
On the Quantum Complexity of Closest Pair and
Related Problems
Scott Aaronson
The University of Texas at Austin, TX, USA
aaronson@cs.utexas.edu

Nai-Hui Chia
The University of Texas at Austin, TX, USA
nai@cs.utexas.edu

Han-Hsuan Lin
The University of Texas at Austin, TX, USA
linhh@cs.utexas.edu

Chunhao Wang
The University of Texas at Austin, TX, USA
chunhao@cs.utexas.edu

Ruizhe Zhang
The University of Texas at Austin, TX, USA
rzzhang@cs.utexas.edu

Abstract
The closest pair problem is a fundamental problem of computational geometry: given a set of
n points in a d-dimensional space, find a pair with the smallest distance. A classical algorithm
taught in introductory courses solves this problem in O(n logn) time in constant dimensions (i.e.,
when d = O(1)). This paper asks and answers the question of the problem’s quantum time
complexity. Specifically, we give an Õ(n2/3) algorithm in constant dimensions, which is optimal up to
a polylogarithmic factor by the lower bound on the quantum query complexity of element distinctness.
The key to our algorithm is an efficient history-independent data structure that supports quantum
interference.

In polylog(n) dimensions, no known quantum algorithms perform better than brute force search,
with a quadratic speedup provided by Grover’s algorithm. To give evidence that the quadratic
speedup is nearly optimal, we initiate the study of quantum fine-grained complexity and introduce
the Quantum Strong Exponential Time Hypothesis (QSETH), which is based on the assumption
that Grover’s algorithm is optimal for CNF-SAT when the clause width is large. We show that the
naïve Grover approach to closest pair in higher dimensions is optimal up to an no(1) factor unless
QSETH is false. We also study the bichromatic closest pair problem and the orthogonal vectors
problem, with broadly similar results.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Design and analysis of algorithms; Theory of computation → Quantum
complexity theory

Keywords and phrases Closest pair, Quantum computing, Quantum fine grained reduction, Quantum
strong exponential time hypothesis, Fine grained complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2020.16

Funding SA was supported by a Vannevar Bush Fellowship from the US Department of Defense, a
Simons Investigator Award, and the Simons “It from Qubit” collaboration. NHC, HHL, and CW
were supported by SA’s Vannevar Bush Faculty Fellowship. RZ received support from the National
Science Foundation (grant CCF-1648712).

Acknowledgements We would like to thank Lijie Chen and Pasin Manurangsi for helpful discussion.
We would like to thank anonymous reviewers for their valuable suggestions on this paper.

© Scott Aaronson, Nai-Hui Chia, Han-Hsuan Lin,
Chunhao Wang, and Ruizhe Zhang;
licensed under Creative Commons License CC-BY

35th Computational Complexity Conference (CCC 2020).
Editor: Shubhangi Saraf; Article No. 16; pp. 16:1–16:43

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692576?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aaronson@cs.utexas.edu
mailto:nai@cs.utexas.edu
mailto:linhh@cs.utexas.edu
mailto:chunhao@cs.utexas.edu
mailto:rzzhang@cs.utexas.edu
https://doi.org/10.4230/LIPIcs.CCC.2020.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 On the Quantum Complexity of Closest Pair and Related Problems

1 Introduction

In the closest pair problem (CP), we are given a list of points in Rd, and asked to find two that
are closest. (See Figure 1 for an illustration of this problem.) This is a fundamental problem
in computational geometry and has been extensively studied. Indeed, CP is one of the
standard examples in textbooks (such as [20] and [32]) to introduce the divide-and-conquer
technique. Moreover, CP relates to problems that have critical applications in spatial data
analysis and machine learning, such as empirical risk minimization [7], point location [44, 13],
time series motif mining [35], spatial matching problems [51], and clustering [36]. Therefore,
any improvement on CP may imply new efficient algorithms for related applications.

Figure 1 An instance of the CP, where the the closest pair is labeled in the circle.

Like with many other geometric problems, the hardness of CP rises as the dimension
d increases. Shamos and Hoey gave the first O(n logn) deterministic algorithm in R2 by
using Voronoi diagrams [44], improving on the trivial O(n2d) upper bound. Then, Bentley
and Shamos gave an algorithm with 2O(d)n logn running time via a divide-and-conquer
approach [10]. A randomized algorithm by Khuller and Matias [30, 40] takes 2O(d)n expected
running time. A trivial lower bound for CP is Ω(n), since one must read all points to find the
closest pair in the worst case. Yao showed an Ω(n logn) lower bound for CP on the algebraic
decision tree model [52].

When we consider CP in polylog(n) dimensions, the running time of all existing algorithms
blows up to Ω(n2), and thus it is unknown if there exists an algorithm matching the
unconditional lower bounds. Nevertheless, under the Strong Exponential Time Hypothesis
(SETH), Karthik and Manurangsi [29], and David et al. [22], recently proved a conditional
lower bound of n2−o(1) for CP in polylog(n) dimensions. This implies that the brute force
approach is nearly optimal in polylog(n) dimensions unless SETH is false. SETH was
introduced by Impagliazzo and Paturi [26], and is the assumption that for all ε > 0, there
exists an integer k > 2 such that no algorithm can solve k-SAT in time O(2(1−ε)n).

The main idea behind the results of [29, 22] is to prove a “fine-grained” reduction from
CNF-SAT to CP in polylog(n) dimensions. Fine-grained reductions are reductions between
computational problems that keep track of the exact polynomial exponents. For instance,
[29] showed that CNF-SAT with 2n(1−o(1)) time is reducible to CP in polylogn dimensions
with n2−o(1) time, and thus the lower bound for CP in polylogn dimensions is n2−o(1) unless
SETH is false.

Surprisingly, to our knowledge, the quantum time complexity of CP was hardly investigated
before. The trivial quantum algorithm for CP is to use Grover’s search algorithm on all
n2 pairs, which takes O(nd) time. Sadakane et al. [41] sketched a quantum algorithm that
runs in O(n1−1/(4dd/2e)) time. Volpato and Moura [47] claimed a quantum algorithm that

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:3

uses O(n2/3) queries, but no analysis was given of the running time, and as we will see, the
conversion from the query-efficient algorithm to a time-efficient algorithm is nontrivial. As
for the lower bound, any quantum algorithm for CP needs Ω(n2/3) time, since Aaronson
and Shi [1] proved such a lower bound for element distinctness, and CP contains element
distinctness as a special case, where a closest pair has distance 0.

In this work, we resolve the quantum time complexity of CP. In constant dimensions, we
observe that by using a quantum walk for element distinctness [5, 33], we can achieve O(n2/3)
queries for CP. However, to obtain the same time complexity, the algorithm needs some
geometric data structure that supports fast updates and checking, and that – crucially – is
“history-independent”, i.e., the data structure is uniquely represented, disregarding the order
of insertion and deletion. History-independence is essential since different representations of
the same data would destroy quantum interference between basis states.

We propose a geometric data structure that is history-independent and that supports
fast checking and updates. Our data structure works by discretizing Rd into hypercubes
with length ε/

√
d. Then, we use a hash table, skip lists, and a radix tree to maintain the

locations of the points and hypercubes. This data structure is history-independent, and we
can easily find pairs with distance at most ε with it. We then find the closest pair by a
binary search. By using our data structure and a quantum walk [5, 33], we achieve quantum
time complexity Õ(n2/3).

For CP in polylog(n) dimensions, one may expect a conditional lower bound under SETH.
However, SETH fails when quantum algorithms are considered since a simple application of
Grover’s search algorithm on all assignments solves CNF-SAT in time Õ(2n/2). Furthermore,
existing fine-grained reductions may require time greater than O(2n/2).

In this paper, we introduce the Quantum Strong Exponential Time Hypothesis (QSETH)
and quantum fine-grained reductions. We define QSETH as follows.

I Definition 1 (QSETH). For all ε > 0, there exists some k ∈ N such that there is no
quantum algorithm solving k-SAT in time O(2(1−ε)n2).

We then observe that the classical definition of fine-grained reductions cannot capture
the features of quantum reductions such as superposed queries and speedups from quantum
algorithms. For instance, a fine-grained reduction may reduce problem A to solving many
instances of problem B and then output the best solution; in this case, one can use Grover’s
search algorithm to achieve a quadratic speedup. Therefore, instead of summing the running
time over all instances as in Definition 16, we use a quantum algorithm which solves all
instances in superposition and outputs the answer. We give a formal definition of quantum
fine-grained reductions in Definition 25 and show that under QSETH, any quantum algorithm
for CP in polylog(n) dimensions requires n1−o(1) time. This implies that Grover’s algorithm
is optimal for the problem up to an no(1) factor.

Intuitively, QSETH is the conjecture that applying Grover’s search algorithm over all
assignments in superposition is the optimal quantum algorithm for CNF-SAT. This is similar
to SETH, which says that a brute force search is optimal for CNF-SAT. A series of works on
CNF-SAT [43, 39, 38, 25, 42] shows that for some constant c ∈ [1, 2], there exist (randomized)
algorithms for n-variable k-SAT that run in time 2n(1−c/k). As k grows, the running time of
these algorithms approach 2n. When k is small, however, there are algorithms with better
running times. For instance, when k = 3, Schöning [43] obtained an algorithm with O(1.334n)
running time, which was later improved to O(1.308n) by Paturi et al. [39]. However, none of
the above mentioned algorithms have good running time on larger k’s, so SETH remains a
plausible conjecture.

CCC 2020

16:4 On the Quantum Complexity of Closest Pair and Related Problems

When k is small enough, there are also quantum algorithms for k-SAT [4, 21] running in
time much less than O(2n/2). However, these quantum algorithms mainly use Grover search
to speed up the classical algorithms of [43, 39], and thus do not perform well for large k,
either. Therefore, we conjecture that for large enough k, no quantum algorithm can do much
better than Grover search.

Finally, we study the bichromatic closest pair problem (BCP) and the orthogonal vector
problem (OV). Briefly, OV is to find a pair of vectors that are orthogonal given a set of
vectors in {0, 1}d ∈ Rd, and BCP is, given two sets A,B (representing two colors) of n points
in Rd, to find the pair (a, b) of minimum distance with a ∈ A and b ∈ B.

We can summarize all of our results as follows.

I Theorem 2 (Informal). Assuming QSETH, there is no quantum algorithm running in time
n1−o(1) for OV, CP, and BCP when d = polylog(n).

I Theorem 3 (Informal). The quantum time complexity of CP in O(1) dimensionsI is
Θ̃(n2/3)II.

I Theorem 4 (Informal). For any δ > 0, there exists a quantum algorithm for BCP with
Õ(n1− 1

2d+δ) running time. There exists a quantum algorithm which solves (1+ξ)-approximate
BCP in time Õ(ξ−dn2/3).

I Theorem 5 (Informal). The quantum time complexity of OV in O(1) dimensionsIII is
Θ(n1/2).

Table 1 also summarizes what is known about upper and lower bounds on the classical
and quantum time complexities of all of these problems.

Table 1 A summary of our quantum complexity results and comparison to classical results. The
bold entries highlight our contributions in this paper.

Dimension Lower Bound Upper Bound

CP

Θ(1) Classical Ω̃(n) [52] Õ(n) [44, 10, 30]

Quantum Ω(n2/3) Theorem 56 Õ(n2/3) Corollary 55

polylogn Classical n2−o(1) (Under SETH) [29] O(n2)

Quantum n1−o(1) (Under QSETH) Theorem 26 Õ(n) Theorem 15

OV

Θ(1) Classical Ω(n) O(n) [48]

Quantum Ω(n1/2) Theorem 68 O(n1/2) Theorem 68

polylogn Classical n2−o(1) (Under SETH) [49] n2−o(1) [2, 16]

Quantum n1−o(1) (Under QSETH) Theorem 26 Õ(n) Theorem 15

BCP

Θ(1)
Classical Ω(n) O

(
n

2− 2
dd/2e+1 +δ) [3]

Quantum Ω(n2/3) Theorem 67 Õ(n1− 1
2d +δ) for BCP Theorem 66

Õ(ξ−dn2/3) for (1 + ξ)-BCP Theorem 64

2O(log∗(n))IV Classical n2−o(1) (Under SETH) [17] n2−o(1) [2, 16]

Quantum n1−o(1) (Under QSETH) Theorem 35 Õ(n) Theorem 15

I We actually give a slightly stronger result: the same time complexities still hold when d = O
(log logn

log log logn

)
.

II The Θ̃ notation is Θ with logarithmic factors hidden in both upper and lower bounds.
IIIThe same time complexities still hold when d = O(log logn).
IV log∗(n) := log∗(logn) + 1 for n > 1 and log∗(1) := 0. Hence, 2O(log∗ n) is an extremely slow-growing
function.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:5

Related work

A recent independent work by Buhrman, Patro and Speelman [15] also studied quantum
strong exponential time hypothesis. They defined (a variant of) QSETH based on the
hardness of testing properties on the set of satisfying assignments of a SAT formula, e.g.,
the parity of the satisfying assignments. Based on these hardness assumptions extended
from the original QSETH, they gave conditional quantum lower bounds for OV, the Proofs
of Useful Work [8] and the edit distance problem. In comparison, we formally define the
quantum fine-grained reductions and prove lower bounds for CP, OV, and BCP under the
original form of QSETH by showing the existence of quantum fine-grained reductions from
CNF-SAT to the these problems.

1.1 Proof overview

For ease of presentation, some notations and descriptions will be informal here. Formal
definitions and proofs will be given in subsequent sections.

We give an optimal (up to a polylogarithmic factor) quantum algorithm that solves
CP for constant dimensions in time Õ(n2/3). First note that there exists a Johnson graph
corresponding to an instance of CP, where each vertex corresponds to a subset of n2/3 points
of the input of CP, and two vertices are connected when the intersection of the two subsets
(they are corresponding to) has size n2/3 − 1. A vertex is marked if the subset it corresponds
to contains a pair with distance at most ε. Then, the goal is to find a marked vertex on this
Johnson graph and use binary search over ε to find the closest pair. Our algorithm for finding
a marked vertex is based on the quantum walk search framework by Magniez et al. [33], which
can be viewed as the quantum version of the Markov chain search on a graph (in our case, a
Johnson graph). The complexity of this quantum walk algorithm is O(S + 1√

λ
(1√

δ
U + C)),

where λ is the fraction of marked states in the Johnson graph, δ is its spectral gap, S is the
cost for preparing the algorithm’s initial state, U is the cost for implementing one step of the
quantum walk, and C is the cost for checking the solution. For our Johnson graph, λ = n−2/3

and δ = n−2/3. If we consider only the query complexity, S = n2/3, U = O(1), and C = 0.
However, the time complexity for C is huge in the straightforward implementation, e.g.,
storing all points in an array according to the index order, as we need to check all the pairs
from the n2/3 points, which will kill the quantum speedup. To tackle this, we discretize the
space into small hypercubes. With this discretization, it suffices to check O((

√
d)d) neighbor

hypercubes to find a pair with distance at most ε. To support the efficient neighborhood
search, we need an efficient data structure.

Existing data structures do not meet our need. They either have prohibitive dependence
on the dimension, such as Ω(ndd/2e) time for constructing and storing Voronoi diagrams [31],
or do not have unique representation (i.e., they are history-dependent), such as fair-split
trees and dynamic trees [13]. Note that the requirement of unique representation is due to
the fact that different representations of the same data would destroy the interference that
quantum computation relies on. To solve this problem, we propose a uniquely represented
data structure that can answer queries about ε-close pairs and insert/delete points efficiently.
This data structure is based on a hash table, skip lists, and a radix tree. With this data
structure, U = O(logn) and C = O(1). Hence, we have the desired time complexity (see
Section 4.2). We give another method for solving CP that only uses a radix tree as the data
structure. With only a radix tree, the algorithm cannot handle cases with multiple solutions,
and we need to subsequently reduce the size of the problem until there is at most one solution
(see Section 4.3). These two quantum algorithms have the same time complexity.

