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Abstract
A tree code is an edge-coloring of the complete infinite binary tree such that every two nodes of equal
depth have a fraction–bounded away from 0–of mismatched colors between the corresponding paths
to their least common ancestor. Tree codes were introduced in a seminal work by Schulman [29]
and serve as a key ingredient in almost all deterministic interactive coding schemes. The number of
colors effects the coding scheme’s rate.

It is shown that 4 is precisely the least number of colors for which tree codes exist. Thus,
tree-code-based coding schemes cannot achieve rate larger than 1/2. To overcome this barrier, a
relaxed notion called palette-alternating tree codes is introduced, in which the number of colors can
depend on the layer. We prove the existence of such constructs in which most layers use 2 colors–the
bare minimum. The distance-rate tradeoff we obtain matches the Gilbert-Varshamov bound.

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity. To analyze our protocol, we prove a structural
result on the location of failed communication-rounds induced by the error pattern enforced by the
adversary. Our coding scheme is efficient given an explicit palette-alternating tree code and serves
as an alternative to the scheme obtained by [13].
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1 Introduction

Tree codes are a powerful combinatorial structure, defined and proven to exist in [29] in
order to serve as a key ingredient for achieving a constant rate interactive coding scheme.
Tree codes are the central object for encoding information in the interactive coding theory
which developed from the initial papers. They remain a crucial building block in almost all
interactive coding schemes [26, 10, 8, 13, 3, 5, 2, 4, 16, 17, 22, 1, 14, 7, 19, 32].

We turn to formally define tree codes. Let T be a rooted binary tree that is endowed
with an edge coloring from some ambient color set (or alphabet) Σ. Let u, v be a pair of
vertices in T with equal depth and a least common ancestor w. Let ` be the distance, in
edges, from u to w. Let pu, pv ∈ Σ` be the sequences of colors on the path from w to u and
to v, respectively. We define h(u, v) to be the relative Hamming distance between pu and pv.

I Definition 1 (Tree codes [29]). Let T be the complete rooted infinite binary tree. The tree
T , together with an edge-coloring of T by a color set Σ is called a tree code with distance δ
if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. When there is no
δ > 0 for which T is a tree code with distance δ we say that T has vanishing distance.
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Schulman [29] proved that for every distance parameter δ < 1 tree codes with a constant
number of colors c = c(δ) exist. Although tree codes are used in different ways by different
interactive coding schemes, one aspect is common to all: When a party wishes to send a bit,
a suitable color from Σ is sent instead. Thus, the rate of all tree-code-based coding schemes
is bounded above by 1/ log2 |Σ|. One is led to ask a natural combinatorial question–what is
the least number of colors in a tree code with non-vanishing distance?

1.1 Tree codes: 4 colors suffice and are necessary

We first observe that 3 colors do not suffice and, as a result, the rate of every tree-code-based
coding scheme cannot exceed 1/2, let alone approach capacity. Consider any 3-color tree
code. First, we may assume that every two siblings are connected to their parent with edges
having distinct colors as otherwise the distance of the tree code is 0. Let u, v be any two
vertices. Out of u, v go four edges and so by the pigeonhole principal in every 3-coloring,
two of these edges share the same color. By the above, one of these edges goes out of u and
the other goes out of v. This implies that, starting from the two sons of the root, one can
construct two paths of any desired length n ≥ 1 with the same color pattern, establishing
that the tree has vanishing distance.

Based on the ideas Schulman introduced to prove the existence of tree codes with a
constant number of colors, we complement the above observation and establish that 4 colors
suffice for a tree code with non-vanishing distance.

I Theorem 2. There exists a 4-color tree code with distance 0.136.

