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Abstract

In this paper, we address a conjecture of Fill [Fill03] about the spectral gap of a nearest-neighbor
transposition Markov chainMnn over biased permutations of [n]. Suppose we are given a set of
input probabilities P = {pi,j} for all 1 ≤ i, j ≤ n with pi,j = 1 − pj,i. The Markov chain Mnn

operates by uniformly choosing a pair of adjacent elements, i and j, and putting i ahead of j with
probability pi,j and j ahead of i with probability pj,i, independent of their current ordering.

We build on previous work [25] that analyzed the spectral gap ofMnn when the particles in [n]
fall into k classes. There, the authors iteratively decomposedMnn into simpler chains, but incurred a
multiplicative penalty of n−2 for each application of the decomposition theorem of [23], leading to an
exponentially small lower bound on the gap. We make progress by introducing a new complementary
decomposition theorem. We introduce the notion of ε-orthogonality, and show that for ε-orthogonal
chains, the complementary decomposition theorem may be iterated O(1/

√
ε) times while only giving

away a constant multiplicative factor on the overall spectral gap. We show the decomposition given
in [25] of a related Markov chainMpp over k-class particle systems is 1/n2-orthogonal when the
number of particles in each class is at least C logn, where C is a constant not depending on n. We
then apply the complementary decomposition theorem iteratively n times to prove nearly optimal
bounds on the spectral gap ofMpp and to further prove the first inverse-polynomial bound on the
spectral gap ofMnn when k is as large as Θ(n/ logn). The previous best known bound assumed k
was at most a constant.
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3:2 Iterated Decomposition of Biased Permutations

1 Introduction

For n ∈ N, the problem of generating permutations of [n] = {1, 2 . . . , n} at random is
foundational in the history of computer science [19]. Markov chains for sampling permutations
arise in a variety of contexts, including self-organizing lists [17, 30], card shuffling [2, 32], and
search engines [5]. The spectral gap of a Markov chain provides a measure of the rate of
convergence to stationarity, which is crucial to the efficiency of Markov chain algorithms for
sampling.

Suppose we are given a set of input probabilities P = {pi,j} for all 1 ≤ i, j ≤ n with
pi,j = 1 − pj,i. A natural Markov chain Mnn over permutations operates by uniformly
choosing a pair of adjacent elements, i and j, and putting i ahead of j with probability pi,j
and j ahead of i with probability pj,i, independent of their current ordering. We callMnn
the nearest-neighbor transposition chain.

The Markov chain Mnn was among the first Markov chains studied in terms of its
computational efficiency for sampling [1, 10, 9]. Its spectral gap has been studied extensively,
both in the uniform and biased settings [3, 4, 8, 10, 32].

A central question is under what conditions the spectral gap of Mnn is an inverse
polynomial in n, which implies a polynomial time bound on the mixing time, or the time
until the chain will be “close” to its stationary distribution. We say P is positively biased
if pi,j ≥ 1/2 for all i < j. It is easy to see that this condition is necessary (see, e.g. [4]);
however, it is not sufficient, as demonstrated in [4].

In 2003, Fill [13, 14] introduced the following monotonicity conditions: pi,j+1 ≥ pi,j for
all 1 ≤ i < j ≤ n − 1 and pi−1,j ≥ pi,j for all 2 ≤ i < j ≤ n. He conjectured that if P is
positively biased and monotone, then the spectral gap ofMnn is an inverse polynomial in n,
and moreover that the smallest spectral gap is attained at the uniform distribution.

Despite significant work on this subject, Fill’s conjecture remains mostly open after more
than 15 years. In the uniform case, there is a clever path coupling argument that achieves
tight bounds on the mixing time [32]. Various papers [3, 4] have identified different classes
of P for whichMnn may cleverly be viewed as the direct product of simpler independent
Markov chains, and thus may be analyzed easily in terms of those chains. In [3], the authors
proved a bound of O(n2) on the mixing time ofMnn in the case that pi,j = p for all i < j,
and in [4] the authors considered the case that pi,j depends only on the smaller of i and j.

Among the positively biased, monotone distributions that have proven to be challenging
to analyze are those arising in the context of self-organizing lists, where each element i
has a frequency wi of being requested, and then moved ahead one in the list; in this case,
pi,j = wi/(wi + wj). The Markov chainMnn was termed a “gladiator chain” in this case by
Haddadan and Winkler [16].

A partition of [7]:
C1 = {1, 2, 3}
C2 = {4, 5}
C3 = {6}
C4 = {7}

3765241 → 1432121

Figure 1 An example of a 4-class permutation and corresponding 4-particle process, with n = 7.

It is instructive to consider k-classes [25], where [n] is partitioned into k classes and
particles from class i and class j interact with a fixed probability pi,j1. When k = n, this
captures the general setting. In this context,Mnn can be seen as having dual duties: whisking,

1 The bar in the notation indicates that we have re-indexed the probabilities by class.
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which uniformly mixes particles of the same type2, and sifting, which mixes particles of
different types in together [16]. As the mixing properties of the uniform chain are well-
understood, it is sufficient to analyze the sifting operation in isolation [16, 25]. By discarding
moves between particles in the same class, we are left with a linear k-particle process that
maintains elements within each particle class in fixed relative orders (and therefore we may
drop their individual labels and re-index, identifying all elements from class i with the label i,
as is done in Figure 1).

In this paper, we use the version of the k-particle process introduced in [25], calledMpp,
which is also allowed to make certain non-adjacent transpositions – it may swap i and j if all
elements between them are smaller than both i and j. This simplifies our analysis, and as
in [25], we compensate by using comparison techniques [9, 28] when evaluating the spectral
gap ofMnn.

The bias towards having a particle of type i ahead of a particle of type j is qi,j = pi,j/pj,i.
We say that the bias is bounded if there exists a constant q > 1 such that qi,j ≥ q for all
i < j. After a series of papers [16, 25], it was shown that the spectral gap ofMpp is at least
Ω(n−2(k−1)) for positively biased, monotone, and bounded distributions. These results apply
to the gladiator chain (self-organizing lists) with k distinct frequencies. In fact, the result
in [25] requires only weak monotonicity, and not full monotonicity. Weak monotonicity in
the setting of k-classes is defined as follows.

I Definition 1 ([4]). If P forms a k-class, then P is weakly monotonic if properties 1 and
either 2 or 3 are satisfied.
1. pi,j ≥ 1/2 for all 1 ≤ i < j ≤ k, and
2. pi,j+1 ≥ pi,j for all 1 ≤ i < j ≤ k − 1 or
3. pi−1,j ≥ pi,j for all 2 ≤ i < j ≤ k.

The aforementioned results are based on a natural decomposition ofMpp into simpler
chains, but not as a direct product. To get a bound on the overall spectral gap, the authors
of [25] used the decomposition theorem of [23], which bounds the spectral gap of a Markov
chain in terms of the spectral gaps of the simpler Markov chains. Unfortunately, one incurs
an extra factor of n−2 each time it is applied in this setting, and in [25] it is applied iteratively
k − 2 times. Thus, this produced a bound on the spectral gap of Ω(n−2(k−1)), which is an
inverse polynomial only for constant k.

To make this iterated decomposition scheme work for larger k requires a stronger de-
composition theorem, and that is the main focus of the present paper. We introduce a
new decomposition theorem that allows us to achieve nearly optimal bounds of Ω(n−2) on
the spectral gap ofMpp for bounded k-classes, as long as the number of particles of each
type is at least Cq logn (where Cq is a constant depending on the minimum bias q; i.e. not
depending on n). We believe this new decomposition theorem is of independent interest and
will have other applications.

1.1 The decomposition method
The decomposition method was first introduced by Madras and Randall [21], and has been
subsequently used and modified to produce the first polynomial time bounds on the spectral
gaps of many interesting Markov chains [6, 7, 11, 12, 15, 16, 18, 22, 23, 24, 26, 27]. Suppose
M is a finite, ergodic Markov chain that is reversible and has stationary distribution π.