CCC 2020

16:6 On the Quantum Complexity of Closest Pair and Related Problems

Our quantum algorithm for solving approximate BCP follows the same spirit as that for
CP, except that we use a finer discritization of the space (see Section 5.1). To solve BCP
exactly, we need a history-independent data structure for nearest-neighbor search, but no
such data structure is known. Instead, we adapt the nearest-neighbor search data structure
by Clarkson [19] to the quantum algorithm proposed by Buhrman et al. [14] for element
distinctness, which does not require history-independence of the data structure because in
the algorithm of [14], no insertions and deletions are performed once the data structure for a
set of points is constructed (see Section 5.2). Sadakane et al. [41] sketched an algorithm for
BCP with similar ideas and running time, but we give the first rigorous analysis.

To derive our quantum fine-grained complexity results for OV and CP when d = polylogn
under QSETH, we first define quantum fine-grained reductions. In our definition, we consider
problems whose input is given in the quantum query model, and allow the reduction to
perform superposed queries and run quantum algorithms, e.g., amplitude amplification. The
classical reductions from CNF-SAT to CP [29, 22] and OV [50] are not “quantum fine-grained”
under QSETH. These reductions fail because their running time exceeds 2n/2(1−ε), which is
the conjectured time complexity for CNF-SAT under QSETH. Therefore, we cannot derive
from them any non-trivial lower bounds for CP or OV based on QSETH. In the following, we
use the advantages of quantum algorithms to make these reductions work.

There are two main obstacles in “quantizing” the fine-grained reductions under QSETH.
The first obstacle is that the time cost for preparing the input of the problem we reduce
to is already beyond the required running time. For instance, consider the reduction from
CNF-SAT to OV. Let ϕ be a CNF-SAT instance on n variables and m clauses. The classical
fine-grained reduction divides all n variables into two sets A and B of size n/2, and then
maps all assignments for variables in A and B to two sets VA and VB of 2n/2 vectors each. It
is obvious that the time for writing down VA and VB is already Θ(2n/2). Nevertheless, many
quantum algorithms achieve sublinear query complexities by querying the input oracle in
superposition. Hence, instead of first constructing the input of OV at once and then running
the algorithm, we can simulate it “on-the-fly”: whenever the OV’s algorithm queries the
input oracle with some superposition of indices, we use a quantum subroutine to realize the
input oracle by mapping the query indices to the corresponding assignments in CNF-SAT,
and then to the corresponding vectors in VA and VB . This subroutine takes only O(n) time,
and therefore the quantum reduction, which has running time O(n) times the running time
of the OV algorithm, is quantum fine-grained.

Another difficulty in quantizing the fine-grained reductions is that some reduction needs
to call the oracle multiple times, and the number of calls exceeds the required running time.
However, it is possible to achieve quadratic speedup if these oracle calls are non-adaptive.
For the reduction from BCP to CP, we can reduce a BCP instance to n1.8+o(1) logn instances
of CP, which is already larger than the conjectured Ω(n) quantum lower bound of BCP.
By further studying the reduction, we find that the solution to BCP is the minimum of
the solutions to the the constructed CP instances. Therefore, we can use the quantum
minimum-finding algorithm to reduce the total time complexity to Õ(

√
n1.8+ε · tCP), which is

enough to show that BCP is quantum fine-grained reducible to CP.

With the above-mentioned techniques, we quantize the classical fine-grained reductions,
and show that CNF-SAT, with conjectured lower bound Ω(2n/2), is quantum fine-grained
reducible to OV and CP with lower bound Ω(n′)V, when the dimension d is polylog(n′).

V n is the input size of CNF-SAT, and n′ is the input size of OV and CP.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:7

2 Preliminaries

I Definition 6 (Distance measure). For any two vectors a, b ∈ Rd, the distance between

them in the `2-metric is denoted by ‖a − b‖ =
(∑d

i=1 |ai − bi|2
)1/2

. Their distance in the
`0-metric (Hamming distance) is denoted by ‖a− b‖0 = |{i ∈ [d] : ai 6= bi}|, i.e., the number
of coordinates on which a and b differ.

2.1 Quantum query model
We consider the quantum query model in this work. Let X := {x1, . . . , xn} be a set of n
input points and OX be the corresponding oracle. We can access the i-th data point xi by
making the query

|i〉 |0〉 OX−−→ |i〉 |xi〉 , (1)

and we can make queries to elements in X in superposition. Note that OX is an unitary
transformation in the formula above. Hence, a quantum algorithm with access to OX can be
represented as a sequence of unitary transformations.

Consider a quantum algorithm A with access to an oracle O and a initial state |0〉 :=
|0〉Q |0〉A |0〉W , where the registers Q and A are for the queries and the answers from the
oracle, and the register W is the working space which is always hold by A. Then, we can
represent the algorithm as

UTOUT−1 · · · OU1 |0〉 . (2)

Let |ψ〉i = UiO · · ·OU1 |0〉 :=
∑
i,z |i〉Q |0〉A |z〉W be the state right before applying the i-th

O, then

O |ψ〉i :=
∑
i,z

|i〉Q |xi〉A |z〉W . (3)

2.2 Quantum subroutine for unstructured searching and minimum
finding

I Definition 7 (Unstructured search). Given a set P of n elements in {0, 1}, decide whether
there exists a 1 in P .

I Theorem 8 (Grover’s search algorithm [24, 37]). There is a quantum algorithm for unstruc-
tured search with running time O(

√
n).

By Theorem 8 and BBBV’s argument [9], the quantum time complexity of unstructured
search is Θ(

√
n). We can also get a Õ(

√
n) quantum algorithm for minimum finding by

combining Grover’s search algorithm and binary search.

I Theorem 9 (Quantum minimum finding [23]). There is a quantum algorithm that finds
from a set of n elements with values in R, the index of the minimum element of the set, with
success probability 1

2 and run time Õ(
√
n)

2.3 Problem definitions
In this subsection, we first formally define OV, CP, and BCP. Then we show the folklore
algorithms for CP, BCP, and OV by Grover’s algorithm, which run in time Õ(n).

CCC 2020

16:8 On the Quantum Complexity of Closest Pair and Related Problems

I Definition 10 (Orthogonal Vectors, OV). Given two sets A,B of n vectors in {0, 1}d as
input, find a pair of vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0, where the inner product is
taken in Z.VI

We denote OV with input length n and dimension d as OVn,d. We will use this notation
when we need to specify the parameters in the following sections.

I Definition 11 (Closest Pair Problem, CP). Given a set P of n points in Rd and a distance
measure ∆, find a pair of distinct points a, b ∈ P such that ∆(a, b) is the smallest among all
distinct pairs in P .

Similar to OV, we denote CP with input length n and dimension d as CPn,d. We will use this
notation when the parameters in the following sections are required to be specified. Note
that in this work, we consider ∆(a, b) = ‖a− b‖ as the distance measure for CP and BCP.

I Definition 12 (Bichromatic Closest Pair Problem, BCP). Given two sets A,B of n points
in Rd and a distance measure ∆, find a pair of points a ∈ A, b ∈ B such that

∆(a, b) = min
a∈A,b∈B

∆(a, b). (4)

We also define an approximate version of BCP as follows.

I Definition 13 ((1 + ξ)-approximate Bichromatic Closest Pair Problem, (1 + ξ)-BCP). Given
two sets A,B of n points ∈ Rd and a distance measure ∆, find a pair of points a ∈ A, b ∈ B
such that

∆(a, b) ≤ (1 + ξ) min
a∈A,b∈B

∆(a, b). (5)

Same as CP, we use BCPn,d and (1 + ξ)-BCPn,d to specify the parameters.

I Definition 14 (Element Distinctness Problem, ED). Let f : [n]→ [m] be a given function.
Decide whether there exist distinct i, j ∈ [n] such that f(i) = f(j).

For this problem, Ambainis [5] gave a quantum algorithm with time complexity Õ(n2/3),
which matches the lower bound proved by Aaronson and Shi [1] up to a polylogarithmic
factor.

I Theorem 15. There are Õ(n)-time quantum algorithms for CP and BCP when d =
O(poly logn).

Proof. We can solve CP and BCP by searching the minimum distance through all pairs by
the algorithm of Theorem 9. There are O(n2) pairs and checking each pair took O(d) time,
so the total running time is O(nd). For d = O(poly logn), the time complexity equals to
Õ(n). J

2.4 Fine-grained complexity
As we have mentioned earlier in the introduction, a fine-grained reduction from problem P
to Q with conjectured lower bounds p(n) and q(n), respectively, has the property that if we
can improve the q(n) time for Q, then we can also improve the p(n) time for P. We give the
formal definition by Williams [46] in below.

VIOur definition is slightly different than some of the literature, for example, [18], which is searching
among pairs inside one set. Those two definitions are equivalent up to constant in complexities.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:9

I Definition 16 (Fine-grained reduction, [46]). Let p(n) and q(n) be non-decreasing functions
of n. Problem P is (p, q)-reducible to problem Q, denoted as (P, p) ≤FG (Q, q), if for every ε,
there exist δ > 0, an algorithm R for solving P with access to an oracle for Q, a constant d,
and an integer k(n), such that for every n ≥ 1, the algorithm R takes any instance of P of
size n and

R runs in at most d · (p(n))1−δ-time,
R produces at most k(n) instances of Q adaptively, that is, the jth instance Xj is a
function of {(Xi, yi)}1≤i<j where Xi is the ith instance produced and yi is the answer of
the oracle for Q on instance Xi, and
the sizes ni of the instances Xi for any choice of oracle answers yi obeys the inequality

k(n)∑
i=1

(q(ni))1−ε ≤ d · (p(n))1−δ. (6)

Let (P, p) ≤FG (Q, q) for some non-decreasing function p(n) and q(n). If for every ε > 0,
we can solve problem Q in time q(n)1−ε with probability 1 for all input length n, then there
exists a δ > 0 such that we can solve the problem P in time p(n)1−δ by Equation (6).

Here are some known results about fine-grained reductions.

I Theorem 17 ([29, 49]).

(CNF-SATn, 2n) ≤FG (OVn1,d1 , n
2
1) ≤FG (BCPn2,d2 , n

2
2) ≤FG (CPn3,d3 , n

2
3), (7)

where d1 = Θ(logn1), d2 = Θ(logn2) and d3 = (logn3)Ω(1).

I Remark 18. The second reduction from OV to BCP has been improved to d2 = 2O(log∗ n)

by Chen [17].

There are several plausible hypotheses in fine-grained complexity, which can imply
conditional hardness results for many interesting problems. We first give the definition of
the strong exponential time hypothesis (SETH).

I Hypothesis 19 (Strong Exponential Time Hypothesis, SETH). For every ε > 0, there exists
a k = k(ε) ∈ N such that no algorithm can solve k-SAT (i.e., satisfiability on a CNF of width
k) in O(2(1−ε)m) time where m is the number of variables. Moreover, this holds even when
the number of clauses is at most c(ε) ·m where c(ε) denotes a constant that depends only
on ε.

Another popular conjecture is the orthogonal vector hypothesis (OVH):

I Definition 20 (Orthogonal Vector Hypothesis, OVH). For every ε > 0, there exists a c ≥ 1
such that OVn,d requires n2−ε time when d = c logn.

I Remark 21. Under SETH, we can have the following conclusions from Theorem 17:
OVH is true.
For all ε > 0, there exists a c > 0 such that BCPn,c logn cannot be solved by any
randomized algorithm in time O(n2−ε).
For all ε > 0, there exists a c > 0 such that CPn,(logn)c cannot be solved by any randomized
algorithm in time O(n2−ε).

CCC 2020

16:10 On the Quantum Complexity of Closest Pair and Related Problems

2.5 The framework for quantum walk search

In this subsection, we review the quantum walk framework for the Markov chain search
problem and demonstrate how to use it to solve the element distinctness problem. For
simplicity, we use the transition matrix P to refer to a Markov chain, where P = (pxy)x,y∈X
for X being the state space of P and pxy being the transition probability from x to y. An
irreducible and ergodic Markov chain has a unique stationary distribution π, which is also
the unique eigenvector of P with eigenvalue 1. Let M ⊆ X be a set of marked elements. In
the Markov chain search problem, the objective is to find an x ∈M . We can perform the
following actions: setup, sampling from the π with cost S; update, making a transition with
cost U, and checking whether the current state is marked or not with cost C. To solve the
search problem classically, we perform a random walk as follows. Start from a point sampled
from π and check if it is marked. If not, make a number of transitions on P until it mixes,
and then check again. We then repeat this process until a marked state is found. The cost of
this random walk algorithm is O(S + 1

λ (1
δU + C)), where λ := |M |/|X| and δ is the spectral

gap of P .
Quantum analogues of random walks, namely, quantum walks, have been developed for

solving different problems. In 2003, Ambainis [5] proposed a quantum walk algorithm for
solving the element distinctness problem. His algorithm also solves the Markov chain search
problem on the Johnson graph with cost O(S + 1√

λ
(1√

δ
U + C)). In 2004, Szegedy [45] gave a

quantum walk algorithm for more generalized Markov chains with cost O(S + 1√
λδ

(U + C)).
We can view Szegedy’s quantum walk as a quantum counterpart of a random walk, where one
checks the state after each transition. Szegedy’s quantum walk only detects the presence of a
marked state, but cannot find one without extra costs. In 2006, Magniez et al. [33] proposed
a quantum walk search framework that unified the advantages of the quantum walks in [5]
and [45]. In this quantum walk framework, we can perform the following operations:

Setup: with cost S. preparing the initial state |π〉 = 1√
|X|

∑
x

√
πx |x〉.

Update: with cost U. applying the transformation |x〉 |0〉 7→ |x〉
∑
y∈X
√
pxy |y〉.

Checking: with cost C, applying the transformation: |x〉 7→
{−|x〉 if x ∈M
|x〉 otherwise.

The main result of [33] is summarized as follows.

I Lemma 22 ([33]). Let P be an irreducible and ergodic Markov chain P on X. Let M ⊆ X
be a subset of marked elements. Let λ := |M |/|X| and δ be the spectral gap of P . Then,
there exists a quantum algorithm that with high probability, determines M is empty or finds
an x ∈M with cost O(S + 1√

λ
(1√

δ
U + C)).

To solve the element distinctness problem, we define a Markov chain, following the
work [5, 11, 28]. The state space X is all subsets of [n] with size r. The Markov chain
is based on the Johnson graph on X, where an edge is connecting S and S′ if and only
if |S ∩ S′| = r − 1. The transition probability on each edge is hence 1

r(n−r) . A state
S is marked when there exist distinct i, j ∈ S such the ith and the jth items are the
same. The Markov chain has spectral gap δ ≥ 1/r (see [28]) and it is easy to verify that
λ ≥

(
n−2
r−2
)
/
(
n
r

)
= O(r2/n2). If we only consider the query complexity, the setup procedure

costs r queries, the update procedure costs one query, and the checking procedure does not
cost any query. Choosing r = n2/3 yields the optimal query complexity O(n2/3).

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:11

3 Quantum fine-grained complexity

In this section, we give the formal definitions of the quantum fine-grained reduction and
quantum strong exponential time hypothesis (QSETH). Moreover, we show that under
QSETH, for d = polylog(n), the lower bounds for CPn,d and OVn,d are n1−o(1), which nearly
matches the upper bounds given in Theorem 15.

3.1 Quantum fine-grained reduction and QSETH
QSETH is defined based on the assumption that the best quantum algorithm for CNF-SAT
is Grover search when the clause width k is large enough.

I Hypothesis 23 (QSETH). For every ε > 0, there exists a k = k(ε) ∈ N such that no
quantum algorithm can solve k-SAT (i.e., satisfiability on a CNF of width k) in O(2(1/2−ε)n)
time where n is the number of variables. Moreover, this holds even when the number of
clauses is at most c(ε)n where c(ε) denotes a constant that depends only on ε.

Obviously, the Grover search can solve CNF-SAT in Õ(2n/2). To the best of the our
knowledge, there is no quantum algorithm that can do better than O(2n/2) for any k.

We recall that in the quantum query model, the input of a problem is given by a quantum
oracle. Specifically, let P be a problem, and X be an instance of P in the classical setting.
Then, in the quantum query model, X will be given by an oracle OX . We will denote an
algorithm or an oracle A with access to OX by A(OX).

