
Optimal Error Pseudodistributions for Read-Once
Branching Programs
Eshan Chattopadhyay
Department of Computer Science, Cornell University, Ithaca, NY, USA
eshanc@cornell.edu

Jyun-Jie Liao
Department of Computer Science, Cornell University, Ithaca, NY, USA
jjliao@cs.cornell.edu

Abstract
In a seminal work, Nisan (Combinatorica’92) constructed a pseudorandom generator for length n
and width w read-once branching programs with seed length O(logn · log(nw) + logn · log(1/ε))
and error ε. It remains a central question to reduce the seed length to O(log(nw/ε)), which would
prove that BPL = L. However, there has been no improvement on Nisan’s construction for the case
n = w, which is most relevant to space-bounded derandomization.

Recently, in a beautiful work, Braverman, Cohen and Garg (STOC’18) introduced the notion of
a pseudorandom pseudo-distribution (PRPD) and gave an explicit construction of a PRPD with seed
length Õ(logn · log(nw) + log(1/ε)). A PRPD is a relaxation of a pseudorandom generator, which
suffices for derandomizing BPL and also implies a hitting set. Unfortunately, their construction is
quite involved and complicated. Hoza and Zuckerman (FOCS’18) later constructed a much simpler
hitting set generator with seed length O(logn · log(nw)+log(1/ε)), but their techniques are restricted
to hitting sets.

In this work, we construct a PRPD with seed length

O(logn · log(nw) · log log(nw) + log(1/ε)).

This improves upon the construction by Braverman, Cogen and Garg by a O(log log(1/ε)) factor,
and is optimal in the small error regime. In addition, we believe our construction and analysis to be
simpler than the work of Braverman, Cohen and Garg.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion

Keywords and phrases Derandomization, explicit constructions, space-bounded computation

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.25

Funding Eshan Chattopadhyay: Supported by NSF grant CCF-1849899.
Jyun-Jie Liao: Supported by NSF grant CCF-1849899.

Acknowledgements We thank anonymous reviewers for helpful comments.

1 Introduction

A major challenge in computational complexity is to understand to what extent randomness
is useful for efficient computation. It is widely believed that randomness does not provide
substantial savings in time and space for algorithms. Indeed, under plausible assumption,
every randomized algorithm for decision problem can be made deterministic with only a
polynomial factor slowdown in time (BPP = P) [16] or a constant factor blowup in space
(BPL = L) [20].

However, it remains open for decades to prove these results unconditionally. For deran-
domization in the time-bounded setting, it is known that proving BPP = P implies circuit
lower bounds which seem much beyond reach with current proof techniques [18]. However no

© Eshan Chattopadhyay and Jyun-Jie Liao;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 25; pp. 25:1–25:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eshanc@cornell.edu
mailto:jjliao@cs.cornell.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.25
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Optimal Error Pseudodistributions for Read-Once Branching Programs

such implications are known for the space-bounded setting, and there has been some progress.
Savitch’s theorem [30] implies that RL ⊆ L2. Borodin, Cook, Pippenger [3] and Jung [17]
proved that PL ⊆ L2, which implies BPL ⊆ L2. Nisan [23, 24] constructed a pseudorandom
generator for log-space computation with seed length O(log2 n), and used it to show that
BPL can be simulated with O(log2 n) space and polynomial time. Saks and Zhou [29] used
Nisan’s generator in a non-trivial way to show that BPL ⊆ L3/2, which remains the best
known result so far. We refer the interested reader to the beautiful survey by Saks [28] for
more background and relevant prior work.

We introduce the notion of a read-once branching programs, which is a non-uniform
model for capturing algorithms that use limited memory.

IDefinition 1 (Read-once branching program). A (n,w)-read-once branching program (ROBP)
B is a directed graph on the vertex set V =

⋃n
i=0 Vi, where each set Vi contains w nodes.

Every edge in this directed graph is labeled either 0 or 1. For every i < n, and every node
v ∈ Vi, there exists exactly two edges starting from v, one with label 0 and the other with
label 1. Every edge starting from a node in Vi connects to a node in Vi+1. We say n is the
length of B, w is the width of B and Vi is the i-th layer of B.

Moreover, there exists exactly one starting state s ∈ V0, and exactly one accepting state
t ∈ Vn. For every x = (x1, . . . , xn) ∈ {0, 1}n, we define B(x) = 1 if starting from s we will
reach t following the edges labeled by x1, . . . , xn. Otherwise we define B(x) = 0.

It is well-known the computation of a probabilistic Turing machine that uses space S and
tosses n coins, on a given input y, can be carried out by a (n, 2O(S))-ROBP By. In particular,
if the string x ∈ {0, 1}n corresponds to the n coin tosses, then By(x) is the output of the
Turing machine.

A standard derandomization technique is via pseudorandom generators. We define this
notion for the class of ROBPs.

I Definition 2 (Pseudorandom generator). A function G : {0, 1}s → {0, 1}n is a (n,w, ε)-
pseudorandom generator (PRG) if for every (n,w)-ROBP B,∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[B(G(r))]

∣∣∣∣ ≤ ε.
The seed length of G is s. G is explicit if G is computable in O(s) space.

To derandomimze space-bounded computation given an explicit (n,w, ε)-PRG, one can
enumerate B(G(r)) for every r ∈ {0, 1}s with O(s) additional space to compute an ε-
approximation of the quantity Ex [B(x)].

Nisan [23] constructed a (n,w, ε)-PRG with seed length O(logn · log(nw/ε)), which
implies BPL ⊆ L2. While there is a lot of progress in constructing PRG with better seed
length for restricted family of ROBP (see, e.g., [25, 1, 6, 2, 5, 21, 9, 31, 22] and references
therein), Nisan’s generator and its variants [23, 15, 26] remain the best-known generators in
the general case.

1.1 Pseudorandom pseudodistribution
Recently, a beautiful work of Braverman, Cohen and Garg [4] introduced the notion of a
pseudorandom pseudodistribution (PRPD) that relaxes the definition of a PRG.

E. Chattopadhyay and J.-J. Liao 25:3

I Definition 3 (Pseudorandom pseudodistribution). A pair of functions (G, ρ) : {0, 1}s →
{0, 1}n × R generates a (n,w, ε)-pseudorandom pseudodistribution (PRPD) if for every
(n,w)-ROBP B,∣∣∣∣ E

x∈{0,1}n
[B(x)]− E

r∈{0,1}s
[ρ(r) ·B(G(r))]

∣∣∣∣ ≤ ε.
We say s is the seed length of (G, ρ). We say (G, ρ) is k-bounded if |ρ(x)| ≤ k for every
x ∈ {0, 1}s. We say (G, ρ) is explicit if they are computable in space O(s).

Note that a (n,w, ε)-PRG G of seed length s with a constant function ρ(x) = 1 generates
a 1-bounded (n,w, ε)-PRPD. Similar to a PRG, it is possible to derandomize BPL by
enumerating all seeds of a PRPD and computing an ε-approximation for Ex [B(x)]. In [4]
they observe that given (G, ρ) which generates an (n,w, ε)-PRPD, the function G itself is an
ε-hitting set generator for (n,w)-ROBP.

The main result in [4] is an explicit construction of a (n,w, ε)-PRPD with seed length

O ((logn · log(nw) + log(1/ε)) · log log(nw/ε)) ,

which is poly(nw/ε)-bounded.1 This improves on the seed-length of Nisan’s generator and
provides near optimal dependence on error.

Unfortunately, the construction and analysis in [4] is highly complicated. Hoza and
Zuckerman [13] provided a dramatically simpler hitting set generator with slightly improved
seed length. However, it is not clear how to extend their techniques for constructing a PRPD
(or PRG).

1.2 Main result
In this paper, we construct a PRPD with optimal dependence on error (up to constants).

I Theorem 4. There exists an explicit (n,w, ε)-PRPD generator (G, ρ) with seed length

O (logn · log(nw) · log log(nw) + log(1/ε)) ,

which is poly(1/ε)-bounded.

This improves upon the construction in [4] by a factor of O(log log(1/ε)), for any ε <

n−Ω(log(nw) log log(nw)).
As observed in [4], the small-error regime is well motivated for application to derandom-

izing space-bounded computation. In particular, Saks and Zhou [29] instantiated Nisan’s
PRG with error n−ω(1) to obtain the result BPL ⊆ L3/2. We note that one can replace
the PRG in the Saks-Zhou scheme with a PRPD which is poly(w, 1/ε)-bounded, and hence
improvements to our result will lead to improved derandomization of BPL. We sketch a
proof in Appendix A.

Our construction uses a strategy similar to [4] with the following key differences.

1 Note that in [4], they define
∑

r
ρ(r)B(G(r)) to be the approximation of Ex [B(x)]. Here we define

Er [ρ(r)B(G(r))] to be the approximation instead to emphasize the possible loss when plugged into the
Saks-Zhou scheme. (See Appendix A for more details.) Therefore a k-bounded PRPD in their definition
is actually 2sk-bounded in our definition. Nevertheless, it is possible to show that their construction is
still poly(nw/ε)-bounded with our definition.

CCC 2020

25:4 Optimal Error Pseudodistributions for Read-Once Branching Programs

The construction in [4] has a more bottom-up nature: their construction follows the binary
tree structure in Nisan’s generator [23], but in each node they maintain a sophisticated
“leveled matrix representation” (LMR) which consists of many pieces of small-norm
matrices, and they show how to combine pieces in two LMRs one by one to form a LMR
in the upper level. Our construction follows the binary tree structure in Nisan’s generator,
but has a more top-down spirit. We give a clean recursive formula which generates
a “robust PRPD” for (n,w)-PRPD given robust PRPDs for (n/2, w)-ROBP, where a
robust PRPD is a family of pseudodistributions such that the approximation error of
pseudodistribution drawn from this family is small on average. (A formal definition
can be found in Definition 32.) The top-down nature of our construction significantly
simplifies the construction and analysis.
Following [4], we use an averaging sampler in our recursive construction, but we further
observe that we can apply a simple “flattening” operation to limit the growth of seed
length. With this observation, we not only improve the seed length but also simplify the
construction and analysis by avoiding some special case treatments that are necessary
in [4]. (Specifically, we do not need the special multiplication rule “outer product” in [4].)

Independent work

Independent work of Cheng and Hoza [7] remarkably prove that a hitting set generator
(HSG) for ROBPs can be used for derandomizing BPL. Their first result shows that
every (n,w)-ROBP f can be deterministically approximated within error ε with an explicit
HSG for (poly(nwε),poly(nwε))-ROBP with seed length s. The space complexity of their
first derandomization is O(s + log(nw/ε)). Their second result shows that every (n,w)-
ROBP f can be deterministically approximated within error ε with an explicit HSG for
(n, poly(w))-ROBP with seed length s. Their second derandomization has space complexity
O(s+ w log(n/ε)), and only requires black-box access to f .