2 We use the terms “type” and “class” interchangeably.

APPROX/RANDOM 2020



3:4 Iterated Decomposition of Biased Permutations

Let Ω = ∪ri=1Ωi be a partition of the state space of M and γi be the spectral gap of M
restricted to Ωi. The disjoint decomposition theorem of [23] states that the spectral gap
γ of M satisfies γ ≥ 1

2γminγ̄, where γmin = mini γi and γ̄ is the spectral gap of a certain
projection chain over states [r].

There has been significant effort towards improving the decomposition technique by
providing stronger bounds in special cases [7, 12, 15, 18, 22, 23, 26, 27]. While γ may indeed
be on the order of γminγ̄ – one example is the random walk on the path, decomposed into
two smaller paths – there are instances in which it may instead satisfy the much larger bound
γ ≥ cmin{γmin, γ̄}, for some constant c. The simplest such example is the direct product of
two independent Markov chains [4, 12]; in this case, c = 1.

Tight bounds are especially important when applying the decomposition method iter-
atively, as was done in [25]. At each level of the induction, γ̄ = Θ(n−2), so the original
bound of [23] yields γ = Ω(n−2(n−1)) for the final iteration. Even a bound of the form
γ ≥ cmin{γmin, γ̄}, such as the one in [26], would introduce a factor of c for each application,
and would thus yield a bound that is an inverse exponential in n if c < 1 is constant. The
bounds in [18] are iterable in some cases, butMpp does not satisfy those conditions.

1.2 Our results
In this paper, we develop a new decomposition framework that yields iterable bounds for a
new class of Markov chains. Among our results, we present a complementary decomposition
theorem, which achieves a tight bound on γ without appealing to a bound on the gap γ̄ of
the projection chain, but rather the minimum gap γ̃min of certain complementary restrictions
P̃1, P̃2, . . . , P̃r̃. We first consider the simple setting where the state space Ω can be seen as a
product space, i.e. Ω = Ω1 ×Ω2. In other words, for each a ∈ Ω1 and each b ∈ Ω2, there is a
unique σ = (a, b) ∈ Ω. This setting is similar to the direct product of independent Markov
chains, but the transition probabilities are not necessarily independent. We define a restriction
chain Pa for each a ∈ Ω1 that fixes a and operates only on the second coordinate. Similarly,
we define a complementary restriction chain P̃b, which fixes b and operates only on the first
coordinate. Recall π is the stationary distribution ofM. We write π(a) =

∑
b∈Ω2

π(a, b) and
π(b) =

∑
a∈Ω1

π(a, b). Define

r(a, b) = π(a, b)
π(a)π(b) .

The function r(a, b) allows us to capture the degree of dependence between a and b. Let

ε =
∑

(a,b)∈Ω

π(a, b)
(√

r(a, b)− 1/
√
r(a, b)

)2
. (1)

We say a decomposition satisfying the equality above is ε-orthogonal.

I Theorem 2. For any ε-orthogonal decomposition of Markov chainM on product space Ω,

γ(M) ≥ min{γmin, γ̃min}
(
1−
√
ε
)2
.

This bound can be iterated t times with only a constant overhead, as long as
√
ε ≤ 1/t. We

note that parts of the proof of this theorem are similar to a “multi-decomposition” result of
Destainville [7], which we discuss in Section 5. There we also present several generalizations
of Theorem 2, which apply beyond the product space setting.
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Favorably, analysis of ε-orthogonality requires only a comparison between two stationary
distributions and not an analysis of the dynamics of any Markov chain. WhenM is a direct
product of independent Markov chains, we have that r(a, b) = 1 for all pairs a ∈ Ω1 and
b ∈ Ω2 and the decomposition is 0-orthogonal, leading to the bound γ ≥ min{γmin, γ̃min}, as
expected. However, we do not require a strong pointwise bound on r(a, b). The notion of
ε-orthogonality captures the average value of r(a, b), and allows us to achieve tight bounds
on γ even when the constituent Markov chains are only nearly independent. Indeed, it is
possible to prove ε is very small even if r(a, b) is far from 1 for pathological pairs a and b, as
long as it is close to 1 on average. Importantly, this holds even though the elements in this
“bad” space are visited polynomially often.

Armed with our new decomposition theorem, we use the iterated decomposition in [25]
to achieve nearly optimal bounds on the spectral gap of the k-particle process Mpp.
We prove that this decomposition is 1/n2-orthogonal at each level of the decomposi-
tion. Thus, we may apply Theorem 2 iteratively k times to get a bound of Ω(n−2) on
the spectral gap γ(Mpp). This bound is optimal up to constants. More formally, let
N∗ = max

{
log(6n2)+log((1+q)/(q−1))

log((1+q)/2) , log2(14)
log2(2q/(1+q))

}
=: Cq logn, and let ci denote the number

of particles of type i, for 1 ≤ i ≤ k. We prove the following.

I Theorem 3. If the probabilities P are weakly monotonic and bounded and ci ≥ 2N∗ for
all 1 ≤ i ≤ k, then the spectral gap γ of the chainMpp satisfies γ = Ω(n−2).

413112413142

Figure 2 At level 2 of the decomposition, all particles of type 1 are in fixed positions, and the
underlined particle 2 may swap with the 3 to its left or the 4 immediately to its right.

The iterated decomposition works as follows. At the ith level of the decomposition, all
particles of type less than i are in fixed positions, and particles of larger type are allowed
to swap across these (this is the reason for allowing these non-adjacent transpositions); see
Figure 2. This decomposition is designed to exploit the hypothesis that the movement of the
particles of type i is nearly independent of the relative order of the particles of type bigger
than i. The tool of ε-orthogonality allows us to make this intuition precise. We define the
complementary restriction chains to contain the moves involving only particles of type bigger
than i, and we define the restriction chains to contain moves between particles of type i and
particles of larger type. We prove that this decomposition is 1/n2-orthogonal if the number
of particles of type i+ 1 is large enough. Indeed, the highest probability configuration is the
one in which particles are sorted by class, with all particles of smaller type appearing before
particles of larger type. Thus, having many particles of type i + 1 ensures that a typical
configuration will not have a particle of type i after a particle of type at least i+ 2, as this
requires many transpositions from the highest probability configuration, and each costs a
factor of at least the minimum bias q; see Figure 3. Note that such “bad” configurations are
polynomially suppressed, but not exponentially suppressed.

1223123112133413143444

Figure 3 A “typical” configuration at level 2 has no 2’s appearing after any j ≥ 4.

We use Theorem 3 and comparison techniques to prove the following result forMnn.

I Theorem 4. If the probabilities P are weakly monotonic and form a bounded k-class with
at least 2N∗ particles in each class, then γ(Mnn) = Ω(n−7).

APPROX/RANDOM 2020



3:6 Iterated Decomposition of Biased Permutations

This is the first inverse-polynomial bound on the spectral gap ofMnn for monotone bounded
k-classes for k as large as Θ(n/ logn). This is a significant improvement over the previous
result which was inverse polynomial only for constant k [23]. Theorem 4 also leads to a
bound of O(n9) on the mixing time ofMnn under the same conditions.

1.3 Outline

The layout of the paper is as follows. In Section 2, we begin with some notation and
terminology. In Section 3, we give details on Theorem 2 and illustrate its use by applying
it to the one-dimensional Ising model. In Section 4, we apply Theorem 2 to the biased
permutation problem. In Section 5, we generalize the notion of ε-orthogonality to non-product
spaces and present a more general complementary decomposition theorem that applies to
all ε-orthogonal decompositions. We also present a classical decomposition theorem that
generalizes some results of [18] and show how our decomposition theorems relate to previous
results. Finally, we give a brief summary of the proof techniques for the decomposition
theorems. Appendix A provides even more detail concerning the proofs of the decomposition
theorems, whereas the complete proofs appear in the full version of the paper.

2 Preliminaries

We assumeM is an ergodic Markov chain over a finite state space Ω with transition matrix
P . We also assume M is reversible and has stationary distribution π; that is, it satisfies
the detailed balance condition: for all σ, τ ∈ Ω, π(σ)P (σ, τ) = π(τ)P (τ, σ). Notationally, we
write π(S) =

∑
σ∈S π(σ) for any set S ⊆ Ω.