We say Aε is an ε-oracle for problem P, if for every instance OX , it holds that

Pr[Aε(OX) = P(X)] ≥ 1− ε, (8)

and the running time is O(1), where P(X) is the answer of X for problem P.

I Definition 24 (Quantum oracles). Let X := {x1, . . . , xn} be an instance of some problem
and OX be the corresponding quantum oracle. To realize OX , we do not need to write down
the whole X; instead, we can just design a quantum circuit to realize the mapping

|i〉 |0〉 OX−−→ |i〉 |xi〉 . (9)

I Definition 25 (Quantum fine-grained reduction). Let p(n) and q(n) be nondecreasing
functions of n. Let P and Q be two problems in the quantum query model and Aε be an
ε-oracle for Q with error probability ε ≤ 1/3. P is quantum (p, q)-reducible to Q, denoted
as (P, p) ≤QFG (Q, q), if for every ε, there exits a δ > 0, and algorithm R with access to Aε,
a constant d, and an integer k(n), such that for every n ≥ 1, the algorithm R takes any
instance of P of size n and satisfies the following:

R can solve P with success probability at least 2/3 in time at most d · p(n)1−δ.
R performs at most k(n) quantum queries to Aε. Specifically, in the jth query, let Xj :=
{X1,j , X2,j , . . . } be a set instances of Q. Then, R realizes the oracles {OX1,j ,OX2,j , . . . }
in superposition and applies Aε to solve the instances.
The following inequality holds.

k(n)∑
j=1

c(Xj) · q(nj)1−ε ≤ d · p(n)1−δ,

where c(Xj) is the time required for R to realize the oracles {OX1,j ,OX2,j , . . . } in super-
position and nj := maxi |Xi,j |.

CCC 2020

16:12 On the Quantum Complexity of Closest Pair and Related Problems

In Definition 25, the input of Aε is given as a quantum oracle such that Aε can be a
quantum query algorithm with running time strictly less than the input size. Moreover, the
quantum reduction R can realize quantum oracles {OX1,j ,OX2,j , . . . } in superposition, and
thus the time required is maxi c(Xi,j) (where c(Xi,j) is the time required to realize OXi,j)
instead of

∑
i c(Xi,j). This also allows R to use fast quantum algorithms to process the

information of A′εs output (e.g., amplitude amplification).

3.2 Lower bounds for CP, OV, and BCP in higher dimensions under
QSETH

Here, we give nearly linear lower bounds for OV and CP under QSETH by showing that
there exist quantum fine-grained reductions from SAT to these problems.

I Theorem 26. Assuming QSETH, for all ε > 0, there exists a c such that OVn,c logn and
CPn,(logn)c cannot be solved by any quantum algorithm in time O(n1−ε).

We prove Theorem 26 by showing that there exist quantum fine-grained reductions from
CNF-SAT to OV, OV to BCP, and BCP to CP with desired parameters. We first give the
reduction from CNF-SAT to OV as a warm-up.

I Lemma 27.

(CNF-SATn, 2n/2) ≤QFG (OVn1,d1 , n1), (10)

where n1 = 2n/2 and d1 = Θ(n).

Proof. Let φ be a CNF formula with n variables and m = Θ(n) clauses. Let A be an
algorithm for OV. We first recall the classical reduction. Let φ := φ1 ∧ · · · ∧ φm. We
divide the n variables into two sets A and B with |A| = |B| = n

2 . Let A := {x1, . . . , xn/2}
and B := {xn/2+1, . . . , xn}. We let SA := {a1, . . . , a2n/2} be all assignments to A and
SB := {b1, . . . , b2n/2} be all assignments to B. We describe two mappings fA : SA → {0, 1}m
and fB : SB → {0, 1}m as follows:

fA(ai) = [φ1(ai), . . . , φm(ai)]T , and (11)
fB(bi) = [φ1(bi), . . . , φm(bi)]T , (12)

where φj(ai) = 0 if ai is a satisfied assignment for φj , and φj(ai) = 1 otherwise; we define
φi(bi) in the same way. Let FA := {fA(ai) : i ∈ [2n/2]} and FB := {fB(bi) : i ∈ [2n/2]}.
Then, it is obvious that if there exist v ∈ FA and u ∈ FB such that 〈v, u〉 = 0, then φ

is satisfiable. However, at first glance, this reduction with O(2n/2) running time is not
fine-grained since we require the cost of the reduction to be at most 2n(1−δ)/2 for some δ > 0
by Definition 25, but writing down elements in FA and FB already takes Ω(2n/2).

Nevertheless, as in Definition 24, a quantum fine-grained reduction only needs to realize
the functions fA and fB , which takes O(mkn) time where k is the width of clauses. This is
much less than O(2n(1−δ)/2). More specifically, fA and fB are oracles for FA and FB, and
for any quantum query to elements in FA or FB, the reduction can implement oracles fA
and fB :

|e, x〉 |0〉 fe−→ |e, x〉 |fe(x)〉 , (13)

where e ∈ {A,B}, and the time c(fe) for the reduction to implement fe for one quantum
query is at most O(kmn). Finally, this reduction only uses one oracle (FA, FB). If there
is an algorithm for OV which succeeds with probability 2/3, we can boost the success
probability of the reduction by repetition. Therefore, (CNF-SAT, 2n/2) is quantum reducible
to (OVn1,d1 , n1). J

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:13

Then, to prove (CNF-SAT, 2n/2) ≤QFG (CPn3,d3 , n3), we show that (BCPn2,d2 , n2) ≤QFG
(CPn3,d3 , n3) and (OVn1,d1 , n1) ≤QFG (BCPn2,d2 , n2), where n2, n3, d2, d3 are some functions
of n specified in the following lemmas.

I Lemma 28. For d = Θ(logn),

(BCPn,d, n) ≤QFG (CPn′,d′ , n′), (14)

where n′ = nO(1) and d′ = (logn)c for some constant c and all points have {0, 1} entries
with the Hamming metric.

I Remark 29. The points have coordinate entries in {0, 1}, and the Hamming metric is
equivalent to distance in `2-metric (up to power of 2) in this case. Therefore, in the proof of
Lemma 28, we can consider the Hamming distance between points instead of `2 distance
without loss of generality.

We first introduce the classical reductions in [29] and some results we will use to prove
Lemma 28.

Classical reduction

We can consider an instance of BCP with two sets of points A and B as a weighted complete
bipartite graph Kn,n, where the vertices are the points in these two sets and edges’ weights
are equal to the distances between the corresponding points. Then, solving BCP is equivalent
to find an edge with the minimum weight in this graph. However, we cannot directly apply
the algorithm for CP on this graph since there could be two points in the same set (no edge
connecting them) that have a smaller distance than any pairs of points in two sets (connected
by an edge). To overcome this difficulty, we can “stretch” the points to make the points in
the same set far from each other, which is characterized by the contact dimension of a graph:

I Definition 30 (Contact Dimension). For any graph G = (V,E), a mapping τ : V → Rd is
said to realize G if for some β > 0, the following holds for every distinct vertices u, v:

‖τ(u)− τ(v)‖2 = β if {u, v} ∈ E, (15)
‖τ(u)− τ(v)‖2 > β otherwise.

The contact dimension of G, denoted by cd(G), is the minimum d ∈ N such that there exists
τ : V → Rd realizing G.

That is, with the help of τ , we can restrict the optimal solution of CP to be the points
connected by an edge in G. But we cannot realize the whole complete bipartite graph since
cd(Kn,n) = Θ(n), which makes the dimension of the CP instance too large. [29] showed that
we can realize a subgraph of Kn,n and apply permutations to its vertices such that the union
of these subgraphs cover Kn,n. In this way, BCP can be computed by solving CP on each
subgraph and outputting the best solution. More specifically, the reduction in [29] relies on
the following theorem:

I Theorem 31 (Theorem 4.2 in [29]). For every 0 < δ < 1, there exists a log-dense sequence
(ni)i∈N such that, for every i ∈ N, there is a bipartite graph Gi = (Ai∪̇Bi, Ei) where
|Ai| = |Bi| = ni and |Ei| ≥ Ω(n2−δ

i), such that cd(Gi) = (logni)O(1/δ). Moreover, for all
i ∈ N, a realization τ : Ai∪̇Bi → {0, 1}(logni)O(1/δ) of Gi can be constructed in n2+o(1)

i time.

CCC 2020

16:14 On the Quantum Complexity of Closest Pair and Related Problems

The log-dense sequence is defined as follows:

I Definition 32. A sequence (ni)i∈N of increasing positive integers is log-dense if there exists
a constant c ≥ 1 such that logni+1 ≤ c · logni for all i ∈ N.

They also showed that, the permutations for covering the complete bipartite graph can be
efficiently found, as shown in the following lemma.

I Lemma 33 (Lemma 3.11 in [29]). For any bipartite graph G(A∪̇B,EG) where |A| = |B| = n

and EG 6= ∅, there exist side-preserving permutations π1, . . . , πk : A ∪ B → A ∪ B where
k ≤ 2n2 lnn

|EG| + 1 such that⋃
i∈[k]

EGπi = EKn,n . (16)

Moreover, such permutations can be found in O(n6 logn) time.

Now, we are ready to state the quantum fine-grained reduction by “quantizing” the
classical reduction.

Proof of Lemma 28. Let A,B be the two sets of input points of BCP. Suppose for BCP,
there is an input oracle OBCP which, given an index, returns the corresponding point:

|b〉 |i〉 |0〉 OBCP−−−→

|b〉 |i〉 |xi〉 if b = 0,

|b〉 |i〉 |yi〉 if b = 1,
(17)

where xi is the i-th point in the set A and yi is the i-th point in the set B. The sizes of A
and B are both equal to n and each point is in {0, 1}d1 , where d1 = Θ(logn) is the dimension
of BCP.

For CP, suppose there is a quantum algorithm A such that for m points in {0, 1}d2 given
by an oracle MCP , AMCP returns the closest pair of these n points with probability at
least 2/3.

Then we need to transform OBCP to some oraclesMi for CP, such that by running A
withMi as input oracles, we can get the bichromatic closest pair between A and B. The
reduction has four steps:

1. Pre-processing

We first follow the classical reduction to pre-process the input points of BCP. For some
integer n′ ≤ n0.1, we can partition A and B into n′-size subsets:

A = A1 ∪̇ · · · ∪̇ Ar, (18)
B = B1 ∪̇ · · · ∪̇ Br,

where r = bn/n′c. Here, we assume that n is divisible by n′. It follows that

BCP(A,B) = min
i,j∈[r]

BCP(Ai, Bj). (19)

Then, we use the algorithm in [29] to construct k mappings f1, . . . , fk : [2n′]→ {0, 1}d′

such that

BCP(Ai, Bj) = min
t∈[k]

CP(ft(Ai) ∪ ft(Bj)) ∀i, j ∈ [bn/n′c]. (20)

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:15

More specifically, we pick n′ to be the largest number in a log-dense sequence that is
smaller than n0.1. Then, we apply Theorem 31 to classically construct a bipartite graph
G(A ∪ B,E) with n′ vertices in each side and a realization τ . By choosing δ = ε/2 in
Theorem 31, the graph G has |E| = Ω(n′2−ε/2) edges. And we can get 2n′ 0/1-strings of
length (logn′)O(2/ε):

τAi = τ(ui) ∀ui ∈ A, and τBi = τ(vi) ∀vi ∈ B. (21)

In order to cover the complete bipartite graph, we run the classical algorithm (Lemma 33)
to find k permutations π1, . . . , πk : [n′]→ [n′], where k is a parameter to be chosen later.

Then, we can define the mappings as follows:

ft(u) =

xv ◦
(
τAπt(w)

)d+1
if 1 ≤ u ≤ n′

yv ◦
(
τBπt(w)

)d+1
if n′ < u ≤ 2n′

∀t ∈ [k], u ∈ [2n′], (22)

where ◦ means string concatenation and (s)d+1 denotes d+ 1 copies of the string s. For a
point p ∈ Ai ∪Bj , u ∈ [2n′] is the index in this union-set, v ∈ [n] is the index in the ground
set A or B, and w ∈ [n′] is the index in the subset Ai or Bj . Further, if 1 ≤ u ≤ n′, then
w := u; otherwise, w := u− n′.

2. Oracle construction

For i, j ∈ [r], t ∈ [k], we then construct the input oracleMi,j,t for the problem CP(ft(Ai) ∪
ft(Bj)). For a query index u ∈ [2n′],

Mi,j,t |u〉 |0〉 = |u〉 |ft(u)〉 . (23)

With the help of the input oracle OBCP, we can implementMi,j,t in the following way:
1. Prepare an ancilla qubit |b〉 such that b = 1 if u > n′.
2. Transform |u〉 to |v〉, the index of the point in A or B, based on the value of b. Note that

the index is unique. Hence, this transformation is unitary and can be easily achieved by
a small quantum circuit.

3. Query OBCP with input |b〉 |v〉. Assume b = 0. Then,

|b〉 |v〉 |0〉 OBCP7−−−→ |b〉 |v〉 |xv〉 . (24)

4. Similar to the second step, the index w of the point in Ai and Bj can be computed from
v by a unitary transformation:

|b〉 |v〉 |xv〉 7→ |b〉 |w〉 |xv〉 (25)

5. Since each w corresponds to a unique string τAπt(w), we can attach d + 1 copies of this
string to the remaining quantum registers:

|b〉 |w〉 |xv〉 7→ |b〉 |w〉 |xv〉
∣∣∣∣(τAπt(w)

)d+1
〉
. (26)

6. By recovering u from w, we get the final state:

|u〉 |ft(u)〉 = |u〉
∣∣∣∣xv,(τAπt(w)

)d+1
〉
. (27)

CCC 2020

16:16 On the Quantum Complexity of Closest Pair and Related Problems

3. Query process

By Equations (19) and (20), we have

BCP(A,B) = min
i,j∈[r],t∈[k]

CP(ft(Ai) ∪ ft(Bj)). (28)

Hence, we can use quantum minimum-finding algorithm in Theorem 15 over the sub-problems
to find the minimum solution. For each sub-problem, we can run the algorithm for CP with
Mi,j,t as the input oracle.

4. Post-processing

In case that n is not divisible by n′, let the remaining points in A and B be Ares, Bres,
respectively. Then, we can use Grover search to find the closest pair between Ares and B,
and between Bres and A. Then, compare the answer to the previously computed result and
pick the smaller one.

Correctness

In this reduction, we do not change the constructions of the mappings {fi}i∈[k]. By [29],
Equation (28) is correct in the classical setting. Hence, it also holds in the quantum setting,
and we can use Grover search to find the minimum solution. However, since the algorithm
A for CP has success probability 2/3, for each tuple (i, j, t) ∈ [r]× [r]× [k], we need to run
AMi,j,t O(logn) times to boost the success probability to at least 1− 1

n . Then, by the union
bound, the probability that all queries in the Grover search are correct is at least 99/100.
Hence, by Theorem 9, the overall success probability is at least 2/3.

Running Time of the Reduction

The running time of the pre-processing step consists of two parts: (1) constructing the graph
G and its realization τ ; (2) finding k permutations. For the first part, by Theorem 31, it can
be done in n′2+o(1) time. For the second part, we pick k = O(2n′2 logn′

n′2−ε/2) = O(n′ε/2 logn′),
and by Lemma 33, it can be done in O(n′6 logn′) time. Hence, the total running time of
pre-processing step is n′2+o(1) +O(n′6 logn′) = Õ(n0.6).

The oracle construction can be done “on-the-fly”. More specifically, given the strings
{τAi , τBi }i∈[n′], and permutations {πi}i∈[k], for each query index u, we can simulate the oracle
Mi,j,t defined in Equation (23) in c(Mi,j,t) = O(d2) = (logn′)Ω(1) = Õ(1) time.

