &
Algorithms, 54(4):653–664, 2019.

9 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009.

10 Béla Bollobás. Chromatic number, girth and maximal degree. Discrete Mathematics, 24(3):311–
314, 1978.

11 Marthe Bonamy, Tom Kelly, Peter Nelson, and Luke Postle. Bounding χ by a fraction of ∆
for graphs without large cliques. arXiv preprint, 2018. arXiv:1803.01051.

12 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (∆+1) coloring in congested clique, massively parallel computation, and centralized
local computation. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 471–480,
2019.

13 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆ + 1)-coloring
algorithm? In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 445–456, 2018.

14 Ewan Davies, Rémi de Joannis de Verclos, Ross J. Kang, and François Pirot. Colouring
triangle-free graphs with local list sizes. CoRR, abs/1812.01534, 2018.

15 Michael Elkin, Seth Pettie, and Hsin-Hao Su. (2∆ − 1)-edge-coloring is much easier than
maximal matching in the distributed setting. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January
4-6, 2015, pages 355–370, 2015.

16 Paul Erdős, Arthur L Rubin, and Herbert Taylor. Choosability in graphs. In Proc. West Coast
Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium, volume 26,
pages 125–157, 1979.

17 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
18 David G Harris, Johannes Schneider, and Hsin-Hao Su. Distributed (∆ + 1)-coloring in

sublogarithmic rounds. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 465–478. ACM, 2016.

19 Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms in
the mapreduce model. In Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures, SPAA 2018, July 16-18, 2018, pages 43–52, 2018.

20 Penny E Haxell. A note on vertex list colouring. Combinatorics, Probability and Computing,
10(4):345–347, 2001.

21 Anders Johansson. Asymptotic choice number for triangle free graphs. Technical report,
unpublished manuscript, 1996.

22 Anders Johansson. The choice number of sparse graphs. Technical report, unpublished
manuscript, 1996.

23 Jeong Han Kim. On Brooks’ theorem for sparse graphs. Combinatorics, Probability &
Computing, 4:97–132, 1995.

24 Michael Molloy. The list chromatic number of graphs with small clique number. J. Comb.
Theory, Ser. B, 134:264–284, 2019.

25 Michael Molloy and Bruce A. Reed. A bound on the strong chromatic index of a graph. J.
Comb. Theory, Ser. B, 69(2):103–109, 1997.

APPROX/RANDOM 2020

http://arxiv.org/abs/1803.01051


6:18 Palette Sparsification Beyond (∆ + 1) Vertex Coloring

26 Michael Molloy and Bruce A. Reed. Graph coloring and the probabilistic method. New York I
Springer, 2002.

27 Merav Parter. (∆+1) coloring in the congested clique model. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech
Republic, pages 160:1–160:14, 2018.

28 Merav Parter and Hsin-Hao Su. Randomized (∆ + 1)-coloring in O(log∗ ∆) congested clique
rounds. In 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, pages 39:1–39:18, 2018.

29 Seth Pettie and Hsin-Hao Su. Distributed coloring algorithms for triangle-free graphs. Inf.
Comput., 243:263–280, 2015.

30 Bruce A. Reed. ω, ∆, and χ. Journal of Graph Theory, 27(4):177–212, 1998.
31 Bruce A. Reed. The list colouring constants. Journal of Graph Theory, 31(2):149–153, 1999.
32 Bruce A. Reed and Benny Sudakov. Asymptotically the list colouring constants are 1. J.

Comb. Theory, Ser. B, 86(1):27–37, 2002.
33 Vojtech Rödl. On a packing and covering problem. Eur. J. Comb., 6(1):69–78, 1985.

A Probabilistic Tools

We use the following standard probabilistic tools.

I Proposition 27 (Lovász Local Lemma – symmetric form; cf. [3]). Let E1, . . . , En be n events
such that each event Ei is mutually independent of all other events besides at most d, and
P (Ei) ≤ p for all i ∈ [n]. If e · p · (d+ 1) ≤ 1 (where e = 2.71...), then P

(
∧ni=1Ei

)
> 0.

I Proposition 28 (Chernoff-Hoeffding bound; cf. [3]). Let X1, . . . , Xn be n independent
random variables where each Xi ∈ [0, b]. Define X :=

∑n
i=1Xi. Then, for any t > 0,

P
(
|X − E [X]| > t

)
≤ 2 · exp

(
− 2t2

n · b2

)
.

