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Abstract
Given a multivariate polynomial computed by an arithmetic branching program (ABP) of size s, we
show that all its factors can be computed by arithmetic branching programs of size poly(s). Kaltofen
gave a similar result for polynomials computed by arithmetic circuits. The previously known best
upper bound for ABP-factors was poly(slog s).
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1 Introduction

Polynomial factoring is a classical question in algebra. For factoring multivariate polynomials,
we have to specify a model for representing polynomials. A standard model in algebraic
complexity to represent polynomials are arithmetic circuits (aka straight-line programs).
Other well known models are arithmetic branching programs (ABP), arithmetic formulas,
dense representations, where the coefficients of all n-variate monomials of degree ≤ d are
listed, or sparse representations, where only the non-zero coefficients are listed. Given a
polynomial in some model, one can ask for efficient algorithms for computing its factors
represented in the same model. That leads to the following question.

I Question (Factor size upper bound). Given a polynomial of degree d and size s in a
representation, do all of its factors have size poly(s, d) in the same representation?

For example in the dense representation the size of the input polynomial and the output
factors is the same, namely

(
n+d
d

)
, for n-variate polynomials of degree d. But for other

representations, the factor of a polynomial may take larger size than the polynomial itself.
For example, in the sparse representation the polynomial xd − 1 has size 2, but its factor
1 + x+ · · ·+ xd−1 has size d.

Arithmetic circuits. The algebraic complexity class VP contains all families of polynomi-
als {fn}n that have degree poly(n) and arithmetic circuits of size poly(n). Kaltofen [11]
showed that VP is closed under factoring: Given a polynomial f ∈ VP of degree d computed
by an arithmetic circuit of size s, all its factors can be computed by an arithmetic circuit of
size poly(s, d).
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33:2 Factorization of Polynomials Given by Arithmetic Branching Programs

Arithmetic branching programs. Kaltofen’s [11] proof technique for circuit factoring does
not directly extend to formulas or ABPs. The construction there results in a circuit, even if
the input polynomial is given as a formula or an ABP. Converting a circuit to an arithmetic
formula or an ABP may cause super-polynomial blow-up of size.

Analogous to VP, classes VF and VBP contain families of polynomials that can be
computed by polynomial-size arithmetic formulas and branching programs, respectively.
Note that the size also bounds the degree of the polynomials in these models. Arithmetic
branching programs are an intermediate model in terms of computational power, between
arithmetic formulas and arithmetic circuits,

VF ⊆ VBP ⊆ VP .

ABPs are interesting in algebraic complexity as they essentially capture the power of linear
algebra, for example they can efficiently compute determinants. ABPs have several equivalent
characterizations. They can be captured via iterated matrix multiplication, weakly-skew
circuits, skew circuits, and determinants of a symbolic matrices. See [14] for an overview of
these connections.

Proof technique. A standard technique to factor multivariate polynomials has typically
two main steps. The first step uses Hensel lifting to lift a factorization to high enough
precision, starting from two coprime univariate factors. The second step, sometimes called
the jump step or reconstruction step, consists of reconstructing a factor from a corresponding
lifted factor by solving a system of linear equations.

The earlier works for polynomial factorization use a version of Hensel lifting, where in
each iteration the lifted factors remain monic. It seems as this version is not efficient for
ABPs. We observe that monicness of the lifted factor is not necessary for the jump step.
This allows us to use a simple version of Hensel lifting that is efficient for ABPs.

Another point in some earlier works is that, in a pre-processing step, the input polynomial
is transformed into a square-free polynomial. It is not clear how to achieve this transfor-
mation with small ABPs. We get around this problem by observing that square-freeness
is not necessary. It suffices to have one irreducible factor of multiplicity one. This weaker
transformation can be computed by small ABPs.

Finally, we use the fact that the determinant can be computed efficiently by ABPs.

I Remark 1. Whatever ABP we construct, the same can be done for circuits. Hence, as a
by-product, we also literally provide another proof for the classical circuit factoring result of
Kaltofen.

Comparison with prior works. There are several proofs of the closure of VP under factors
[9, 10, 11, 1, 2, 12, 16, 6, 3]. None of the previous proofs directly extends to the closure
of VBP, i.e. branching programs, under factors.

Recently, Dutta, Saxena, and Sinhababu [6] and also Oliveira [16] considered factoring
in restricted models like formulas, ABPs and small depth circuits. They reduce polynomial
factoring to approximating power series roots of the polynomial to be factored. Then they
use versions of Newton iteration for approximating the roots. Let x = (x1, . . . , xn). If p(x, y)
is the given polynomial and q(x) is a root w.r.t. y, i.e. p(x, q(x)) = 0, Newton iteration
repeatedly uses the following recursive formula to approximate q:

yt+1 = yt −
p(x, yt)
p′(x, yt)

.



A. Sinhababu and T. Thierauf 33:3

If p is given as a circuit, the circuit for yt+1 is constructed from the circuit of yt. For the
circuit model, we can assume that p(x, y) has a single leaf node y where we feed yt. But
for formula and branching programs, we may have d many leaves labeled by y, where d is
the degree of p in terms of y. As we cannot reuse computations in formula or branching
programs, we have to make d copies of yt in each round. This leads to dlog d blow-up in size.

Oliveira [16] used the idea of approximating roots via an approximator polynomial function
of the coefficients of a polynomial. This gives good upper bound on the size of factors of
ABPs, formulas, and bounded depth circuits under the assumption that the individual degrees
of the variables in the input polynomial are bounded by a constant.

Recently, Chou, Kumar, and Solomon [3] proved closure of VP under factoring using
Newton iteration for several variables for a system of polynomial equations. This approach
also faces the same problem for the restricted models.

Instead of lifting roots, another classical technique for multivariate factoring is Hensel
lifting, where factors modulo an ideal are lifted. Hensel lifting has a slow version, where the
power of the ideal increases by one in each round. The other version due to Zassenhaus [21]
is fast, the power of the ideal gets doubled in each round.

Kaltofen’s [11, 10] proofs uses slow versions of Hensel lifting iteratively for d rounds,
where d is the degree of the given polynomial. That leads to an exponential blow-up of size
in models where the previous computations cannot be reused, as using previous lifts twice
would need two copies each time. .

Kopparty, Saraf, and Shpilka [12] use the standard way of doing fast Hensel lifting for
log d rounds, where in each round the lifted factors are kept monic. To achieve this, one
has to compute a polynomial division with remainder. Implementing this version of Hensel
lifting for ABPs or formulas seems to require to make d copies of previous computations in
each round. Thus, that way would lead to a dlog d size blow-up. Also, they compute the gcd
of polynomials, for which a priori no size upper bound was known for ABP or formulas.