In the query process, for each CP instance indexed by (i, j, t), suppose AMi,j,t gets the
answer in time q(n′) = n′. Moreover, for each time A querying the input oracleMi,j,t, we
need to spend c(Mi,j,t) time to simulate the oracle. And we also have O(logn) runs for each
instance. Hence, the total running time for each CP is at most

n′1−ε · Õ(1) ·O(logn) = Õ(n′1−ε). (29)

Then, we use Grover’s search algorithm over r2 · k instances, which can be done by querying
Õ(
√
r2 · k) instances by Theorem 9. Therefore, for any ε > 0, we have

Õ(
√
r2k) · q(n′)1−ε · c(Mi,j,t) ·O(logn) = Õ(

√
(n/n′)2k · (n′)1−ε) (30)

≤ Õ(n · (n′)−ε) ≤ Õ(n · n−ε/2) ≤ n1−δ, (31)

where the first inequality follows from k = O(n′ε/2 logn′) as shown in [29] and the last
inequality follows by setting δ = ε/10.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:17

For the post-processing step, the sizes of Ares and Bres are at most n′. The running
time is

O(
√
n · n′ · logn) ≤ Õ(n0.55). (32)

Therefore, for any ε > 0, there exists a δ > 0 such that the Equation (30) holds and the
total reduction time is O(n1−δ). By Definition 25, BCPn,d1 can be quantum fine-grained
reduced to CPn,d2 . This completes the proof of this lemma. J

Finally, we show that (OVn,d, n) ≤QFG (BCPn,d′ , n) by quantizing the reduction in [29]
following the same idea.

I Lemma 34. For d = Θ(logn),

(OVn,d, n) ≤QFG (BCPn,d′ , n), (33)

where d′ = Θ(logn).

Proof. For an OV instance with sets of vectors A and B, let OOV be the input oracle such
that:

OOV |i〉 |0〉 =

|i〉 |ai〉 if i ∈ A,

|i〉 |bi〉 if i ∈ B.
(34)

where ai, bi ∈ {0, 1}d.
Then, similar to the classical reduction, we can construct mappings fA, fB : {0, 1}d →

{0, 1}5d such that

fA(ai)5j−4:5j =

11000 if ai(j) = 0

00110 if ai(j) = 1
∀j ∈ [d], (35)

and

fB(bi)5j−4:5j =

10100 if bi(j) = 0,

01001 if bi(j) = 1.
∀j ∈ [d]. (36)

By the classical reduction, we have

OV(A,B) = 1 if and only if BCP(fA(A), fB(B)) = 2d (37)

under Hamming distance.
Also, note that we can simulate the input oracle OBCP by first querying the oracle OOV

to get the vector, then applying the corresponding mapping fA or fB , which can be done in
c(OBCP) = O(d) time. Let the running time of the algorithm for BCP be q(n) = n. Then for
any ε > 0,

q(n)1−ε · c(OBCP) = n1−ε ·Θ(logn) ≤ n1−δ (38)

for some small δ > 0. Hence, by Definition 25, (OVn,d, n) ≤QFG (BCPn,d′ , n). J

Proof of Theorem 26. We can prove the theorem by contradiction following Lemma 27,
Lemma 34, and Lemma 28. Specifically, suppose that there exists an ε > 0, for all d = Θ(logn),
there exists a quantum algorithm which can solve OV in time O(n1−ε). Then, we can obtain
a quantum algorithm for CNF-SAT, which runs in time O(2n/2(1−ε)) by Lemma 27. This
contradicts QSETH. The proof for CP is the same. J

CCC 2020

16:18 On the Quantum Complexity of Closest Pair and Related Problems

3.3 Quantum lower bound for BCP in nearly-constant dimensions
under QSETH

A byproduct of the previous subsection is a quantum lower bound for BCP in higher dimensions
(i.e., d = polylog(n)) under QSETH (Lemma 34). In this subsection, we show that this
quantum lower bound for BCP even holds for nearly-constant dimensions (i.e., d = clog∗(n)).
The main result of this subsection is the following theorem.

I Theorem 35. Assuming QSETH, there is a constant c such that BCP in clog∗(n) dimensions
requires n1−o(1) time for any quantum algorithm.

We will “quantize” the results by Chen [17] to prove this theorem. More specifically, we
first show a quantum fine-grained self-reduction of OV from logn dimensions with binary
entries to 2log∗(n) dimensions with integer entries (Z -OV). Then, we give a quantum fine-
grained reduction from Z -OV to BCP in nearly-constant dimensions.

I Definition 36 (Integral Orthogonal Vector, Z -OV). Given two sets A,B of n vectors in Zd,
find a pair of vectors a ∈ A and b ∈ B such that 〈a, b〉 = 0, where the inner product is taken
in Z.

We use Z -OVn,d to denote Z -OV with n vectors of d dimension in each set. We then
recap a theorem in [17]:

I Theorem 37 ([17, Theorem 4.1]). Let b, ` be two sufficiently large integers. There is a
classical reduction ψb,` : {0, 1}b·` → Z` and a set Vb,` ⊆ Z, such that for every x, y ∈ {0, 1}b·`,

〈x, y〉 = 0 ⇔ 〈ψb,`(x), ψb,`(y)〉 ∈ Vb,` (39)

and

0 ≤ ψb,`(x)i < `6
log∗(b)·b (40)

for all possible x and i ∈ [`]. Moreover, the computation of ψb,`(x) takes poly(b · `) time, and
the set Vb,` can be constructed in O

(
`O(6log∗(b)·b) · poly(b · `)

)
time.

Note that the size of Vb,` is at most `2·6log∗(b)·b+1. The following lemma gives a quantum
fine-grained reduction from OV to Z -OV:

I Lemma 38. For d = Θ(logn),

(OVn,d, n) ≤QFG (Z -OVn,d′ , n). (41)

where d′ = 2O(log∗ n2).

Proof. Consider an OVn,d with d = c · logn, where c is an arbitrary constant. We choose
` := 7log∗ n and b := d/`. Then, we can apply Theorem 37 to get the mapping function ψb,`
and the set Vb,`. For each v ∈ Vb,`, we’ll construct an instance of Z -OVn,`+1 as follows:
1. Let |i〉 be the input query index of Z -OVn,`+1.
2. Query OVn,d’s input oracle OOV and get the vector |i, x〉.
3. Compute the mapping ψb,` and get |i, x〉 |ψb,`(x)〉.
4. If x ∈ A, then attach 1 to the end of the register: |i, x〉 |ψb,`(x), 1〉. If x ∈ B, then attach
−v to the end: |i, x〉 |ψb,`(x),−v〉.

5. Use OOV to erase x and return the final input state |i〉 |ψb,`(x), 1〉 or |i〉 |ψb,`(x),−v〉.
For each instance, we can use the quantum oracle for Z -OVn,`+1 to check the orthogonality.
OVn,d is YES if and only if there exists a YES-instance of Z -OVn,`+1.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:19

Correctness

The correctness follows from Equation (39):

〈x, y〉 = 0⇔ 〈ψb,`(x), ψb,`(y)〉 = v ∈ Vb,` ⇔ 〈[ψb,`(x), 1], [ψb,`(y), −v]〉 = 0. (42)

Reduction time

Note that for ` = 7log∗ n and b = d/`, we have:

log
(
`O(6log∗(d)·b)

)
= log ` ·O

(
6log∗(d) · (d/`)

)
(43)

= O
(

log∗(n) · 6log∗ n · c logn/7log∗ n
)

(44)

= o(logn). (45)

This implies that |Vb,`| ≤ `2·6
log∗(b)·b+1 ≤ no(1). Hence, the number of Z -OVn,`+1 instances

is no(1) and the running time for compute Vb,` is no(1). And for each input query, the oracle
for Z -OVn,`+1 can be simulated in c(OZ -OV) = poly(d) = poly(logn) time. We can show
that for every ε > 0, if Z -OVn,`+1 can be decided in n1−ε time, then∑

v∈Vb,`

n1−ε · c(OZ -OV) = no(1) · n1−ε · poly(logn) ≤ n1−δ (46)

for some δ > 0, which satisfies the definition of quantum fine-grained reduction (Definition 25).
Therefore, OVn,O(logn) is quantum fine-grained reducible to Z -OVn,2O(log∗(n)) . J

Then, we give a quantum fine-grained reduction from Z -OV to BCP:

I Lemma 39. For d = 2O(log∗ n),

(Z -OVn,d, n) ≤QFG (BCPn,d′). (47)

where d′ = d2 + 2.

Proof. We remark here that this proof closely follows that for Theorem 4.3 in [17]. We
nonetheless give it here as some details are different.

For an Z -OVn,d instance with (k · logn)-bit entries, we construct a BCP instance as
follows:
1. For x ∈ A, construct a vector x′ ∈ Zd

2
such that x′i,j = xi · xj . Here, we index a

d2-dimensional vector by [d]× [d]. Similarly, for y ∈ B, construct a vector y′ ∈ Zd
2
such

that y′i,j = −yi · yj .
2. Choose W := (d2 + 1) · n4k. For each x′, construct a vector x′′ ∈ Rd2+2 such that

x′′ =
[
x′,

√
W − ‖x′‖22, 0

]
. (48)

For each y′, construct a vector y′′ ∈ Rd2+2 such that

y′′ =
[
y′, 0,

√
W − ‖y′‖22

]
. (49)

Then, we claim that the Z -OV instance is YES if and only if the BCP instance has the
minimum distance ≤

√
2W .

CCC 2020

16:20 On the Quantum Complexity of Closest Pair and Related Problems

Correctness

First note that ‖x′‖22 ≤ d2 · (2k logn)4 = d2 · n4k. Hence, W − ‖x′‖22 > 0 and W − ‖y′‖22 > 0.
For any x′′ and y′′ in the new constructed instance of BCP, we have

‖x′′ − y′′‖22 = ‖x′′‖22 + ‖y′′‖22 − 2 · 〈x′′, y′′〉 (50)
= 2 ·W − 2 · 〈x′, y′〉 (51)

= 2 ·W − 2 ·
∑

(i,j)∈[d]×[d]

xi · xj · (−yj · yj) (52)

= 2 ·W + 2 · (〈x, y〉)2. (53)

Hence,

〈x, y〉 = 0 ⇔ ‖x′′ − y′′‖22 = 2W. (54)

Reduction time

We can see from the above description that the input mapping function is simple and can
be computed by a small quantum circuit in O(d2) = O(2O(log∗(n))) time. Hence, we have
c(OBCP) = O(2O(log∗(n))). Also, by Definition 25, it’s easy to check that this is indeed a
quantum fine-grained reduction from Z -OV to BCP. J

Now Theorem 35 follows immediately from Lemma 38 and Lemma 39:

Proof of Theorem 35. Let ε > 0 be some constant. Suppose we can solve BCPn,clog∗(n) in
n1−ε time for all constant c > 0. Then, by Lemma 38 and Lemma 39, we can also solve
OVn,c′ logn in n1−δ time for some δ > 0 and any c′ > 0. However, this contradicts QSETH
by Theorem 26. Therefore, assuming QSETH, there exists a constant c such that BCPn,clog∗(n)

requires n1−o(1) time. J

4 Closest pair in constant dimension

In this section, we show that there exist almost-optimal quantum algorithms for CP in
constant dimension. The main result is the following theorem, which is a direct consequence
of Corollary 55 and Theorem 56.

I Theorem 40. For any constant dimension, the quantum time complexity for CP is Θ̃(n2/3).

Our approach to solve CP is first reducing to the decision version of the problem, and
then apply quantum walk algorithms to solve the decision version. We define the decision
version of CP, CPε, as follows.

I Definition 41 (CPε). Given a set of points P ⊂ Rd and ε ∈ R, find a pair a, b ∈ P such
that ‖a− b‖ ≤ ε if there is one and returns no is no such pair exists.

The reduction from CP to CPε is given by the following lemma.

I Lemma 42. Let m be the number of bits needed to encode each coordinate as a bit string
and d be the dimension. Given an oracle O for CPε, there exists an algorithm AO that runs
in time and query complexity O(m+ log d) that solves the CP.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:21

Proof. Let (P, δ) be an instance of the CP. We first pick an arbitrary pair a0, b0 ∈ P and
compute ∆(a0, b0). Then, we set ε to be ∆(a0, b0)/2 and run the oracle O to check whether
there exists a distinct pair with distance less than ∆(a0, b0)/2 or not. If there exists such a
pair, which we denote as (a1, b1), then we set ε = ∆(a1, b1) and call O to check again. If
there is no such pair, then we set ε = 3∆(a0, b0)/4 and call O. We run this binary search for
m+ log d iterations. Finally, the algorithm outputs the closest pair. J

In classical setting, point location is an important step in solving the closest-pair problem,
especially the dynamic version. For the quantum algorithm, as walking on the Markov chain,
we repeatedly delete a point and add a new point. Hence, in each step, the first thing is to
determine the location of the new added point.

For simplicity, we assume that m = O(logn), which is the number of digits of each
coordinate of the points. By translation, we can further assume that all the points are lying
in [0, L]d, where L = O(2m) = poly(n).

Since we are considering CPε, one simple way of point location is to discretize the whole
space into a hypergrid, which is defined as follows:

I Definition 43. Let d, ε, L > 0. A hypergrid Gd,ε,L in the space [0, L]d consists of all ε-boxes

g := [a1, b1)× [a2, b2)× · · · × [ad, bd), (55)

such that b1 − a1 = · · · = bd − ad = ε/
√
d VII, and ai is divisible by ε for all i ∈ [d].

For each point pi ∈ [0, L]d, we can identify the ε-box that contains it using the function
id(pi) : [0, L]d → {0, 1}d log(L/ε):

id(pi) =
(
bpi(1)/wc , bpi(2)/wc , . . . , bpi(d)/wc

)
, (56)

where w = ε√
d
is the width of the ε-box. The number of bits to store id(pi) is d · log(L/w) =

O(d · log(L)). Since all the points in an ε-box have the same id, we also use this g(id(p)) to
denote this ε-box containing p.

For the ease of our analysis, we define the neighbors of a hypergrid.

I Definition 44. Let ε ∈ R. Let g1, g2 be two ε-boxes in a hypergrid where id(g1) =
(x1, . . . , xd) and id(g2) = (x′1, . . . , x′d). We say that g1 and g2 are each other’s ε-neighbor if√√√√ d∑

i=1
‖xi − x′i‖2 ≤ ε (57)

Note that the number of ε-neighbors of a ε-box is at most (2
√
d+ 1)d. We also have the

following observation:

I Observation 45. Let p1, p2 ∈ [0, L]d be any two distinct points.
If p1 and p2 are in the same ε-box, then ∆(p1, p2) ≤ ε.
If ∆(p1, p2) ≤ ε, then g(id(p1)) must be an ε-neighbor of g(id(p2)).

To solve CPε with quantum walk, we need data structures to keep track of the pairs that
have distance at most ε. The desired data structure should have size Õ(n2/3), insertion/dele-
tion time O(logn), and one should be able to check whether there exist pairs of distance at
most ε in time O(logn). In addition, as pointed out in [5], the data structure should have
the following two properties:

VIIThe diagonal length of an ε-box is ε.

CCC 2020

16:22 On the Quantum Complexity of Closest Pair and Related Problems

Figure 2 The uniquely represented radix tree that stores the keys {0011, 0101, 1100, 1101}.

the data structure should have the bounded worst-case performance rather than average-
case performance;
the representation of the data structure should be history-independent, i.e., the data is
uniquely represented regardless of the order of insertions and deletions.

We need the first property since the data structure may take too long for some operations,
and this is not acceptable. The second property is required because, otherwise, the interference
of quantum states would be messed up. In [5], a hash table and a skip list is used to for
solving the element distinctness problem using quantum walks. In [11], a simpler data
structure, namely, a radix tree, is used to achieve the same performance. More details of
using a radix tree to solve the element distinctness can be found in [28]. Similar to the
quantum data structure model in [5, 11, 28], we need the quantum random access gate to
efficiently access data from a quantum memory, whose operation is defined as:

|i, b, z1, . . . , zm〉 7→ |i, zi, z1, . . . , zi−1, b, zi+1, zm〉 , (58)

where |z1, . . . , zm〉 is some data in a quantum memory with m qubits. We assume this
operation takes O(logm) time.