The proof of Theorem 2 appears in Section 3. As Schulman’s original proof for the
existence of tree codes, Theorem 2 is nonconstructive. Coming up with explicit constructions
of non-vanishing distance tree codes with a constant number of colors is one of the most
challenging problems in this field [30, 15, 6, 25, 23, 13, 11, 24]. The currently best known
result [11] guarantees any designated distance δ < 1 when using (logn)Oδ(1) colors at depth n.
This work, however, concerns with the information-theoretic aspect of the channel capacity,
and the computational aspects are left for future work.

While our proof of Theorem 2 closely follows Schulman’s proof, and the observation that
4 colors are necessary is easy to prove, to the best of our knowledge, this basic combinatorial
result was not known and, furthermore, we find it surprising that merely 4 colors suffice
to guarantee such a strong combinatorial structure. Still, even if 4 is a surprisingly small
number of colors, an interactive coding scheme that uses a 4-color tree code would have rate
bounded above by 1/2.

1.2 Palette-alternating tree codes

To save on communication, one might hope to avoid the use of the tree code “every now
and then”. However, if one sends a bit in the clear without encoding it, and that bit is
flipped by the adversary, the simulation seems doomed to fail without some way of generating
an unpredictable verification (which can be done when considering randomized schemes).
Perhaps a better idea would be to try and apply puncturing–a standard tool from classic
error correcting codes used for improving the rate of a code. However, the distance of a tree
code is far more sensitive than the distance of a standard error correcting code. In particular,
changing the color of a single edge can cause the distance to vanish. It is thus not clear how
one can “puncture” a tree code without vanish its distance.
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Our key insight is to consider a variant of tree codes we call palette-alternating tree codes
in which the number of colors is allowed to depend on the depth. A good first example
to have in mind is a coloring that uses 4 colors in even layers and 2 colors in odd layers.
To our surprise, such palette-alternating tree codes with non-vanishing distance exist! To
calculate the rate-overhead incurred by using this palette-alternating tree code, observe that
the number of bits sent when using an (even) depth-n palette-alternating tree code is

n

2 log2 2 + n

2 log2 4 = 3
2n,

and so the rate incurred by the encoding is 2/3, improving upon the 1/2 rate one would
get by using the best available tree code. Note that this even beats the rate of a 3-color
tree code–had it existed–since log2 3 > 3/2. Put differently, in an amortized sense, the
palette-alternating tree code above requires only 23/2 ≈ 2.83 colors.

One can get greedy and ask whether a palette-alternating tree code that uses, say, 4
colors at layers 0, 3, 6, ... and 2 colors in the remaining layers exist. If so, one can potentially
improve the scheme’s rate to 3/4. We prove the existence of such palette-alternating tree
codes. In fact, we show that one can use 4 colors as seldom as she please and 2 colors–the
bare minimum–in most layers. We turn to give a formal treatment of the above discussion.

I Definition 3 (Palette-alternating tree codes). Let Σ0, . . . ,Σc−1 be (not necessarily distinct)
sets. Let T be the complete rooted infinite binary tree. A palette-alternating tree code is an
edge-coloring of T where at layer t ∈ N the colors are taken from the set Σt (mod c). T is said
to have distance δ if for every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ.
We define the rate ρ of T to be the number satisfying

1
ρ

= 1
c

c−1∑
i=0

log2 |Σi|.

We suggest that the flexibility introduced by palette-alternating tree codes allows one to
better capture the notion of rate in the online setting. Indeed, the importance of rate is only
significant when “long” messages are being sent and so, informally, using a big palette of colors
only once in a while should not be considered as an indication of poor rate. Our definition of
rate formalizes that property. Note that we still insist on having the distance measured in
terms of worst-case–a must as we wish to replace tree codes with palette-alternating tree
codes in interactive coding schemes. It is only the rate that is being, in a sense, amortized.

As mentioned, we prove that palette-alternating tree codes can have rate approaching
arbitrarily close to 1 while maintaining non-vanishing distance, thus bypass the 1/2 bound
proven for (standard) tree codes.

I Theorem 4. For every ε > 0 there exists a palette-alternating tree code with rate 1 − ε
and distance δ = Ω(ε · log−1(1/ε)).