Let Ω = ∪ri=1Ωi be a partition of the state space into r pieces. For each i ∈ [r], define
Pi = P (Ωi) as the restriction of P to Ωi which rejects moves that leave Ωi. Formally,
Pi is defined as follows: if σ 6= τ and σ, τ ∈ Ωi then Pi(σ, τ) = P (σ, τ); if σ ∈ Ωi then
Pi(σ, σ) = 1−

∑
τ∈Ωi,τ 6=σ Pi(σ, τ). The Markov chainMi with transition matrix Pi is called

a restriction Markov chain, and its state space is Ωi. Let πi be the normalized restriction of
π to Ωi; i.e. πi(S) = π(S ∩ Ωi)/π(Ωi) for any S ⊆ Ω. The chainMi is ergodic, reversible,
and has stationary distribution πi.

We will be interested in decomposing P into the part that performs restriction moves and
the part that performs all other moves. Define P̃ to be the transition matrix of the Markov
chain defined by rejecting moves from σ to τ if σ and τ are within the same Ωi. The matrix P̃
defines a complementary partition Ω = ∪r̃j=1Ω̃j , where each Ω̃j is a maximal subset of Ω that
is connected by P̃ . For each j ∈ [r̃], define the complementary restriction P̃j = P (Ω̃j) as the
restriction of P to Ω̃j which rejects moves that leave Ω̃j . The complementary restriction
P̃j is also ergodic, reversible, and its stationary distribution is the normalized restriction of
π to Ω̃j , which we call π̃j . Notice that the complementary restrictions are defined by the
decomposition P1, P2, . . . , Pr.

The efficiency of a Markov chainM is a function of its spectral gap, denoted γ(M), which
is defined as the difference of 1 and the second largest eigenvalue of its transition matrix.
Letting γi = γ(Ωi) and γ̃j = γ(Ω̃j), the complementary decomposition theorem, Theorem 2,
is proven by analyzing the spectral gaps γmin = mini γi and γ̃min = minj γ̃j . Note that if
some restriction or complementary restriction has a single element, its spectral gap is taken
to be 1.



S. Miracle, A. P. Streib, and N. Streib 3:7

3 Complementary decomposition theorem

In this section, we show how to apply our new complementary decomposition theorem by
considering a few simple examples. Recall r(a, b) = π(a, b)/(π(a)π(b)) and

ε =
∑

(a,b)∈Ω

π(a, b)
(√

r(a, b)− 1/
√
r(a, b)

)2
.

Theorem 2 states that the spectral gap γ ofM satisfies γ ≥ min{γmin, γ̃min} (1−
√
ε)2. A

simple application of Theorem 2 is to a Markov chainM that is the direct product of two
Markov chainsM1 andM2. It is easy to see that r(a, b) = 1 for all a, b, and so this proves
γ(M) = min{γ(M1), γ(M2)}. By iterating on γ̃min, we can immediately prove the following
well-known result.

I Corollary 5. IfM is the direct product of Markov chains {Mi}, then γ(M) = mini γ(Mi).

3.1 One-dimensional Ising model
As a second introductory example prior to our main application, we consider the one-
dimensional Ising model. Here each configuration σ ∈ Ω is an assignment of a “spin” (either
+1 or -1) to each of n vertices connected to form a line; see Figure 4. Let λ = e−β , where β > 0
represents inverse temperature. We are interested in sampling from the Gibbs distribution
given by π(σ) = e−βH(σ)/Z, where the Hamiltonian H(σ) is the number of edges whose
endpoints have different spins and Z is the normalizing constant

∑
σ∈Ω e

−βH(σ), also called
the partition function. (See [20] for background on the ferromagnetic Ising model.)

Consider the Glauber dynamics Markov chainMgd.

Glauber Dynamics Mgd

Starting at any configuration σ0, iterate the following:
At time t, choose a vertex 1 ≤ i ≤ n uniformly at random.
Set the spin of vertex i to +1 with probability p = (π(σt,i←+))/(π(σt,i←+) + π(σt,i←−))
where σt,i←+ is identical to σt with the spin of vertex i set to +1 (or −1 for σt,i←−).
Otherwise, set the spin of vertex i to −1 with probability 1− p.

For simplicity, we will assume that n is a power of 2. To apply our theorem, we decompose
the state space by breaking configurations in half along the middle edge; again, see Figure 4.
Transitions that fix the signs on the left are part of the restriction chains, and transitions that
fix signs on the right are part of the complementary restriction chains. Thus, our restrictions
and complementary restrictions are both 1×n/2 Ising models for which we can readily apply
induction. Let a be the assignment of signs to the left n/2 vertices and b be the signs of the
right n/2 vertices. It is straightforward to see σ = (a, b) gives a unique configuration and
that the state space is a product space. However,Mgd is not a direct product of independent
Markov chains on a and b because the probability of changing a sign of either of the middle
two vertices (n/2 or n/2 + 1) depends on the sign of the other middle vertex. In order
to apply Theorem 2, we first analyze r(a, b) = π(a, b)/(π(a)π(b)) and subsequently ε. The
techniques used here are similar to, but simpler than, those used Section 4.

Define λ = e−β . Let w(a) = λH(a), where H(a) is the number of edges in a (the left
half) with disagreeing signs. Analogously, define w(b) = λH(b). Let cab = λ if the middle
signs disagree and cab = 1 otherwise. Thus π(a, b) = w(a)w(b)cab/Z. Let Ω∗ ⊂ Ω be the
configurations where the middle two vertices agree. Define ZA =

∑
a w(a) and ZB =

∑
b w(b).

APPROX/RANDOM 2020



3:8 Iterated Decomposition of Biased Permutations

a b

+ + − + − + + + w(a) = λ2

w(b) = λ
cab = λ

Figure 4 An example configuration of the one-dimensional Ising model.

For any fixed a, we have
∑
b:(a,b)∈Ω∗ w(b) =

∑
b:(a,b)/∈Ω∗ w(b) = 1

2ZB, since we can swap
spins on all vertices in b to obtain a unique configuration b′ ∈ Ω \ Ω∗ with w(b′) = w(b).
Thus, we have

Z =
∑

(a,b)∈Ω∗
w(a)w(b) + λ

∑
(a,b)/∈Ω∗

w(a)w(b) = (1 + λ)
∑

(a,b)∈Ω∗
w(a)w(b) = (1 + λ)ZAZB

2 .

We consider two different cases for r(a, b) depending on whether the sign of the middle
two vertices agree. First consider the case where (a, b) ∈ Ω∗. Here we have

π(a) =
∑
b′

π(a, b′) =
∑

b′:(a,b′)∈Ω∗

w(a)w(b′)
Z

+ λ
∑

b′:(a,b′)/∈Ω∗

w(a)w(b′)
Z

= w(a)(1 + λ)ZB
2Z ,

and similarly π(b) = w(b)(1 + λ)ZA/(2Z). Therefore

r(a, b) = π(a, b)
π(a)π(b) = 4Zw(a)w(b)cab

w(a)w(b)(1 + λ)2ZAZB
= 2

1 + λ
.

The next case is almost identical except that cab = λ, so we have for (a, b) /∈ Ω∗ that
r(a, b) = 2λ/(1 + λ).

Next we use our analysis of r(a, b) to bound ε. First notice that since
∑

(a,b)∈Ω∗ π(a, b) +∑
(a,b)/∈Ω∗ π(a, b) = 1 and

∑
(a,b)/∈Ω∗ π(a, b) = λ

∑
(a,b)∈Ω∗ π(a, b), we have that∑

(a,b)∈Ω∗ π(a, b) = 1/(1 + λ) and
∑

(a,b)/∈Ω∗ π(a, b) = λ/(1 + λ). This yields

ε ≤
∑

(a,b)∈Ω∗
π(a, b)(

√
r(a, b)− 1/

√
r(a, b))2 +

∑
(a,b)/∈Ω∗

π(a, b)(
√
r(a, b)− 1/

√
r(a, b))2

= 1
1 + λ

(√
2

1 + λ
−
√

1 + λ

2

)2

+ λ

1 + λ

(√
2λ

1 + λ
−
√

1 + λ

2λ

)2

=
(

1− λ
1 + λ

)2

Applying the complementary decomposition theorem (Theorem 2) gives the following recur-
rence: γn ≥ γn/2

(
2λ

1+λ

)2
. Since the base case has gap Ω(n−1), this solves to γn = Ω(n−c)

for c = 1 + 2 log2
( 1+λ

2λ
)
. Note that while this does not give a tight bound, the constant c is

strictly better than the constant given by [18] and, unlike earlier decomposition approaches,
we have not incurred an extra factor of n with each application of the decomposition theorem.