Here, we use a classic version of fast Hensel lifting, that needs log d rounds and additionally
in each round we have to make copies of previous computations only constantly many times.
As we mentioned earlier, we avoid to maintain the monicness, and also gcd-computations.

Though various versions of Hensel lifting (factorization lifting) and Newton iteration
techniques (root lifting) are equivalent in a mathematical sense [19], it is interesting that the
former gives a better factor size upper bound for the model of ABP.

Application in hardness vs. randomness. Closure under factoring is used in the hardness
vs. randomness trade-off results in algebraic complexity. See for example the excellent survey
of Kumar and Saptharishi [13] for details on this topic. The celebrated result of Kabanets
and Impagliazzo [8, Theorem 7.7] showed that a sufficiently strong lower bound for arithmetic
circuits would derandomize polynomial identity testing (PIT). The proof of derandomization
uses a hard polynomial as well as the upper bound on the size of factors of a polynomial
computed by the circuit [11]. As a corollary of our result, we get a similar statement in
terms of ABPs: An exponential (or super-polynomial) lower bound for ABPs for an explicit
multilinear polynomial yields quasi-poly (or sub-exponential) black-box derandomization of
PIT for polynomials in VBP.

Closure under factoring is relevant in the connection between algebraic complexity and
proof complexity [7]. If a class C is closed under factoring, then the following holds. If a
polynomial is hard for the class C, then all its nonzero multiples are hard for C. Lower bounds
for all the nonzero multiples of an explicit hard polynomial may lead to lower bounds for
ideal proof systems [7].
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2 Preliminaries

We consider multivariate polynomials over a field F of characteristic 0. A polynomial p is
called square-free, if for any non-constant irreducible factor q, the polynomial q2 is not a
factor of p.

By deg(p) we denote the total degree of p. Let x and z = (z1, . . . , zn) be variables and
p(x, z) be a (n + 1)-variate polynomial. Then we can view p as a univariate polynomial
p =

∑
i ai(z)xi over K[x], where K = F[z]. The x-degree of p is denoted by degx(p). It is

the highest degree of x in p. Polynomial p is called monic in x, if the coefficient adx(z) is a
nonzero constant, where dx = degx(p).

By poly(n) we denote the class of polynomials in n ∈ N.
We denote by I = 〈x〉 the ideal of polynomials generated by x over the ring F[x, z]. The

k-th power of the ideal I is the ideal Ik = 〈xk〉.

Computational models. An arithmetic circuit is a directed acyclic graph, whose leaf nodes
are labeled by the variables x1, . . . , xn and various constants from the underlying field.
The other nodes are labeled by sum gates or product gates. A node labeled by a variable
or constant computes the same. A node labeled by sum or product compute the sum or
product of the polynomials computed by nodes connected by incoming edges. The size of an
arithmetic circuit is the total number of its edges.

An arithmetic formula is a special kind of arithmetic circuit. A formula has the structure
of a directed acyclic tree. Every node in a formula has out-degree at most one. As we can
not reuse computations in a formula, it is considered to be weaker than circuits.

An arithmetic branching program (ABP) is a layered directed acyclic graph with a single
source node and a single sink node. An edge of an ABP is labeled by a variable or a constant
from the field. The weight corresponding to a path from the source to the sink is the product
of the polynomials labeling the edges on the path. The polynomial f(x1, . . . , xn) computed
by the ABP is the sum of the weights of the all possible paths from source to sink.

The size of an ABP is the number of its edges. The size of the smallest ABP computing f
is denoted by sizeABP(f). The degree of a polynomial computed by an ABP of size s is at
most poly(s).

Properties of ABPs. Univariate polynomials have small ABPs. Let p(x) be a univariate
polynomial of degree d. It can be computed by an ABP of size 2d+ 1, actually even by a
formula of that size.

For univariate polynomials p(x), q(x), the extended Euclidian algorithm computes the
gcd h = gcd(p, q) and also the Bézout-coefficents, polynomials a, b such that ap + bq = h,
where deg(a) < deg(q) and deg(b) < deg(p). Let p have the larger degree, d = deg(p) ≥
deg(q). Then clearly also deg(h),deg(a),deg(b) ≤ d, and consequently, all these polynomials,
p, q, h, a, b have ABP-size at most 2d+ 1.

Let p(x), q(x) be multivariate polynomials in x = (x1, . . . , xn). For the ABP-size with
respect to addition and multiplication, we have
1. sizeABP(p+ q) ≤ sizeABP(p) + sizeABP(q),
2. sizeABP(pq) ≤ sizeABP(p) + sizeABP(q).

For the sum of two ABPs Bp, Bq one can put Bp and Bq in parallel by merging the two
source nodes of Bp and Bq into one new source node, and similar for the two sink nodes. For
the product, one can put Bp and Bq in series by merging the sink of Bp with the source of Bq.
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Another operation is substitution. Let p(x1, . . . , xn) and q1(x), . . . , qn(x) be polynomials.
Let sizeABP(qi) ≤ s, for i = 1, . . . , n. Then we have

sizeABP(p(q1, . . . , qn)) ≤ s · sizeABP(p).

To get an ABP for p(q1(x), . . . , qn(x)), replace an edge labeled xi in the ABP Bp for p by
the ABP Bqi

for qi.
It is known that the determinant of a symbolic matrix of dimension n can be computed

by an ABP of size poly(n) [15]. By substitution, the entries of the matrix can itself be
polynomials computed by ABPs.

Resultant. Given two polynomials p(x,y) and q(x,y) in variables x and y = (y1, . . . , yn),
consider them as polynomials in x with coefficients in F[y]. The resultant of p and q w.r.t. x,
denoted by Resx(p, q), is the determinant of the Sylvester matrix of p and q. For the definition
of the Sylvester matrix, see [20]. Note that Resx(p, q) is a polynomial in F[y].

Basic properties of the resultant are that it can be represented as a linear combination
of p and q, and that it provides information about the gcd of p and q.

I Lemma 2 (See [20]). Let p(x,y) and q(x,y) be polynomials of degree ≤ d and h = gcd(p, q).
1. deg(Resx(p, q)) ≤ 4d2,
2. ∃u, v ∈ F[x,y] up+ vq = Resx(p, q),
3. Resx(p, q) = 0 ⇐⇒ degx(h) > 0.

Note that the problem whether Resx(p, q) = 0 is a polynomial identity test (PIT), because
Resx(p, q) ∈ F[y]. It can be solved in a randomized way by the DeMillo-Lipton-Schwartz-
Zippel Theorem (see [4] and the references therein for more details and history of this
theorem).