Moreover, for any δ ∈ (0, 1),

P
(
|X − E [X]| > δ · E [X]

)
≤ 2 · exp

(
−δ

2 · E [X]
3b

)
.

A function f(x1, . . . , xn) is called c-Lipschitz iff changing any single xi can affect the
value of f by at most c. Additionally, f is called r-certifiable iff whenever f(x1, . . . , xn) ≥ s,
there exists at most r · s variables xi1 , . . . , xir·s so that knowing the values of these variables
certifies f ≥ s.

I Proposition 29 (Talagrand’s inequality; cf. [26]). Let X1, . . . , Xn be n independent random
variables and f(X1, . . . , Xn) be a c-Lipschitz function; then for any t ≥ 1,

P (|f − E [f ]| > t) ≤ 2 exp
(
− t2

2c2 · n

)
.

Moreover, if f is additionally r-certifiable, then for any b ≥ 1,

P
(
|f − E [f ]| > b+ 30c

√
r · E [f ]

)
≤ 4 exp

(
− b2

8c2rE [f ]

)
.
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B Sublinear Algorithms from Graph Partitioning

In this appendix, we deviate from our theme of palette sparsification and consider another
technique for designing sublinear algorithms for graph coloring. A simple technique that
lies at the core of various algorithms for graph coloring in different models is random graph
partitioning (see, e.g. [27, 28, 19, 12, 7]). While the exact implementation of this technique
varies significantly from one application to another, the basic idea is as follows: Partition
the vertices of the graph G randomly into multiple parts V1, . . . , Vk, then color the induced
subgraphs G[V1], . . . , G[Vk] separately using disjoint palettes of colors for each subgraph.
The hope is that each subgraph G[Vi] has become “simpler enough” so that it can be colored
“easily” with a “small” palette of colors.

We apply the same basic idea in this section. To state our result, we need some definitions
first. We say that a family G of graphs is hereditary iff for every G ∈ G, every induced
subgraph of G also belongs to G, namely, G is closed under vertex deletions.

I Definition 30. Let G be a hereditary family of graphs and ζ : N+ → N+ be a non-decreasing
function. We say that G is ζ-colorable iff every graph G in G is ζ(∆)-colorable, where
∆ := ∆(G) denotes the maximum degree of G.

For instance, the family of all graphs is an ζ-colorable family for the function ζ(∆) = ∆+1,
and triangle-free graphs are ζ-colorable for ζ(∆) = O( ∆

ln ∆ ).

I Theorem 31. Let G be a ζ-colorable family of graphs (see Definition 30) and G(V,E) be
an n-vertex graph with maximum degree ∆ in G. For the parameters

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn , C := C(ε, k) = k · ζ

(
(1 + ε) · ∆

k

)
,

suppose we partition V into k sets V1, . . . , Vk uniformly at random; then with high probability
G can be C-colored by coloring each G[Vi] with a distinct palette of size C/k.

The proof of this theorem is by simply showing that the maximum degree of each graph
G[Vi] is sufficiently small, itself a simple application of Chernoff bound. As such, we postpone
it to the full version of the paper.

B.1 Sublinear Algorithms from Theorem 31
As before, we only focus on streaming and query algorithms in this section. Table 2 contains
a summary of our results in this part. In the following two algorithms, the parameters C
and k are the same as in Theorem 31.

Algorithm 3 Streaming Algorithms from Theorem 31.

1. At the beginning, sample a random k-partitioning of the vertices into V1, . . . , Vk.
2. Throughout the stream, store any edge that belongs to one of the graphs G[Vi].
3. At the end, use the stored subgraphs to find a C-coloring of G by coloring each G[Vi]

with a distinct palette of size C/k.

Using this algorithm and Theorem 31, we obtain the following corollary (proven formally
in the full version).

APPROX/RANDOM 2020
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Table 2 A sample of our sublinear algorithms obtained as corollaries of Theorem 31. All the
streaming algorithms here are single-pass and all the sublinear-time algorithms are non-adaptive.