3.2 Ising model on bounded degree trees
As in [18], our proof for the one-dimensional Ising model can be easily generalized to trees
with constant maximum degree r. A straightforward induction shows that such a tree T on
n vertices has an edge whose deletion cuts T into two components, each with size at least
n/(r + 1). We let a represent the spins on one component and b the spins on the other. At
each level of the induction, we compute r(a, b) and ε using arguments similar to those in
Section 3.1 to get γn = Ω(n−c) for c = 1 + 2 log(r+1)/r

( 1+λ
2λ
)
.
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4 Application to permutations

In this section, we apply the complementary decomposition theorem, Theorem 2, to the
problem of sampling biased permutations. We give an overview of the proof of Theorem 4
which bounds the spectral gap of the following nearest-neighbor Markov chain over Sn, the
permutations of [n]. The complete details are provided in the full version of the paper.

The Nearest Neighbor Markov chain Mnn

Starting at any permutation σ0, iterate the following:
At time t ≥ 0, choose a position 1 < i ≤ n uniformly at random in permutation σt.
With probability pσt(i),σt(i−1)/2, exchange the elements σt(i) and σt(i − 1) to obtain
σt+1.
Otherwise, do nothing so that σt+1 = σt.

The chainMnn connects the state space Sn and has the following stationary distribution
(see e.g., [4]):

πnn(σ) =
∏

i<j:σ(i)>σ(j)

pσ(i),σ(j)

pσ(j),σ(i)
Z−1
nn =

∏
i<j:σ(i)>σ(j)

qσ(i),σ(j)Z
−1
nn

where Znn is a normalizing constant and qσ(i),σ(j) = pσ(i),σ(j)
pσ(j),σ(i)

.

We consider the special case of k-classes where [n] is partitioned into k classes C1, C2, . . . ,

Ck, and assume elements in class Ci interact with elements in class Cj with the same
probability. That is, if i1, i2 ∈ Ci and j1, j2 ∈ Cj then pi1,j1 = pi2,j2 . In this case we define
pi,j to be this shared probability for classes Ci and Cj (the bar indicates that we have
reindexed the set of probabilities by the classes) and we say that P forms a k-class. Note that
pi,i is assumed to be 1/2, so thatMnn swaps elements within the same class with probability
1/2. When k = n, the k-class assumption does not lose any generality, but this structure
allows us to simplify the problem by considering k < n, as was done in [25, 16].

Define qi,j = pi,j/pj,i to be the bias towards having a particle of type i ahead of a particle
of type j. We say that P is bounded if there exists a constant q > 1 such that qi,j ≥ q for all
1 ≤ i < j ≤ k. The constant q is called the minimum bias. We prove the following.

I Theorem 4. If the probabilities P are weakly monotonic and form a bounded k-class with
at least 2N∗ particles in each class, then γ(Mnn) = Ω(n−7).

The chainMnn samples over Sn using these probabilities, and in particular the order
of elements within each class approaches the uniform distribution. The spectral gap of this
uniform sampling is well-understood and may be analyzed separately. The complete analysis
can be found in the full version of the paper. In order to isolate the biased moves, we define
a new Markov chain Mpp that eliminates swaps within each class. As Mpp maintains a
fixed order on particles within each class, it makes sense to relabel each element of [n] by the
index of the class it is in. That is, we let ci = |Ci| and we consider a linear array of length n
with ci particles labeled i for each 1 ≤ i ≤ k. We call this a k-particle system for the given
set {ci}, and the Markov chainMpp is called a k-particle process. We view the new state
space as the set Ω of k-particle systems for {ci}.

The Markov chainMpp over k-particle systems also allows certain non-adjacent transpos-
itions. In particular, we let a particle of type i and a particle of type j swap across particles
of type less than i and j. More formally, the chainMpp is defined as follows.
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The particle process Markov chain Mpp

Starting at any k-particle system σ0, iterate the following:
At time t, choose a position 1 ≤ i ≤ n and direction d ∈ {L,R} uniformly at random.
If d = L, find the largest j less than i with σt(j) ≥ σt(i) (if one exists). If σt(j) > σt(i),
then with probability 1/2, exchange σt(i) and σt(j) to obtain σt+1.

If d = R, find the smallest j with j > i and σt(j) ≥ σt(i) (if one exists). If σt(j) > σt(i),
then exchange σt(i) and σt(j) to obtain σt+1 with probability

1
2 qσt(j),σt(i)

∏
i<l<j

qσt(j),σt(l)qσt(l),σt(i).

With all remaining probability, σt+1 = σt.

The chainMpp connects the space Ω and has the stationary distribution (see e.g., [4])

π(σ) =
∏

i<j:σ(i)>σ(j)

pσ(i),σ(j)

pσ(j),σ(i)
Z−1 =

∏
i<j:σ(i)>σ(j)

qσ(i),σ(j)Z
−1

where Z is a normalizing constant and qσ(i),σ(j) = pσ(i),σ(j)
pσ(j),σ(i)

.

Recall the definition of weakly monotonic from Section 1. We will assume that property
(2) holds. If instead property (3) holds, then as described in [25] we would modifyMpp to
allow swaps between elements of different particle types across elements whose particle types
are larger (instead of smaller) and modify the induction so that at each step σi restricts the
location of particles larger than i (instead of smaller).

We prove the following bound on the spectral gap of Mpp. Then, using comparison
techniques [9, 28], we prove the bound on the spectral gap ofMnn given in Theorem 4. The
details of this comparison argument can be found in the full version of the paper.

I Theorem 3. If the probabilities P are weakly monotonic and bounded and ci ≥ 2N∗ for
all 1 ≤ i ≤ k, then the spectral gap γ of the chainMpp satisfies γ = Ω(n−2).

The proof of Theorem 3 uses the same inductive technique as [25], where at each level
of the induction we fix the locations of particles in one less particle class. For i ≥ 0, let σi
represent a fixed location of the particles of type 1, 2, . . . , i (σ0 represents no restriction); for
example, in Figure 5, we set σ2 = 12_1_2_1_ _, where “_” represents locations that can
be filled with particles of type 3 or higher. We consider the chainMσi whose state space
Ωσi is the set of all k-particle systems σ where the elements with type in [i] are consistent
with σi. The moves ofMσi are those moves fromMpp that do not involve an element of
type at most i. We prove by induction thatMσi has spectral gap Ω(n−2(1− 1/n)2(k−2−i))
for all choices of σi. To be clear, we assume that the spectral gap ofMσi are bounded for
all σi by induction, and then prove our bound on the spectral gap ofMσi−1 . To start, we
show that Ωσi−1 is a product space, which is required to apply Theorem 2.

Let A consist of all 2-particle systems with ci particles of type i and
∑k
j=i+1 cj particles

of type “_”; A is in bijection with staircase walks by mapping each i to a step right and each
“_” to a step down, as in Figure 6. Let B consist of all k− i particle systems with cj particles
of type j for all i+ 1 ≤ j ≤ k. Our goal is to show that the set of permutations σ consistent
with σi−1 on particles of type at most i− 1 is in bijection with A×B. To this end, we can
write σ = (a, b), where a ∈ A is the 2-particle system obtained from σi by removing particles
of type less than i (see Figure 5), as those particles are in a fixed position for all of Ωσi−1 .
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Ωa = Ωσi
↓

σ ← Ω̃b

σ2 = 12_1_2_1_ _
σ3 = 1231_2_13_
a = 3_ _3_
b = 454
σ = 1231425134

Figure 5 The state space Ωσi−1 decomposed, with i = 3.