Comparison with the Gilbert-Varshamov bound

Observe that the distance-rate trade-off obtained in Theorem 4 is the same as the one
obtained by the Gilbert-Varshamov bound for standard offline binary error correcting codes,
and in particular is optimal (up to constant factors). Interestingly, while it is known that the
channel capacity in the online setting is 1−Θ(

√
ε log(1/ε))–significantly lower than in the

offline setting [20], the online requirement on the encoding function itself does not cost more
in terms of the distance-rate trade-off. Rather, it is the additional overhead incurred by the
mechanism required for synchronization that is responsible for the lower channel capacity in
the online setting. We elaborate more on this in Section 1.3.

CCC 2020
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The proof of Theorem 4, which can be found in Section 4, is based on a variant of the
construction we use in Theorem 2. There, the alphabet symbols are taken from the field of
four elements, F4. The key idea in obtaining the savings in the alphabet size is to trace the
F4 field elements down to F2 in most layers. Interestingly, we cannot afford to work over the
field F3 as we crucially rely on the fact that the characteristic of the fields is 2 as well as on
the smaller field being a subfield of the larger one.

1.2.1 Palette-alternating tree codes: further discussion and
generalization

We remark that it is not clear if one can start from an arbitrary 4-color tree code and
change some of the layers to have only 2 colors (in a sense, effectively puncturing the 4-color
tree code) while maintaining non-vanishing distance. Our proof seems to have the effect of
“correlating” the colors in the 4-color layers with the paths that contain them. To emphasize
this point, note that a 2-color layer does not immediately “buy” us redundancy. Nevertheless,
the 2-color layers have the important task of making sure that the 4-color layers do. Indeed,
by switching the colors of siblings in the 2-color layers one can potentially vanish the distance.

It is also interesting to compare palette-alternating tree codes that use 2 colors in most
layers with some of the known probabilistic schemes [20, 18] that take the following strategy:
in most rounds simulate the protocol as is (namely, assuming no errors occur) and only
rarely verify the transcript using hash functions. It is tempting to compare the 2-color layers
in a palette-alternating tree code with the error-free part of the simulation and the 4-color
layers with the verification rounds. Indeed, at the very least, both the 2-color layers and the
error-free part cost nothing in terms of rate. The crucial difference, however, lies in the fact
that while the error-free simulation does not carry any weight in terms of error correction,
the 2-color layers do.

We end this section by proposing a more general, and arguable more natural, definition
than palette-alternating tree codes which allows for different palettes used at different layers
without being necessarily periodical. While our proof of Theorem 4 yields a palette-alternating
tree code, we believe that the more general definition is worth presenting here. For simplicity,
we identify a finite color set Σ with {1, 2, . . . , |Σ|}.

I Definition 5 (Dynamic-Palette Tree Codes). Let c : N→ N. Let T be the complete rooted
infinite binary tree. A dynamic-palette tree code is an edge-coloring of T where at layer
t ∈ N the colors are taken from the set {1, 2, . . . , c(t)}. T is said to have distance δ if for
every pair of vertices u, v with equal depth it holds that h(u, v) ≥ δ. We define the rate ρ of
T to be the number satisfying

1
ρ

= inf
`∈N

1
`

∑̀
i=1

log2 c(i).

1.3 Interactive coding schemes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity. Our coding scheme is efficient given
an explicit construction of palette-alternating tree codes and serves as an alternative to
the scheme obtained by Gelles et al. [13]. In this section we describe our result and proof
technique. We start by reviewing basic notions in interactive coding schemes.
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Communication complexity
Communication complexity addresses a basic question: If several parties wish to compute a
function of the information they jointly possess, how long does their conversation need to be?
In its most basic form, one considers two parties, Alice and Bob, that would like to jointly
compute a function f : {0, 1}n×{0, 1}n → {0, 1} of their respective inputs x, y ∈ {0, 1}n. The
parties can communicate over a channel, and their goal is to compute f(x, y) by exchanging
as few bits as possible.