# of Colors Graph Family Streaming Sublinear-Time

O( ∆
γ·ln ∆ ) Triangle-Free O(n∆2γ) space Õ(n3/2+2γ) time

O( ∆ ln ln ∆
γ·ln ∆ ) Kr-Free O(n∆2γ) space Õ(n3/2+Θ(γ)) time

O( ∆
γ ln ∆ · ln r) Locally r-Colorable O(n∆2γ) space Õ(n3/2+2γ) queries

O( ∆
γ ln lnn · ln r) Locally r-Colorable O(n∆2γ) space poly(n) time

O( ∆
ln (1/δ) ) δ-Sparse-Neighborhood O(n/δ) space Õ(n3/2 · poly(1/δ)) time

I Corollary 32. Let G be a ζ-colorable family of graphs (Definition 30). There exists a
randomized streaming algorithm that makes a single pass over any graph G from G with
maximum degree ∆, and for any setting of parameters:

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn , C := C(ε, k) = k · ζ

(
(1 + ε) · ∆

k

)
,

with high probability computes a proper C-coloring of G using O(n · ∆
k ) space.

Algorithm 4 Query Algorithms from Theorem 31.

1. Sample a random k-partitioning of the vertices into V1, . . . , Vk.
2. Obtain the subgraphs G[V1], . . . , G[Vk] using the following procedure:

If ∆ > n/k, then non-adaptively query all pairs of vertices u, v where both u, v belong
to the same Vi (using pair queries);
Otherwise, non-adaptively query all neighbors of all vertices u (using neighbor queries).

3. Find a C-coloring of G by coloring each G[Vi] with a distinct palette of size C/k (with
no further access to G).

Again, using this algorithm and Theorem 31, we obtain the following corollary (proven
formally in the full version).

I Corollary 33. Let G be a ζ-colorable family of graphs (Definition 30). There exists a
randomized non-adaptive algorithm that given query access to any graph G from G with
maximum degree ∆, for any setting of parameters:

ε > 0, 1 ≤ k ≤ ε2 ·∆
9 lnn , C := C(ε, k) = k · ζ

(
(1 + ε) · ∆

k

)
,

with high probability computes a proper C-coloring of G using min
{
O(n∆) +O(n2/k)

}
queries.

We conclude this section with some important remarks about Corollaries 32 and 33.
I Remark 34 (Runtime of our algorithms). We did not state the runtime of our algorithms in
this section and focused primarily on space and query complexity of algorithms, respectively.
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This is because in both cases, the runtime of the algorithm crucially depends on the runtime
of the coloring algorithm for finding a ζ-coloring of each subgraph G[Vi] which is specific to
the family G (and ζ) and thus not known a-priori.

Nevertheless, for almost all our applications to specific families of graphs (with one
exception), the runtime of the algorithms is also sublinear in the input size.

B.2 Particular Implications of Theorem 31
We now list the applications of Theorem 31 and Corollaries 32 and 33 to different families of
“locally sparse” graphs that are colorable with much fewer than (∆ + 1) colors.

Triangle-Free Graphs
As stated earlier, triangle-free graphs admit an O( ∆

ln ∆ ) coloring. This was first proved by
Johansson [21] by showing an upper bound of 9 ∆

ln ∆ on the chromatic number of these graphs5.
The leading constant was then improved to 4 by Pettie and Su [29] and very recently to
1 + o(1) by Molloy [24] matching the result of Kim for graphs of girth 5 [23]. Moreover,
Molloy’s result implies an Õ(n∆2) time algorithm for finding such a coloring.

Note that triangle-free graphs form a hereditary family of graphs and aforementioned
results imply that they are ζtri-free-colorable for ζtri-free(∆) = O( ∆

ln ∆ ). As such, Corollaries 32
and 33 imply the following algorithms for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆

ln ∆ ):

Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O( ∆
γ ln ∆ )

coloring of triangle-free graphs. The post-processing time of this algorithm is Õ(n ·∆γ).
Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O( ∆

γ ln ∆ )
coloring of triangle-free graphs. The runtime of this algorithm is also Õ(n3/2+2γ).

Both results above are proved by picking ε = Θ(1) and k = Θ(∆1−γ), thus obtaining a
C-coloring:

C = C(ε, k) = k · ζtri-free
(

Θ(∆/k)
)

= O(k) · ∆/k
ln (∆/k) = O( ∆

ln ∆γ
) = O( ∆

γ ln ∆).