In the remainder of this section, we present two quantum algorithms for solving CPε.
The data structures of both versions are based on the augmented radix tree, which we discuss
in detail in the following subsection.

4.1 Radix tree for at most one solution
The purpose of the augmented radix tree is to quickly locate the points in an ε-box given its
id. An ordinary radix tree is a binary tree that organizes a set of keys which are represented
as binary strings. Each edge is labeled by a substring of a key and each leaf is labeled by
a key such that concatenating all the labels on the path from the root to a leaf yields the
key for this leaf. In addition, for each internal node, the labels of the two edges connecting
to two children start with different bit. Note that in this definition, we implicitly merge all
internal nodes that have only one child. The radix tree is uniquely represented for any set of
keys. An example of a radix tree is shown as Figure 2.

Our basic radix tree is essentially the one in [11, 28] with modification on the nodes’
internal structure. We highlight the extra information stored in the radix tree. First we use
a local counter to store the number of points in this ε-box; second, we use a flag in each leaf
node to indicate whether there is a point in this ε-box that is in some pair with distance
at most ε. The flag bit in an internal node is the OR of the ones in its children. The local
counter in each internal node is the sum of the local counters in its children. We also store at

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:23

most two points that are in the ε-box corresponding to this node. More precisely, let S be a
subset of indices of the input points. We use τ(S) to denote the radix tree associated with S.
Then, τ(S) consists of at most rdlog re nodes. Each node consists of the following registers:

D ×M1 ×M2 ×M3 × C × F × P1 × P2, (59)

where D stores the id of an ε-box for a leaf (and a substring of an id for an internal node) using
O(d log(L/ε)) bits. M1,M2, andM3 use O(logn) bits to store the pointers to its parent,
left child, and right child, respectively as well as the labels of the three edges connecting them
to this node, O(logn) bits to store the labels of the three edges incident to it. C uses O(logn)
bits to store the local counter. F stores the flag bit. P1 and P2 stores the coordinates of
at most two points in this ε-box, which takes O(d logL) bits. The two points are stored in
ascending order of their indices.

We need to pay attention to the layout of τ(S) in memory. We use three times more bits
than needed to store τ(S), this will ensure that there are always more than 1/3 of the bits
that are free. We divide the memory into cells where each cell is large enough to store one leaf
node of τ(S). Besides τ(S), we also store a bitmap B, which takes O(logn) bits to encode
the current free cells (with “1” indicating occupied and “0” indicating free). To make the
radix tree history-independent, we use a quantum state which is the uniform superposition of
basis states |τ(S), B〉 for all possible valid layout of τ(S) and it corresponds to the bitmap B.

Insertion and deletion from τ(S) takes O(logn) time. Checking the presence of an ε-close
pair takes constant time – we just need to read the flag bit in the root. Preparing the uniform
superposition of all i ∈ S can be done in O(logn) time by performing a controlled-rotation
on each level of the radix tree where the angles are determined by the local counters in the
two children of a node.

In the following subsections, we present the two versions of our algorithms. The first
version invokes the quantum walk framework only once and its data structure maintains the
existence of an ε-close pair. The second version uses a much simpler data structure, but it is
only capable of handling CPε with a unique solution. Hence it requires invoking the quantum
walk framework multiple times to solve the general CPε. These two quantum algorithms
have almost the same time complexity.

4.2 Single-shot quantum walk with complicated data structure

To handle multiple solutions, our data structure is a composition of an augmented radix
tree, a hash table, and a skip list. We give a high-level overview of our data structure as
follows. Recall that by the discretization of the space into ε-boxes, it is possible that a pair
of points in different ε-boxes have distance at most ε, but one only needs to check (2

√
d+ 1)d

ε-neighbors to detect such a case. We maintain a list of points for each nonempty ε-box in
an efficient way. A hash table is used to store the tuple (i, pi) which is used to quickly find
the point pi, given its index i. The points are also stored in a skip list for each nonempty
ε-box, ordered by its index i, which allows for quick insertion and deletion of points. Each
ε-box is encoded into a unique key, and a radix tree is used to store such key-value pairs,
where the value is associated with a skip list. The flag bits in this radix tree maintain the
presence of an ε-close pair.

In the following, we present the details of the data structure and show it has all the
desired properties.

CCC 2020

16:24 On the Quantum Complexity of Closest Pair and Related Problems

Figure 3 An example of a skip list that stores {1, 2, 3, 4}.

Hash table

The hash table we use is almost the same as the one used in [5], except that we do not
store the blog rc counters in each bucket to facilitate the diffusion operator (which is handled
easily here in the quantum walk on a Johnson graph). Our hash table has r buckets, where
each bucket contains dlogne entries. We use a fixed hash function h(i) = bir/nc+ 1 to hash
{1, . . . , n} to {1, . . . , r}. That is, for j ∈ [r], the j-th bucket contains the entries for (i, pi) in
ascending order of i, where i ∈ S and h(i) = j.

The entry for (i, pi) contains the tuple (i, pi) and dlogne + 1 pointers to other entries.
These pointers are used in the skip list which we will describe below. The memory size of
each entry is hence O(log2 n+ d logL) and there are O(r logn) entries. Therefore, the hash
table uses O(rd log3(n+ dL)) qubits.

It is possible that more than dlogne points are hashed into the same bucket. However, as
shown in [5], this probability is small.

Skip list

The skip list we use closely follows that in [5], except that the elements pi in our skip list is
ordered by its index i. We construct a skip list for each ε-box containing at least one point
to store the points in it. For each i ∈ S, pi belongs to exactly one skip list. Also, for i ∈ S,
we randomly assign a level `i ∈ [0, . . . , `max] where `max = dlogne. The skip list associated
with a ε-box has `max + 1 lists, where the level-` list consists of all i ∈ S such that `i ≥ `

and pi is in this ε-box. Hence, the level-0 list consists of all i ∈ S for pi in this ε-box. Each
element of the level-` list has a specific pointer to the next element in this level, or to 0 if
there is no next element. Each skip list contains a start entry that does not contain any
(i, pi) information but `max + 1 pointers to the first element of the each level. This start
entry is stored in a leaf node of the augmented radix tree (which we will describe below)
corresponding to this ε-box. In each skip list, we do not allocate memory for each node.
Instead, each pointer is pointing to an entry of the hash table. The pointers are stored in the
hash table (for the internal entries of each level) and in the radix tree (for the start entry).
An example of a skip list is shown in Figure 3.

Given i ∈ S, we can search for pi as follows. We start from the start entry of the level-`max
list and traverse each element until we find the last element j`max such that j`max < i. Repeat
this for levels ``max−1, . . . , `0 and at each level start from the element that ended the previous
level. At level-0, we obtain the element j0. Then, the next element of j0 is where pi should
be located (if it is stored in this skip list) or be inserted.

Each i ∈ S is randomly assigned a level `i at the beginning of computation that does
not change during the computation. More specifically, `i = ` with probability 1/2`+1 for
` < `max and with probability 1/2`max for ` = `max. This can be achieved using `max

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:25

hash functions h1, . . . , h`max : [n] → {0, 1}. In this way, each i ∈ [n] has level ` < `max if
h1(i) = · · · = h`(i) = 1 but h`+1(i) = 0; and it has level `max if h(i) = · · · = h`max(i) = 1. In
this quantum algorithm, we use an extra register to hold the state |h1, . . . , h`max〉 which is
initialized to a uniform superposition of all possible such functions from a d-wise independent
family of hash functions (see [5, Theorem 1]) for d = d4 logn+ 1e. During the execution of
the quantum algorithm, a hash function from the hashing family is chosen depending on the
state in this register.

At first glance, the skip list has the same role as the hash table – finding pi given index i.
However, they have very different purposes in our algorithm. Recall that each nonempty
ε-box is associated with a skip list, which is used to quickly insert and delete a point in this
ε-box. The number of points in this ε-box can be as small as one and as large as r (in the
extreme case where all the points are in the same ε-box). Hence, we cannot afford to have a
fixed length data structure (such as a hash table or a sorted array) to store these points. In
addition, to support quick insertion and deletion, a skip list is a reasonable choice (against
an ordinary list). The purpose of the hash table can be viewed as a uniquely represented
memory storing all the r points that can be referred to by the skip lists.

Augmented radix tree

We augment the radix tree described in Section 4.1 to handle multiple solution. In this
augmented radix tree, we do not need the registers P1 and P2. Instead, we use dlogne
pointers L1, . . . ,Ldlogne as the start entry of a skip list. These pointers uses O(log2 n) bits.
In addition, we use an external counter in the leaf nodes to record whether there is a point
in other ε-boxes that is at most ε-away from a point in this ε-box, which uses O(logn) bits.
More formally, let τ ′(S) be the augmented radix tree associated with S. Each node of τ ′(S)
consists of the following registers

D ×M1 ×M2 ×M3 × E × C × F × E × L1 × · · · × Ldlogne. (60)

Next, we present how to perform the required operations on S with our data structure.

Checking for ε-close pairs

To check the existence of an ε-close pair, we just read the flag in the root of the radix tree.
If the flag is set, there is at most one ε-close pair in S, and no such pairs otherwise. This
operation takes O(1) time.

Insertion

Given (i, pi), we perform the insertion with the following steps:
1. Insert this tuple into the hash table.
2. Compute the id, id(pi), of the ε-box which pi belongs to. Denote this ε-box by g(id(pi)).
3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i into the skip list

corresponding to g(id(pi)); otherwise, first create a uniform superposition of the addresses
of all free cells into another register, then create a new tree node in the cell determined
by this address register and insert it into the tree. The pointers for the start entry of the
skip list is initially set to 0. Insert i into this skip list. Let τ ′(S, g(id(pi)) denote the leaf
node in τ ′(S) corresponding to g(id(pi)).

4. Increase the local counter C in τ ′(S, g(id(pi))) by 1.
5. Use Procedure 1 to update the external counters E and flags F in τ ′(S, g(id(pi))) as well

as in the leaf nodes corresponding to the neighbor ε-boxes of g(id(pi)).

CCC 2020

16:26 On the Quantum Complexity of Closest Pair and Related Problems

Note that the first step takes at most O(logn) time. The second step can be done in
O(d) time. In Procedure 1, the number of ε-neighbors to check is at most (2

√
d+ 1)d.

Procedure 1 Updating nodes for insertion.

input : (i, pi), The leaf node in τ ′(S) corresponding to the ε-box g(id(pi)), denoted
by, τ ′(S, g(id(pi))).

1 if the local counter C = 1 in τ ′(S, id(pi)) then
2 for all ε-box g′ that is a ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter C = 1 in τ ′(S, g′) and the distance between pi and the point in g′ is at
most ε do

3 Increase the external counter E of τ ′(S, g′) by 1;
4 Increase the external counter E of τ ′(S, g(id(pi))) by 1;
5 if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
6 Set the flag F in τ ′(S, g′) ;
7 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
8 end
9 end

10 if the external counter E > 1 in τ ′(S, g(id(pi))) then
11 Set the flag F in τ ′(S, g(id(pi))) ;
12 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
13 end
14 else if the local counter C = 2 in τ ′(S, id(pi)) then
15 Set the flag F in τ ′(S, g(id(pi))) ;
16 Update the flag F in the nodes along the path from τ ′(S, g(id(pi))) to the root of

τ ′(S) ;
17 Set the external counter E = 0 in τ ′(S, id(pi)) ;
18 Let i′ be the other index (than i) stored in the skip list corresponding to g(id(pi))

;
19 for all ε-box g′ that is a ε-neighbor of g(id(pi)) where the local counter C = 1 in

τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ε do
20 Decrease the external counter of τ ′(S, g′) by 1;
21 if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
22 Unset the flag F in τ ′(S, g′) ;
23 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
24 end
25 end
26 end

To obtain a uniform superposition of the addresses of all free cells, we first create a
uniform superposition of all possible addresses to access to the bitmap |B〉. We also use an
auxiliary register that is initialized to |0〉. Then, the quantum random access gate defined in
Equation (58) is applied on the register holding the uniform superposition of all addresses,
the auxiliary register, and the bitmap register, which is effectively a SWAP operation on the
second register and the corresponding bit in |B〉. The auxiliary register remains |0〉 if and

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:27

only if the address in the first register is free. Since the size of memory space is chosen so
that the probability of seeing a free cell is at least 1/3 (and we know exactly this probability
based on how many cells have already been used), we can add an extra register and apply a
one-qubit rotation to make the amplitude of the second register being |0〉 exactly 1/2. Hence,
using one iteration of the oblivious amplitude amplification (which is a generalized version
of Grover’s search algorithm. See [12] and [34]) with the second register being the indicator,
we obtain the uniform superposition of the addresses of all free cells. This cost if O(logn).

In [5], it was shown that with high probability, insertion into the skip list can be done in
O(d+ log4(n+ L)) time. Hence, with high probability, the insertion costs O(d+ log4(n+
L) + d(2

√
d+ 1)d) time, where O(d(2

√
d+ 1)d) is the time for checking neighbors. To further

reduce the running time, we can just stop the skip list’s insertion and deletion procedures
after O(d+ log4(n+ L)) time, which only causes little error (see Lemma 47).

Deletion

Given (i, pi), we perform the following steps to delete this tuple from our data structure.
1. Compute the id, id(pi), of the ε-box which pi belongs to, and denote this ε-box by

g(id(pi)).
2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to g(id(pi)).
3. Remove i from the skip list, and decrease the local counter C in τ ′(S, g(id(pi))) by 1.
4. Use Procedure 2 to update the external counters E and flags F in τ ′(S, g(id(pi))) as well

as in leaf nodes corresponding to the neighbor ε-boxes of g(id(pi)).
5. If the local counter C = 0 in this leaf node, remove τ ′(S, g(id(pi))) from τ ′(S), and update

the bitmap B in τ ′(S) that keeps track of all free memory cells.
6. Remove (i, pi) from the hash table.

Note that the first step can be done in O(d) time. The second step can be done in
O(logn) time. Procedure 2 has the same time complexity with Procedure 1. Hence, the cost
for the deletion procedure is the same as that for insertion.

Finding a ε-close pair

We just read the flag in the root of the radix tree and then go to a leaf whose flag is 1. Check
the local counter C of the node. if it is at least 2, output the first two elements in skip list.
Otherwise, we find the ε-neighbor of the current node whose C = 1 and then output the
points in that ε-neighbor and the current node.

Uniqueness

The uniqueness of our data structure follows from the analysis of [5, 11, 28]. More specifically,
the hash table is always stored in the same way, as each i ∈ S is stored in the same bucket
for the fixed hash function and in each bucket, elements are stored in ascending order of i.
The skip list is uniquely stored once the hash functions h1, . . . , h`max is determined. The
shape of the radix tree is unique for S, but each node can be stored in different locations in
memory. We use a uniform superposition of all possible memory organizations (by keeping
track of the bitmap for free cells) to keep the quantum state uniquely determined by S.

Correctness

In the following, we argue that our data structure has the desired properties. First, we prove
the correctness.

CCC 2020

16:28 On the Quantum Complexity of Closest Pair and Related Problems

Procedure 2 Updating nodes for deletion.

input : (i, pi), The leaf node in τ ′(S) corresponding to the ε-box g(id(pi)), denoted
by, τ ′(S, g(id(pi))).