I Theorem 3 (Polynomial Identity Test). Let p(x) be an n-variate nonzero polynomial of
total degree d. Let S ⊆ F be a finite set. For α ∈ Sn picked independently and uniformly
at random,

Pr[ p(α) = 0 ] ≤ d

|S|
.

3 Pre-processing Steps and Algebraic Tool Kit

Before we start the Hensel lifting process, a polynomial should fulfill certain properties that
the input polynomial might not have. In this section, we describe transformations of a
polynomial that achieve these properties such that ABPs can compute the transformation
and its inverse, and factors of the polynomials are maintained.

We also explain how to compute homogeneous components and how to solve linear systems
via ABPs. We show how handle the special case when the given polynomial is just a power
of an irreducible polynomial.

3.1 Computing homogeneous components and coefficients of a
polynomial

Let p(x, z) be polynomial of degree d in variables x and z = (z1, . . . , zn). Let Bp be an
ABP of size s that computes a polynomial p. Write p as a polynomial in x, with coefficients
from F[z],

CCC 2020
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p(x, z) =
d∑
i=0

pi(z)xi .

We show that all the coefficients pi(z) have ABPs of size poly(s, d).
The argument is similar to Strassen’s homogenization technique for arithmetic circuits,

an efficient way to compute all the homogeneous components of a polynomial. The same
technique can be used for ABPs (see [17, Lemma 5.2 and Remark]). Here we sketch the
proof idea.

Each node v of Bp we split into d+ 1 nodes v0, . . . , vd, such that node vi computes the
degree i part of the polynomial computed by node v, for i = 0, 1, . . . , d. Consider an edge e
between node u and v in Bp.

If e is labeled with a constant c ∈ F or a variable zi, then we put an edge between ui
and vi with label c or zi, respectively.
If e is labeled with variable x, then we put an edge between ui and vi+1 with label 1.

The resulting ABP has one source node and d + 1 sink nodes. The i-th sink node com-
putes pi(z).

For each edge of Bp we get either d or d + 1 edges in the new ABP. Hence, its size is
bounded by s(d+ 1).

I Lemma 4 (Coefficient extraction). Let p(x, z) =
∑d
i=0 pi(z)xi be a polynomial. Then

sizeABP(pi) ≤ (d+ 1) sizeABP(p), for i = 0, 1, . . . , d.

The technique can easily be extended to constantly many variables. For two variables,
consider p(x, y,z) =

∑
i,j pi,j(z)xiyj . Then, from an ABP of size s for p we get ABPs for

the coefficients pi,j(z) of size s(d+ 1)2 similarly as above.
In homogenization, we want to compute the homogeneous components of p. That is, write

p(z) =
∑d
i=0 pi(z), where deg(pi) = i. From an ABP Bp for p we get ABPs for the pi’s

similarly as above: In the definition of the new edges, only for constant label, we put the
edge from ui to vi. In case of any variable label zj , we put the edge from ui to vi+1 with
label zj . Then the i-th sink node computes pi(z). The size is bounded by s(d+ 1).

I Lemma 5 (Homogenization). Let p(z) =
∑d
i=0 pi(z) be a polynomial with deg(pi) = i, for

i = 0, 1, . . . , d. Then sizeABP(pi) ≤ (d+ 1) sizeABP(p), for i = 0, 1, . . . , d.

3.2 Computing q from p = qe

A special case is when the given polynomial p(x) is a power of one irreducible polynomial q(x),
i.e., p = qe, for some e > 1. This case is handled separately. Kaltofen [10] showed how to
compute q for circuits, ABPs, and arithmetic formulas. Here, we give a short proof from
Dutta [5].

I Lemma 6. Let p = qe, for polynomials p(x), q(x). Then sizeABP(q) ≤ poly(sizeABP(p)).

Proof. We may assume that p is nonzero; otherwise the claim is trivial. We want to apply
Newton’s binomial theorem to compute q = p1/e. For this we need that p(0, . . . , 0) = 1. If
this is not the case, we first transform p as follows.
1. If p(0, . . . , 0) = 0, let α = (α1, . . . , αn) be a point where p(α) 6= 0. By the PIT-Theorem,

a random point α will work, with high probability. Now we shift the variables and work
with the shifted polynomial p̃(x) = p(x+α).
Still, p̃(0, . . . , 0) might be different from 1. In this case, we also apply the next item to f̃ .
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2. If p(0, . . . , 0) = a0 6= 0, then we work with p̃(x) = p(x)/a0. Then p̃(0, . . . , 0) = 1.
Note that both transformations are easily reversible. Hence, in the following we simply
assume that p(0, . . . , 0) = 1.

By Newton’s binomial theorem, we have

q = p1/e = (1 + (p− 1))1/e =
∞∑
i=0

(
1/e
i

)
(p− 1)i . (1)

Note that p1/e is a polynomial of degree d = deg(q). Since p − 1 is constant free, the
terms (p− 1)j in the RHS of (1) have degree > d, for j > d . Thus (1) turns into a finite
sum modulo the ideal 〈x〉d+1,

q =
d∑
i=0

(
1/e
i

)
(p− 1)i mod 〈x〉d+1 . (2)

Let sizeABP(p) = s. For the polynomial Q =
∑d
i=0
(1/e
i

)
(p− 1)i from (2), we clearly have

sizeABP(Q) ≤ poly(s). Finally, to get q = Q mod 〈x〉d+1, we have to truncate the terms in Q
with degree > d. This can be done by computing the homogeneous components of Q as
described in Lemma 5. We conclude that sizeABP(q) ≤ poly(s). J

3.3 Reducing the multiplicity of a factor
In the earlier works on bivariate and multivariate polynomial factoring, typically the problem
is reduced to factoring a square-free polynomial. This is convenient at various places in the
Hensel lifting process. The technique to reduce to the square-free case is via taking the gcd of
the input polynomial and its derivative. However, for getting upper bounds on the ABP-size
of the factors, we want to avoid gcd-computations, because no polynomial size upper bound
for the gcd of two ABPs is known.

We avoid this problem by observing that we do not need the polynomial to be square-free.
As we will see, it suffices to have one irreducible factor with multiplicity one, and another
coprime factor.

Let p(x) be the given polynomial, for x = (x1, . . . , xn). The special case that p is a power
of one irreducible polynomial we just handled in Section 3.2. Hence, we may assume that p
has at least two irreducible factors. So let p = qe p0, where q is irreducible and coprime to p0.

Consider the derivative of p w.r.t. some variable, say x1.