Next, define b ∈ B to be the restriction of σ to elements of type bigger than i. For the other
direction, given any (a, b) pair, it is clear that there is a unique σ ∈ Ωσi−1 corresponding to
that pair.

i _ i i _ i _ i _ i _ i i _

Figure 6 An exclusion process on staircase walks operates by adding or removing a square.

We next describe the decomposition. Note that the moves of Mσi fix an a ∈ A and
perform (j1, j2) transpositions, where j1, j2 > i; i.e. they operate exclusively on B. Thus,
the Markov chainMσi is a restriction ofMσi−1 with state space Ωa. On the other hand, the
remaining moves ofMσi−1 are (i, j) transpositions for j > i. These are the complementary
restrictions; these moves fix a b ∈ B and operate on A, so we label the state space of this
Markov chain Ω̃b. As these moves fix the relative order of all particles of type bigger than i,
the complementary restriction chains can be seen as bounded exclusion processes on particles
of type i with particles of type bigger than i. Bounded generalized biased exclusion processes
operate on staircase walks as in Figure 6, where every square has a different bias but they
are all bounded by some q. These processes were analyzed in [25]. We prove the following
lemma in the full version of the paper.

I Lemma 6. The complementary restrictions at each level of the induction are bounded
generalized biased exclusion processes with spectral gap Ω(n−2).

The chainMσi−1 is not the direct product of the chains on A and B because, e.g., for
(a, b) ∈ A×B, P ((a, b), (a′, b)) depends on b. However, we show that the above decomposition
is 1/n2-orthogonal by bounding r(a, b). We define “good” a’s to be those with fewer than
N∗ = Cq logn inversions and “good” b’s to be those with fewer than N∗ inversions involving
particles of type i+ 1. Thus, as there are at least 2N∗ particles of type i+ 1, then (a, b) has
no inversions between i and j for j > i + 1 when a and b are both good. For such pairs,
r(a, b) is very close to 1. For all other pairs we show r(a, b)π(Ωa ∩ Ω̃b) is small. By viewing b
as a staircase walk on particles of type i+ 1 with particles of any higher type, we see that
for either a or b, the probability it is bad is smaller than the weighted sum of all biased
exclusion processes with more than N∗ inversions (equivalently, area N∗ under the curve).
We prove the following lemma in the full version of the paper.
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3:12 Iterated Decomposition of Biased Permutations

I Lemma 7. For any biased exclusion process with minimum bias constant q > 1, the total
weight of staircase walks with area larger than N∗ satisfies∑

σ:N(σ)≥N∗
q−N(σ) ≤ 1

6n2 .

This allows us to prove the following.

I Lemma 8. If the probabilities P are weakly monotonic and bounded with ci ≥ 2N∗ for all
1 ≤ i ≤ k, then at each step of the induction we have a 1/n2-orthogonal decomposition.

We illustrate the main ideas of the proof of Lemma 8 here in the simplified k = 3 case
(the details are deferred to the full version). In this case, there is no recursion but instead
just a single application of the decomposition theorem. The restriction chains ofM =Mσ0

are the set {Mσ1}, which fix all elements in class C1. The stationary distribution ofM is

π(σ) = Z−1
∏
i<j:

σ(i)>σ(j)

qσ(i),σ(j), (2)

where Z is a normalizing constant.
Let w(a) and w(b) be the parts of this product that depend only on a and only on

b, respectively, and let w(a, b) be a correction factor that depends on both a and b. Let
t1,3 (respectively, t1,2 and t2,3) denote the number of inversions in σ between a 1 and a 3
(respectively a 1 and a 2 and a 2 and a 3). For example, let σ = 111221312323, which has
stationary probability Z−1(q1,2)4(q2,3)3(q1,3). Then a = 111_ _1_1_ _ _ _ b = 2232323.
From b we find that t2,3 = 3 and w(b) = (q2,3)3; more generally, define w(b) to be the
product (q2,3)t2,3 . From a, we can see that there are five inversions involving 1, but the
number of those that are inversions with a 3 versus a 2 depends on b as well. Ignoring this for
a moment, we define w(a) to be the product (q1,2)t1,2+t1,3 . In our example, w(a) = (q1,2)5.
Since we have made the false assumption that there were no inversions between a 1 and a 3
in σ, we need a correction factor w(a, b) = (q1,3/q1,2)t1,3 . With these definitions, it is clear
that π(σ) = Z−1w(a)w(b)w(a, b).

A key idea in the proof of Lemma 8 is that if a and b are both good, then t1,3 = 0 –
indeed, the total number of inversions is less than 2N∗ and the number of 2’s is at least
2N∗ – and thus the correction factor w(a, b) = 1, implying π(a, b) ≈ π(a)π(b). Moreover, the
probability that a or b is bad is very small, so these pairs (a, b) do not contribute much to
the sum in Equation 1.

To make the above statements precise is somewhat technical. Deferring details to the
full version, we now give a bit more intuition. Define ZA =

∑
a w(a), ZB =

∑
b w(b), and

ε1 = 1/(6n2). We show that
∑
a bad w(a) ≤ ε1 and

∑
b bad w(b) ≤ ε1/ZB. Thus, we find

ZA ≈
∑
a good w(a) and ZB ≈

∑
b good w(b), and moreover Z =

∑
a,b w(a)w(b)w(a, b) ≈

ZAZB . We show that when a and b are both good, π(a) ≈ w(a)ZB/Z and π(b) ≈ w(b)ZA/Z.
Thus, when a and b are both good, r(a, b) = π(a,b)

π(a)π(b) ≈
Z

ZAZB
≈ 1. This allows us to show

∑
a good
b good

π(a, b)
(√

r(a, b)− 1√
r(a, b)

)2

≤ 5ε21.

We must also consider the case that either a or b is bad. In this case, we show that the
weight of these configurations is so small that it overcomes the fact that w(a, b) and r(a, b)
may be exponentially small. We use the loose bound
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∑
a or b bad

π(a, b)
(√

r(a, b)− 1√
r(a, b)

)2

≤
∑

a or b bad
π(a)π(b) +

∑
a or b bad

π(a, b)2

π(a)π(b) .

The summation on the left is bounded by Pr(a bad)+Pr(b bad) ≤ 2ε1/(1−ε1). The summands
in the summation on the right are products of conditional probabilities. We use the law of total
probability to bound that summation by

∑
a bad w(a)+

∑
b bad w(b)/(1−ε1) ≤ ε1+ε1/(1−ε1).

Putting this all together, we have, for ε1 ≤ .225,

∑
a,b

π(a, b)
(√

r(a, b)− 1√
r(a, b)

)2

≤ 5ε21 + ε1 + 3ε1
1− ε1

≤ 6ε1 = 1/n2.

This shows that the decomposition is 1/n2-orthogonal.

5 Generalizations and comparison with other theorems

In Sections 5.1 and 5.2, we present several generalizations of Theorem 2 and compare
these results with related prior work. Our decomposition theorems fall into two categories:
complementary decomposition theorems that rely on the notion of ε-orthogonality between
the restrictions and complementary restrictions, and more classical decomposition theorems
based on the projection Markov chain. In Section 5.3, we summarize the proofs, with more
details given in Appendix A.

5.1 Generalized complementary decomposition theorems
Theorem 2 generalizes easily to non-product spaces. Define r(i, j) = π(Ωi∩Ω̃j)/(π(Ωi)π(Ω̃j)),
for any 1 ≤ i ≤ r, 1 ≤ j ≤ r̃. We say that {Ωi} and {Ω̃j} is an ε-orthogonal decomposition
ofM if

ε =
∑
(i,j)

π(Ωi ∩ Ω̃j)(
√
r(i, j)− 1/

√
r(i, j))2.

I Theorem 9. For any ε-orthogonal decomposition ofM, γ(M)≥min{γmin, γ̃min} (1−
√
ε)2

.