1 if the local counter C = 0 in τ ′(S, id(pi)) then
2 Unset the flag F in τ ′(S, g(id(pi))) ;
3 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
4 Set the external counter E = 0 in τ ′(S, id(pi)) ;
5 for all ε-box g′ that is a ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter C = 1 in τ ′(S, g′) and the distance between pi and the point in g′ is at
most ε do

6 Decrease the external counter E of τ ′(S, g′) by 1;
7 if the external counter E in τ ′(S, g′) was decreased from 1 to 0 then
8 Unset the flag F in τ ′(S, g′) ;
9 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
10 end
11 end
12 else if the local counter C = 1 in τ ′(S, id(pi)) then
13 Let i′ be the only index stored in the skip list corresponding to g(id(pi)) ;
14 for all ε-box g′ that is a ε-neighbor of g(id(pi)) where the local counter C = 1 in

τ ′(S, g′) and the distance between pi′ and the point in g′ is at most ε do
15 Increase the external counter E of τ ′(S, g′) by 1;
16 Increase the external counter E of τ ′(S, g(id(pi))) by 1;
17 if the external counter E in τ ′(S, g′) was increased from 0 to 1 then
18 Set the flag F in τ ′(S, g′) ;
19 Update the flag F in the nodes along the path from τ ′(S, g′) to the root of

τ ′(S) ;
20 end
21 end
22 if the external counter E = 0 in τ ′(S, g(id(pi))) then
23 Unset the flag F in τ ′(S, g(id(pi))) ;
24 Update the flag F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
25 end
26 end

I Lemma 46. The flag bit in the root of τ ′(S) is set if and only if there exist distinct i, j ∈ S
such that |pi − pj | ≤ ε.

Proof. We show that after each insertion and deletion, the data structure maintains the
following conditions, and then lemma follows.
1. The flag bit of each leaf node of τ ′(S) is set if and only if either its local counter is at

least 2, or its external counter is at least 1.
2. The external counter of a leaf node τ ′(S, g′) is nonzero if and only if g′ contains only one

point p, and there exists another p′ in another ε-box g′′ such that |p− p′| ≤ ε.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:29

It is easy to check that the first condition is maintained for each insertion and deletion. We
show the second condition holds during insertions and deletion. For insertions, we consider
the first case where a point p is just inserted into the ε-grid g′, and p is its only point. The
first for-loop in Procedure 1 updates other ε-boxes that have only one point to maintain the
second condition. We consider the second case where g′ already contains p′ and p is just
inserted, then the external counter in g′ should be 0, and the second for-loop in Procedure 1
updates other ε-boxes that have only one point using the information of p′. This maintains
the second condition. For deletions, there are also two cases. First, consider p is the only
one point in g′ and it is just deleted. We use the first for-loop in Procedure 2 to update the
ε-boxes that has only one point using the information of p to maintain the second condition.
Second, there is another point p′ left in g′ after deleting p. In this case, we start to check the
external counter in g′. We use the second for-loop in Procedure 2 to check other ε-boxes
that have only one point using the information of p′ and update the corresponding external
counter to maintain the second condition. J

Imperfection of the data structures and error analysis

Our data structure is not perfect. As indicated by Ambainis [5], there are two possibilities
that it will fail. First, the hash table might overflow. Second, it might take more that dlogne
time to search in a skip list. To resolve the first problem, we fix the number of entries in each
bucket to be dlogne and treat any overflow as a failure. For the second problem, we stop
the subroutine for accessing the skip list after O(logn) steps, and it causes an error in some
cases. The original error analysis can be directly used in our case, as our hash table doesn’t
change the structure or the hash function, and our skip lists can be viewed as breaking the
skip list in [5] into several pieces (one for each nonempty ε-box), and each insertion/deletion
only involves one of them. Hence, the discussion in [5, Section 6] can be directly adapted to
our case:

I Lemma 47 (Adapted from [5]). Let |ψ〉 be the final state of our algorithm (with imperfect
data structures) and |ψ′〉 be the final state with the perfect data structure. Then ‖ |ψ〉−|ψ′〉 ‖ ≤
O(1/

√
n).

Sketch of proof. There are two places where the data structure may give error: first, the
hash table may have overflow, and second, the algorithm cannot find the required element
in the skip lists in the desired time. The original proof showed that the probability that
any of these errors happens is negligible, and thus the two-norm distance between |ψ〉 and
|ψ′〉 can be bounded. Here, our data structure combining hash table, skip list, and radix
tree, only has errors from hash tables and skip lists. The radix tree which has no error can
be viewed as applying additional unitaries on |ψ〉 and |ψ′〉, and this does not change the
distance between the two states. Since the probability that the errors from hash tables and
skip lists happen are negligible by following the same analysis in [5], we can conclude that
the two-norm distance between |ψ〉 and |ψ′〉 is small. J

Time complexity for CPε

We use the quantum walk framework reviewed in Section 2.5 to solve CPε. We first build the
Johnson graph for CPε, which is similar to that for ED in Section 2.5. The vertices of the
Johnson graph are S ⊆ [n] with |S| = n2/3 and S is marked if there exist distinct i, j ∈ S
such that ∆(pi, pj) ≤ ε. We use |S, d(S)〉 to represent the quantum state corresponding to S,
where d(S) is the data structure of S defined in Section 4.1. Consider the three operations:

CCC 2020

16:30 On the Quantum Complexity of Closest Pair and Related Problems

Steup: with cost S, preparing the initial state

|π〉 = 1√(
n

n2/3

) ∑
S⊆[n]:|S|=n2/3

√
πS |S, d(S)〉 . (61)

Update: with cost U, applying the transformation

|S, d(S)〉 |0〉 7→ |S, d(S)〉
∑

S′⊆[n]:|S∩S′|=n2/3−1

√
pSS′ |S′, d(S′)〉 , (62)

where pSS′ = 1
n2/3(n−n2/3) .

Checking: with cost C, applying the transformation:

|S, d(S)〉 7→

− |S, d(S)〉 if S ∈M

|S, d(S)〉 otherwise,
(63)

where M is the set of marked states.

We have the following result.

I Theorem 48. There exists a quantum algorithm that with high probability solves CPε with
time complexity O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)).

Proof. The Johnson graph has λ ≥ 1/n2/3 and the Markov chain has spectral gap δ ≥ 1/n2/3.
For the setup operation, S = O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)), since preparing the

uniform superposition for all |S〉 costs O(logn) Hadamard gates and we need to do n2/3

insertions to prepare the data structure. Each insertion costs O(d+log4(n+L)+d(2
√
d+1)d).

For the update operation, we can implement the quantum walk operator as described in [28]:
we use |S, d(S)〉 |i, j〉 to represent |S, d(S)〉 |S′, d(S′)〉 where S′ is obtained from S by adding
index i and removing index j. Then the diffusion can be implemented by preparing a uniform
superposition of all i ∈ S and a uniform superposition of all j 6∈ S, which takes time O(logn),
and the “SWAP” operation can be implemented by a unitary that maps |S, d(S)〉 |i, j〉
to |S′, d(S′)〉 |j, i〉. In this way, the update operation uses O(1) insertion and deletion to
construct d(S′) from d(S), and hence U = O(d+ log4(n+ L) + d(2

√
d+ 1)d). The checking

operation can be done in O(1) time with the data structure. Therefore, by Lemma 22, the
time complexity is O(S + 1√

λ
(1√

δ
U + C)) = O(n2/3(d+ log4(n+ L) + d(2

√
d+ 1)d)). J

By Lemma 42, we have the following corollary.

I Corollary 49. There exists a quantum algorithm that with high probability solves CP with
time complexity O(n2/3 · (d+ log4(n+ L) + d(2

√
d+ 1)d) · (m+ log d)).

I Remark 50. For d = O(1) dimension and m = O(logn) digits of each coordinate of the
points, the running time of the single-shot quantum algorithm is O(n2/3 · log5 n).

4.3 Multiple-trial quantum walks with simple data structure
In the previous subsection, we provide a quantum algorithm which solves CPε in time
O(n2/3(d + log4 n + d(2

√
d + 1)d)), where the logarithmic cost is mainly from the cost of

the skip list. In this section we present a quantum algorithm which only requires the radix
tree, and thus improve the running time. The caveat is that, with only the radix tree data
structure, the insertion would fail if there are more than one ε-close pairs. As a result,

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:31

we need to keep shrinking the size of the problem using [5, Algorithm 3] until there is a
unique solution with high probability, and then run the Õ(n2/3) quantum algorithm for this
unique-solution case.

In the following, we first show how to solve the unique-solution CPε, and then show the
reduction from the multiple-solution case to the unique-solution case.

I Lemma 51. There exists a quantum algorithm that with high probability solves the unique-
solution CPε with time complexity O(n2/3(logn+ d(2

√
d+ 1)d)).

Data structure for unique-solution

We use the radix tree τ(S) for S defined in Section 4.1. In the following, we describe the
necessary operations on τ(S).

Checking for ε-close pair

To check the existence of an ε-close pair, we just read the flag bit in the root of τ(S), which
takes O(1) time.

Insertion

Given (i, pi), we perform the following steps for insertion. First compute the id, id(pi), of
the ε-box which pi belongs to. Denote this ε-box by g(id(pi)). Using id(pi) as the key, check
if this key is already in τ(S). There are two cases:

id(pi) is already in τ(S): insert pi into τ(S, g(id(pi))), increase the local counter in
τ(S, g(id(pi))) by 1 and also set the flag. Then update the flag and local counter of the
nodes along the path from τ(S, g(id(pi))) to the root.
id(pi) is not in τ(S): create a new leaf node for id(pi) and insert it into τ(S). Insert
pi into this new leaf node, and increase the local counter in τ(S, g(id(pi))) by 1. Then,
check the ε-neighbors g′ of τ(S, g(id(pi))) that contains only one point p′ and set both
flags if pi is ε-close to p′, and in this case, update the flag bit and local counter on the
nodes along the paths from τ(S, g(id(pi))) and g′.

Deletion

Given (i, pi), we first compute the id, id(pi) of the ε-box that pi belongs to, and locate the
corresponding leaf node τ(S, g(id(pi))). Decrease the local counter in τ(S, g(id(pi))) by 1
and update the local counter in the nodes along the path from τ(S, g(id(pi))) to the root.
Check the number of points stored in τ(S, g(id(pi))). There are two possibilities:

There are two points in τ(S, g(id(pi))): unset the flag in τ(S, g(id(pi))) and update the
flag bit in the nodes along the path to the root and delete pi from τ(S, g(id(pi))).
pi is the only point in τ(S, g(id(pi))): check the ε-neighbors g′ of τ(S, g(id(pi))) that
contains only one point p′ and unset both flags if pi is ε-close to p′, and in this case,
update the flag bit on the nodes along the path from τ(S, g(id(pi))) and g′ to the root.
Delete pi from τ(S, g(id(pi))) and delete τ(S, g(id(pi))) from τ(S).

As in Section 4.2, we use a bitmap register |B〉 to keep track of the free cells in τ(S). For
insertion, we maintain a uniform superposition of all possible free cells to insert a new radix
tree node. For deletion, we update the bitmap |B〉 accordingly. This ensures the uniqueness
of the quantum data structure.

CCC 2020

16:32 On the Quantum Complexity of Closest Pair and Related Problems

The correctness of the data structure is straightforward, and the time complexity is
O(logn+d(2

√
d+1)d) for both insertion and deletion. Also, preparing a uniform superposition

for all i ∈ S costs O(logn) using the local counter in each node. By a similar analysis of
Theorem 48, we prove Lemma 51 as follows.

Proof of Lemma 51. The algorithm uses the framework in Lemma 22 with the data structure
we just described in this subsection, where U = O(logn + d(2

√
d + 1)d)), C = O(1) and

S = O(n2/3(logn + d(2
√
d + 1)d)). Therefore, the running time of the algorithm is as

claimed. J

Next, we show how to reduce multiple-solution CPε to unique-solution CPε. A high-level
overview of Ambainis’s reduction in [5] is the following. We run the algorithm for unique-
solution CPε several times on some random subsets of the given input. If the given subset
contains solutions, then with constant probability there exists a subset which contains exactly
one solution.

I Definition 52 ([5, 27]). Let F be a family of permutations on f : [n] → [n]. F is
ε-approximate d-wise independent if for any x1, . . . , xd ∈ [n] and for all y1, . . . , yd ∈ [n],

1− ε
n · (n− 1) · (n− d+ 1) ≤ Pr

[
n∧
i=1

fi(xi) = yi

]
≤ 1 + ε

n · (n− 1) · (n− d+ 1) . (64)

I Lemma 53 ([5, 27]). Let n be an even power of a prime number. For any t ≤ n, ε > 0,
there exists an ε-approximate t-wise independent family F = {πj |j ∈ [R]} of permutations
πj : [n]→ [n] such that:

R = O

((
nt

2 · ε−t
)3+o(1)

)
;

given i, j, πj(i) can be computed in time O(t log2 n).

The multiple-solution algorithm from [5] is as follows:

Algorithm 3 The algorithm for multiple ε-close pair.

input :Let (S, ε) be the input, and |S| = n.
1 Let T1 = S and j = 1;
2 while |Tj | > n2/3 do
3 Run the algorithm described in Lemma 51 on Tj , and Measure the final state. If

there is a pair with distance less than ε, output the pair and stop ;
4 Let qj be an even power of a prime with |Tj | ≤ qj ≤ (1 + 1

8)|Tj |. Select a random
permutation πj on [qj] from the 1

n -approximately 4 logn-wise independent
family of permutations as in Lemma 53 ;

5 Let

Tj+1 :=
{
π−1

1 · π−1
2 · · ·π

−1
j (i), i ∈

[⌈
4qj
5

⌉]}
. (65)

j ← j + 1 ;
6 end
7 If |Tj | ≤ n

2
3 , then run Grover’s search algorithm on Tj for a pair with distance at

most ε ;

We have the main result of this subsection:

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:33

I Theorem 54. There exists a quantum algorithm that with high probability solves CPε with
time complexity O(n2/3 · (logn+ d(2

√
d+ 1)d) · log3 n) = O(n2/3 · log4 n) for d = O(1).

Proof. We prove the running time of the algorithm here. For the correctness, one can
check [5] for the detail.

By Equation (65), the size of Tj+1 will be at most

4
5 · (1 + 1

8)|Tj | =
9
10 |Tj |. (66)

Therefore, the while-loop takes at most O(logn) iterations in the worst case. Let nj = |Tj |
be the size of the instance in the j-th iteration. Then, the unique-solution algorithm in
Procedure 3 runs in O(n2/3

j · (lognj + d(2
√
d+ 1)d))-time (Lemma 51), given an O(1)-time

access to the set Tj . However, in Procedure 3 each element of the random permutation can
be computed in time O(log3 n) according to Lemma 53 with t = 4 logn, which means the
unique-solution algorithm will take O(log3 n) time for each query to Tj . Note that we will
not actually compute the whole set Tj+1, as shown in Procedure 3, which takes too much
time. Hence, the running time for the j-th iteration is O(n2/3

j · (lognj +d(2
√
d+ 1)d) · log3 n).

And the total running time for the while-loop is

O(logn)∑
j=1

O(n2/3
j · (lognj + d(2

√
d+ 1)d) · log3 n) (67)

≤ O(n2/3 · (logn+ d(2
√
d+ 1)d) · log3 n) ·

O(logn)∑
j=0

(
9
10

)2j/3
(68)

= O(n2/3 · (logn+ d(2
√
d+ 1)d) · log3 n), (69)

where the first inequality follows from nj ≤ (9
10)j−1 · n. Finally, Procedure 3 runs in time

O(n2/3 logn). This completes the proof of the running time. J

To conclude the quantum algorithms for solving CP in constant dimension, we have the
following corollary that is a direct consequence of either Theorem 48 or Theorem 54.

I Corollary 55. For any d = O(1), there exists a quantum algorithm that, with high probability,
solves CPn,d in time Õ(n2/3).

4.4 Quantum lower bound for CP in constant dimensions

We can easily get an Ω(n2/3) lower bound for the quantum time complexity of CP in constant
dimension by reducing the element distinctness problem (ED) to CP.

I Theorem 56 (Folklore). The quantum time complexity of CP is Ω(n2/3).

Proof. We reduce ED to one dimensional CP by mapping the point i with value f(i) in ED
the point f(i) ∈ R in CP. If the closest pair has distance zero, we know there is a collision
f(i) = f(j). If the closest pair has distance greater or equal to one, we know there is no
collision. Therefore, ED’s Ω(n2/3) query lower bound by [1] translates into Ω(n2/3) time
lower bound for CP. J

CCC 2020

16:34 On the Quantum Complexity of Closest Pair and Related Problems

5 Bichromatic closest pair in constant dimensions

Classically, bichromatic closest pair problem is harder than the closest pair problem. In
constant dimension, the best algorithms for the closest pair problem are “nearly linear”,
while the algorithm by [3] for bichromatic closest pair problem is “barely subquadratic”,
running in O(n2−1/Θ(d))-time. In quantum, we found that BCP is still harder than CP in
constant dimension. In particular, we cannot adapt the quantum algorithm in previous
section for solving BCP because the data structure cannot distinguish the points from two
sets efficiently. We can only get a sub-linear time quantum algorithm for BCP using different
approach, which is a quadratic speed-up for the classical algorithm.