An interactive computation as above is performed via a communication protocol π which
consists of a pair of algorithms πA and πB run by Alice and Bob, respectively. In this
paper we focus on deterministic protocols, that is, πA and πB are deterministic algorithms.
Informally, the communication is performed in rounds where the protocol dictates what is
sent in each round based on the round number, the input of the party, and the bits received
so far. After some number of rounds r = r(x, y) the protocol terminates, at which point
both parties know f(x, y). The (deterministic) communication complexity of the protocol π
is given by CC(π) = maxx,y r(x, y). The communication complexity of f , denoted by CC(f),
is the minimum of CC(π) over all protocols π that compute f .

Interactive coding schemes
One aspect that is always an issue when considering communication are errors in transmission
introduced by imperfect or compromised channels. The research field of coding for interactive
communication that addresses this issue was initiated in a sequence of seminal papers by
Schulman [28, 29, 31], and is by now an active and exciting research field (see Gelles’s
excellent survey [12]). There are several models one can consider. For examples, transmitted
bits can be erased (replaced with a senseless symbol ⊥) or worse–flipped–leaving no trace to
the occurred error. In this paper we focus on perhaps the most well-studied model in which
bits can be flipped. Further, we consider the most difficult setting of adversarial errors in
which any ε-fraction of the bits might be flipped.

A protocol π is said to be ε-resilient if the protocol preserves its functionality even at the
presence of ε-fraction of adversarial errors. The ε-resilient communication complexity of f ,
denoted by CCε(f), is the minimum of CC(π) over all ε-resilient protocols π that compute
f . For any fixed function f it is clear that CCε(f) is non-decreasing as ε increases. In the
extreme cases CC0(f) = CC(f) whereas CC1(f) =∞, namely, CC1(f) is unbounded.

Resilient protocols are typically obtained by devising an interactive coding scheme which,
informally, is a compiler CSε that is parameterized by the resiliency parameter ε. Given a
protocol π, the interactive coding scheme produces an ε-resilient protocol CSε(π) = πε that
computes the same function as π. The goal is to design an interactive coding scheme with
low overhead in communication. Namely, one would like to maximize ρ(π) = CC(π)/CC(πε).
The rate of the interactive coding scheme ρ(CSε) is the infimum of ρ(π) over all protocols π.

Channel capacity
Focusing on the channel itself, rather than on any specific function f , one can define the
channel capacity Cap : [0, 1]→ [0, 1] by

Cap(ε) = inf
f

(
CC(f)
CCε(f)

)
,

where the infimum is taken over all functions f : {0, 1}n × {0, 1}n → {0, 1} for all n ≥ 1.
Note that Cap(0) = 1 whereas Cap(1) = 0. A fundamental problem in interactive coding
theory, and the focus of this work, is the study of the channel capacity Cap(ε).

CCC 2020
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We remark that the channel capacity can be defined with respect to other models and a
huge body of work is devoted to the study of the channel capacity in our setting as well as for
other channels, most notably binary symmetric channels (BSC) in which every bit is flipped
independently with probability ε. Moreover, one needs to specify other properties of the
protocols so as to formalize the problem. For example, is the turn of speak predetermined by
the protocol or can it depend on the exchanged bits? In case of such “adaptive” protocols,
what happens if both parties send a message at the same round?

As in most works, we focus on non-adaptive protocols in which the turn of speak is
fixed in advance. For concreteness, we focus on alternating protocols where Alice speaks at
even rounds and Bob speaks at odd rounds. We made this choice mostly for convenience
and our results can be straightforwardly generalized. We also assume that the channel is
binary. This is the most difficult setting and allowing for channels over a larger alphabet,
especially one that can depend on the error parameter ε, only makes the problem of devising
protocols easier.