We use Theorem 10 to prove Theorem 9, which in turn implies Theorem 2.

I Theorem 10. γ(M) ≥ minx⊥√π,‖x‖=1 γmin‖x⊥‖2 + γ̃min‖x̃⊥‖2.

Here, x⊥ and x̃⊥ are orthogonal projections of a vector x onto the complement of the
eigenspace of the top eigenvectors of certain matrices (defined in Section A.4) containing
the Pi’s and P̃j ’s, respectively. This theorem is similar to a special case of the main result
in [7]. Destainville [7] introduced a “multi-decomposition” scheme that uses m different
partitions of Ω. In Destainville’s result, ‖x⊥‖2 + ‖x̃⊥‖2 is replaced by a function of the norm
of a “multi-projection” operator Π. Bounding these norms is essential, as the Markov chain
M can require exponential time to mix even if all of the restrictions and complementary
restrictions are polynomially mixing3.

3 Indeed, the introduction of the projection chain in [21] was a key insight to the original decomposition
theorem.
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Unfortunately, bounding these norms can be challenging. Destainville [7] bounds the
norm of the projection Π by the spectral gap of a smaller matrix Π̄. In some cases, this
gap can be analyzed directly, or even computationally for particular problem instances.
However, for very complex distributions such as the distribution over biased permutations
we consider here, it can be challenging to find the spectral gap of Π̄. We believe one of our
main contributions is the definition of ε-orthogonality, a concrete combinatorial quantity that
may be easier to analyze. This approach is particularly useful when the chain decomposes
into pieces that are nearly independent, as in the setting of Theorem 2.

5.2 Classical decomposition theorems
The disjoint decomposition theorem of [23] states that the spectral gap γ of M satisfies
γ ≥ 1

2γminγ̄, where, as we recall from Section 1, γmin = mini γi and γ̄ is the spectral gap
of a projection chain over states [r]. Jerrum, Son, Tetali, and Vigoda [18] considered two
quantities related to the spectral gap: the Poincaré and log-Sobolev constants. There, the
authors defined a parameter T = maxi maxσ∈Ωi

∑
τ∈Ω\Ωi P (σ, τ), which can be seen as the

maximum probability of escape from one part of the partition in a single step of P , and
used it to produce a bound on the order of the minimum gap when T is on the order of γ̄.
They also provided improved bounds when another parameter η is close to zero; this requires
a pointwise regularity condition. More recently, Pillai and Smith [26] introduced other
conditions in order to directly bound the mixing time by a constant times the maximum of
the mixing times of the projection and the restrictions.

The techniques developed for proving the complementary decomposition theorems intro-
duced in this paper can be further applied to prove the following “classical”-style decomposi-
tion theorem.

I Theorem 11. Let ρ =
√

2T/γ̄. Then γ(M) ≥ min
p2+q2=1

γminq
2 + γ̄ (qρ− p)2

.

We state a more general version of this theorem, Theorem 17, in Section A.3. This bound
allows us to rederive several known classical decomposition theorems.

I Corollary 12. AssumeM is lazy. Then γ ≥ γminγ̄/3.

In fact, one can show that the constant is 1/2 if γmin, γ̄ ≤ 1/2 (which is a common situation)
or δ2 ≥ 1/2 (δ2 is defined in Section A.2). In Corollary 13 we show that Theorem 11 can be
seen as a generalization of Theorem 1 of [18], except that it instead bounds the spectral gap.

I Corollary 13. γ ≥ min
{
γ̄
3 ,

γminγ̄
3T+γ̄

}
.

In particular, if T/γ̄ is a constant, then we get within a constant of the minimum gap as
well. Theorem 11 produces slightly improved bounds over Corollary 13 when T ≈ γ̄ � γmin.

5.3 Summary of the proofs of the decomposition theorems
Our proofs are elementary and use only basic facts from linear algebra about eigenvalues
and eigenvectors. We have chosen to assume the Markov chains are discrete and finite to
keep the proofs as accessible as possible. We utilize the following standard characterization
of the second largest eigenvalue λ of a symmetric matrix A with top eigenvector v:

λ = max
x⊥v

〈x, xA〉
‖x‖2

= max
x⊥v:‖x‖=1

〈x, xA〉. (3)

For a general reversible Markov chain with transition matrix P , we apply Equation 3 to a
symmetric matrix A = A(P ) that has the same eigenvalues as P .
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We apply the Vector Decomposition Method from the expander graph literature (see,
e.g. [29, 31]), and decompose the vector x into x⊥ + x‖, where x‖ is parallel to the top
eigenvector of each restriction matrix. The intuition of this method is that if a particular
distribution is far from stationarity, then it will either be far from stationarity on some part
of the partition or on the projection, and therefore applying P brings us closer to stationarity.
The benefit of this approach is that it allows us to quantify the independence of the restriction
chains with the projection or complementary restriction chains. Using Equation 3, for any
x ⊥ v, we need to bound

〈x, xA〉 = 〈x⊥, x⊥A〉+ 〈x‖, x‖A〉+ 2〈x⊥, x‖A〉. (4)

It is easy to bound 〈x⊥, x⊥A〉 and 〈x‖, x‖A〉 using ideas from other decomposition results [18,
23]. The term 〈x⊥, x‖A〉 determines whether the decomposed Markov chain is nearly the
direct product of two independent Markov chainsM1 andM2, in which case 〈x⊥, x‖A〉 ≈ 0
and γ(M) ≈ min{γ(M1), γ(M2)}, or whether they are far from independent, in which case
〈x⊥, x‖A〉 is large and γ(M) = Θ(γminγ̄). The key to our decomposition proofs lies in our
bounds on 〈x⊥, x‖A〉, which are different for our complementary decomposition theorems
than they are for our classical decomposition theorems. More details are provided in the
appendix.
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are common to all of the proofs, so we present those parts in Section A.2. In Section A.3, we
prove our classical decomposition theorem, Theorem 11. Finally, in Section A.4, we prove
our complementary decomposition theorems, Theorems 2, 9, and 10.

A.1 Preliminaries

We first fix some notation and terminology. We write In to mean the n× n identity matrix.
The symbol ⊗ is used for tensor product. We write (v)i to mean the ith coordinate of a
vector v. The second largest eigenvalue of Pi will be denoted λi, and λmax = maxi λi. The
“top eigenvector” of a matrix will be the eigenvector corresponding to the eigenvalue of largest
absolute value.

Define P̄ to be the aggregated transition matrix on the state space [r] defined by
P̄ (i, j) = π(Ωi)−1∑

σ∈Ωi,τ∈Ωj π(σ)P (σ, τ). Then P̄ is the transition matrix of a reversible
Markov chain M̄ with stationary distribution π̄ defined by π̄(i) := π(Ωi). We call M̄ the
projection chain.

It is useful to decompose the matrix P into the part that performs restriction moves and
the part that performs all other moves. Define P̂ as the block diagonal |Ω| × |Ω| matrix
with the Pi matrices along the diagonal; i.e. P̂ is obtained from P by rejecting moves
between different parts of the partition. Define P̃ to be the transition matrix of the Markov
chain defined by rejecting moves from σ to τ if σ and τ are within the same Ωi. Then
(P̂ + P̃ )(σ, τ) = P (σ, τ) unless σ = τ , and (P̂ + P̃ )(σ, σ) = P (σ, σ) + 1, since each move of P
gets rejected in exactly one of P̂ or P̃ (and of course the probability of transitioning from a
state is 1). Therefore, we have P = P̂ + P̃ − I|Ω|.

Note that for any pair σ, τ ∈ Ω, the transitions (σ, τ) and (τ, σ) are either both nonzero in
P̃ or both zero in P̃ . Thus P̃ is itself the disjoint union of a set of ergodic, reversible Markov
chains P̃1, P̃2, . . . , P̃r̃ on state spaces Ω̃1, Ω̃2, . . . , Ω̃r̃. We call these chains complementary
restrictions.