Nevertheless, we show that we can find an approximate solution for BCP with multiplic-
ative error 1 + ξ with quantum time complexity Θ̃(n2/3). The following theorem is a direct
consequence of Theorems 64 and 67.

I Theorem 57. For any fixed dimension and error ξ, there is a quantum algorithm which
can find an approximate solution for BCP with multiplicative error 1 + ξ in time Õ(n2/3).
Moreover, all quantum algorithms which can find an approximate solution for BCP with
arbitrary multiplicative error requires time Ω(n2/3).

Similar to solving CP, we reduce BCP to its decision version of the problem, and then
apply quantum algorithms to solve the decision problem. We define the decision problem as
BCPε.

I Definition 58 (BCPε). In BCPε, we are given two sets A,B of n points ∈ Rd and a
distance measure ∆. The goal is to find a pair of points a ∈ A, b ∈ B such that ∆(a, b) ≤ ε
if it exists and returns no if no such pair exists.

To address the approximate version of BCP, we also define the approximation version of
BCPε as follows:

I Definition 59 ((1 + ξ)-BCPε). In (1 + ξ)-BCPε, we are given two sets A,B of n points
∈ Rd, a distance measure ∆, and ξ. The goal is to do the following
1. If there exists a pair of points a ∈ A, b ∈ B such that ∆(a, b) ≤ ε, output the pair (a, b).
2. If for all pairs of points a ∈ A, b ∈ B, ∆(a, b) > (1 + ξ)ε, returns no.

Again, we consider ∆(a, b) = ‖a − b‖ as the distance measure in this work. We show
that BCP reduce to BCPε in time O(m + log d), where m is the number of digits of each
coordinate and d is the dimension.

I Lemma 60. Given an oracle O for (1 + ξ)-BCPε, there exists an algorithm AO that runs
in time and query complexity O(m+ log d) solves the (1 + ξ)-BCP.

Proof. Let (A,B, δ) be an instance of the (1 + ξ)-BCP. We first pick an arbitrary pair
a0 ∈ A, b0 ∈ B and computes ∆(a0, b0). Then, we set ε to be ∆(a0, b0)/2 and run the oracle
O to check whether there exists a distinct pair which distance is less than ∆(a0, b0)/2 or not.
If there exists such a pair, which we denote as (a1, b1), then we set ε = ∆(a1, b1) and call
O to check again. If there is no such a pair, then we set ε = 3∆(a0, b0)/4 and call O. We
continuously run this binary search for m+ log d iterations. Finally, the algorithm outputs
the bichromatic closest pair. J

In the subsections, we present a quantum algorithm for solving (1+ξ)-BCP and a quantum
algorithm for exact BCP. To complement the algorithmic results, we also give quantum lower
bound for BCP.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:35

5.1 Quantum algorithm for (1 + ξ)-BCP
The quantum algorithm is based on the quantum walk framework on a tensor product of
Johnson graphs. To begin with, we define the Johnson graphs JA and JB for A and B,
respectively. The vertices of JA, denoted by XA, is defined as the set {S ⊆ A : |S| = n2/3}.
There is an edge connecting S and S′ if and only if |S ∩ S′| = n2/3 − 1. The Markov chain
MA is defined on XA with pSS′ = 1

n2/3(n−n2/3) when S and S′ are connected by an edge.
The Johnson graph for JB for B and its corresponding Markov chain can be defined similarly.
The tensor product MA ⊗MB is defined as the Markov chain based on XA ×XB defined as

XA ×XB := {(SA, SB) : SA ∈ XA, SB ∈ XB}, (70)

with transition probability

p(SA,SB)(S′
A
,S′
B

) = pSAS′A · pSBS′B . (71)

A state (SA, SB) is marked if there exists a pair a ∈ SA and b ∈ SB such that ∆(a, b) ≤ ε.

Now, we examine the properties of MA ⊗MB . It is easy to see that λ = (n−1
n2/3−1)

2

(n

n2/3)2 = 1
n2/3 .

Let δA and δB be the spectral gap of MA and MB respectively. As a result of [6, Lemma
21.17], δ ≥ min{δA, δB} = 1

n2/3 . By Lemma 22, the cost for solving (1 + ξ)-BCPε is
O(S + n1/3(n1/3U + C)), where S, U and C are the cost of quantum operations defined in
Section 4.2. Before describing the data structure to achieve meaningful S,U, and C, we
first introduce a finer discretization scheme. In Section 4, we used a hypergrid consisting of
ε-boxes. Here, we discretize the space [0, L]d as a hypergrid consisting of ξε

2
√
d
-boxes. The

following lemma guarantees that distance between a ξε

2
√
d
-box and its ε-neighbor is at most

(1 + ξ)ε.

I Lemma 61. Let g and g′ be ξε

2
√
d
-boxes. If g and g′ are ε-neighbors, then for all p ∈ g and

p′ ∈ g′, ∆(p, p′) ≤ (1 + ξ)ε.

Proof. Recall the definition of the id function in Equation (56). id(g) can be treated as a
point, and we can measure the distance between id(g) and other points. The lemma can be
proven via the triangle inequality:

∆(p, p′) ≤ ∆(p, id(g)) + ∆(id(g), id(g′)) + ∆(p′, id(g′) ≤ ξε

2 + ε+ ξε

2 ≤ (1 + ξ)ε. (72)

J

In our algorithm, we need to search for all ε-neighbors that contain the other color to
report an ε-close pair (with an multiplicative error ξ). It’s easy to see that the number of
neighbors of a box is bounded in terms of d and ξ:

B Claim 62. For each ξε

2
√
d
-box, the number of ε-neighbors is at most

(
4
√
d/ξ + 1

)d.
Based on this finer discretization scheme, we use the data structure defined in Section 4.2

but with simple modifications on the radix tree. Instead of using L1, . . . ,Ldlogne as the start
entry of the skip list, we use dlogne pointers for both sets A and B. We also need local
counters CA and CB for both colors. Now, each node in the radix tree has the following
registers:

D ×M1 ×M2 ×M3 × EA × EB × CA × CB×
F × LA1 × · · · × LAdlogne × L

B
1 × · · · × LBdlogne. (73)

CCC 2020

16:36 On the Quantum Complexity of Closest Pair and Related Problems

The points in A (or B, respectively) is organized by the skip list for A (or B, respectively).
The insertion and deletion operations are similar to the data structure in Section 4.2, but in
the procedure for updating the local and external counters and checking ε-neighbors, we need
to consider points of the other color. We formally describe the two procedures as follows.

Insertion

Given a point (i, pi, x), where x ∈ {A,B} denotes the color. We perform the insertion with
the following steps:
1. Insert this tuple into the hash table corresponding to x.
2. Compute the id, id(pi), of the ξε√

d
-box which pi belongs to and denote it by g(id(pi)).

3. Using id(pi) as the key, check if this key is already in τ ′(S), if so, insert i into the skip list
for color x corresponding to g(id(pi)); otherwise, first create a uniform superposition of
the addresses of all free cells into another register, then create a new tree node in the cell
determined by this address register and insert it into the tree. The pointer for the start
entry of the skip list is initially set to 0. Insert i into this skip list. Let τ ′(S, g(id(pi))
denote the leaf node in τ ′(S) corresponding to g(id(pi)).

4. Increase the local counter Cx in τ ′(S, g(id(pi))) by 1.
5. Use Procedure 4 to update the external counters Ex, E x̄ (here x̄ denotes the other color

than x) and flags F in τ ′(S, g(id(pi))), the leaf nodes which are corresponding to the
ε-neighbors of g(id(pi)), and their parent nodes.

Note that the first step takes at most O(logn) time. The second step can be done in O(d)
time. In Procedure 4, the number of ε-neighbors to check is at most (4

√
d
ξ + 1)d by Claim 62.

Deletion

Given (i, pi, x), we perform the following steps to delete this tuple from our data structure.
1. Compute the id, id(pi), of the εξ√

d
-box which pi belongs to and denote it by g(id(pi)).

2. Using id(pi) as the key, we find the leaf node in τ ′(S) that is corresponding to g(id(pi)).
3. Remove i from the skip list for color x, and decrease the local counter Cx in τ ′(S, g(id(pi)))

by 1.
4. Use Procedure 2 to update the external counters Ex and E x̄ (here x̄ denote the other

color than x) and flags F in τ ′(S, g(id(pi))) as well as in leaf nodes corresponding to the
ε-neighbors of g(id(pi)).

5. If both local counters Cx, Cx̄ in this leaf node are 0, remove τ ′(S, g(id(pi))) from τ ′(S),
and update the bitmap B in τ ′(S) that keeps track of all free memory cells.

6. Remove (i, pi, x) from the hash table.

Note that the first step can be done in O(d) time. The second step can be done in
O(logn) time. Procedure 5 has the same time complexity with Procedure 4. Hence, the cost
for the deletion procedure is the same with that for insertion.

Checking for (1 + ξ)ε-close pairs

To check the existence of an (1 + ξ)ε-close pair, we just read the flag in the root of the radix
tree. If the flag is set, there is at most one ε-close pair in S, and no such pairs otherwise.
This operation takes O(1) time.

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:37

Procedure 4 Updating nodes for insertion for the bichromatic case.

input : (i, pi, x), the leaf node in τ ′(S) corresponding to g(id(pi)), denoted by
τ ′(S, g(id(pi))).

1 Let x̄ ∈ {A,B} and x̄ 6= x;
2 if Cx = 1 in τ ′(S, id(pi)) and Cx̄ = 0 then
3 for all ε-neighbor g′ (see Definition 44) of g(id(pi)) where Cx̄ ≥ 1 in τ ′(S, g′) do
4 Increase Ex of τ ′(S, g′) by 1;
5 Increase E x̄ of τ ′(S, g(id(pi))) by 1;
6 if Ex in τ ′(S, g′) was increased from 0 to 1 then
7 Set the flag F in τ ′(S, g′) ;
8 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
9 end

10 end
11 if E x̄ ≥ 1 in τ ′(S, g(id(pi))) then
12 Set the flag F in τ ′(S, g(id(pi))) ;
13 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root

of τ ′(S) ;
14 end
15 else if Cx = 1 and Cx̄ ≥ 1 in τ ′(S, g(id(pi))) then
16 Set the flag F in τ ′(S, g(id(pi))) ;
17 Update the flags F in the nodes along the path from τ ′(S, g(id(pi))) to the root

of τ ′(S) ;
18 Set E x̄ = 0 in τ ′(S, id(pi)) ;
19 for all g′ that is an ε-neighbor of g(id(pi)) where the the local counter Cx̄ ≥ 1 in

τ ′(S, g′) do
20 Decrease Ex of τ ′(S, g′) by 1;
21 if Ex in τ ′(S, g′) was decreased from 1 to 0 then
22 Unset the flag F in τ ′(S, g′) ;
23 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
24 end
25 end
26 end

Finding a (1 + ξ)ε-close pair

We just read the flag in the root of the radix tree and then go to a leaf which flag is 1. Check
the local counters of the node. If both local counters are at least 1, output the first elements
in skip lists for A and the first element in the skip list for B. Otherwise, check the external
counters. Suppose EA is non-zero. Then we find the ε-neighbor of the current node whose
CB > 0 and output the first point in the skip list of A of the current node and the first
element in the skip list of B of the ε-neighbor.

We have the following result.

I Theorem 63. For any fixed dimension and fixed ξ, there exists a quantum algorithm that,
with high probability, can solve (1 + ξ)-BCPε in time O(n2/3(d+ log4(n+L) + d(4

√
d
ξ + 1)d)).

CCC 2020

16:38 On the Quantum Complexity of Closest Pair and Related Problems

Procedure 5 Updating nodes for deletion for the bichromatic case.

input : (i, pi, x) from A, the leaf node in τ ′(S) corresponding to g(id(pi)), which we
denote as τ ′(S, g(id(pi))).

1 Let x̄ ∈ {A,B} and x̄ 6= x;
2 if Cx and Cx̄ in τ ′(S, id(pi)) = 0 then
3 Unset the flag F in τ ′(S, g(id(pi))) ;
4 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root of

τ ′(S) ;
5 Set Ex = 0 and E x̄ = 0 in τ ′(S, id(pi)) ;
6 for all g′ that is an ε-neighbor (see Definition 44) of g(id(pi)) where the local

counter Cx̄ ≥ 1 in τ ′(S, g′) do
7 Decrease Ex of τ ′(S, g′) by 1;
8 if Ex in τ ′(S, g′) was decreased from 1 to 0 then
9 Unset the flag F in τ ′(S, g′) ;

10 Update the flags F in the nodes along the path from τ ′(S, g′) to the root
of τ ′(S) ;

11 end
12 end
13 else if Cx = 0 and Cx̄ ≥ 1 then
14 for all g′ that is an ε-neighbor of g(id(pi)) where the local counter Cx ≥ 1 in

τ ′(S, g′) do
15 Increase E x̄ of τ ′(S, g′) by 1;
16 Increase Ex of τ ′(S, g(id(pi))) by 1;
17 if E x̄ in τ ′(S, g′) was increased from 0 to 1 then
18 Set the flag F in τ ′(S, g′) ;
19 Update the flags F in the nodes along the path from τ ′(S, g′) to the root

of τ ′(S) ;
20 end
21 end
22 if Ex = 0 in τ ′(S, g(id(pi))) then
23 Unset the flag F in τ ′(S, g(id(pi))) ;
24 Update the flags F in the nodes along the path from τ ′(S, id(pi)) to the root

of τ ′(S) ;
25 end
26 end

Proof. The proof closely follows the analysis for Theorem 48, and the correctness of the data
structure and the time complexity of its operations follow from the discussion in Section 4.2.
Note that our algorithm will output a pair which belong to the same ξε

2
√
d
-box or two of

them that are ε-neighbors. Based on Lemma 61, two points which corresponding hyercubes
are ε-neighbors have distance at most (1 + ξ)ε. Therefore, our algorithm could output a
pair of points which distance is at most (1 + ξ)ε. Another difference is that here we need
to search at most (4

√
d/ξ + 1)d neighbors during insertions and deletions. As a result,

U = O(d+ log4(n+L) + d(4
√
d/ξ + 1)d), and S = O(n2/3(d+ log4(n+L) + d(4

√
d/ξ + 1)d).

Again, C = O(1), δ ≥ 1/n2/3, and λ ≥ 1/n2/3. Therefore, by Lemma 22, the total cost is
O(S + 1√

λ
(1√

δ
U + C)) = O(n2/3(d+ log4(n+ L) + (4

√
d/ξ + 1)d)). J

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:39

By Lemma 60 and the above Theorem 63, we have the following theorem:

I Theorem 64. For an fixed dimension and fixed ξ, there exists a quantum algorithm that,
with high probability, can solve (1 + ξ)-BCP in time Õ(n2/3).

5.2 Quantum algorithm for solving BCP exactly
In this subsection, we present a quantum algorithm for solving BCP exactly. The main
idea of this algorithm is to partition A into smaller subsets. Then we build data structures
which support nearest-neighbor search on all subsets in superposition. We use the quantum
minimum finding algorithm to find the smallest distances from B to each subset, among
which we use the quantum minimum finding algorithm again to find the smallest distance.

Unlike the data structure for solving CP, the data structure for BCP does not have to
be uniquely represented, as no insertion and deletion are performed in this algorithm. The
data structure can have expected running time instead of the worst-case running time. The
total worst-case running time can be bounded by standard techniques. The nearest-neighbor
search data structure we use is from [19], and is reformulated in the following lemma.