In his seminal work [29], Schulman proved that Cap(ε) > 0 for some ε > 0. In a tour
de force result, Kol and Raz [20] gave a tight bound of Cap(ε) = 1−Θ(

√
ε log 1/ε) on the

channel capacity in this setting for non-adaptive probabilistic protocols. Their upper bound
clearly holds for adversarial errors as well. Gelles et al. [13] gave the first deterministic coding
scheme against adversarial errors, derandomizing Haeupler’s protocol [18], that approaches
capacity, namely, their coding scheme has rate 1−O(

√
ε log 1/ε).

1.4 Capacity approaching coding schemes via palette-alternating tree
codes

Based on palette-alternating tree codes, we devise a deterministic interactive coding scheme
against adversarial errors that approaches capacity and thus matches the rate obtained
by [13]. The advantage of our coding scheme is that given an explicit construction of palette-
alternating tree codes, our scheme is efficient. We believe that the recent progress on tree
code constructions [11, 24] may eventually lead to constructions of palette-alternating tree
codes. The coding scheme suggested in [13], on the other hand, relies on a certain counting
argument, and it is not clear to us how to obtain an efficient scheme based on these ideas.

I Theorem 6. Let ε > 0. Assume there exists an explicit palette-alternating tree code with
rate 1− ε and distance δ = Ω(ε · log−1(1/ε)) (which, computational aspects aside, we know
exists by Theorem 4). Then, there exists an efficient deterministic coding scheme against
ε-fraction of adversarial errors with rate 1−O(

√
ε log(1/ε)).

1.4.1 Proof idea
In the remaining of this section, we elaborate on some of the ideas that go into our construction
and analysis of Theorem 6.

1.4.1.1 Synchronization

Interactive coding schemes that make use of tree codes do not simply encode the bits that are
meant to be sent by the non-resilient protocol π using the tree code. These schemes also need
to implement a mechanism for making sure that both parties are, in a sense, synchronized.
Indeed, informally, the errors have the effect of causing the parties to transmit data with
respect to information that was never sent to them. Without a way to synchronize, even
with no additional errors, the parties will not be able to make progress on simulating the
protocol as the information they exchange is irrelevant.
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Thus, on top of the bits that the parties would have communicate without the presence
of errors, some meta data used for synchronization must be maintained and transmitted.
Both the “data bits” as well as the “sync bits” are encoded using a tree code before sent
over the channel. Thus, the rate of deterministic interactive coding schemes is determined
both by the rate of the tree code as well as by the overhead required for synchronization.

To obtain interactive coding schemes with rate approaching 1 we need, on top of replacing
a tree code with a palette-alternating tree code, to have a low overhead in synchronization.
There are two main obstacles for accomplishing that:

1. One must argue that not too many sync bits are needed to successfully maintain syn-
chronization; and

2. One needs to distinguish between sync bits and data bits which in previous works was
effectively done by sending a bit indicating the bit “type” (more precisely, a larger
alphabet was used followed by an alphabet reduction).

The first issue is fairly straightforward to handle. Indeed, it is intuitive that in a sensible
scheme, the amount of synchronization required is proportional to the fraction of errors and
this is true for both Schulman’s coding scheme [29] and for Braverman-Rao’s scheme [9]. The
second issue requires more care. Braverman-Rao’s scheme is very dynamic and on any given
round the bit type depends on the error pattern enforced by the adversary. Although most
bits are data bits, it seems difficult to argue that their scheme can be made to have high
rate. Luckily, we are able to devise a coding scheme based on some adaptation of Schulman’s
original ideas. The coding scheme obtained, however, does not approach capacity, and has
rate 1− Õ( 3

√
ε) (see Section 5.3). Further ideas are required to prove Theorem 6 which we

discuss next.