Their first result does not imply better derandomization algorithms with the state-of-
art HSGs so far. Plugging in the HSG from [13], their second result gives a black-box
derandomization algorithm for (n,w)-ROBP in space O(log(n) log(nw) + w log(n/ε)). This
is better than the black-box derandomization with our PRPD for the restricted case of
w = O(1). We note that an advantage of PRPDs (over hitting sets) is that they are
applicable in the Saks and Zhou’s scheme [29] (as mentioned in Appendix A, when applied
with Armoni’s sampler trick [1]).

Organization

In Section 2, we present the matrix representation of ROBPs, see how a pseudodistribution
can be interpreted as matrices, and introduce some basic rules for translating between matrix
operations and operations on pseudodistribution. We use Section 3 to present an outline of
our main construction and proof. Section 4 contains necessary preliminaries. In Section 5, we
formally prove several lemmas about using samplers on approximate matrix multiplication.
In Section 6, we present and prove correctness of our main construction. We conclude with
possible future directions in Section 7.

2 ROBPs and Matrices

We introduce the matrix representation of ROBPs and some related definitions that are
useful in the rest of the paper. First, we setup some notation.

E. Chattopadhyay and J.-J. Liao 25:5

Notation: Given two strings x, y, we use x‖y to denote the concatenation of x and y. For
every n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. We denote a collection of objects Aji
with subscript i ∈ S and superscript j ∈ T by [A]TS for short.

Given a (n,w)-ROBP B with layers V0, . . . , Vn, we can represent the transition from layer
Vt−1 to Vt by two stochastic matrices M0

t and M1
t as follows: suppose layer Vj consists of

the nodes {vj,1, . . . , vj,w}. The entry (M0
t)i,j = 1 if and only if there exist a 0-labeled edge

from vt−1,i to vt,j (else (M0
t)i,j = 0). The matrix M1

t is defined similarly according to the
edges that labeled 1 between layers Vt−1 and Vt. More generally, we can also represents
multi-step transition by a stochastic matrix. That is, for every 0 ≤ a ≤ b ≤ n, and every
r = (ra+1, . . . , rb) ∈ {0, 1}b−a, we can define

Mr
a..b =

b∏
t=a+1

Mrt
t

which corresponds to the transition matrix from layer a to layer b following the path labeled
by r. Note that every row of Mr

a,b contains exactly one 1, and the other entries are 0.
An n-step random walk starting from the first layer can be represented with the following

matrix:

M0..n = 1
2n

∑
r∈{0,1}n

Mr
0..n =

n∏
t=1

1
2
(
M0
t +M1

t

)
.

By definition of M0
t ,M

1
t one can observe that the (i, j) entry of M0..n is the probability that

a random walk from v0,i ∈ V0 reaches vn,j ∈ Vn. Therefore, suppose v0,i ∈ V0 is the starting
state of B, vn,j ∈ Vn is the accepting state of B, then Ex [B(x)] equals the (i, j) entry of
M0..n.

Recall that a generator of a (n,w, ε)-PRPD is a pair of function (G, ρ) such that for every
(n,w)-ROBP B,∣∣∣∣Er [ρ(r) ·B(G(r))]− E

x∈{0,1}n
[B(x)]

∣∣∣∣ ≤ ε.
Equivalently, for every transition matrices M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n, we have∥∥∥E

r

[
ρ(r) ·MG(r)

0..n

]
−M0..n

∥∥∥
max
≤ ε,

where ‖A‖max denotes maxi,j |A(i, j)|.
Therefore it is natural to represents a PRPD (G, ρ) with a mapping G : {0, 1}s → Rw×w

where G(r) = ρ(r) ·MG(r)
0..n . More generally, we will use a notation similar to the “matrix

bundle sequence” (MBS) introduced in [4] to represent a PRPD.

I Definition 5. Consider a (n,w)-ROBP [M]{0,1}[n] and a pair of functions (G, ρ) : {0, 1}sout×
[Sin] → {0, 1}n × R. The matrix form of (G, ρ) on [M]{0,1}[n] is a mapping A : {0, 1}sout ×
[Sin]→ Rw×w such that for every x ∈ {0, 1}sout and y ∈ [Sin],

A(x, y) = ρ(x, y) ·MG(x,y)
0..n .

For every x ∈ {0, 1}sout we abuse the notation and define

A(x) = E
y

[A(x, y)] .

Besides, we define 〈A〉 = Ex,y [A(x, y)]. We say sout is the outer seed length of A, denoted by
sout(A), and Sin is the inner size of A, denoted by Sin(A). We also define sin(A) = dlogSine
to be the inner seed length of A, and s(A) = sout(A) + sin(A) to be the seed length of A.

CCC 2020

25:6 Optimal Error Pseudodistributions for Read-Once Branching Programs

I Remark 6. For every fixed x, the collection {A(x, y) : y ∈ [Sin]} corresponds to the “matrix
bundle” in [4]. This should be treated as a collection of matrices which “realizes” the matrix
A(x). The whole structure A corresponds to the “matrix bundle sequence” in [4], and should
be treated as a uniform distribution over the set {A(x) : x ∈ {0, 1}sout}.

When the ROBP [M]{0,1}[n] is clear in the context, we will use the matrix formA to represent
the pseudodistribution (G, ρ) directly. We will apply arithmetic operations on matrices A(x),
and these operations can be easily translated back to operations on pseudodistributions as
follows.

I Definition 7. Consider a (n,w)-ROBP [M]{0,1}[n] , and a pair of function (F, σ) : [S] →

{0, 1}n × R. The matrix that is realized by (F, σ) on M0..n is Ei∈[S]

[
σ(i) ·MF (i)

0..n

]
. We say

S is the size of (F, σ).

Scaling the matrix corresponds to scaling the coefficients in the pseudodistribution.

B Claim 8. Consider a (n,w)-ROBP [M]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) on M0..n. Then cA is realized by a matrix bundle (F ′A, σ′A) of size SA s.t. F ′A = FA
and σ′A(x) = cσA(x) for every x ∈ [S].

The summation on matrices corresponds to re-weighting and union on pseudodistributions.

B Claim 9. Consider a (n,w)-ROBP [M]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) of size SA on M0..n and B be a matrix realized by matrix bundle (FB , σB) of size
SB on M0..n. Then A+B is realized by a matrix bundle (F ′, σ′) of size SA + SB on M0..n
s.t.

F ′(x) =
{
FA(x) if x ≤ SA
FB(x− SA) if x > SA

and σ′(x) =
{
SA+SB

SB
· σA(x) if x ≤ SA

SA+SB

SB
· σB(x− SA) if x > SA

The multiplication on matrices corresponds to concatenation of pseudodistributions.

B Claim 10. Consider a (n,w)-ROBP [M]{0,1}[n] , let A be a matrix realized by matrix bundle
(FA, σA) of size SA on M0..n/2 and B be a matrix realized by matrix bundle (FB , σB) of size
SB on Mn/2..n. Fix a bijection π : [SA]× [SB]→ [SA · SB]. Then AB is realized by a matrix
bundle (F ′, σ′) of size SA · SB s.t. for every a ∈ [SA], b ∈ [SB],

F ′(π(a, b)) = FA(a)‖FB(b) and σ′(π(a, b)) = σ(a) · σ(b).

3 Proof Overview

In this section we give an outline of our construction and proof. In Section 3.1, we briefly
recap how a sampler is used in [4] to achieve better seed length in the small-error regime.
We discuss our construction ideas in Section 3.2.

3.1 The sampler argument
Nisan’s generator and its variants recursively use a lemma of the following form.

I Lemma 11. Consider a (n,w)-ROBP [M]{0,1}[n] . Let A be the matrix form of a distribution
on M0..n/2, and B be the matrix form of a distribution on Mn/2..n. Suppose s(A) = s(B) = s.
Then there exists a distribution whose matrix form C on M0..n of seed length s+O(log(w/δ))
such that

‖〈C〉 − 〈A〉 〈B〉‖max ≤ δ.

E. Chattopadhyay and J.-J. Liao 25:7

This lemma is usually achieved with a pseudorandom object. For example, the INW
generator [15] uses a bipartite expander with degree poly(w/δ) to construct the distribution
C in the above lemma. That is, for every edge (x, y) in the expander G, they add A(x)B(y)
into C. A similar lemma can also be obtained with universal hash functions [23] or seeded
extractors [26]. By recursively constructing good approximations of M0..n/2 and Mn/2..n and
applying Lemma 11, one can obtain a PRG which has seed length O(logn · log(nw/ε)) (δ is
taken to be ε/n because of a union bound). Observe that in such constructions, one needs
to pay O(log(1/ε)) (in seed length) per level of recursion.

The crucial idea in [4] is to amortize this cost over all logn levels. What makes this
possible is the following argument, which we will refer to as the sampler argument. First we
define the notion of an averaging sampler.

I Definition 12. A function g : {0, 1}n × {0, 1}d → {0, 1}m is an (ε, δ)-(averaging) sampler
if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

The crucial observation in [4] is that if one uses a sampler to prove Lemma 11, the error
actually scales with the norm of one of the matrix forms.

I Lemma 13 ([4]). Consider a (n,w)-ROBP with matrix representation [M]{0,1}[n] . Let A
and B be (pseudo)distributions in matrix form on M0..n/2 and Mn/2..n respectively. Let
n = sout(A), m = sout(B). Suppose ∀x ∈ {0, 1}n, ‖A(x)‖ ≤ 1 and ∀y ∈ {0, 1}m, ‖B(y)‖ ≤ 1.
Let g : {0, 1}n×{0, 1}d → {0, 1}m be a (ε, δ) sampler. Then there exists a (pseudo)distribution
C such that

‖〈C〉 − 〈A〉 〈B〉‖ ≤ O
(
w2
(
δ + εE

x
[‖A(x)‖]

))
.

Besides, C has outer seed length n = sout(A), and for every x ∈ {0, 1}n,

C(x) = E
s

[A(x)B (g(x, s))] .

Note that sin(C) = sin(A) + sin(B) + d.

The intuition behind this approximation is as follows. If we want to compute the matrix
product precisely, we take every A(x) and multiply it with Ey [B(y)]. However, with the help
of sampler, we can use x as our seed to select some samples from B, and take their average
as an estimate of Ey [B(y)]. The error of this approximation comes in two different way. For
those x which are not good choices of a seed for the sampler, the samples chosen with such
an x can deviate from the average arbitrarily. However, only δ fraction of x can be bad, so
they incur at most δ error. The second kind of error is the estimation error between average
of samples Es [B(g(x, s))] and the real average Ey [B(y)], which can be at most ε. Since this
gets multiplied with A(x), this kind of error actually scales with ‖A(x)‖. Although the first
kind of error (which is δ) does not benefit from ‖A‖ being small, in [4] they observe that,
the parameter δ has almost no influence on the seed length in some cases. To discuss this
more precisely, we first recall explicit constructions of samplers.

I Lemma 14 ([27, 10]). For every δ, ε > 0 and integer m, there exists a space efficient
(ε, δ)-sampler f : {0, 1}n × {0, 1}d → {0, 1}m s.t. d = O(log log(1/δ) + log(1/ε)) and
n = m+O(log(1/δ)) +O(log(1/ε)).