∂p

∂x1
= qe−1

(
(e− 1) ∂q

∂x1
p0 + q

∂p0

∂x1

)
. (3)

Note that q does not divide the factor
(

(e− 1) ∂q
∂x1

p0 + q ∂p0
∂x1

)
in (3). Hence, the multiplicity

of factor q in ∂p
∂x1

is reduced by one compared to p.
For the ABP-size, we write p as a polynomial in x1, i.e. p(x) =

∑d
i=0 aix

i
1, where the

coefficients ai are polynomials in x2, . . . , xn. By Lemma 4, when p has an ABP of size s,
then the coefficients ai can be computed by ABPs of size s′ = s(d+ 1). We observe that then
the coefficients of the derivative polynomial ∂p

∂x1
=
∑d
i=1 iaix

i−1
1 have ABPs of size s′ + 1.

We repeat taking derivatives k = e − 1 times and get ∂kp
∂xk

1
, which has the irreducible

factor q with multiplicity one, as desired.
The coefficients of ∂

kp
∂xk

1
can be computed by ABPs of size s′ + 1. This yields an ABP of

size poly(s) that computes ∂kp
∂xk

1
.

CCC 2020
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3.4 Transforming to a monic polynomial
Given any polynomial p(z) in variables z = (z1, . . . , zn), there is a standard trick to make
it monic in a new variable x by applying a linear transformation on the variables: for
α = (α1, . . . , αn) ∈ Fn, let

τα : zi 7→ αix+ zi,

for i = 1, . . . , n. Let pα(x, z) be the resulting polynomial. Note that p and pα have the same
degree. We show that pα(x, z) is monic in x, for a random transformation τα.

I Lemma 7 (Transformation to monic). Let p(z) be polynomial of total degree d. Let S ⊆ F
be a finite set. For α ∈ Sn picked independently and uniformly at random,

Pr[ pα(x, z) is monic in x ] ≥ 1− d

|S|
.

Proof. Consider the terms of degree d in p. Let β = (β1, . . . , βn) such that |β| =
∑n
i=1 βi = d.

We denote the term zβ = zβ1
1 · · · zβn

n . Then the homogeneous component of degree d in p
can be written as ad(z) =

∑
|β|=d cβz

β. Note that ad is a nonzero polynomial.
Now consider the transformed polynomial pα. We have degx(pα) = d and the coefficient

of xd in pα is ad(α) =
∑
|β|=d cβα

β. When we pick α at random, ad(α) will be a nonzero
constant with probability ≥ 1− d

|S| by the PIT-Theorem, and in this case pα(x, z) is monic
in x. J

Given an ABP of size s that computes p(z), we can construct another ABP of size 3s
that computes pα(x, z). For the new ABP replace edge labeled by zi by the ABP computing
αix+ zi. For each old edge, this requires adding two new edges with labels αi and x.

3.5 Handling the starting point of Hensel lifting
After doing the above pre-processing steps on the given polynomial p(z), we call the trans-
formed polynomial f(x, z). We can assume that f of degree d can be factorized as f = gh,
where g and h are coprime and g is irreducible. In the first step of Hensel lifting, we
factorize the univariate polynomial f(x, 0, . . . , 0) ≡ f(x, z) (mod z). Now, clearly we have
the factorization f(x, 0, . . . , 0) = g(x, 0, . . . , 0)h(x, 0, . . . , 0), but these two factors might not
be coprime. In this case we do another transformation.
I Remark. Although it would suffice for our purpose to start with two coprime factors, the
transformation below produces one irreducible factor.

Let g0 be an irreducible factor of g(x, 0, . . . , 0). Then we have for some univariate
polynomial h′0(x) and for h0(x) = h′0(x)h(x, 0, . . . , 0),

g ≡ g0 h
′
0 (mod z),

f ≡ g0 h0 (mod z) .

We want that g0 is coprime to h′0 and h0. Directly, this might not be the case because
all factors of f(x, 0, . . . , 0) might have multiplicity > 1. However, we argue how to ensure
this after a random shift α of f . That is, we consider the function f(x, z +α)

1. First, we show how to achieve that g0 is coprime to h′0.
Since g is irreducible, it is also square-free, and hence, gcd(g, ∂g∂x ) = 1. By Lemma 2, the
resultant r(z) = Resx(g, ∂g∂x ) is a polynomial of degree ≤ 4d2 and r(z) 6= 0. Hence, at a
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random point α ∈ [8d2]n, we have r(α) 6= 0 with high probability. At such a point α,
we have that g(x,α) is square-free. Therefore, g(x, z) is square-free modulo (z −α), or,
equivalently, g(x, z +α) is square-free modulo z. Hence, when we define g0 and h′0 from
g(x, z +α) instead of g(x, z), they will be coprime.

2. Similarly, we can achieve that g0 is coprime to h0. By the first item, it now suffices to
get g0 coprime to h(x, 0, . . . , 0).
For showing this, we use that g0 is coprime to h′0 and prove that g(x, 0, . . . , 0) is coprime to
h(x, 0, . . . , 0). Consider the resultant of g and h w.r.t. x, the polynomial r′(z) = Resx(g, h)
has degree ≤ 4d2. Since g and h are coprime, r′(z) 6= 0. Hence, at a random point
α ∈ [8d2]n, we have r′(α) 6= 0 with high probability, and hence g(x,α) and h(x,α) are
coprime univariate polynomials. Therefore, g(x, z) and h(x, z) are coprime modulo (z−α),
or, equivalently, g(x, z +α) and h(x, z +α) are coprime modulo z.

Combining the two items, a random point α ∈ [8d2]n will fulfill both properties with high
probability. So instead of factoring f(x, z), we do a coordinate transformation z 7→ z +α
and factor f(x, z + α) instead. From these factors, we easily get the factors of f(x, z) by
inverting the transformation. Note also that when f(x, z) is monic in x, the same holds
for f(x, z +α).

In the next section, we do another transformation on the input polynomial. We apply a
map on the variables that maps x to x and zi is mapped to yzi, for a new variable y and
i = 1, . . . , n. Then we factorize the transformed polynomial modulo y. Note that in this case,
going modulo y has the same effect of going modulo z. So we can use the above argument to
ensure the starting condition for Hensel lifting is satisfied.

3.6 Reducing multivariate factoring to the bivariate case
Factoring multivariate polynomials can be reduced to the case of bivariate polynomials (see
[12]). Let x, y and z = (z1, . . . , zn) be variables and let f(x, z) be the given polynomial.
With f ∈ F[x, z], we associate the polynomial f̂ ∈ F[x, y,z] defined by

f̂(x, y,z) = f(x, yz1, . . . , yzn) .