In order to prove our decomposition results, we wish to apply Equation 3 to P . However,
since P may not be symmetric, we appeal to the following symmetrization technique that
appears in [20, p. 153]. Given P with stationary distribution π, define a matrix A := A(P ) by
A(σ, τ) := π(σ)1/2π(τ)−1/2P (σ, τ). A is similar to P (i.e. they have the same eigenvalues),
but is symmetric, so we can infer a bound on the second eigenvalue of P by applying
Equation 3 to A. It is easy to check that the top eigenvector of A is

√
π, which is the vector

with entries
√
π(σ) for any σ ∈ Ω.

We apply this same symmetrization technique to other matrices as well. For i ∈ [r] we
let Ai := A(Pi) and for i ∈ [r̃] we let Ãi := A(P̃i). We then write Â to mean the |Ω| × |Ω|
matrix with Â(σ, τ) = Ai(σ, τ) if σ, τ ∈ Ωi for some i ∈ [r], and zero otherwise. Analogously,
we write Ã to mean the |Ω| × |Ω| matrix with Ã(σ, τ) = Ãi(σ, τ) if σ, τ ∈ Ω̃i for some i ∈ [r̃],
and zero otherwise. It is important to note that Â 6= A(P̂ ) and Ã 6= A(P̃ ). This allows us to
write A = Â+ Ã− I|Ω|.

I Proposition 14. The matrix A satisfies A = Â+ Ã− I|Ω|.

Let µ1 ≥ µ2 ≥ . . . ≥ µ|Ω| be the eigenvalues of Ã with corresponding eigenvectors
v1, v2, . . . , v|Ω|. As Ã is symmetric, the real spectral theorem tells us that its eigenvectors
form an orthonormal basis of R|Ω|. We consider the basis representations x⊥ =

∑
i a
⊥
i vi and

x‖ =
∑
i a
‖
i vi. More generally, for any v ∈ R|Ω|, we write v =

∑
i aivi for some constants

a1, a2, . . . , a|Ω| ∈ R. Also, ‖v‖2 =
∑
i a

2
i ‖vi‖2, and vÃ =

∑
i aiµivi.
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A.2 Key ideas and lemmas for the proofs
We wish to apply Equation 3 to A. Recall that

√
π is the top eigenvector of A. Let x ∈ R|Ω|

with x ⊥
√
π and ‖x‖ = 1. We will decompose x into two vectors x‖ and x⊥ as follows

(note: this is similar to the vector decomposition used for the Zig Zag Product in [29]).
For any i ∈ [r], let xi ∈ R|Ωi| be the vector defined by xi(σ) = x(σ) for all σ ∈ Ωi. Then
x =

∑
i ei⊗xi. We further decompose xi into x‖i , the part that is parallel to

√
πi, and x⊥i , the

part that is perpendicular to √πi; recall that
√
πi is the top eigenvector of Ai. Finally, define

x‖, x⊥ ∈ R|Ω| by x‖ =
∑
i ei ⊗ x

‖
i and x⊥ =

∑
i ei ⊗ x⊥i . Hence x =

∑
i ei ⊗ xi = x‖ + x⊥.

Define x̃‖ and x̃⊥ analogously.
As described in Section 5.3, we will bound 〈x, xA〉 via Equation 4:

〈x, xA〉 = 〈x⊥, x⊥A〉+ 〈x‖, x‖A〉+ 2〈x⊥, x‖A〉.

We need the following simple proposition.

I Lemma 15. The following holds: x‖A = x‖Ã.

Applying Lemma 15, Equation 4 becomes

〈x, xA〉 = 〈x‖, x‖Ã〉+ 2〈x⊥, x‖Ã〉+ 〈x⊥, x⊥(Â+ Ã− I|Ω|)〉.

For ease of notation, we define the following quantities:

δ1 = 〈x
⊥, x⊥Â〉
‖x⊥‖2

, δ2 = 〈x
⊥, x⊥Ã〉
‖x⊥‖2

, δ3 = 〈x
‖, x‖Â〉
‖x‖‖2

, δ4 = 〈x
‖, x‖Ã〉
‖x‖‖2

.

Plugging these in, we have

〈x, xA〉 = δ4‖x‖‖2 + 2〈x⊥, x‖Ã〉+ (δ1 + δ2 − 1)‖x⊥‖2. (5)

Bounding δ1 and δ4 is straightforward, and borrows many of the ideas from classical
decomposition results. If x‖Ã were orthogonal to x⊥, then doing so would be sufficient to
proving a strong decomposition theorem. However, this is not true in general, so we must
also bound 〈x⊥, x‖Ã〉. Our two types of theorems do so in different ways, which are presented
in Sections A.3 and A.4.

The next lemma makes concrete the intuition that if a particular distribution is far from
stationarity, then it will either be far from stationarity on some restriction – in which case
Â will bring it closer to stationarity (as in part 1) – or on the projection – in which case
Ã will bring it closer to stationarity (as in part 2). The proof is straightforward from the
definitions.

I Lemma 16. With the above notation,
1. δ1 ≤ λmax.

2. δ4 ≤ λ̄.

A.3 Classical decomposition theorems
In this section, we will prove Theorem 17, which is a generalization of Theorem 11.

I Theorem 17. Let ρ =
√

(1− δ2)/γ̄. Then γ(M) ≥ min
p2+q2=1

γminq
2 + γ̄ (qρ− p)2

.

With the technology developed in Section A.2, there is one critical piece remaining to prove
Theorem 17, which is to bound the cross terms generated by applying the matrix Ã to x‖.



S. Miracle, A. P. Streib, and N. Streib 3:19

I Lemma 18. With the above notation, |〈x⊥, x‖Ã〉| ≤
√

(1− δ4)(1− δ2)‖x‖‖‖x⊥‖.

The proof appears in the full version.
Finally, we are ready to prove Theorem 17.

Proof of Theorem 17. Let x ∈ R|Ω| with x ⊥
√
π and ‖x‖ = 1. By Equation 3, γ(M) ≥

1− 〈x, xA〉. Applying Lemma 15 and the definitions of δ1, δ4, and δ2, Equation 4 becomes

〈x, xA〉 = 〈x‖, x‖Ã〉+ 2〈x⊥, x‖Ã〉+ 〈x⊥, x⊥(Â+ Ã− I|Ω|)〉

= δ4‖x‖‖2 + 2〈x⊥, x‖Ã〉+ (δ1 + δ2 − 1)‖x⊥‖2. (6)

Applying Lemma 18, we have

γ(M) ≥ 1− (δ4‖x‖‖2 + 2
√

(1− δ4)(1− δ2)‖x‖‖‖x⊥‖+ (δ1 + δ2 − 1)‖x⊥‖2).

Rearranging terms and using the fact that 1 = ‖x‖2 = ‖x⊥‖2 + ‖x‖‖2, we have

γ(M) ≥ min
x⊥
√
π:‖x‖=1

(1− δ1)‖x⊥‖2 +
(√

1− δ2‖x⊥‖ −
√

1− δ4‖x‖‖
)2
. (7)

By setting q = ‖x⊥‖ and p = ‖x‖‖, we immediately get

γ(M) ≥ min
p2+q2=1

(1− δ1)q2 +
(√

1− δ2q −
√

1− δ4p
)2
.

Using a bit of calculus one may show that the expression on the right is minimized when
(1 − δ1) is minimized, when (1 − δ2) is maximized and when (1 − δ4) is minimized. By
Lemma 16, (1− δ1) ≥ γmin and (1− δ2) ≥ γ̄. Therefore, we have

γ(M) ≥ min
p2+q2=1

γminq
2 +

(
q
√

1− δ2 − p
√
γ̄
)2
. J

The statement of Theorem 17 is admittedly technical. However, from it we may derive
several corollaries, as listed in Section 5. It is simple to show that Theorem 11 follows from
Theorem 17 by noticing that δ2 ≥ 1− 2T .

We do not currently have a comparison between our Theorem 11 and Corollary 2 of [18],
which requires a pointwise bound of πji . However, see Remark 19 which shows that their
result would not be sufficient for our application to permutations.