Note that in Lemma 13, s(C) = s(A) + d + sin(B). Therefore if n ≥ m + O(log(1/δ)) +
O(log(1/ε)), δ has almost no impact on the seed length.

CCC 2020

25:8 Optimal Error Pseudodistributions for Read-Once Branching Programs

To use the above ideas, it boils down to working with matrices with small norm, and
making sure that every multiplication is “unbalanced” enough so that δ has no impact. [4]
applies a delicate telescoping sum trick (which they called “delta sampler”) to divide an
ε-approximation into a base approximation with 1/poly(n) error and several “correcting
terms” which have small norm. By carefully choosing the samplers and discarding all the
non-necessary terms, they roughly ensure the following properties: first, a matrix with large
seed length must have small norm; second, every matrix multiplication is unbalanced enough
so that δ has no impact on the seed length.

With these properties and the sampler argument, they show that the total seed length is
bounded by Õ(log(1/ε) + logn log(nw)).

3.2 Our construction
In executing the ideas sketched above, the construction and analysis in [4] turns out to be
quite complicated and involved. One thing which complicates the construction and analysis
is its bottom-up nature. That is, when multiplying two terms, they create more terms with
the telescoping sum trick. Moreover, in the telescoping sum trick one needs to choose the
parameters of each sampler very carefully to make sure the seed length of each term does
not exceed its “smallness”.

Our first step toward a simpler construction is the following top-down formula, which we
will apply recursively to compute an approximation of M0..n:

I Lemma 15. Let ‖·‖ be a sub-multiplicative matrix norm, and A,B be two matrices s.t.
‖A‖ , ‖B‖ ≤ 1. Let k ∈ N and γ < 1. For every 0 ≤ i ≤ k, let Ai be a γi+1-approximation
of A, and let Bi be a γi+1-approximation of B. Then

k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i

is a ((k + 2)γk+1 + (k + 1)γk+2)-approximation of AB.

Proof. We have,∥∥∥∥∥(
k∑
i=0

AiBk−i −
k−1∑
i=0

AiBk−1−i)−AB

∥∥∥∥∥
=

∥∥∥∥∥
k∑
i=0

(A−Ai)(B −Bk−i)−
k−1∑
i=0

(A−Ai)(B −Bk−1−i) + (Ak −A)B +A(Bk −B)

∥∥∥∥∥
≤

k∑
i=0
‖A−Ai‖ · ‖B −Bk−i‖ +

k−1∑
i=0
‖A−Ai‖ · ‖B −Bk−1−i‖

+ ‖Ak −A‖ · ‖B‖ + ‖A‖ · ‖Bk −B‖
≤ (k + 2)γk+1 + (k + 1)γk+2 J

This formula shares an important property with the BCG construction: we never need a
γk-approximation (which implies large seed length) on both sides simultaneously. The benefit
of our top-down formula is that we are treating the PRPD as one object instead of the sum
of many different terms. One obvious effect of such treatment is we don’t need to analyze
the “smallness” of each term and the accuracy of the whole PRPD separately.

E. Chattopadhyay and J.-J. Liao 25:9

In this top-down formula, we do not explicitly maintain small-norm matrices as in [4].
However, observe that in the proof of Lemma 15, we are using the fact that Ak−A is a small
norm matrix. Our goal is to apply the sampler argument (Lemma 13) on these “implicit”
small-norm matrices. The following is our main technical lemma.

I Lemma 16 (main lemma, informal). Let A,B ∈ Rw×w, k ∈ N and γ < 1. Suppose
for every i ≤ k there exists pseudodistribution Ai,Bi such that Ex [‖Ai(x)−A‖] ≤ γi+1,
Ex [‖Bi(x)−B‖] ≤ γi+1, and ‖Ai(x)‖ , ‖Bi(x)‖ ≤ 1 for every x. Then there exists a pseudo-
distribution Ck such that

E
x

[
‖Ck(x)−AB‖ ≤ O(γ)k+1] ,

where Ck(x) =
∑
i+j=k Ax,iBx,j −

∑
i+j=k−1Ax,iBx,j. Ax,i and Bx,i are defined as follows.

If i > dk/2e, Ax,i = Ai(x) and Bx,i = Bi(x).
If i ≤ dk/2e, Ax,i = Es

[
Ai(gi(x, s))

]
and Bx,i = Es

[
Bi(gi(x, s))

]
, where gi is a

(γi+1, γk+1)-sampler, and Ai,Bi denote the “flattened” form of Ai and Bi.

We leave the explanation of “flattened” for later and explain the intuition behind the
lemma first. Our goal is to construct Ck such that Ck(x) is a good approximation of AB on
average over x. We know that Ai and Bi are γi+1-approximation of A and B on average.
Our hope is to use x to draw samples Ai and Bi from Ai and Bi, and apply the formula
in Lemma 15 to get a good approximation of AB. In particular, a natural choice would
be setting Ax,i = Ai(x) and Bx,i = Bi(x) for every i ≤ k. However, if there exists a term
Ax,iBx,j such that Ax,i and Bx,j are both bad approximation for a large enough fraction of
x, we cannot guarantee to get a O(γk+1)-approximation on average.

To avoid the above case, for every i ≤ dk/2e we use a sampler to approximate 〈Ai〉 and
〈Bi〉. This ensure that the chosen samples Ax,i and Bx,i are good with high probability. This
guarantees that in each term Ax,iBx,j , at least one of Ax,i or Bx,j will be a good choice
with high probability over x. If Ax,i is a good choice with high probability, we can apply
the average-case guarantee on Bx,i to get an average-case guarantee for Ck, and vice versa.
(Indeed, this is the sampler argument.) Therefore we can ensure that Ck(x) is good on
average. Note that we only apply a sampler on Ai (or Bi) when i ≤ dk/2e, which means Ai
(or Bi) has small seed length. Therefore we don’t need to add too much redundant seed to
make the sampler argument work.

In executing the above sketched idea, we run into the following problem: in each
multiplication, the inner seed on both sides aggregates to the upper level. If we start with
pseudodistributions with non-zero inner seed in the bottom level, the inner seed would
become Ω(n) in the topmost level. Therefore we need a way to limit the aggregation of
inner seed.

In [4], they run into a similar problem. To deal with this, they apply a different
multiplication rule, “outer product”, in some special cases to deal with this. However, the
outer product does not seem applicable in our construction. Nevertheless, we observe that
whenever we use a sampler to select matrix Ax,i, we only care about whether 〈Ai〉 is close to
A, and we don’t need most of Ai(x) to be close to A anymore. Therefore we will “flatten”
Ai whenever we apply a sampler. That is, recall that each Ai(x) is realized by the average of
some matrices, Ey [Ai(x, y)]. We define the flattened form of Ai, denoted by Ai, such that
Ai(x‖y) = Ai(x, y). Observe that

〈
Ai
〉

= 〈Ai〉 and sin(Ai) = 0. This guarantees that the
inner seed length of Ai will not aggregate in Ck. Moreover, while the flattening will increase
the outer seed length of Ai, this is almost for free since we only flatten Ai when i ≤ dk/2e,
i.e. when Ai has relatively small seed length. As a result, this operation also helps us save a
O(log log(1/ε)) factor in the seed length.

CCC 2020

25:10 Optimal Error Pseudodistributions for Read-Once Branching Programs

We conclude by briefly discussing the seed length analysis. First note that we set
γ = 1/poly(n) to make sure that the error is affordable after a union bound. Now consider
the inner seed length. Consider a term AiBj such that i ≥ j. In this term, part of the inner
seed of C is passed to Ai, and the other is used for the sampler on Bj . Since the seed length
of the sampler only needs to be as large as the “precision gap” between Ai and Ck, the inner
seed length of Ck can be maintained at roughly O(k log(1/γ)) = O(log(1/ε)). However, after
each multiplication, there’s actually a O(log(nw/γ)) = O(log(nw)) additive overhead. Note
that this is necessary since the k = 0 case degenerates to the INW generator. Therefore after
logn levels of recursion, the inner seed length will be O(log(1/ε) + logn · log(nw)).

Besides, we also need the outer seed length of Ck to be long enough so that we can apply
a sampler on Adk/2e and Bdk/2e. The seed length caused by approximation accuracy ε can be
bounded similarly as the inner seed length. However, the O(logn · log(nw)) inner seed length
will be added to the outer seed length several times, because of the flattening operation.
Nevertheless, since we only do flattening for Ai and Bi where i ≤ dk/2e, this ensures that
the flattening operation happens at most log k times. So the total outer seed length will be
bounded by O(log(1/ε) + log k · logn · log(nw)) = O(log(1/ε) + log log(1/ε) · logn · log(nw)),
which is bounded by O(log(1/ε) + log log(nw) · logn · log(nw)) since O(log(1/ε)) is the
dominating term when log(1/ε) ≥ log3(nw).

4 Preliminaries

4.1 Averaging samplers
I Definition 17. A function g : {0, 1}n × {0, 1}d → {0, 1}m is a (ε, δ) (averaging) sampler
if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

It’s easy to show that samplers also work for f with general range by scaling and shifting.

B Claim 18. Let g : {0, 1}n×{0, 1}d → {0, 1}m be a (ε, δ)-sampler, and let ` < r ∈ R. Then
for every f : {0, 1}m → [`, r],

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f(g(x, s))]− E
y∈{0,1}m

[f(y)]
∣∣∣∣ ≤ ε(r − `)] ≥ 1− δ.

Proof. Let f ′ be the function such that f ′(y) = (f(y)− `)/(r − `). Observe that the range
of f ′ is in [0, 1]. By definition of sampler,

Pr
x∈{0,1}n

[∣∣∣∣ E
s∈{0,1}d

[f ′(g(x, s))]− E
y∈{0,1}m

[f ′(y)]
∣∣∣∣ ≤ ε] ≥ 1− δ.

By multiplying (r − `) on both sides of the inequality inside the probability above we prove
the claim. C

In our construction, we will use the following sampler which is explicitly computable with
small space.

I Lemma 19 ([27, 10]). For every δ, ε > 0 and integer m, there exists a (ε, δ)-sampler
f : {0, 1}n×{0, 1}d → {0, 1}m s.t. d = O(log log(1/δ)+ log(1/ε)) and n = m+O(log(1/δ))+
O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed in space O(m+ log(1/δ) +
log(1/ε)).

E. Chattopadhyay and J.-J. Liao 25:11

I Remark 20. The original sampler in [27] has a restriction on ε. Such a restriction will
cause a 2O(log∗(nw/ε)) factor in our construction, as in [4]. However, [27] pointed out that
the restriction is inherited from the extractor in [33], which breaks down when the error is
extremely small. As observed in [10], this restriction can be removed by plugging in a more
recent extractor construction in [12]. Note that there exists a space-efficient implementation
of [12] in [19], so the resulting sampler is also space-efficient. For completeness we include a
proof in Appendix B.

4.2 Matrix norms
As in [4], we will use the infinity norm in this paper.

I Definition 21. For every matrix A ∈ Rw×w, ‖A‖ = maxi
∑
j |Ai,j |.

We record some well known properties of the infinity norm.