The point now is to consider f̂ as a polynomial in F[z][x, y], that is, as a bivariate polynomial
in x and y with coefficients in F[z]. We list some properties.
1. f(x, z) = f̂(x, 1, z),
2. deg(f̂) ≤ 2 deg(f),
3. f monic in x =⇒ f̂ monic in x,
4. f = gh =⇒ f̂ = ĝ ĥ,
5. f̂ = g′ h′ =⇒ f = g′(x, 1, z)h′(x, 1, z).

By property 4, factors of f yield factors of f̂ . The following lemma shows that also the
irreducibility of the factors is maintained.

I Lemma 8. Let f be monic in x and g be a non-trivial irreducible factor of f . Then ĝ is a
non-trivial irreducible factor of f̂ .

Proof. By property 4 above, ĝ is a factor of f̂ . We argue that ĝ is irreducible.
Let ĝ = uv be a factorization of ĝ. By item 5 above, this yields a factorization of g as

g = u(x, 1, z) v(x, 1, z). Since g is monic in x, the same holds for ĝ, and therefore also for
factors u, v. Hence, either u or v must be constant, because otherwise they would provide a
non-trivial factorization of g. J
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Thus, to get an ABP for an irreducible factor g of f , first we show that there is an ABP
for the irreducible factor ĝ. This yields an ABP for g by substituting g = ĝ(x, 1, z).

Given an ABP Bf of size s for f , we get an ABP B
f̂
for f̂ by putting an edge labeled y

in series with every edge labeled zi in Bf , so that B
f̂
computes yzi at every place where Bf

uses zi. Hence, the size of B
f̂
is at most 2s.

3.7 Solving a linear system with polynomials as matrix entries
We show how to solve a linear system Mv = 0 for a polynomial matrix M with entries
from F[z] given as ABPs. We are seeking for a nonzero vector v. Note that such a v exists
over the ring F[z] iff it exists over the field F(z).

Except for minor modifications, this follows from classical linear algebra. Kopparty, Saraf,
and Shpilka [12, Lemma 2.6] have shown the same result for circuits. The proof works as
well for ABPs.

I Lemma 9 (Solving linear systems [12]). Let M = (mi,j(z))i,j be a polynomial matrix of
dimension k×m and variables z = (z1, . . . , zn), where the entries are polynomials mi,j ∈ F[z]
that can be computed by ABPs of size s.

Then there is an ABP of size poly(k,m, s) computing a nonzero vector v ∈ F[z]m such
that Mv = 0 (if it exists).

Proof. After swapping rows of M , we ensure that the j × j submatrix Mj that consists of
the first j rows and the first j columns has full rank, iteratively for j = 1, 2, . . . .

For j = 1 this means to find a nonzero entry in the first column and swap that row with
the first row. If the first column is a zero-column, then v =

(
1 0 · · · 0

)T is a solution
and we are done. To extend from j to j + 1, suppose we have ensured that Mj has full
rank. Now we search for a row from row j + 1 on, such that after a swap with row j + 1,
the submatrix Mj+1 has full rank. This can be tested by Lemma 3. If no such row exists,
then the process stops at j. If j = m then M has full rank and the zero vector is the only
solution. Otherwise, assume the above process stops with j < m.

Now Cramer’s rule can be used to find the unique solution u =
(
u1 u2 · · · uj

)T of
the system

Mju =
(
m1,j+1 m2,j+1 · · · mj,j+1

)T
.

We have ui = detMi
j

detMj
, where M i

j is the matrix obtained by replacing the i-th column of Mj

by the vector
(
m1,j+1 · · · mj,j+1

)T . Now, define

v =
(

detM1
j detM2

j · · · detM j
j −detMj 0 · · · 0

)T
.

Then v is a solution to the original system. Its entries are determinants of matrices with entries
computed by ABPs of size s. Hence, all the entries of v have ABPs of size poly(k,m, s). J

4 Factors of Arithmetic Branching Programs

In this section, we prove that ABPs are closed under factoring.

I Theorem 10. Let p be a polynomial over a field F with characteristic 0. For all factors q
of p, we have

sizeABP(q) ≤ poly(sizeABP(p)) .
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We prove Theorem 10 in the rest of this section. First observe that it suffices to prove
the poly(s) size upper bound for the irreducible factors of p. This yields the same bound for
all the factors. The case when p = qe is proved in Section 3.2. So it remains to consider the
general case when p = pe1

1 · · · pem
m , for m ≥ 2, where p1, . . . , pm are the different irreducible

factors of p. We want to prove an ABP size upper bound for an irreducible factor, say p1.
We start by several transformations on the input polynomial p(z), where z = (z1, . . . , zn).

1. As described in Section 3.3, taking k = e1 − 1 times the derivative w.r.t. some variable,
say z1, we get the polynomial p′(z) = ∂kp(z)

∂zk
1

, where the factor p1 has multiplicity 1.
2. Next, by Lemma 7, we transform p′(z) to a polynomial p′′(x, z) that is monic in x, for

a new variable x. Thereby also the factors of p′(z) are transformed, maintaining their
irreducibilty and multiplicity. The degree of p′′ is twice the degree of p′.

3. At this point, we may have to shift the variables z as described in Section 3.5 to ensure
the properties needed for starting the Hensel lifting. This shift preserves the monicness
and the irreducibility of the factors.

4. Finally, the transformation to a bivariate polynomial is explained in Section 3.6. This
yields polynomial p′′′(x, y,z), with new variable y and monic in x. We rewrite p′′′ as a
polynomial in x and y with coefficients in the ring K = F[z] and call the representation f .
That is, f(x, y) ∈ K[x, y]. By Lemma 8, the tranformation maintains irreducible factors.
Note also that by the definition of p′′′ we have f(x, 0) = p′′′(x, 0, 0, . . . , 0) = f(x, y) mod y,
so that f(x, y) mod y is univariate.

The main part now is to factor f(x, y) ∈ K[x, y], say f = gh, where g ∈ K[x, y] is
irreducible and coprime to h ∈ K[x, y], and f, g, h are monic in x and have x-degree ≥ 1.
Let d be the total degree of f in x, y.

From the factor g of f , we will recover the factor f1 of p by reversing the above transfor-
mations. We show that g can be computed by an ABP of size poly(s). It follows that the
irreducible factor f1 has an ABP of size poly(s).

The basic strategy is to first factor the univariate polynomial f mod y, and then apply
Hensel lifting to get a factorization of f mod yt, for large enough t. Finally, from the lifted
factors modulo yt, we compute the absolute factors of f .