I Remark 19. It is worth pointing out that the decomposition ofMσi−1 that we described
in Section 4 does not satisfy the regularity conditions of [18] needed to obtain a better bound.
For any υ ∈ Ωj , define

πj
′

j (υ) = πj(υ)
∑
υ′∈Ωj′

P (υ, υ′)

P̄ (j, j′)
.

We need to bound πj
′

j (υ)/πj(υ) for any j, j′, and υ ∈ Ωj . For example, let σ2 =
12_11111_2_1_ _ and σ3 = 12311111_231_ _. Notice that the two permutations
υ1 = 12311111423156 and υ2 = 12311111523146 are in the same restriction Ωj (i.e. they are
both consistent with σ3). They each have a single move to Ωj′ : the move of swapping the
first 3 with the 4 (in the case of υ1) or 5 (in the case of υ2). However, the probability of
these moves differ by a factor of (q4,3/q5,3)(q4,1/q5,1)5, as there are five 1’s between them. In
principle, there could be order n smaller numbers between the two numbers we are swapping.
Thus, πj

′

j (υ)/πj(υ) cannot be uniformly bounded to within 1± η unless η is exponentially
large.
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A.4 Complementary decomposition theorems
Next we use the technology developed in Section A.3 to prove Theorem 10. Recall that
µ1 ≥ µ2 ≥ . . . ≥ µ|Ω| are the eigenvalues of Ã with corresponding eigenvectors v1, v2, . . . , v|Ω|,
and that for any v ∈ R|Ω|, we write v =

∑
i aivi for some constants a1, a2, . . . , a|Ω| ∈ R. Also,

‖v‖2 =
∑
i a

2
i ‖vi‖2, and vÃ =

∑
i aiµivi. Define the set S = {i : µi = 1}. Let δ̃1 = 〈x̃⊥,x̃⊥Ã〉

‖x̃⊥‖2 .
Now we can make an explicit statement about the gap ofM; notice the equality in Equation 8.

I Theorem 10.

γ(M) = min
x⊥
√
π,‖x‖=1

(1− δ1)‖x⊥‖2 + (1− δ̃1)‖x̃⊥‖2. (8)

In particular,

γ(M) ≥ min
x⊥
√
π,‖x‖=1

γmin‖x⊥‖2 + γ̃min‖x̃⊥‖2. (9)

Proof. Notice δ̃1‖x̃⊥‖2 =
∑
i∈S µi(a⊥i + a

‖
i )2. Thus,

(1− δ̃1)‖x̃⊥‖2 =
∑
i

(1− µi)(a⊥i + a
‖
i )

2 = (1− δ2)‖x⊥‖2 + (1− δ4)‖x‖‖2 − 2〈x⊥, x‖Ã〉.

On the other hand, from Equation 6, we have

1− 〈x, xA〉 = (1− δ1)‖x⊥‖2 + (1− δ2)‖x⊥‖2 + (1− δ4)‖x‖‖2 − 2〈x⊥, x‖Ã〉.

Thus, for all x ⊥
√
π with norm 1, we have

1− 〈x, xA〉 = (1− δ1)‖x⊥‖2 + (1− δ̃1)‖x̃⊥‖2.

Applying Equation 3, we get Equation 8. To get Equation 9, we apply Lemma 16, which
yields 1 − δ1 ≥ 1 − λmax = γmin. An analogous statement to Lemma 16 holds for δ̃1, and
shows 1− δ̃1 ≥ γ̃min. J

It remains to prove Theorem 9. By Theorem 10, if γmin and γ̃min are not too small,
it suffices to show that ‖x⊥‖2 and ‖x̃⊥‖2 cannot both be small. To this end, we further
decompose x⊥ and x̃‖ based on the eigenvectors of Ã. Define S = {i : µi = 1} and vectors
x11 =

∑
i∈S a

‖
i vi and x12 =

∑
i/∈S a

‖
i vi. Similarly, let x21 =

∑
i∈S a

⊥
i vi and x22 =

∑
i/∈S a

⊥
i vi.

Notice x̃‖ = x11 + x21 and x̃⊥ = x12 + x22, so that the vectors in each row (respectively,
column) of the following table sum to the vector in its row (respectively, column) label.

x̃‖ x̃⊥

x‖ x11 x12

x⊥ x21 x22

The vectors within each row are orthogonal, as they are in the span of eigenvectors with
distinct eigenvalues. However, the vectors within each column are not necessarily orthogonal.

The idea of the proof of Theorem 9 is that if ‖x11‖ is small, then ‖x⊥‖2 + ‖x̃⊥‖2 is large.
The following lemma states that ε-orthogonality is sufficient to guarantee ‖x11‖ is small.

I Lemma 20. Let ε be as defined in Equation 1. Then ‖x11‖2 ≤ ε.
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Proof. Recall x11 is the projection of x‖ onto the top eigenvectors of Ã. The top eigenvectors
of Ã are precisely the set of all

√
π̃j for j ∈ [r̃]. Therefore,

x11 =
∑
j

〈x‖,
√
π̃j〉

‖
√
π̃j‖2

√
π̃j .

As the eigenvectors of Ã are an orthonormal basis, we have

‖x11‖2 =
∑
j

〈x‖,
√
π̃j〉2.

For any j 6= j′ ∈ [r̃] and any σ ∈ Ω̃j′ ,
√
π̃j(σ) = 0 and for i ∈ [r], π̃j(Ωi ∩ Ω̃j) =

π(Ωi ∩ Ω̃j)/π(Ω̃j). Therefore,

〈x‖,
√
π̃j〉 =

∑
i

∑
σ∈Ωi

x‖(σ)
√
π̃j(σ) =

∑
i

αi
∑

σ∈Ωi∩Ω̃j

√
πi(σ)π̃j(σ) =

∑
i∈[r]

αi
π(Ωi ∩ Ω̃j)√
π(Ωi)π(Ω̃j)

.

(10)

Since x ⊥
√
π and x⊥ ⊥

√
π by definition, it follows that x‖ ⊥

√
π as well. This implies

that α ⊥
√
π̄, as

0 = 〈x‖,
√
π〉 =

∑
i

αi
∑
σ∈Ωi

√
πi(σ)π(σ) =

∑
i

αi
∑
σ∈Ωi

√
π(σ)√
π(Ωi)

√
π(σ) =

∑
i

αi
√
π(Ωi), (11)

and this final term is equal to
∑
i αi
√
π̄i = 〈α,

√
π̄〉. Multiplying Equation 11 by π(Ω̃j) and

subtracting it from Equation 10, we have

〈x‖,
√
π̃j〉 =

∑
i∈[r]

αi

 π(Ωi ∩ Ω̃j)√
π(Ωi)π(Ω̃j)

−
√
π(Ωi)π(Ω̃j)

 = 〈α, Vj〉,

where

Vj(i) :=

 π(Ωi ∩ Ω̃j)√
π(Ωi)π(Ω̃j)

−
√
π(Ωi)π(Ω̃j)

 =
√
π(Ωi ∩ Ω̃j)(

√
r(i, j)− 1/

√
r(i, j)).

By the Cauchy-Schwartz inequality and the fact that ‖α‖ = ‖x‖‖ ≤ ‖x‖ = 1, we have
〈α, Vj〉 ≤ ‖α‖‖Vj‖ = ‖Vj‖. Therefore we get,

‖x11‖2 =
∑
j

〈x‖,
√
π̃j〉2 ≤

∑
j

‖Vj‖2 =
∑
i,j

π(Ωi ∩ Ω̃j)(
√
r(i, j)− 1/

√
r(i, j))2. J

To prove Theorem 9 from Theorem 10, we must show that if ‖x11‖2 ≤ ε, then ‖x⊥‖2 +
‖x̃⊥‖2 ≥ (1−

√
ε)2. As the sum of the squared norms of the vectors in the above table is

1, it is reasonable to expect that if ‖x11‖2 is small, then ‖x⊥‖2 + ‖x̃⊥‖2 is large. However,
this is not as straightforward as one might expect, as the vectors within each column are not
necessarily orthogonal, so we may have ‖x̃⊥‖2 < ‖x12‖2 + ‖x22‖2. The proof is deferred to
the full version of this paper.
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