B Claim 22. Let A,B ∈ Rw×w, c ∈ R. Then
‖cA‖ = |c| ‖A‖
‖A‖ + ‖B‖ ≤ ‖A+B‖
‖AB‖ ≤ ‖A‖ ‖B‖
maxi,j |Ai,j | ≤ ‖A‖
If A is stochastic, then ‖A‖ = 1

Note that for any (n,w)-ROBP represented by w×w matrices M{0,1}[n] , ‖Mi..j‖ = 1 for every
0 ≤ i ≤ j ≤ n.

5 Approximate Matrix Multiplication via Samplers

In this section we formally prove the sampler arguments which will be used in our construction.
Our proof strategy resembles that of [4], with the following two crucial differences. First,
we will define two different notions of “smallness” for our flattening idea. Second, in our
construction we need the case where we use samplers to select matrices on both sides
(Lemma 27).

We will consider mappings A : {0, 1}n → Rw×w which correspond to the implicit small
norm matrices we discussed in the previous section. Borrowing notation from Definition 5,
we use 〈A〉 to denote Ex [A(x)]. First we define two different norms for the mapping A. The
robust norm is similar to the notion of “smallness” in [4], i.e. the average of norm of A(x),
while the norm of A is simply the norm of 〈A〉, i.e. the norm of average of A(x).

I Definition 23. For every function A : {0, 1}n → Rw×w, we define the norm of A to
be ‖A‖ =

∥∥Ex∈{0,1}n [A(x)]
∥∥, and the robust norm of A to be ‖A‖r = Ex∈{0,1}n [‖A(x)‖].

Besides, we define the weight of A to be µ(A) = maxx ‖A(x)‖.

B Claim 24. ‖A‖ ≤ ‖A‖r ≤ µ(A).

Proof. ‖A‖ ≤ ‖A‖r is by sub-additivity of ‖·‖, and ‖A‖r ≤ µ(A) since ‖A‖r is the average
of values no larger than µ(A). C

Next we show a simple lemma which will be used later. That is, a sampler for functions with
range [0, 1] is also a sampler for matrix-valued functions, where the error is measured with
infinity norm.

CCC 2020

25:12 Optimal Error Pseudodistributions for Read-Once Branching Programs

I Lemma 25. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g : {0, 1}n×
{0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]− 〈A〉
∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

Proof. Let E(y) = A(y)− 〈A〉. For every i, j ∈ [w], observe that

max
y
E(y)i,j −min

y
E(y)i,j = max

y
A(y)i,j −min

y
A(y)i,j

By the property of sampler it follows that

Pr
x∈{0,1}n

[∣∣∣E
s

[E(g(x, s))i,j]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− δ.

Using a union bound,

Pr
x∈{0,1}n

[
∀i, j ∈ [w],

∣∣∣E
s

[E(g(x, s))i,j]
∣∣∣ ≤ 2εµ(A)

]
≥ 1− w2δ.

Thus by definition of the infinity norm, we can conclude that

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[E(g(x, s))]
∥∥∥∥ ≤ 2wµ(A)ε

]
≥ 1− w2δ.

which by sub-additivity of ‖·‖ implies

Pr
x∈{0,1}n

[∥∥∥E
s

[A(g(x, s))]
∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ. J

I Corollary 26. For every function A : {0, 1}m → Rw×w and every (ε, δ)-sampler g :
{0, 1}n × {0, 1}d → {0, 1}m,

Pr
x∈{0,1}n

[∥∥∥∥ E
s∈{0,1}d

[A(g(x, s))]
∥∥∥∥ ≤ ‖A‖ + 2wµ(A)ε

]
≥ 1− w2δ.

Proof. By sub-additivity of ‖·‖,
∥∥Es∈{0,1}d [A(g(x, s))]− 〈A〉

∥∥ ≤ 2wµ(A)ε implies∥∥Es∈{0,1}d [A(g(x, s))]
∥∥ ≤ ‖〈A〉‖ + 2wµ(A)ε. The claim now directly follows from

Lemma 25. J

Now we introduce three different matrix multiplication rules. The first one is applying a
sampler on both sides, and the second and third are applying sampler on only one side.

I Lemma 27 (symmetric product). Consider A : {0, 1}n → Rw×w and B : {0, 1}m → Rw×w.
Let f : {0, 1}k×{0, 1}dA → {0, 1}n be a (δ, εA) sampler, and g : {0, 1}k×{0, 1}dB → {0, 1}m
be a (δ, εB) sampler. Then

E
z

[∥∥∥∥ Ex,y [A(f(z, x))B(g(z, y))]
∥∥∥∥] ≤ 2w2δµ(A)µ(B)+(‖A‖ + 2wµ(A)εA) (‖B‖ + 2wµ(B)εB) .

Proof. Let

EA =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
,

and

EB =
{
z :
∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB
}
.

E. Chattopadhyay and J.-J. Liao 25:13

Define E = EA ∪ EB . By Lemma 26 and union bound, Prz [z ∈ E] < 2w2δ. Therefore

E
z

[∥∥∥∥ E
x,y

[A(f(z, x))B(g(z, y))]
∥∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥∥ E
x,y

[A(f(z, x))B(g(z, y))]
∥∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥∥Ex [A(f(z, x))]E
y

[B(g(z, y))]
∥∥∥∥]

≤ 2w2δµ(A)µ(B) + E
z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ∥∥∥∥Ey [B(g(z, y))]

∥∥∥∥]
≤ 2w2δµ(A)µ(B) +

(
‖A‖ + 2wµ(A)εA

) (
‖B‖ + 2wµ(B)εB

)
.

The second last inequality is by the fact that ‖·‖ is non-negative and sub-multiplicative. J

I Lemma 28 (left product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
g : {0, 1}k × {0, 1}dB → {0, 1}m be a (δ, εB) sampler. Then

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥] ≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

Proof. Let

E =
{
z :
∥∥∥∥Ey [B(g(z, y)]

∥∥∥∥ > ‖B‖ + 2wµ(B)εB
}
.

By Lemma 26, Prz [z ∈ E] < w2δ. Therefore

E
z

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥∥Ey [A(z)B(g(z, y))]
∥∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E
z 6∈E

[
‖A(z)‖

∥∥∥∥Ey [B(g(z, y))]
∥∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] E
z 6∈E

[‖A(z)‖] · (‖B‖ + 2wµ(B)εB)

≤ w2δµ(A)µ(B) + ‖A‖r (‖B‖ + 2wµ(B)εB) .

The third last inequality is by sub-multiplicativity of ‖·‖, the second last inequality is by
non-negativity of ‖·‖, and the last inequality is by the fact that

Pr [z 6∈ E] · E
z 6∈E

[‖A(z)‖] = E
z

[‖A(z)‖ · 1(z 6∈ E)] ≤ ‖A‖r . J

I Lemma 29 (right product). Consider A : {0, 1}k → Rw×w and B : {0, 1}m → Rw×w. Let
f : {0, 1}k × {0, 1}dA → {0, 1}n be a (δ, εA) sampler. Then

E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] ≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) ‖B‖r .

Proof. Let

E =
{
z :
∥∥∥E
x

[A(f(z, x)]
∥∥∥ > ‖A‖ + 2wµ(A)εA

}
.

By Lemma 26, Prz [z ∈ E] < w2δ. Therefore

CCC 2020

25:14 Optimal Error Pseudodistributions for Read-Once Branching Programs

E
z

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥] = Pr [z ∈ E] E

z∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

+ Pr [z 6∈ E] E
z 6∈E

[∥∥∥E
x

[A(f(z, x))B(z)]
∥∥∥]

≤ w2δµ(A)µ(B) + Pr [z 6∈ E] · E
z 6∈E

[∥∥∥E
x

[A(f(z, x))]
∥∥∥ ‖B(z)‖

]
≤ w2δµ(A)µ(B) + (‖A‖ + 2wµ(A)εA) · Pr [z 6∈ E] E

z 6∈E

[
‖B(z)‖

]
≤ w2δµ(A)µ(B) +

(
‖A‖ + 2wµ(A)εA

)
‖B‖r . J

6 Main Construction

In this section we show our main construction and prove its correctness. We first introduce
several definitions.

I Definition 30. For every mapping A : {0, 1}n → Rw×w and every matrix A ∈ Rw×w, we
define A−A to be the mapping s.t. (A−A)(x) = A(x)−A.

I Definition 31. Consider A ∈ Rw×w and A : {0, 1}n → Rw×w. A is a ε-approximator
of A if ‖Ex [A(x)]−A‖ ≤ ε, i.e. ‖A −A‖ ≤ ε. A is a ε-robust approximator of A if
Ex [‖A(x)−A‖] ≤ ε, i.e. ‖A −A‖r ≤ ε.

Now we define a robust PRPD. Note that a (n,w, ε)-robust PRPD (G, ρ) is also a µ(G, ρ)-
bounded (n,w, ε)-PRPD.

I Definition 32. (G, ρ) : {0, 1}sout ×{0, 1}sin × [µ]→ {0, 1}n×R is a (n,w, ε)-robust PRPD
if for every (n,w)-ROBP and its matrix representation [M]{0,1}[n] the following holds. Let
A : {0, 1}sout × {0, 1}sin → Rw×w denote the mapping

A(x, y) = E
i∈[µ]

[
ρ(x, y, i) ·MG(x,y,i)

0..n

]
.

Every ρ(x, y, i) is either µ or −µ. In other word, A(x, y) is the summation of transition
matrices with coefficient ±1.
Let Â denote the mapping Â(x) = Ey [A(x, y)]. Then Â is a ε-robust approximator for
M0..n.

We say µ is the weight of (G, ρ), denoted by µ(G, ρ). sout is the outer seed length of (G, ρ),
denoted by sout(G, ρ). sin is the inner seed length of (G, ρ), denoted by sin(G, ρ). We write
s(G, ρ) = sout(G, ρ) + sin(G, ρ) for short. We say (G, ρ) is explicit if it can be computed in
O(s(G, ρ)) space.

We say A is the matrix form of (G, ρ) on M0..n, and the definition of sout, sin, µ on (G, ρ)
also apply to A. We say Â is the robust matrix form of (G, ρ) on M0..n.

I Remark 33. The above definition is similar to Definition 5, but each matrix A(x, y) is
realized with µ matrices instead of one matrix. These µ matrices will never be separated even
after flattening. We do this in order to ensure that the matrix form always take bit-strings
as input. This ensures that we can increase the outer and inner seed length of A arbitrarily:
we can construct the new mapping A′ : {0, 1}s′out × {0, 1}s′in such that A′(x, y) = A(xp, yp)
where xp is the length-sout(A) prefix of x and yp is the length-sin(A) prefix of y. In other
word, A′ computes the output only with prefix of necessary length of the input, and ignore
the remaining bits. It is easy to verify that A′ is also the matrix form of a (n,w, ε)-robust
PRPD.

E. Chattopadhyay and J.-J. Liao 25:15

The following is some additional basic properties about robust PRPD and its flattened form.

B Claim 34. Let (G, ρ) : {0, 1}sout ×{0, 1}sin × [µ]→ {0, 1}n×R be a (n,w, ε)-robust PRPD.
For every (n,w)-ROBP M0

1 ,M
1
1 , . . . ,M

0
n,M

1
n the following holds.