4.1 Hensel lifting
There are various versions of Hensel lifting in the literature (see for example [18]). In our
case, an ABP should be able to perform several iterations of the lifting. Therefore we use
the lifting in a way suitable for ABPs. In particular, in contrast to other presentations, we
will not maintain the monicness of the lifted factors.

Hensel lifting works over rings R modulo an ideal I ⊆ R. In our case, R = K[x, y], where
K = F[z], and I = 〈y〉t, for some t ≥ 1.

I Definition 11 (Lifting). Let R be a ring and I ⊆ R be an ideal. Let f, g, h, a, b ∈ R such
that f ≡ gh (mod I) and ag + bh ≡ 1 (mod I). Then we call g′, h′ ∈ R a lift of g, h with
respect to f , if
(i) f ≡ g′h′ (mod I2),
(ii) g′ ≡ g (mod I) and h′ ≡ h (mod I), and
(iii) ∃a′, b′ ∈ R a′g′ + b′h′ ≡ 1 (mod I2).

I Remark. The three conditions in Definition 11 are the invariants when iterating the lifting.
Note that the last condition is actually redundant. It follows from the assumptions together

with the second condition. This can be seen in the proof of Lemma 12 below, where a lift
g′, h′ from g, h is constructed, together with a′, b′. When we show that condition (iii) holds,
we do not use the specific form of g′, h′ constructed there, it suffices to have condition (ii).
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I Lemma 12 (Hensel Lifting). Let R be a ring and I ⊆ R be an ideal. Let f, g, h, a, b ∈ R
such that f ≡ gh (mod I) and ag + bh ≡ 1 (mod I). Then we have:
1. (Existence). There exists a lift g′, h′ of g, h w.r.t. f .
2. (Uniqueness). For any other lift g∗, h∗ of g, h w.r.t. f , there exists a u ∈ I such that

g∗ ≡ g′ (1 + u) (mod I2) and h∗ ≡ h′ (1− u) (mod I2).

Proof. We first show the existence part. Let
1. e = f − gh,
2. g′ = g + be and h′ = h+ ae,
3. c = ag′ + bh′ − 1,
4. a′ = a(1− c) and b′ = b(1− c).

We verify that g′, h′ is a lift of g, h. Because f ≡ gh (mod I), we have e = f − gh ≡ 0
(mod I). In other words, e ∈ I. It follows that g′ ≡ g (mod I) and h′ ≡ h (mod I).

Next we show that f ≡ g′h′ (mod I2).

f − g′h′ = f − (g + be)(h+ ae)
= f − gh− e (ag + bh)− abe2

≡ e− e (ag + bh) (mod I2)
≡ e (1− (ag + bh)) (mod I2)
≡ 0 (mod I2)

In the second line, note that e2∈ I2. The last equality holds because e∈ I and 1−(ag+bh)∈ I.
Now, we verify that a′g′ + b′h′ ≡ 1 (mod I2). First, observe that

c = ag′ + bh′ − 1
≡ ag + bh− 1 (mod I)
≡ 0 (mod I)

Hence, c ∈ I and we conclude that a′ ≡ a (mod I) and b′ ≡ b (mod I). Now,

a′g′ + b′h′ − 1 = a (1− c)g′ + b (1− c)h′ − 1
= ag′ + bh′ − 1− c (ag′ + bh′)
= c− c (ag′ + bh′)
= c (1− (ag′ + bh′))
≡ 0 (mod I2)

The last equality holds because c ∈ I and 1− (ag′ + bh′) ≡ −c ≡ 0 (mod I).
For the uniqueness part, let g∗, h∗ be another lift of g, h. Let α = g∗− g′ and β = h∗−h′.

By Definition 11 (ii), we have g′ ≡ g ≡ g∗ (mod I) and h′ ≡ h ≡ h∗ (mod I), and therefore
α, β ∈ I.

We first show

βg′ + αh′ ≡ 0 (mod I2). (4)

βg′ + αh′ = βg′ + (g∗ − g′)h′

= βg′ + g∗h′ − g′h′

≡ βg′ + g∗h′ − g∗h∗ (mod I2)
≡ βg′ − βg∗ (mod I2)
≡ −αβ (mod I2)
≡ 0 (mod I2)
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Define u = a′α − b′β. Because α, β ∈ I, also u ∈ I. Then, by (4) and because
a′g′ + b′h′ ≡ 1 (mod I2), we have

g′(1 + u) = g′(1 + (a′α− b′β))
= g′ + a′g′α− b′g′β
≡ g′ + a′g′α+ b′h′α (mod I2)
≡ g′ + α (mod I2)
≡ g∗ (mod I2).

Similarly, we get h∗ ≡ h′(1− u) (mod I2). J

For the ABP-size, recall that the size just adds up when doing additions or multiplications.
Hence, when f, g, h, a, b have ABPs of size≤ s and we construct ABPs for g′, h′, a′, b′ according
to steps 1 - 4 in the above proof, then we get ABPs of size O(s).

I Remark. In the monic version of Hensel Lifting there is a division in addition to the 4
steps from above. When we assume that g is monic, we can compute polynomials q and r
such that g′ − g = qg + r, where degx(r) < degx(g). Then one can show that ĝ = g + r and
ĥ = h′(1 + q) are a lift of g, h w.r.t. f . Moreover, when g, h are monic, so are ĝ, ĥ. Also
the Bézout-coefficients â, b̂ can be computed. For ĉ = aĝ + bĥ − 1, let â = a(1 − ĉ) and
b̂ = b(1− ĉ).

The advantage of the monic version is that the result is really unique. There is no 1 + u

factor between monic lifts. The disadvantage is the extra division which would blow up the
ABP-size too much.

4.2 Iterating Hensel lifting
Let f = gh, where g is irreducible and coprime to h, and f, g, h are monic in x with
x-degree ≥ 1.

To start the Hensel lifting procedure, we factor the univariate polynomial f(x, 0) =
f mod y as f(x, 0) = g0(x)h0(x), where g0 is a divisor of g mod y, and coprime to h0, and
degx(g0) ≥ 1. Recall that by the pre-processing in Section 3.5, we may assume that there is
such a decomposition of f(x, 0).

By the Euclidian algorithm, there are polynomials a0(x), b0(x) such that a0g0 + b0h0 = 1.
Hence, for I0 = 〈y〉, we have a0g0 + b0h0 ≡ 1 (mod I0) and initiate Hensel lifting with

f ≡ g0h0 (mod I0).