1.4.1.2 Clusters of failed decoding rounds

In order to approach capacity, we examine more closely the effect that adversarial errors have
on (palette-alternating) tree codes. Schulman’s analysis is based on bounding the number of
rounds in which decoding fails. More precisely, it was shown [29] that if one encodes using a
tree code with distance δT C then at most O(ε/δT C) fraction of rounds would result in failed
decoding. We prove a structural result, refining the quantitative one, regarding where these
“bad” rounds may occur as a function of the locations of the adversarial errors. We show
that the bad rounds are, in a sense, clustered around the errors that are introduced. We
exploit this structure to obtain a tighter analysis of our protocol, and achieve the stated,
optimal, rate.

1.5 Organization

In Section 2 we give the formal definitions of protocols and interactive coding schemes, as well
as setting notation and state some known results we use. In Section 3 we prove Theorem 2
which asserts that 4-color tree codes exist. While not directly applicable to our proof of
Theorem 6, we encourage the reader to read the proof (including Section 3.1) as ideas from
the proof will be used for proving the existence of palette-alternating tree codes (Theorem 4).
In Section 4 we prove Theorem 4. Lastly, in Section 5, we prove Theorem 6 where first, in
Section 5.3, we give a sub-optimal analysis.

CCC 2020
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2 Preliminaries

Unless otherwise stated, all logarithms are taken to the base 2. We denote by N the set of
natural numbers (of course, including 0), and write N1 for N\{0}. For integers a ≤ b we write
[a, b] for all integers in this interval. For an integer c ≥ 1, we let [c] = {1, 2, . . . , c}. We follow
the convention that strings are indexed starting from 1. For two strings x, y ∈ Σ1 × · · · ×Σn,
we denote by ∆(x, y) their hamming distance. We make use of the following standard
inequalities.

I Lemma 7. For every integers 1 ≤ k ≤ n with k
n = δ ≤ 1

2 it holds that

k∑
i=0

(
n

i

)
≤ 2H(δ)n.

I Lemma 8. For every 0 < x < 1
2 it holds that

x

2 log2(6/x) ≤ H
−1(x) ≤ x

log2(1/x) .

2.1 Coding for interactive communication

2.1.1 Communication protocols

In this section we briefly recall some basic definitions from communication complexity. For
more details we refer the reader to [21, 27]. Let T = (V,E) be a complete finite rooted binary
tree. Given an internal vertex v in T , define son(v, 0), son(v, 1) to be the left son and the
right son of v in T , respectively. Extend son for bit strings of length n ≥ 1 in the natural
way and denote by path the function that given x ∈ {0, 1}n, returns the edges on the unique
rooted path to son(root(T ), x). A communication protocol π consists of:

A function fv : {0, 1}n → {0, 1} for every internal node v in T .

A label player(v) ∈ {A,B} for each internal node v.

A label value(v) ∈ {0, 1} for every leaf v.
The protocol π induces a function f = f(π) : {0, 1}n × {0, 1}n → {0, 1} in the following
natural way. Given x, y ∈ {0, 1}n, for every internal node v ∈ V , if player(v) = A let d = fv(x)
and otherwise let d = fv(y). Let u be the left son of v if d = 0 and otherwise let u be
the right son of v. Thus, given x, y, from every internal node v goes out exactly one edge
ev(x, y) = (v, u(x, y)). Let E(x, y) = {ev(x, y) | v internal node} be the set of these edges.
Observe that the edge set E(x, y) induces a unique root to leaf path in T . Let v(x, y) be
that unique leaf that is reachable from the root. We define f(x, y) = value(v(x, y)). We write
depth(π) for the depth of T .