Let Â be the robust matrix form of (G, ρ) on M0..n. Then µ(Â) ≤ µ(G, ρ).
Let A denote the matrix form of (G, ρ) on M0..n. Let A : {0, 1}sout+sin → Rw×w denote
the mapping A(x‖y) = A(x, y). We say A is the flattened matrix form of (G, ρ) on M0..n.
Then A is an ε-approximator for M0..n, and µ(A) ≤ µ(G, ρ).

Proof. Recall that for every string r ∈ {0, 1}n, ‖Mr
0..n‖ = 1. By sub-additivity of ‖·‖ we

have ‖A(x, y)‖ ≤ µ(G, ρ) for every x, y, which implies µ(A) ≤ µ(G, ρ). By sub-additivity
and scalability of ‖·‖, we have µ(A′) ≤ µ(A). To show that A is a ε-approimxator of M0..n,
observe that A′ is also an ε-approximator of M0..n by Claim 24, and note that 〈A〉 = 〈A′〉.

C
Now we prove our main lemma. The following lemma allows us to construct robust PRPDs
for (2m,w) ROBPs from robust PRPDs for (m,w) ROBPs, without increasing the seed
length too much. We will recursively apply this lemma for logn levels to get a (n,w, ε)-robust
PRPD. The basic idea is as described in Lemma 16.

I Lemma 35. Suppose there exists sout, sin such that the following conditions hold.
For every 0 ≤ i ≤ k, there exists a (m,w, γi+1)-robust PRPD (Gi, ρi) s.t. µ(Gi, ρi) ≤(
m−1
i

)
and sout(G, ρ) ≤ sout. Moreover, for every 0 ≤ i ≤ dk/2e, s(Gi, ρi) ≤ sout.

For every i ≤ dk/2e, there exists a (εi, δ)-sampler gi : {0, 1}sout ×{0, 1}di → {0, 1}s(Gi,ρi),
where εi ≤ γi+1/(w ·

(
m−1
i

)
) and δ ≤ γk+1/(w2 ·

(2m−1
i

)
).

For every i ≥ j ≥ 0 s.t. i+ j ≤ k, if j ≤ i ≤ dk/2e, then di + dj ≤ sin. If i > dk/2e, then
sin(Gi, ρi) + dj ≤ sin.

Then there exists a (2m,w, (11γ)k+1)-robust PRPD (G, ρ) s.t. sout(G, ρ) = sout, sin(G, ρ) =
sin and µ(G, ρ) ≤

(2m−1
k

)
.

Proof. Fix any (2m,w)-ROBP with matrix representation M
{0,1}
[2m] . Let A = M0..m and

B = Mm..2m. For every 0 ≤ i ≤ k, let Ai, Âi,Ai denote the matrix form, robust matrix form
and flattened matrix form of (G, ρ) on M0..m respectively. Let Bi, B̂i,Bi denote the matrix
form, robust matrix form and flattened matrix form of (G, ρ) on Mm..2m respectively. By
definition, Âi and B̂i are γi+1-robust approximator for A and B respectively. By Claim 34,
Ai and Bi are γi+1-approximator for A and B respectively. Moreover, we will increase the
outer seed length of Ai and Bi to match the length of the given input when necessary. (See
Remark 33)

Now for every x, y we define a mapping Ck : {0, 1}sout × {0, 1}sin → Rw×w as follows.
Note that Ck corresponds to the matrix form of (G, ρ) on M0..2m.
(1) For every 0 ≤ i ≤ dk/2e, let ai be the prefix of y of length di and bi be the suffix of y of

length di. Define Ax,y,i = Ai(gi(x, ai)) and Bx,y,i = Bi(gi(x, bi)).
(2) For every dk/2e < i ≤ k, let ai be the prefix of y of length sin(Ai) and bi be the suffix of

y of length sin(Bi). Define Ax,y,i = Ai(x, ai) and Bx,y,i = Bi(x, bi).
(3) Define Ck(x, y) =

∑
i+j=k Ax,y,iBx,y,j −

∑
i+j=k−1Ax,y,iBx,y,j .

Note that for every i+ j ≤ k, prefix ai and suffix bj of y never overlap.
By expanding every Ax,y,iBx,y,j term with distributive law, we can see that each small

term in Ax,y,iBx,y,j has coefficient ±1, which satisfies the first condition of robust PRPD.
Moreover, the total number of terms after expanding is

µ(Ck) ≤
∑
i+j=k

(
m− 1
i

)
·
(
m− 1
j

)
+

∑
i+j=k−1

(
m− 1
i

)
·
(
m− 1
j

)
=
(

2m− 1
k

)
.

CCC 2020

25:16 Optimal Error Pseudodistributions for Read-Once Branching Programs

It remains to show that Ck satisfies the second condition of robust PRPD, i.e. Ey [Ck(x, y)]
is a good approximation of M0..2m = AB on average over x. Observe that

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥] = E

x

[∥∥∥∥Ey [Ck(x, y)−AB]
∥∥∥∥]

≤
∑
i+j=k

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

+
∑

i+j=k−1
E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

+ E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]
∥∥∥∥]+ E

x

[∥∥∥∥Ey [A(Bx,y,k −B)]
∥∥∥∥] ,

by decomposing Ck(x, y)− AB with the equation in the proof of Lemma 15 and applying
sub-additivity of ‖·‖.

First we consider the last two terms. Since ‖B‖ = 1, by sub-multiplicativity we have

E
x

[∥∥∥∥Ey [(Ax,y,k −A)B]
∥∥∥∥] ≤ E

x

[∥∥∥∥Ey [Ax,y,k −A]
∥∥∥∥] .

Now consider two cases. If k ≥ 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A]
∥∥∥∥] = E

x

[∥∥∥Âk(x)−A
∥∥∥] ≤ γk+1

by definition. If k < 2, then

E
x

[∥∥∥∥Ey [Ax,y,k −A] ·B
∥∥∥∥] = E

x

[∥∥∥∥Eak

[
Ak(gk(x, ak))−A

]∥∥∥∥ ·B] .
Apply Lemma 29 on Ak − A and the dummy mapping B s.t. B(x) = B for every x,
we can derive that the above formula is bounded by w2δ

(
m−1
k

)
+ 3γi+1. For the term

Ex
[
‖Ey [A(Bx,y,k −B)]‖

]
we can get the same bound with a similar proof.

Now consider the terms in the form Ex
[
‖Ey [(Ax,y,i −A)(Bx,y,j −B)]‖

]
.

First consider the case i, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

= E
x

[∥∥∥∥Eai

[
Ai(gi(x, ai))−A

]
E
bj

[
Bk(gj(x, bj))−B

]∥∥∥∥] (since ai, bj don’t overlap)

≤ 2w2δ ·
(
m− 1
i

)
·
(
m− 1
j

)
+ 9γi+j+2. (by Lemma 27)

Next consider the case i > dk/2e, j ≤ dk/2e. Then

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥]

= E
x

[∥∥∥∥Âi(x) · E
bj

[
Bk(gj(x, bj))−B

]∥∥∥∥] (since ai, bj don’t overlap)

≤ w2δ ·
(
m− 1
i

)
·
(
m− 1
j

)
+ 3γi+j+2. (by Lemma 29)

E. Chattopadhyay and J.-J. Liao 25:17

Similarly for the case that i ≤ dk/2e, j > dk/2e we can show that

E
x

[∥∥∥∥Ey [(Ax,y,i −A)(Bx,y,j −B)]
∥∥∥∥] ≤ w2δ ·

(
m− 1
i

)
·
(
m− 1
j

)
+ 3γi+j+2

by Lemma 28. Finally, note that the case i, j > dk/2e does not exist because i+ j ≤ k.
Taking the summation of all the cases, we get

E
x

[∥∥∥∥Ey [Ck(x, y)]−AB
∥∥∥∥]

≤ 2w2δ ·

 ∑
i+j=k

(
m− 1
i

)(
m− 1
j

)
+

∑
i+j=k−1

(
m− 1
i

)(
m− 1
j

)
+
(
m− 1
k

)
+ (k + 1) · 9γk+2 + k · 9γk+1 + 2 · 3γk+1

≤ 4w2δ ·
(

2m− 1
k

)
+ (9k + 9)γk+2 + (9k + 6)γk+1

≤ (10k + 11)γk+1

≤ (11γ)k+1.

Moreover, note that AB = M0..2m, and the construction of Ck does not depend on the
matrices M{0,1}[2m] . (See Section 2 for how the arithmetic operations in Ck(x, y) are translated
back to operations on pseudo-distributions.) Therefore there exists a (2m,w, (11γ)k+1)-robust
PRPD (G, ρ). J

Finally we analyze the seed length of the recursive construction, and present the main
theorem.

I Theorem 36. There exists an explicit (n,w, ε)-robust PRPD (G, ρ) such that
sout(G, ρ) = O

(
log(1/ε) + logn log(nw) log

(
log(1/ε)

logn

))
sin(G, ρ) = O

(
log(1/ε) + logn log(nw) log

(
log(1/ε)

logn

))
µ(G, ρ) = poly(1/ε)

Moreover, for every B the approximator G has the same corresponding pseudodistribution.

Proof. Let c be the constant such that for every ε, δ > 0 there exists a (ε, δ)-sampler
g : {0, 1}n×{0, 1}d → {0, 1}m such that n = m+ c log(1/ε) + c log(1/δ) and d = c log(1/ε) +
c log log(1/δ), as guaranteed in Lemma 19. WLOG assume that n is a power of 2. Define
γ = 1/n4. For every 0 ≤ h ≤ logn, every k ≥ 0, we will inductively prove that there exists a
(2h, w, (11hγ)k+1)-robust PRPD (Gh,k, ρh,k) with the following parameters.