We iteratively apply Hensel lifting to g0, h0 as described in the proof of Lemma 12. Each
time, the ideal gets squared. Let Ik = I2k

0 . That is, we get polynomials gk, hk such that

f ≡ gkhk (mod Ik),

and gk, hk is a lift of gk−1, hk−1 w.r.t. f . The following lemma states that gk divides g
modulo Ik, for all k ≥ 0. In a sense, the gk’s approximate g modulo increasing powers of y.

I Lemma 13. With the notation from above, for all k ≥ 0 and some polynomial h′k,

g ≡ gkh′k (mod Ik) and hk ≡ hh′k (mod Ik).

Moreover, gk, h′k is a lift of gk−1, h
′
k−1 w.r.t. g and degx(h′k) ≤ degx(hk) = 2O(k), for k ≥ 1.
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Proof. The proof is by induction on k ≥ 0. For the base case, we have that g0 divides g
modulo I0, as explained above. Thus, for some polynomial h′0 that is coprime to g0, we have

g ≡ g0h
′
0 (mod I0),

Hence, we have h0 ≡ h′0h (mod I0). Note that h′0 can be just 1.
For the inductive step, assume that

g ≡ gk−1h
′
k−1 (mod Ik−1) and hk−1 ≡ hh′k−1 (mod Ik−1). (5)

Let g′k, h′′k be a lift of gk−1, h
′
k−1 w.r.t. g, so that in particular

g′kh
′′
k ≡ g (mod Ik). (6)

We claim that then g′k, h h′′k is a lift of gk−1, h h
′
k−1, i.e., of gk−1, hk−1 by (5), w.r.t. f .

B Claim 14. g′k, h h
′′
k is a lift of gk−1, hk−1 w.r.t. f .

Proof. We check the three conditions for a lift in Definition 11. For the product condition (i),
we have by (6)

g′k hh
′′
k = (g′k h′′k)h ≡ gh (mod Ik).

For condition (ii), we have g′k ≡ gk−1 (mod Ik−1) by assumption and similarly

hh′′k ≡ hh′k−1 ≡ hk−1 (mod Ik−1).

By the remark after Definition 11, the condition (iii) already follows now. This proves
Claim 14. C

Recall that also gk, hk is a lift of gk−1, hk−1. Hence, by the uniqueness property of Hensel
lifting, there is a u ∈ Ik−1 such that

g′k ≡ gk (1 + u) (mod Ik) and hh′′k ≡ hk (1− u) (mod Ik) (7)

Now observe that we can move the factor 1 + u: we have that gk (1 + u), h h′′k is a lift of
gk−1, hk−1, then also gk, h h′′k (1 + u) is a lift of gk−1, hk−1.

B Claim 15. gk, h h
′′
k (1 + u) is a lift of gk−1, hk−1 w.r.t. f .

Proof. We check the conditions for a lift in Definition 11. The first two of them are trivial:
moving the factor 1 + u clearly does not change the product. Because u ∈ Ik−1 we still have
the equality with the factors gk−1 and hk−1 modulo Ik−1, respectively.

By the remark after Definition 11, the third condition already follows, but it also easy to
check now:

Let a, b ∈ R such that agk + bhk ≡ 1 (mod Ik). It follows by (7) that

agk + bh h′′k(1 + u) ≡ agk + bhk(1− u)(1 + u) ≡ agk + bhk(1− u2) ≡ 1 (mod Ik).

This proves Claim 15. C
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Now, define h′k = h′′k(1 + u). Note that

h′k ≡ h′′k ≡ h′k−1 (mod Ik−1). (8)

By (7), we have

hh′k ≡ hh′′k (1 + u) ≡ hk(1− u)(1 + u) ≡ hk (mod Ik). (9)

By (9) we have

f = gh ≡ gkhk ≡ gkhh′k (mod Ik). (10)

It follows from (10) that gh ≡ gkh′kh (mod Ik). Now we want to cancel h in the last equation
and conclude that g ≡ gkh′k (mod Ik). This we can do because h is monic in x, it does not
contain a factor y, i.e. h 6∈ I0. Hence, together with (8), we conclude that gk, h′k is a lift of
gk−1, h

′
k−1 w.r.t. g.

For the x-degree of h′k, consider the equation hk ≡ hh′k (mod Ik). Since h is monic in x
the highest x-degree term in the product hh′k will survive the modulo operation. Therefore
degx(h′k) ≤ degx(h) + degx(h′k) = degx(hk).

To bound the degree of hk observe that in each round of the Hensel lifting, the maximum
possible degree is bounded by a constant multiple (≤ 5) of the maximum degree in the
previous round. After k iterations, the degree of the lifted factors is therefore bounded
by 2O(k). J

For the ABP-size, we observed at the end of Section 4.1 that the size increases by a
constant factor in one iteration. Hence, after k iterations, the size increases by a factor 2O(k).

4.3 Factor reconstruction for ABP
We show how to get the absolute factor g of f from the lifted factor. This is called the jump
step in Sudan’s lecture notes [18]. The difference to the earlier presentations is that our lifted
factor might not be monic.

Let f = gh, where f has degree d, factor g is irreducible and coprime to h, and f, g, h
are monic in x. In the previous section, we started with a factorization f ≡ g0h0 (mod I0),
where g0 is irreducible and coprime to h0. Moreover, g ≡ g0h

′
0 (mod I0), for some h′0 such

that h0 = hh′0 (mod I0).
Then we apply Hensel lifting, say t-times, for some t to be determined below. By

Lemma 13, we get a factorization f ≡ gtht (mod It) such that

g ≡ gth′t (mod It), (11)

for some h′t such that ht ≡ hh′t (mod It).
Equation (11) gives us a relation between the known gt and the unknown g, via the

unknown h′t. We set up a linear system of equations to find a polynomial g̃ ∈ K[x, y] that is
monic in x and has minimal degree in x such that

g̃ ≡ gth̃ (mod It), (12)

for some polynomial h̃. We give some more details to the linear system below, after the next
lemma. Before, we show that g̃ is indeed the factor we were looking for, for large enough t.

I Lemma 16. g̃ = g, for t ≥ log (4d2 + 1).
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Proof. Consider the resultant r(y) = Resx(g, g̃). We show that r(y) = 0. Then it follows
from Lemma 2 that g and g̃ share a common factor with positive x-degree. Since g is
irreducible it must be a divisor of g̃. Since both of them are monic and have the same
x-degree, we get equality g̃ = g, up to constant multiples.