I Lemma 65 ([19]). For any fixed dimension, there exists a data structure for n points in
Rd that can be built in expected time complexity O(ndd/2e+δ) for arbitrarily small δ and the
nearest-neighbor search can be performed in worst-case time complexity O(logn).

This data structure is based on the Voronoi diagram and its triangulation in higher
dimensions. Using this data structure, we have a quantum algorithm for solving BCP exactly,
which yields the following theorem.

I Theorem 66. There exists a quantum algorithm that, with high probability, solves BCP
for dimension d with time complexity Õ

(
n1− 1

2d+δ
)
for arbitrarily small δ.

Proof. We first partition A into dn/re subsets S1, . . . , Sdn/re, where |Si| = r for i ∈
[
dn/re

]
.

(The value of r will be determined later). For all i ∈
[
dn/re

]
, we can find a closest pair

between Si and B as follows. First, a data structure as in Lemma 65 for Si is built in expected
time O

(
rdd/2e+δ

)
, which supports nearest-neighbor search in time O(logn). Then, we use

the quantum minimum finding subroutine (Theorem 9) which uses the distance reported by
the nearest-neighbor search as the oracle. The closest pair between Si and B can be found
in time complexity Õ(

√
n). Note that the time complexity for building the data structure is

not bounded for the worst case. However, using Markov’s inequality, we know that with high
probability, say, at least 9/10, the time complexity is bounded by O

(
rdd/2e+δ

)
. Hence, fixing

a constant c ≥ 10, and stop the data structure construction after c · rdd/2e+δ steps. With at
most 1/10 probability, the construction will fail and this event can be detected by checking the
solution returned by the quantum minimum finding subroutine. We run O(logn) instances
of above procedure in parallel and use take the quantum minimum of all the O(logn) results.
The probability that all these instances fail is at most (1/10)O(logn) = O(1/n). We refer to
the above procedure as the “inner search”, and its time complexity is O

(
rdd/2e+δ +

√
n
)
.

Next, we use the distance of the output of the inner search as the oracle and perform
another quantum minimum finding subroutine for i ∈

[
dn/re

]
. We refer to this procedure

as the “outer search”. The probability that the closest pair between A and B lies in Si and
B is r/n. As a result, the number of the oracle queries for the quantum minimum finding
subroutine is Õ(

√
n/r). The time complexity for each query is O

(
rdd/2e+δ +

√
n
)
. Therefore,

CCC 2020

16:40 On the Quantum Complexity of Closest Pair and Related Problems

the total time complexity is Õ
(
(rdd/2e+δ +

√
n) ·

√
n/r
)
. A simple calculation shows that

this achieves the minimum (ignoring the δ term in the exponent) when r = n1/d/(d− 1)2/d,
which yields the total time complexity

Õ
(
n1− 1

2d+δ
)
. (74)

The failure probability for each query is at most O(1/n). Therefore, the total failure
probability is at most O(

√
n/r/n) = O(n−(1/2−1/2d)) for d > 1, which can be smaller than

any constant. J

5.3 Quantum lower bound for BCP in constant dimensions
Now, we give a lower bound for (1 + ξ)-BCP, which trivially holds for BCP.

I Theorem 67. The quantum query complexity for solving BCP is Ω(n2/3). Furthermore,
the quantum query complexity for solving (1 + ξ)-BCP with an arbitrary ξ is also Ω(n2/3).

Proof. Recall that we have shown in Section 4.4 that ED reduces to CP by viewing ED as
one-dimensional CP with the minimum distance 0. It is not hard to see that ED also reduces
to approximate CP with multiplicative error 1 + ξ since 0 times 1 + ξ is still 0. For simplicity,
we denote approximate CP with multiplicative error 1 + ξ as (1 + ξ)-CP. Given a set S as
a (1 + ξ)-CP instance, we choose A,B ⊂ S uniformly at random such that A = S \B and
|A| = |B|. Then, with 1/2 probability, a closest pair in S has one point in A and another in
B. Therefore, if (a, b) be a valid solution for (1 + ξ)-BCP on (A,B), (a, b) is also a a valid
solution for (1 + ξ)-CP on S with probability 1/2.

It is obvious that following the same proof, CP reduces to BCP. Hence, the quantum
query complexity for BCP and (1 + ξ)-BCP are both Ω(n2/3). This completes the proof. J

6 Orthogonal vectors in constant dimensions

I Theorem 68. The time complexity of OVn,d (Definition 10) in quantum query model is
Θ(
√
n) when the dimension d is constant .

Proof. We show lower and upper bounds for OVn,d:

Lower bound

We reduce the search problem to an instance of 2-dimensional OV. Let all vectors in A be
(0, 1). We map an element of the search instance with value 0 as a vector in B with value
(0, 1) in OVn,2, and 1 as (1, 0). An orthogonal pair must contain the vector in B with value
(1, 0) in this construction. Therefore, if we find an orthogonal pair, we find the corresponding
marked (value 1) element in the search instance. The Ω(

√
n) lower bound of Grover’s search

algorithm gives an Ω(
√
n) lower bound to OVn,d.

Upper bound

The vectors only have 2d possible values, {0, 1}d, in the d-dimensional OV. For a particular
value v ∈ {0, 1}d, we can use Grover search to check whether there exist vector a ∈ A

such that a = v in time O(
√
n), and similarly for vectors in B. Therefore we can, for all

v ∈ {0, 1}d, check whether there exist a ∈ A such that a = v and b ∈ B such that b = v in
O(2d+1√n) time, recording the results as two 2d bit strings SA and SB . Then we check all

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:41

22d pairs of values (v, w) whether 〈v, w〉 = 0 , SA(v) = 1, and SB(w) = 1. When we found
such a pair (v, w), we use Grover’s search algorithm again to output a corresponding pair of
vectors. The total running time is O(2d+1√n+ 22d + 2

√
n) = Õ(

√
n). J

References
1 Scott Aaronson and Yaoyun Shi. Quantum Lower Bounds for the Collision and the Element

Distinctness Problems. J. ACM, 51(4):595–605, July 2004.
2 Amir Abboud, Ryan Williams, and Huacheng Yu. More Applications of the Polynomial Method

to Algorithm Design. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’15, pages 218–230, 2015.

3 Pankaj K. Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Euclidean
Minimum Spanning Trees and Bichromatic Closest Pairs. Discrete & Computational Geometry,
6(3):407–422, September 1991.

4 A. Ambainis. Quantum Search Algorithms. SIGACT News, 35(2):22–35, June 2004. doi:
10.1145/992287.992296.

5 Andris Ambainis. Quantum Walk Algorithm for Element Distinctness. SIAM Journal on
Computing, 37(1):210–239, 2007.

6 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

7 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the Fine-Grained Complexity of
Empirical Risk Minimization: Kernel Methods and Neural Networks. In Advances in Neural
Information Processing Systems, pages 4308–4318, 2017.

8 Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Proofs of Useful
Work. IACR Cryptology ePrint Archive, 2017:203, 2017.

9 C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani. Strengths and Weaknesses of Quantum
Computing. SIAM Journal on Computing, 26(5):1510–1523, 1997.

10 Jon Louis Bentley and Michael Ian Shamos. Divide-and-Conquer in Multidimensional Space.
In Proceedings of the eighth annual ACM symposium on Theory of computing, pages 220–230.
ACM, 1976.

11 Daniel J. Bernstein, Stacey Jeffery, Tanja Lange, and Alexander Meurer. Quantum Algorithms
for the Subset-Sum Problem. In Post-Quantum Cryptography, pages 16–33. Springer Berlin
Heidelberg, 2013. doi:10.1007/978-3-642-38616-9_2.

12 Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D.
Somma. Exponential Improvement In Precision for Simulating Sparse Hamiltonians. Forum
of Mathematics, Sigma, 5, 2017. doi:10.1017/fms.2017.2.

13 Sergei N Bespamyatnikh. An Optimal Algorithm for Closest-Pair Maintenance. Discrete &
Computational Geometry, 19(2):175–195, 1998.

14 Harry Buhrman, Christoph Durr, Mark Heiligman, Peter Hoyer, Frédéric Magniez, Miklos
Santha, and Ronald De Wolf. Quantum Algorithms for Element Distinctness. In Proceedings
16th Annual IEEE Conference on Computational Complexity, pages 131–137. IEEE, 2001.

15 Harry Buhrman, Subhasree Patro, and Florian Speelman. The Quantum Strong Exponential-
Time Hypothesis. arXiv preprint, 2019. arXiv:1911.05686.

16 Timothy M Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms, pages 1246–1255. Society for Industrial and
Applied Mathematics, 2016.

17 Lijie Chen. On the Hardness of Approximate and Exact (Bichromatic) Maximum Inner
Product. arXiv preprint, 2018. arXiv:1802.02325.

18 Lijie Chen and Ryan Williams. An equivalence class for orthogonal vectors. In Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 21–40. SIAM,
2019.

CCC 2020

https://doi.org/10.1145/992287.992296
https://doi.org/10.1145/992287.992296
https://doi.org/10.1007/978-3-642-38616-9_2
https://doi.org/10.1017/fms.2017.2
http://arxiv.org/abs/1911.05686
http://arxiv.org/abs/1802.02325

16:42 On the Quantum Complexity of Closest Pair and Related Problems

19 Kenneth L Clarkson. A Randomized Algorithm for Closest-Point Queries. SIAM Journal on
Computing, 17(4):830–847, 1988.

20 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
Algorithms. MIT press, 2009.

21 Evgeny Dantsin, Vladik Kreinovich, and Alexander Wolpert. On Quantum Versions of
Record-breaking Algorithms for SAT. SIGACT News, 36(4):103–108, December 2005. doi:
10.1145/1107523.1107524.

22 R. David, K. S., and B. Laekhanukit. On the Complexity of Closest Pair via Polar-Pair of
Point-Sets. SIAM Journal on Discrete Mathematics, 33(1):509–527, 2019.

23 Christoph Durr and Peter Hoyer. A quantum algorithm for finding the minimum. arXiv
preprint, 1996. arXiv:quant-ph/9607014.

24 Lov K. Grover. A Fast Quantum Mechanical Algorithm for Database Search. In Proceedings
of the Twenty-eighth ACM Symposium on Theory of Computing - STOC '96. ACM Press,
1996. doi:10.1145/237814.237866.

25 Timon Hertli. Improved Exponential Algorithms for SAT and ClSP. PhD thesis, ETH Zurich,
2015.

26 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, March 2001. doi:10.1006/jcss.2000.1727.

27 Toshiya Itoh, Tatsuya Nagatani, and Jun Tarui. Explicit Construction for k-Wise Nearly Ran-
dom Permutations by Iterated Feistel Transform. Workshop on Randomness and Computation,
2005.

28 Stacey Jeffery. Frameworks for Quantum Algorithms. PhD thesis, University of Waterloo,
2014.

29 CS Karthik and Pasin Manurangsi. On Closest Pair in Euclidean Metric: Monochromatic is
as Hard as Bichromatic. 10th Innovations in Theoretical Computer Science, 2019.

30 S. Khuller and Y. Matias. A Simple Randomized Sieve Algorithm for the Closest-Pair Problem.
Information and Computation, 118(1):34–37, 1995.

31 Victor Klee. On the Complexity of d-Dimensional Voronoi Diagrams. Archiv der Mathematik,
34(1):75–80, 1980. doi:10.1007/bf01224932.

32 Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education India, 2006.
33 Frédéric Magniez, Ashwin Nayak, Jérémie Roland, and Miklos Santha. Search via Quantum

Walk. SIAM Journal on Computing, 40(1):142–164, 2011.
34 Chris Marriott and John Watrous. Quantum Arthur–Merlin games. Computational Complexity,

14(2):122–152, 2005. doi:10.1007/s00037-005-0194-x.
35 Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon Westover. Exact

Discovery of Time Series Motifs. In Proceedings of the 2009 SIAM international conference on
data mining, pages 473–484. SIAM, 2009.

36 Alexandros Nanopoulos, Yannis Theodoridis, and Yannis Manolopoulos. C2P: Clustering
based on Closest Pairs. In VLDB, 2001.

37 Michael A Nielsen and Isaac Chuang. Quantum Computation and Quantum Information,
2002.

38 Ramamohan Paturi and Pavel Pudlák. On the Complexity of Circuit Satisfiability. In
Proceedings of the forty-second ACM symposium on Theory of computing, pages 241–250.
ACM, 2010.

39 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An Improved
Exponential-Time Algorithm for k-SAT. Journal of the ACM (JACM), 52(3):337–364, 2005.

40 Michael O Rabin. Probabilistic Algorithms Algorithms and Complexity: New Directions and
Recent Results, 1976.

41 Kunihiko Sadakane, Norito Sugawara, and Takeshi Tokuyama. Quantum Algorithms for
Intersection and Proximity Problems. In Peter Eades and Tadao Takaoka, editors, Algorithms
and Computation, pages 148–159, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

https://doi.org/10.1145/1107523.1107524
https://doi.org/10.1145/1107523.1107524
http://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1145/237814.237866
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/bf01224932
https://doi.org/10.1007/s00037-005-0194-x

S. Aaronson, N.-H. Chia, H.-H. Lin, C. Wang, and R. Zhang 16:43

42 Dominik Scheder and John P Steinberger. PPSZ for General k-SAT-Making Hertli’s Analysis
Simpler and 3-SAT Faster. In 32nd Computational Complexity Conference (CCC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

43 T Schoning. A Probabilistic Algorithm for k-SAT and Constraint Satisfaction Problems. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
410–414. IEEE, 1999.

44 M. I. Shamos and D. Hoey. Closest-Point Problems. In 16th Annual Symposium on Foundations
of Computer Science (sfcs 1975), pages 151–162, 1975.

45 Mario Szegedy. Quantum Speed-Up of Markov Chain Based Algorithms. In 45th Annual IEEE
symposium on foundations of computer science, pages 32–41. IEEE, 2004.

46 Virginia Vassilevska Williams. Hardness of Easy Problems: Basing Hardness on Popular Con-
jectures such as the Strong Exponential Time Hypothesis (invited talk). In 10th International
Symposium on Parameterized and Exact Computation (IPEC 2015). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2015.

47 Nilton Volpato and Arnaldo Moura. A fast quantum algorithm for the closest bichromatic
pair problem, 2010.

48 Ryan Williams. Pairwise comparison of bit vectors. Theoretical Computer Science Stack
Exchange. URL: https://cstheory.stackexchange.com/q/37369.

49 Ryan Williams. A New Algorithm for Optimal 2-Constraint Satisfaction and Its Implications.
Theoretical Computer Science, 348(2-3):357–365, 2005.

50 Ryan Williams and Huacheng Yu. Finding Orthogonal Vectors In Discrete Structures. In
Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
1867–1877. SIAM, 2014.

51 Raymond Chi-Wing Wong, Yufei Tao, Ada Wai-Chee Fu, and Xiaokui Xiao. On Efficient
Spatial Matching. In Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB ’07, pages 579–590, 2007.

52 A. C. . Yao. Lower Bounds for Algebraic Computation Trees with Integer Inputs. In 30th
Annual Symposium on Foundations of Computer Science, pages 308–313, 1989.

CCC 2020

https://cstheory.stackexchange.com/q/37369

	Introduction
	Proof overview

	Preliminaries
	Quantum query model
	Quantum subroutine for unstructured searching and minimum finding
	Problem definitions
	Fine-grained complexity
	The framework for quantum walk search

	Quantum fine-grained complexity
	Quantum fine-grained reduction and QSETH
	Lower bounds for {CP}, {OV}, and {BCP} in higher dimensions under QSETH
	Quantum lower bound for {BCP} in nearly-constant dimensions under QSETH

	Closest pair in constant dimension
	Radix tree for at most one solution
	Single-shot quantum walk with complicated data structure
	Multiple-trial quantum walks with simple data structure
	Quantum lower bound for CP in constant dimensions

	Bichromatic closest pair in constant dimensions
	Quantum algorithm for (1+xi)-BCP
	Quantum algorithm for solving {BCP} exactly
	Quantum lower bound for {BCP} in constant dimensions

	Orthogonal vectors in constant dimensions