If k ≤ 1, sout(Gh,k, ρh,k) ≤ h · (3ck log(n/γ) + 7c log(w/γ))
If k > 1, sout(Gh,k, ρh,k) ≤ 4ck log(n/γ) + (dlog ke+ 1) · h · (10c log(w/γ))
If k ≤ 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + 4c log(w/γ)
If k > 1, sin(Gh,k, ρh,k) ≤ ck log(n/γ) + h · (4c log(kw/γ))
µ(Gh,k, ρh,k) ≤ max(1,

(2h−1
k

)
)

We will write sout,h,k = sout(Gh,k, ρh,k) and sin,h,k = sout(Gh,k, ρh,k) for short. First
consider the terminal case 2k ≥ 2h or h = 0. In this case we simply take sout,h,k = 0,
sin,h,k = 2h ≤ 2k and µ(Gh,k, ρh,k) = 1 s.t. Gh,k(x, y, i) = y and ρh,k(x, y, i) = 1. For the
other cases, we show that we can get the intended parameters by constructing (Gh,k, ρh,k)
with the recursion in Lemma 35. Note that based on the induction hypothesis we can
assume Ga,h−1,k and Ga+2h−1,h−1,k have exactly the same parameters, so we consider the

CCC 2020

25:18 Optimal Error Pseudodistributions for Read-Once Branching Programs

parameter of Ga,h−1,k only. We have seen that the bound for µ(Gh,k, ρh,k) is correct. First
we show that the bound for sin,h,k is correct. Recall that in the recursion we take parameters
di = c log(1/εi) + c log log(1/δ) ≤ ci log(n/γ) + 2c log(knw/γ), based on the fact that(2h−1

i

)
≤ ni. Now consider the restriction on sin(Gk) in our recursion. For i + j ≤ k and

j ≤ i ≤ dk/2e, we need

di + dj ≤ ck log(n/γ) + 4c log(knw/γ) ≤ sin,h,k

which is true. For i+ j ≤ k and i > dk/2e, we need

sin,h−1,i + dj ≤ ci log(1/γ) + (h− 1) · 4c log(inw/γ) + (cj log(1/γ) + 2c log(knw/γ))
≤ ck log(1/γ) + h · 4c log(knw/γ)
≤ sin,h,k

which is also true. Moreover, observe that when k ≤ 1 it is always the case that i, j ≤ dk/2e.
Therefore the third condition is also true. Finally we show that the bound for sout,h,k is also
correct. First observe that the restriction sout,h−1,i ≤ sout,h,k is trivially true. Then the only
condition left is that for every i ≤ dk/2e,

sout,h−1,i + sin,h−1,i + c log(1/δ) + c log(1/εi) ≤ sout,h,k.

Since sout,h−1,i ≤ sout,h−1,dk/2e and sin,h−1,i ≤ sin,h−1,dk/2e for every i, it suffices to show
that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e) ≤ sout,h,k.

First we consider k ≤ 1, which is the case that dk/2e = k. Then

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)
≤ sout(Ga,h−1,k) + 3ck log(n/γ) + 7c log(n/γ)
≤ h · (3ck log(n/γ) + 7c log(n/γ))
≤ sout,h,k.

Finally we consider the case k > 1. Observe that

sout,h−1,dk/2e + sin,h−1,dk/2e + c log(1/δ) + c log(1/εdk/2e)

≤ sout,h−1,dk/2e + sin,h−1,dk/2e + 3k + 1
2 · c log(n/γ) + 3c log(w/γ)

≤ sout,h−1,dk/2e + (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4c · k + 1
2 · log(n/γ) +

(
dlogdk2 ee+ 1

)
· (h− 1) · (10c log(nw/γ))

+ (2k + 1) · c log(n/γ) + (h− 1) · 4c log(w/γ) + 7c log(w/γ)

≤ 4ck log(n/γ) +
(
dlogdk2 ee+ 1

)
· (h− 1) · (10c log(nw/γ)) + h · 10c log(nw/γ)

≤ sout,h,k.

In the last inequality we use the fact that dlog ke = dlog(dk/2e)e+ 1 for every k > 1.
Finally, note that (11lognγ) = nlog2 11 · n−4 ≤ n−0.5. By taking h = logn and k =

log(1/ε)
log(1/n0.5) , we get a (n,w, ε)-robust PRPD. J

I Remark 37. To get the seed length we claimed in Theorem 4, observe that the log(1/ε) term
is dominating when log(1/ε) ≥ log3(nw). Therefore we can simply replace the log log(1/ε)
factor on the O(logn log(nw)) term with log log(nw).

E. Chattopadhyay and J.-J. Liao 25:19

7 Discussion and Open Questions

We discuss some natural questions that arise from our work.
In our construction, we applied the sampler argument in [4] without constructing small-
norm matrices explicitly. This is probably hinting that negative weight is not essentially
required for the sampler argument. Is it possible to apply the sampler argument to
construct a PRG (instead of PRPD) with improved dependency on error?
Is there an explicit PRPD which matches the seed length of the hitting set generator
in [13], i.e. O(log(w/ε)) when n = poly log(w)? A possible direction is to adapt our
construction to a t-ary recursion tree where t = log1−Ω(1)(n) instead of a binary tree, as
in [25, 1]. However, a direct adaption requires us to apply samplers on (t− 1)-children in
each recursion, and for every sampler we need to pay some randomness for “inner seed”
which cannot be recycled. In our construction we see that the inner seed of a sampler
contains a logw term. Therefore in each recursion we need to pay at least (t− 1) logw
which is too expensive. Is it possible to make the sampler argument work with a shorter
inner seed?
Is it possible to improve the seed length to Õ(log2 n+ log(w/ε)), even in some restricted
settings? We note that there are two things which cause the Ω(logn · logw) term in our
construction. The first one is the inner seed of sampler, which is related to the question
above. The second one is the restriction on the outer seed length, which is analogous to
“entropy loss” if we view the samplers as extractors. Note that [26] shows how to “recycle
entropy” in the INW generator in some restricted settings, but it is not clear how to
apply the extractor-type analysis of INW generator in our construction.

References
1 Roy Armoni. On the derandomization of space-bounded computations. In Michael Luby, José

D. P. Rolim, and Maria J. Serna, editors, Randomization and Approximation Techniques in
Computer Science, Second International Workshop, RANDOM’98, Barcelona, Spain, October
8-10, 1998, Proceedings, volume 1518 of Lecture Notes in Computer Science, pages 47–59.
Springer, 1998. doi:10.1007/3-540-49543-6_5.

2 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for
width-2 branching programs. Theory of Computing, 9:283–293, 2013. doi:10.4086/toc.2013.
v009a007.

3 Allan Borodin, Stephen A. Cook, and Nicholas Pippenger. Parallel computation for well-
endowed rings and space-bounded probabilistic machines. Information and Control, 58(1-
3):113–136, 1983. doi:10.1016/S0019-9958(83)80060-6.

4 Mark Braverman, Gil Cohen, and Sumegha Garg. Hitting sets with near-optimal error for
read-once branching programs. In Ilias Diakonikolas, David Kempe, and Monika Henzinger,
editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 353–362. ACM, 2018. doi:
10.1145/3188745.3188780.

5 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM J. Comput., 43(3):973–986, 2014. doi:10.1137/120875673.

6 Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching
programs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 30–39. IEEE Computer Society,
2010. doi:10.1109/FOCS.2010.10.

7 Kuan Cheng and William Hoza. Hitting sets give two-sided derandomization of small space.
Electronic Colloquium on Computational Complexity (ECCC), 2020. URL: https://eccc.
weizmann.ac.il/report/2020/016/.

CCC 2020

https://doi.org/10.1007/3-540-49543-6_5
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.1016/S0019-9958(83)80060-6
https://doi.org/10.1145/3188745.3188780
https://doi.org/10.1145/3188745.3188780
https://doi.org/10.1137/120875673
https://doi.org/10.1109/FOCS.2010.10
https://eccc.weizmann.ac.il/report/2020/016/
https://eccc.weizmann.ac.il/report/2020/016/

25:20 Optimal Error Pseudodistributions for Read-Once Branching Programs

8 Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM J. Comput., 17(2):230–261, 1988. doi:
10.1137/0217015.

9 Anindya De. Pseudorandomness for permutation and regular branching programs. In Pro-
ceedings of the 26th Annual IEEE Conference on Computational Complexity, CCC 2011,
San Jose, California, USA, June 8-10, 2011, pages 221–231. IEEE Computer Society, 2011.
doi:10.1109/CCC.2011.23.

10 Oded Goldreich. A sample of samplers: A computational perspective on sampling. In Oded
Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bellare,
Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam Nisan,
Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David Zuckerman,
volume 6650 of Lecture Notes in Computer Science, pages 302–332. Springer, 2011. doi:
10.1007/978-3-642-22670-0_24.

11 Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997. doi:
10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1.

12 Venkatesan Guruswami, Christopher Umans, and Salil P. Vadhan. Unbalanced expanders
and randomness extractors from parvaresh-vardy codes. J. ACM, 56(4):20:1–20:34, 2009.
doi:10.1145/1538902.1538904.

13 William Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL. In
Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 59–64. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00015.

14 William M. Hoza and Chris Umans. Targeted pseudorandom generators, simulation advice
generators, and derandomizing logspace. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 629–640. ACM,
2017. doi:10.1145/3055399.3055414.

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Frank Thomson Leighton and Michael T. Goodrich, editors, Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal,
Québec, Canada, pages 356–364. ACM, 1994. doi:10.1145/195058.195190.

16 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: De-
randomizing the XOR lemma. In Frank Thomson Leighton and Peter W. Shor, editors,
Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El
Paso, Texas, USA, May 4-6, 1997, pages 220–229. ACM, 1997. doi:10.1145/258533.258590.

17 H. Jung. Relationships between probabilistic and deterministic tape complexity. In Jozef Gruska
and Michal Chytil, editors, Mathematical Foundations of Computer Science 1981, Strbske
Pleso, Czechoslovakia, August 31 - September 4, 1981, Proceedings, volume 118 of Lecture Notes
in Computer Science, pages 339–346. Springer, 1981. doi:10.1007/3-540-10856-4_101.

18 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

19 Daniel M. Kane, Jelani Nelson, and David P. Woodruff. Revisiting norm estimation in data
streams. CoRR, abs/0811.3648, 2008. arXiv:0811.3648.

20 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002. doi:10.1137/S0097539700389652.

21 Michal Koucký, Prajakta Nimbhorkar, and Pavel Pudlák. Pseudorandom generators for group
products: extended abstract. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of
the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 263–272. ACM, 2011. doi:10.1145/1993636.1993672.

https://doi.org/10.1137/0217015
https://doi.org/10.1137/0217015
https://doi.org/10.1109/CCC.2011.23
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1007/978-3-642-22670-0_24
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<315::AID-RSA3>3.0.CO;2-1
https://doi.org/10.1145/1538902.1538904
https://doi.org/10.1109/FOCS.2018.00015
https://doi.org/10.1145/3055399.3055414
https://doi.org/10.1145/195058.195190
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/3-540-10856-4_101
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6
http://arxiv.org/abs/0811.3648
https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1145/1993636.1993672

E. Chattopadhyay and J.-J. Liao 25:21

22 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 626–637. ACM, 2019. doi:10.1145/3313276.3316319.

23 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992. doi:10.1007/BF01305237.

24 Noam Nisan. RL <= SC. Computational Complexity, 4:1–11, 1994. doi:10.1007/BF01205052.
25 Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,

52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.
26 Ran Raz and Omer Reingold. On recycling the randomness of states in space bounded

computation. In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton,
editors, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May
1-4, 1999, Atlanta, Georgia, USA, pages 159–168. ACM, 1999. doi:10.1145/301250.301294.

27 Omer Reingold, Salil P. Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. Electronic Colloquium on Com-
putational Complexity (ECCC), 8(18), 2001. URL: http://eccc.hpi-web.de/eccc-reports/
2001/TR01-018/index.html.

28 Michael Saks. Randomization and derandomization in space-bounded computation. In
Proceedings of Computational Complexity (Formerly Structure in Complexity Theory), pages
128–149. IEEE, 1996.

29 Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). J. Comput. Syst. Sci.,
58(2):376–403, 1999. doi:10.1006/jcss.1998.1616.

30 Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)80006-X.