Kr-Free Graphs
For any fixed integer r ≥ 1, we refer to any graph that does not contain a copy of the Kr,
namely, the clique on r vertices, as a Kr-free graph. Johansson proved that any Kr-free graph
admits an O(∆ ln ln ∆

ln ∆ ) coloring [22] and gave an O(n · poly(∆)) time algorithm for finding
it6. This result was very recently simplified (and extended to r beyond a fixed constant) by
Molloy [24] (however the latter result does not imply an efficient algorithm).

Similar to the case of triangle-free graphs, combining these results with Corollaries 32
and 33 imply the following algorithms for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆

ln ∆ ):

Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O(∆ ln ln ∆
γ ln ∆ )

coloring of Kr-free graphs. The post-processing time of this algorithm is O(n1+Θ(γ)).
Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O(∆ ln ln ∆

γ ln ∆ )
coloring of Kr-free graphs. The runtime of this algorithm is also O(n3/2+Θ(γ)).

5 This result of Johansson was never published – see [26, Chapter 13] for a lucid presentation of the
original proof.

6 This result of Johansson was also never published – see [6] for a streamlined version of this proof.
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Graphs with r-Colorable Neighborhoods
For any fixed integer r ≥ 1, we say that a graph G is locally r-colorable iff neighborhood of
every vertex in G is r-colorable. Johansson also proved that r-colorable graphs admits an
O( ∆

ln ∆ · ln r) coloring [22]; see [6] for a proof and also an algorithm that finds such a coloring
in poly(n · 2∆) time (which uses, as a subroutine, a result of [9]).

It is easy to see that locally r-colorable graphs also form a hereditary family. Consequently,
as before, Corollaries 32 and 33 imply the following for any γ ∈ (0, 1/2) as small as Θ( ln ln ∆

ln ∆ ):

Streaming Model: A randomized single-pass Õ(n1+γ) space algorithm for O( ∆
γ ln ∆ ·ln r)

coloring of locally r-colorable graphs. The post-processing time of the algorithm is
poly(n · 2∆γ ).
Query Model: A randomized non-adaptive Õ(n3/2+γ)-query algorithm for O( ∆

γ ln ∆ ·ln r)
coloring of locally r-colorable graphs. The runtime of this algorithm is also poly(n · 2∆γ ).

Graphs with δ-Sparse Neighborhoods
For any δ ∈ (0, 1), we say a graph G(V,E) has a δ-sparse neighborhood iff the total number of
edges in the neighborhood of any vertex v (i.e., edges between neighbors of v) is at most δ ·∆2

(not to be confused with Definition 14 for ε-sparse vertices, albeit the two definitions are
equivalent for ∆-regular graphs by setting δ = (1− ε2)). Alon, Krivelevich and Sudakov [2]
proved that any graph G with maximum degree ∆ and δ-sparse neighborhood admits an
O( ∆

log (1/δ) ) coloring and that this is tight for all admissible values of δ and ∆.
We note that unlike all other families of graphs considered in this section, the family of

sparse-neighborhood graphs is not a hereditary family. As such, we cannot readily apply
Theorem 31 (and hence Corollaries 32 and 33). However, we can modify the proof of
Theorem 31 slightly to apply to this case as well (see the full version).

I Lemma 35. For any δ ∈ (0, 1), let G(V,E) be an n-vertex graph with maximum degree ∆
and δ-sparse neighborhoods. For the parameters

1 ≤ k ≤ δ ·∆
9 · lnn, C := Θ( ∆

ln (1/δ) ),

suppose we partition V into k sets V1, . . . , Vk uniformly at random; then with high probability
G can be C-colored by coloring each G[Vi] with a distinct palette of size C/k.

Similar to Corollaries 32 and 33, this in turn implies the following algorithms:

Streaming Model: A randomized single-pass Õ(n/δ) space algorithm for O( ∆
ln (1/δ) )

coloring of graphs with δ-sparse neighborhoods. The post-processing time is Õ(n ·
poly(1/δ)).
Query Model: A randomized non-adaptive Õ(n3/2/δ)-query algorithm for O( ∆

ln (1/δ) )
coloring of graphs with δ-sparse neighborhoods. The runtime of the algorithm is Õ(n3/2 ·
poly(1/δ))
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