The computation above of f(x, y) can be made by two parties, Alice that holds x and
Bob that holds y, that can communicate over a channel, in the natural way. Namely, at node
v, if player(v) = A then Alice sends to Bob fv(x) wheres at a node v with player(v) = B

Bobs sends fv(y) to Alice. It is clear that the number of bits communicated is the depth of
the tree. We say that a protocol is alternating if player(v) = A if and only if v is at even
depth. From here on we focus only on alternating protocols.
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2.1.2 The pointer jumping game

The pointer jumping game is, in a sense, a complete problem for interactive protocols. Let
T = (V, F ) be a complete finite rooted binary tree. The depth of a vertex v is the distance,
measured in edges, from the root to v. In particular, the depth of the root is 0. We partition
the internal nodes of T to V = VA ∪ VB, where VA contains all nodes at even depth and
VB all nodes at odd depth. We partition the edge set F = X ∪ Y with X being the edges
going out of VA and Y the edges leaving VB. We call a subset of edges E ⊆ F consistent
if every internal node has exactly one outgoing edge in E. Given a consistent set of edges
E, we partition E = EA ∪ EB where EA = E ∩ X and EB = E ∩ Y . It is convenient to
represent EA and EB by functions πA : VA → {0, 1}, πB : VB → {0, 1} as follows: for v ∈ VA,
πA(v) = 0 if and only if the edge in EA that goes out of v is to the left son of v, and similarly
for πB .

Note that in any consistent set of edges E there is a unique root to leaf path. The pointer
jumping game is a function that given a consistent set of edges E returns the unique leaf
reachable from the root using the edge set E. Consider a function f : {0, 1}n×{0, 1}n → {0, 1}
and a protocol π for f . Note that for any fixed x, y the task of computing the value f(x, y) is
an instance of the pointer jumping game. In that sense, the pointer jumping game is complete.
Given a function f as above, it is sometimes convenient to consider a corresponding pointer
jumping game of depth R > n in which the edge leaving every vertex of depth larger than n
points to its left son (this choice is of course arbitrary and any fixed choice will do).

2.1.3 Resilient protocols and interactive coding schemes

A protocol π is said to be ε-resilient if on any pair x, y ∈ {0, 1}n, in the above two party
computation, both Alice and Bob compute f(x, y) correctly even if at most ε-fraction of the
communicated bits are flipped. An interactive coding scheme (coding scheme for short) is a
function CSε, parameterized by ε ∈ [0, 1], that gets as input a protocol π and outputs an
ε-resilient protocol πε = CSε(π) with f(πε) = f(π). The rate of the coding scheme CSε is
defined by

ρ(CSε) = inf
π

depth(π)
depth(πε)

.

Observe that for the purpose of devising a coding scheme CSε one may assume that the
inputs x, y are fixed. Thus, it suffices to focus on the problem of devising a coding scheme
for the pointer jumping game.

3 Binary Tree Codes: Four Colors Suffice

In this section we prove Theorem 2. We start by setting some notation. Let T be the infinite
complete rooted binary tree. We identify length-n paths in T that starts at the root with
length-n binary strings in the natural way. Namely, we identify left son and right son with 0
and 1, respectively. Given a node v at depth n ≥ 1 we define pv ∈ {0, 1}n to be the string
that encodes the (unique) path from the root to v.

An edge-coloring of T by a color set Σ is given by a function, which for ease of readability,
we slightly abuse notation and also denote by T : {0, 1}N1 → ΣN1 , where the color of an edge
e = u→ v is T (pv)depth(v). Note that T is an online function, namely, for every x ∈ {0, 1}N1

and i ∈ N1, the value T (x)i is determined by x1, . . . , xi.
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The (probabilistic) construction
Let {Ri}i∈N1 be a sequence of independent random variables, each is uniformly distributed
over F4–the field of 4 elements. Let F2 be the (unique) subfield of F4 of size 2. Define the
(random) coloring function T : FN1

2 → FN1
4 (where we identify F2 and {0, 1} in the natural

way) as follows: for every t ∈ N1

T (x)t =
t∑
i=1

Rt+1−ixi. (1)

I Definition 9. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . For k = 1, . . . , `

we define the random variable

av(x, y, k) = T (pv ◦ 1 ◦ y)n+k − T (pv ◦ 0 ◦ x)n+k.