31 Thomas Steinke. Pseudorandomness for permutation branching programs without the group
theory. Electronic Colloquium on Computational Complexity (ECCC), 19:83, 2012. URL:
http://eccc.hpi-web.de/report/2012/083.

32 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012. doi:10.1561/0400000010.

33 David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algorithms,
11(4):345–367, 1997. doi:10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;
2-Z.

A Using PRPDs in the Saks-Zhou Scheme

In this section, we will briefly introduce Saks and Zhou’s proof for BPL ⊆ L3/2 [29] and
Armoni’s trick for replacing Nisan’s PRG with any PRG in this proof [1]. Then we will see
why a poly(nw/ε)-bounded PRPD suffices for this scheme. Since our purpose here is to go
over the possible difference between using PRGs and PRPDs in this scheme, we will only
include a sketch of Saks and Zhou’s proof. We recommend interested readers to check [29, 1]
for formal proofs and also [14] for a beautiful summary.

A.1 Saks and Zhou’s Scheme
It is well-known that derandomizing BPL can be reduced to approximating Mn where M is
any n×n stochastic matrix. The first step of Saks and Zhou is to turn Mn into the following
recursive computation:

I Fact 1. Let n1, n2 be integers such that nn2
1 = n. Define M0 = M , and Mi = Mn1

i−1 for
every positive integer i. Then Mn2 = Mn.

CCC 2020

https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/BF01305237
https://doi.org/10.1007/BF01205052
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1145/301250.301294
http://eccc.hpi-web.de/eccc-reports/2001/TR01-018/index.html
http://eccc.hpi-web.de/eccc-reports/2001/TR01-018/index.html
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1016/S0022-0000(70)80006-X
http://eccc.hpi-web.de/report/2012/083
https://doi.org/10.1561/0400000010
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z
https://doi.org/10.1002/(SICI)1098-2418(199712)11:4<345::AID-RSA4>3.0.CO;2-Z

25:22 Optimal Error Pseudodistributions for Read-Once Branching Programs

To approximate Mn2 , it suffices to compute Mi = Mn1
i−1 with small enough error in each step.

However, if we need s bits of space to approximate the n1-th power of a stochastic matrix, we
will need O(sn2) bits of space in total. This doesn’t really save any space (over approximating
Mn directly) if we approximate Mn1

i−1 with PRGs such as Nisan’s generators. The first idea
of Saks and Zhou is to utilize the “high probability” property of Nisan’s generator:

I Lemma 38 ([23]). For every n,w, ε there exists an algorithm P̂own which takes a w × w
(sub)stochastic matrix M and a string y ∈ {0, 1}O(logn log(nw/ε)) as input, and outputs a
w × w matrix such that

Pr
y

[∥∥∥P̂own(M,y)−Mn
∥∥∥

max
< ε
]
≥ 1− ε

in space O(log(nw/ε)).

In other word, derandomization with Nisan’s generator has the following structure. First
it fixes an “offline randomness” y ∈ {0, 1}r and considers it as a part of input. Then it
takes s bits of additional “processing space” to compute an approximation of Mn. Then
the output will be a good approximation with high probability over y. (This is called an
“offline randomized algorithm” in [29].) Furthermore s� r. With these properties, the main
idea of Saks and Zhou is to reuse the same offline randomness for each level of recursion.
If computing Mn1 takes r bits of offline randomness and s bits of processing space, then
computing Mn will take r bits of offline randomness and O(sn2) bits of processing space.
The space complexity would be O(r + sn2) which is better than approximating Mn directly
since the offline randomness part was the original bottleneck.

However, there’s a problem in this construction: if we compute M̂1 = P̂own1(M,y), and
try to use P̂own1(M̂1, y) to approximate M2 = Mn1

1 , it might be possible that P̂own1(M̂1, y)
is always a bad approximation because M̂1 depends on y. To resolve this issue, the second
idea of Saks and Zhou is to break the dependency with a randomized rounding operation.
We will borrow the name “snap” from [14] for this operation.

I Definition 39. Given value x ∈ R, string y ∈ {0, 1}d, define

Snapd(x, y) = max(bx · 2d − 2−dyc · 2−d, 0).

For a w × w matrix M , define Snapd(M,y) to be the matrix M ′ such that M ′i,j =
Snapd(Mi,j , y) for every i, j ∈ [w].

In other word, in a snap operation, we randomly perturb the matrix with a offset in [0, 2−2d],
then round the entries down to d bits of precision. It’s not hard to prove the following lemma:

I Lemma 40 ([29]). For any matrix M,M ′ such that ‖M −M ′‖max ≤ ε,

Pr
y

[Snapd(M,y) 6= Snapd(M ′, y)] ≤ w2(2dε+ 2−d).

Proof. The snap operation is equivalent to randomly choose a grid of length 2−d and round
each value to the closest grid point the left. Therefore two values a, b are rounded to different
points only if there is a grid point between them, which happens with probability at most
2d|a− b|+ 2−d. By union bound and the fact that ‖M −M ′‖max ≤ ε the lemma follows. J

E. Chattopadhyay and J.-J. Liao 25:23

With the lemma above, we can see that by taking M̂1 = Snapd(P̂own1(M,y), z) instead,
M̂1 will be equivalent to Snapd(Mn1 , z) with high probability, which is independent of y.
Therefore we can use y as the offline randomness to compute the n1-th power of M̂1. Moreover,
if the rounding precision is high enough, the snapped matrix is still a good approximation.
Finally we get Saks-Zhou theorem:

I Lemma 41 ([29]). Let n1, n2 be integers such that nn2
1 = n. Suppose there exists an offline

randomized algorithm P̂own1 which takes r bits of randomness and s bits of processing space
such that for every substochastic matrix M ,

Pr
x

[∥∥∥P̂own1(M,y)−Mn1
∥∥∥

max
≤ ε
]
≥ 1− ε.

Now consider uniform random bits y ∈ {0, 1}r and z1, z2, . . . , zn2 ∈ {0, 1}d. Let M̂0 = M ,
and M̂i = Snapd(P̂own1(M̂i−1, y), zi) for every i ∈ [n2]. Then with probability at least
1−O(w2n2(2dε+ 2−d)) over y, z1, . . . , zn2 ,∥∥∥M̂n2 −Mn

∥∥∥ ≤ nw2−d+1.

Moreover, the space complexity of computing M̂n2 is O(r + n2(s+ d)).

Proof sketch. Define M0 = M , Mi = Snap((Mi−1)n1 , zi). By union bound, the following
events happen simultaneously with probability 1−O(w2n2(2dε+ 2−d)):
1. For every i ∈ [n2],

∥∥∥P̂own1(Mi−1, y)− (Mi−1)n1

∥∥∥
max
≤ ε.

2. For every i ∈ [n2], conditioned on M̂i−1 = Mi−1 and
∥∥∥P̂own1(Mi−1, y)−Mi−1

n1
∥∥∥

max
≤ ε,

M̂i = Mi.
When the above events occur, we have M̂n2 = Mn2 . Moreover, note that for every i ∈ [n2]∥∥Mi − (Mi−1)n1

∥∥
max ≤ 2−d+1.

To see why this is true, observe that in a snap operation we change the given value by at
most 2−2d from perturbation and 2−d from rounding. 2 This implies∥∥Mi − (Mi−1)n1

∥∥ ≤ 2−d+1,

where ‖·‖ denotes the matrix infinity norm. By Lemma 5.4 in [29],∥∥Mn2 −Mn
∥∥ ≤ nw2−d+1.

For the space complexity, observe that we can compute M̂n2 with n2 levels of recursive calls,
and each recursive call takes O(s + d) bits. Moreover, we need r bits to store the offline
randomness. Therefore the space complexity is O(n2(s+ d) + r) J

If we take n2 =
√

logn, n1 = 2
√

logn, d = O(log(n)) and ε = 2−2d and plugging in Nisan’s
generator, the above lemma shows that BPL ⊆ L3/2.

2 Note that capping the lowest possible value to be 0 can only reduce the error, because the snapped
value was non-negative.

CCC 2020

25:24 Optimal Error Pseudodistributions for Read-Once Branching Programs

A.2 Armoni’s Trick
We saw that in Saks and Zhou’s proof, we need a “offline randomized algorithm” for
substochastic matrix exponentiation such that when given r bits of randomness as additional
input, the algorithm only requires additional s � r bits of space to compute a good
approximation with high probability. This is in fact the only place where we need PRGs in
Saks and Zhou’s proof. However, not every PRG has such property, so it might be hard to tell
whether an improvement over Nisan’s PRG will actually give a better derandomization for
BPL. Fortunately, Armoni [1] observed that one can turn any PRG into a derandomization
algorithm with the required property by simply composing the PRG with an averaging
sampler.

Before we go through Armoni’s claim, first we generalize Lemma 41 for a larger class of
algorithms P̂ow.

IDefinition 42. We say an offline randomized algorithm requires s bits of sensitive processing
space and t bits of reusable processing space if

During the execution of this algorithm, only t bits of processing space is required.
Before each time a bit is read from the real input (not including the offline randomness),
only s bits of processing space is being used at the time.

In the above definition, think of each input bit as generated from a recursive call. Thus
the “reusable processing space” can be interpreted as “recursion-friendly processing space”,
which can be erased before every recursive call. With this new definition we can generalize
Lemma 41 as follows:

I Lemma 43 ([29], generalized). Let n1, n2 be integers such that nn2
1 = n. Suppose there exists

an offline randomized algorithm P̂own1 which takes r bits of randomness, s bits of sensitive
processing space and t bits of reusable processing space, such that for every substochastic
matrix M ,

Pr
x

[∥∥∥P̂own1(M,y)−Mn1
∥∥∥

max
≤ ε
]
≥ 1− ε.

Now consider uniform random bits y ∈ {0, 1}r and z1, z2, . . . , zn2 ∈ {0, 1}d. Let M̂0 = M ,
and M̂i = Snapd(P̂own1(M̂i−1, y), zi) for every i ∈ [n2]. Then with probability at least
1−O(w2n2(2dε+ 2−d)) over y, z1, . . . , zn2 ,∥∥∥M̂n2 −Mn

∥∥∥ ≤ nw2−d+1.

Moreover, the space complexity of computing M̂n2 is O(r + t+ n2(s+ d)).

We omit the proof because it’s Exactly the same as Lemma 41.
For technicality, we also need to define a ROBP with larger “step size”.

I Definition 44. A (n,w, d)-ROBP is a ROBP of n layers, w nodes in each layer, and 2d
branches from each node.

That is, a (n,w, d)-ROBP is a ROBP which can read d bits at once. Note that derandomizing
(n,w, d)-ROBP corresponds to derandomizing the exponentiation of a stochastic matrix
which has d bits of precision in each entry.

Now we are ready to introduce Armoni’s Lemma.

I Lemma 45 ([1]). Suppose there exists an explicit PRG for (n,w + 1, log(3nw/ε))-ROBP
with error ε/3 which has seed length s. Then there exists an offline randomized algorithm
which approximates the n-th power of any substochastic matrix within error ε with probability

E. Chattopadhyay and J.-J. Liao 25:25

at least 1 − ε. Moreover, such algorithm requires s + O(log(w/ε)) bits of randomness,
O(s + O(log(w/ε))) bits of reusable processing space and O(log(nw/ε)) bits of sensitive
processing space.