To argue that r(y) = 0, recall from Lemma 2 that the resultant can be written as
r(y) = ug + vg̃, for some polynomials u and v. By (11) and (12), we have

ug + vg̃ ≡ gt(uh′t + vh̃) (mod It)

Consider gt and w = uh′t + vh̃ as polynomials in y with coefficients in x. Suppose
gt = c0(x) + c1(x)y + . . . + cd′(x)yd′ . By the properties of Hensel lifting, we have gt ≡ g0
(mod I0), and therefore c0(x) = g0(x). Recall that g0 is non-constant, deg(g0) ≥ 1.

Let j ≥ 0 be the least power of y that appears in w and let its coefficient be wj(x).
Suppose for the sake of contradiction that j < 2t. Then the least power of y in gtw is also j,
and its coefficient is g0(x)wj(x), which is a nonzero polynomial in x.

The monomials present in g0(x)wj(x)yj cannot be canceled by other monomials in gtw
because they have larger y-degree. It follows that gtw mod It is not free of x. On the other
hand, r(y) ≡ gtw (mod It) and r(y) ∈ K[y] is a polynomial with no variable x. This is a
contradiction.

We conclude that j ≥ 2t, which means that w ≡ 0 (mod It). Hence, we get r(y) ≡ 0
(mod It). Recall that deg(r) ≤ 4d2. Now we choose t ≥ log (4d2 + 1). Then we can conclude
that indeed r(y) = 0. J

Details for setting up the linear system. Equation (12) can be used to set up a homogeneous
system of linear equations. For the degree bounds of the polynomials, let dx = degx(g) and
dy = degy(g). We may assume that we know dx and dy. Let Dx = degx(gt) and Dy = 4d2,
where d = deg(f). Let D′x = degx(ht). Recall from Lemma 13 that degx(h̃) ≤ D′x. Let

gt =
∑

i≤Dx,j≤Dy

ci,j x
iyj ,

g̃ = xdx +
∑

i<dx,j≤dy

ri,j x
iyj ,

h̃ =
∑

i≤D′
x,j≤Dy

si,j x
iyj ,

where the coefficients ci,j , ri,j , si,j are polynomials in the variables z1, . . . , zn. To ensure that
g̃ is monic, we set the coefficient of xdx in g̃ to be 1.

Note that we have an ABP that computes gt. Hence, there are ABPs for computing the
coefficients ci,j of gt by Lemma 4. The coefficients ri,j , si,j of g̃ and h̃ we treat as unknowns.
Equation (12) now becomes∑

i≤dx,j≤dy

ri,jx
iyj ≡

∑
i≤Dx,j≤Dy

ci,jx
iyj

∑
i≤D′

x,j≤Dy

si,jx
iyj (mod y2d2+1) (13)

Now we equate the coefficients of the monomials xkyl on both sides in (13). Then we get
(Dx +D′x + 1)(Dy + 1) homogeneous linear equations in dx(dy + 1) + (D′x + 1)(Dy + 1) many
unknowns ri,j and si,j . This system can be expressed in the form Mv = 0, for a matrix M
and unknown vector v.

By Lemma 9, an ABP can efficiently compute a solution vector v of polynomials from
F[z]. Note that by (11), a nontrivial solution is guaranteed to exist. From v, we get the
coefficients ri,j of g̃, and hence of the factor g.
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4.4 Size Analysis
We summarize the bound on the ABP-size of the factor computed. Given polynomial p of
degree dp and sizeABP(p) = s. We have seen that the pre-processing transformations yield
a polynomial f of degree df ≤ 2dp and sizeABP(f) = poly(s). Then we do t = log (2d2

f + 1)
iterations of Hensel lifting. The initial polynomials f0, g0, h0 have ABP-size bound by 2df .
Hence, the polynomials after the last iteration have ABP-size bounded by 2t poly(s) =
poly(s, dp) = poly(s).

From the lifted factor we construct the actual factor of f . This step involves solving a
linear system. We argued that the resulting polynomial g has ABP-size poly(s).

Finally, we reverse the transformations from the beginning and get a factor of p that has
an ABP of size poly(s). This finishes the proof of Theorem 10.

5 Applications

5.1 Root Finding
Given a polynomial p ∈ F[x,y], the root finding problem asks for a polynomial r ∈ F[y] such
that p(r(y),y) = 0. By a lemma of Gauß, r is a root of p iff x− r(y) is an irreducible factor
of p. By Theorem 10, when p is given by an ABP, we get an ABP for x − r(y). Setting
x = 0 and inverting the sign gives an ABP for r(y).

I Corollary 17. The solutions of the root finding problem for a polynomial p given by an
ABP can be computed by ABPs of size poly(sizeABP(p)).

5.2 Hardness vs. Randomness
As an application of Theorem 10, we get that lower bounds for ABPs imply a black-box
derandomization of polynomial identity tests (PIT) for ABPs, similar to the result of Kabanets
and Impagliazzo [8, Theorem 7.7] for arithmetic circuits.

I Theorem 18 (Hitting-set from hard polynomial ). Let {qm}m≥1 be a multilinear polynomial
family such that qm is computable in time 2O(m), but has no ABP of size 2o(m). Then one
can compute a hitting set for ABPs of size s in time sO(log s).

The proof is similar to the proof given by Kabanets and Impagliazzo [8, Theorem 7.7] for
circuits. At one point, they invoke Kaltofen’s factor result for circuits. This can be replaced
now by Theorem 10 for ABPs. Finally, from a given ABP of size s with n variables, we can
get another ABP of size poly(s) and logn variables by replacing the original variables by a
hitting set generator, n polynomials computed by small size ABPs. This final composition
step also goes through for ABPs. We will give more details in the final version of the paper.

6 Conclusion and Open Problems

We prove that the class of polynomials computed by ABPs is closed under factors. As a
direct corollary, we get that the gcd of two polynomials computed by small-sized ABPs has
small ABP size.

Our proof seems not to extend to the model of arithmetic formulas. The bottleneck is
the last step, as the determinant of a symbolic matrix (xi,j)n×n may not have poly(n) size
formulas. One way to avoid computing the determinant is by making the lifted factor monic
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in each round of Hensel lifting. But the direct implementation of monic Hensel lifting leads
to a quasi-poly blow-up of formula size because it involves polynomial division in each step.
So the closure of formulas under factors remains an open problem.

If one could show that arithmetic formulas are not closed under factors, i.e. if some
polynomial f(x1, . . . , xn) exists that requires formula of size ≥ nlogn, but has a nonzero
multiple of formula-size poly(n), then, by our result, VF would be separated from VBP and
by Kaltofen’s result, VF would be separated from VP.

Besides arithmetic formulas, there are other models for which poly(s, d) upper bound on
the size of factors are not known. For example, read-once oblivious arithmetic branching
programs (ROABP) and constant depth arithmetic circuits.
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