Proof. Given an inputM , first we round each entry down to d = log(3nw/ε) bits of precision.
Then we will get a substochastic matrix M ′ such that each entry of M ′ is a multiple of 2−d,
and ‖M −M ′‖max ≤ ε/3nw. Then we have

‖Mn − (M ′)n‖max ≤ ‖M
n − (M ′)n‖ ≤ n ‖M −M ′‖ ≤ nw ‖M −M ′‖max ≤

ε

3 .

Then we construct a (n,w + 1, d)-ROBP B as follows. For each t ∈ [n], we connect
k edges from node (t − 1, i) to node (t, j) if M ′i,j = k · 2−d. Then for each node (t − 1, i)
which doesn’t have 2d outgoing edges yet, we connect more edges from (t− 1, i) to a dummy
node (t, w + 1). For each dummy node we connect 2d edges to the dummy node in the
next layers. It is easy to observe that (M ′n)i,j is exactly the probability that we start a
random walk from (0, i) and reach (n, j). Now for every i, j ∈ [w], define Bi,j(x) to be the
indicator for whether we will reach (t, j) if we start from (0, i) and follow x ∈ ({0, 1}d)n.
Then Ex [Bi,j(x)] = (M ′n)i.j . Take the given PRG G, we have∣∣∣E

r
[Bi,j(G(r))]− E

x
[Bi,j(x)]

∣∣∣ ≤ ε

3 .

Now define the offline randomized algorithm P̂ow to be

P̂ow(M,y)i,j = E
z

[Bi,j(G(Samp(y, z)))] ,

where Samp is a (ε/3, ε/w2)-sampler. By definition of sampler, with probability at least
(1− (ε/w2)) over the choice of y, we have∣∣∣P̂ow(M,y)i,j − E

r
[Bi,j(G(r))]

∣∣∣ ≤ ε

3 .

By union bound, with probability at least (1− ε),∥∥∥P̂ow(M,y)i,j − E
r

[Bi,j(G(r))]
∥∥∥

max
≤ ε

3

for every i, j ∈ [w]. Therefore by triangle inequality we have∥∥∥P̂ow(M,y)−Mn
∥∥∥

max
≤ ε

with probability at least 1− ε.
Finally we compute the complexity of P̂ow. By Lemma 19, the required randomness in

this offline randomized algorithm is s+O(log(1/ε) + log log(w/ε)). The required processing
space is the processing space for samplers and PRGs. Observe that the only sensitive data is
the second input for sampler (i.e. z); the current node in the ROBP, which takes log(nw)
bits to store; and a d-bit block in G(Samp(y, z)) indicating which entry of M we should
check. Therefore the required sensitive processing space is only O(log(nw/ε)) bits. J

With Armoni’s sampler trick, if we have any PRG for (n,w + 1, log(3nw/ε))-ROBP,
we can always plug it into the Saks-Zhou scheme regardless of whether it has the high-
probability property. Specifically, as suggested in [4], if we have a PRG of seed length
O(log2(n) + log4/3(w/ε)), we can even prove that BPL ⊆ L4/3.

CCC 2020

25:26 Optimal Error Pseudodistributions for Read-Once Branching Programs

A.3 Saks-Zhou-Armoni Scheme with PRPDs
Finally we see how to apply a PRPD in the above scheme.

I Lemma 46. Suppose there exists an explicit poly(nw/ε)-bounded PRPD (G, ρ) for (n,w+
1, log(3nw/ε))-ROBP with error ε/3 which has seed length s. Then there exists an offline
randomized algorithm which approximates the n-th power of any substochastic matrix within
error ε with probability at least 1− ε. Moreover, such algorithm requires s+O(log(w/ε)) bits
of randomness, O(s+O(log(w/ε))) bits of reusable processing space and O(log(nw/ε)) bits
of sensitive processing space.

Proof. The proof is basically the same as Lemma 45, with the following two difference.
P̂ow(M,y)i,j is defined as Ez [ρ(Samp(y, z)) ·Bi,j(G(Samp(y, z)))] instead.
If (G, ρ) is k-bounded, then we will choose Samp as a (ε/6k, ε/w2) sampler instead.

It’s not hard to verify the correctness. (With Claim 18 which shows that samplers can also
be used for functions with output range [−k, k].) The required sensitive processing space is
increased to O(log(nw/ε) + log(k)), which is still O(log(nw/ε)) if k = poly(nw/ε). J

One may notice that there might have negative output in our new definition of P̂ow. However,
this is not a problem when applying Saks-Zhou argument because we only rely on the non-
negativeness of matrices Mi, which is independent of the approximation algorithm we use.
With the above lemma we have the following corollary, which better motivates the problem
of getting improved seed length for PRPDs:

I Corollary 47. If there exists a poly(nw/ε)-bounded explicit PRPD for (n,w, d)-ROBP
with error ε which has seed length O(log2(n) + (log(w/ε) + d)4/3), then BPL ⊆ L4/3.

Proof. Apply the Saks-Zhou scheme (Lemma 43), and take n1 = 2log2/3(n), n2 = log1/3(n),
d = 10 log(n) and ε = 2−2d. The required subprocedure P̂ow would be approximating the
n1-th power of n× n substochastic matrices within error ε. By Lemma 46, there exists an
offline randomized algorithm which approximates Mn1 within error ε = 2−2d = poly(1/n),
which requires sensitive processing space O(log(n)) and offline randomness + reusable
processing space O(log2(n1) + log4/3 n) = O(log4/3(n)). Therefore the total space complexity
is O(log(n) · n2 + log4/3(n)) = O(log4/3(n)). J

I Remark 48. Note that while we only construct PRPDs for (n,w)-ROBP in this paper, it
is possible to adapt our construction to get PRPDs for (n,w, d)-ROBP with seed length
O(logn log(nw) log log(nw) + log(1/ε) +d): simply replace the base case with a sampler with
d-bit output. Since it doesn’t imply better derandomization for BPL anyway, we keep d = 1
for simplicity.

B Proof of Lemma 19

I Lemma 49 (Lemma 19, restated. [27, 10]). For every δ, ε > 0 and integer m, there exists
a (ε, δ)-sampler f : {0, 1}n × {0, 1}d → {0, 1}m s.t. d = O(log log(1/δ) + log(1/ε)) and
n = m + O(log(1/δ)) + O(log(1/ε)). Moreover, for every x, y, f(x, y) can be computed in
space O(m+ log(1/δ) + log(1/ε)).

We will use the equivalence between seeded randomness extractor and oblivious sampler
by Zuckerman [33]. To achieve the parameter we need, we need a “high-entropy seeded
extractor” such that the seed length only depends on entropy loss but not the length of
source. We will use the standard “block-source” construction for high-entropy extractor

E. Chattopadhyay and J.-J. Liao 25:27

which can be found in [11, 27]. For simplicity, we will use simple composition instead of
zig-zag composition [27] because we are not aiming for optimal entropy loss. We will use the
following standard lemmas for the extractor construction. Some of the following lemmas are
implicit in their original source, and we recommend the readers to see [12, 32] for a proof.

I Definition 50 ([8]). (X1, X2) is a (k1, k2)-block source if X1 is a k1-source, and for every
x1 ∈ Supp(X), X2 conditioned on X1 = x1 is a k2-source.

I Lemma 51 ([11]). Let X ∈ {0, 1}n be a (n−∆) source. Then for every integer 0 ≤ t ≤ n,
X is ε-close to a (t−∆, n− t−∆− log(1/ε))-block source (X1, X2) where X1 ∈ {0, 1}t and
X2 ∈ {0, 1}n−t.

I Lemma 52 ([25]). Let E1 : {0, 1}n1 × {0, 1}d → {0, 1}d2 be a (k1, ε1) extractor and E2 :
{0, 1}n2×{0, 1}d2 → {0, 1}m be a (k2, ε2) extractor. Define E((x1, x2), s) = E1(x2, E2(x1, s)).
Then for every (k1, k2)-block source (X1, X2) ∈ {0, 1}n1 × {0, 1}n2 , E((X1, X2), Ud) is
(ε1 + ε2)-close to uniform.

I Lemma 53 ([11]). For every ε,∆ > 0 and integer n there exists a (n −∆, ε) extractor
E : {0, 1}n × {0, 1}d → {0, 1}n with d = O(∆ + log(1/ε)), and for every x, y, E(x, y) can be
computed in space O(n+ log(1/ε)).

I Lemma 54 ([12, 19]). For every ε > 0, integer m > 0 and n ≥ 2m, there exists a (2m, ε)
extractor E : {0, 1}n × {0, 1}d → {0, 1}m with d = O(logm+ log(1/ε)), and for every x, y,
E(x, y) can be computed in space O(m+ log(1/ε)).

I Lemma 55 ([33]). Every (n− log(1/δ)− 1, ε)-extractor is a (ε, δ)-sampler.

Now we show how to construct the sampler we need, and that it is indeed space efficient.

Proof. Let ∆ = log(1/δ) + 1. Let E1 : {0, 1}m × {0, 1}d1 → {0, 1}m be an (m −∆, ε/3)-
extractor from Lemma 53, w.l.o.g. assume that d1 ≥ ∆ + log(3/ε). Then let E2 : {0, 1}3d1 ×
{0, 1}d → {0, 1}d1 be an (2d1, ε/3)-extractor from Lemma 54. Then we claim that E :
{0, 1}m+3d1 × {0, 1}d → {0, 1}m, defined as E((x1, x2), s) = E1(x1, E2(x2, s)), is a (m +
3d1 −∆, ε) extractor, and hence a (ε, δ) sampler by Lemma 55.

To prove the claim, consider any (m + 3d1 − ∆)-source X. By Lemma 51, X is
(ε/3)-close to a (m − ∆, 3d1 − ∆ − log(3/ε))-block source (X1, X2) ∈ {0, 1}3d1 × {0, 1}m.
By Lemma 52, E1(X1, E2(X2, Ud)) is 2ε/3-close to uniform. Since E(X,Ud) is ε/3-
close to E1(X1, E2(X2, Ud)), by triangle inequality it is ε-close to uniform. Moreover,
d = O(log(d1/ε)) = O(log log(1/δ) + log(1/ε)), n = m+ 3d1 = m+O(log(1/δ) + log(1/ε)),
and the required space to compute E is O(m+d1+log(1/ε)) = O(m+log(1/ε)+log(1/δ)). J

CCC 2020

	Introduction
	Pseudorandom pseudodistribution
	Main result

	ROBPs and Matrices
	Proof Overview
	The sampler argument
	Our construction

	Preliminaries
	Averaging samplers
	Matrix norms

	Approximate Matrix Multiplication via Samplers
	Main Construction
	Discussion and Open Questions
	Using PRPDs in the Saks-Zhou Scheme
	Saks and Zhou's Scheme
	Armoni's Trick
	Saks-Zhou-Armoni Scheme with PRPDs

	Proof of Lemma 18