Note that av(x, y, k) is a (random) element in F4. We define the integral random variable

hv(x, y) =
∑̀
k=1

Ik,

where Ik is the indicator random variable that equals 1 when av(x, y, k) 6= 0. Note that
hv(x, y) ∈ {0, 1, . . . , `} is the Hamming distance between T (pv ◦ 0 ◦ x)[n+1,n+`] and T (pv ◦ 1 ◦
y)[n+1,n+`].

B Claim 10. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, for every k ∈ {1, . . . , `}

it holds that

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i.

Proof. Denote the depth of v by n. Fix k ∈ {1, . . . , `}. By Equation (1),

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i. C

B Claim 11. Let v be a vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent and each is uniformly distributed over F4.
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Proof. By Claim 10, av(x, y, k) = Rk + Lk where Lk is some F4-linear combination of
R1, . . . , Rk−1. Therefore, av(x, y, k) is independent of the joint distribution of av(x, y, 1),
. . . , av(x, y, k − 1). As this holds for every k we have that av(x, y, 1), . . . , av(x, y, `) are
independent. To conclude the proof, note that for every fixing of R1, . . . , Rk−1, av(x, y, k) =
Rk + `k for some fixed `k ∈ F4 and so av(x, y, k) is uniform over F4. C

B Claim 12. For every two vertices u, v in T and every x, y ∈ F`−1
2 ,

hv(x, y) = hu(x, y),
hv(x, y) = hv(0`−1, y − x).

Proof. The first equality follows immediately by Claim 10 as, for every k ∈ {1, . . . , `}, the
expression obtained for av(x, y, k) is independent of the choice of v. As for the second
asserted equality, again by Claim 10,

av(x, y, k) = Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk +
k−1∑
i=1

Rk−i((y − x)− 0)i

= av(0`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4
and so y − x ∈ F`−1

2 . Indeed, recall that av’s second argument is a binary string and so
the equality above would have been meaningless otherwise. The above equation implies
hv(x, y) = hv(0`−1, y − x), proving the claim. C

Given Claim 12 we can simplify our notation as follows. Let r denote the root of T . For
x ∈ {0, 1}`−1 and k ∈ {1, . . . , `} we define the random variables

a(x, k) = ar(0`, 1 ◦ x, k),
h(x) = hr(0`−1, x).

Note that h(x) =
∑`
k=1 a(x, k).

I Theorem 13. There exists a fixing of the sequence {Ri}i such that the function T is a
tree code with distance 0.05.

Proof. First note that for every fixing of the sequence {Ri}i, T is an online function. Observe
that, for a fixing of {Ri}i, T is a tree code with distance δ if and only if for every ` ≥ 1 and
x ∈ {0, 1}`−1 it holds that h(x) ≥ δ`. Indeed, recall that by definition, T is a tree code with
distance δ if and only if for every vertex v in T , ` ≥ 1, and for every x, y ∈ {0, 1}`−1 it holds
that hv(x, y) ≥ δ`. However, by Claim 12, hv(x, y) = h(y − x).

For x ∈ {0, 1}`−1 denote by E(x) the event h(x) < δ`. By the above discussion, it suffices
to prove, for δ = 0.05, that

Pr

 ⋃
x∈{0,1}N

E(x)

 < 1.

To this end, by the union bound, it suffices to prove that∑
x∈{0,1}N

Pr[E(x)] < 1.
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Consider any x ∈ {0, 1}`−1 with ` ≥ 1. Note that the event E(x) holds if and only if there
exists a set T ⊆ {1, . . . , `} of size |T | ≥ d(1− δ)`e such that for every k ∈ T , a(x, k) = 0. By
taking the union bound over all such sets T , and using that a(x, 1), . . . , a(x, `) are independent
and each is uniformly distributed over F4 (Claim 11), we get

Pr[E(x)] ≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e. (2)

By Lemma 7, we have that

1
`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As δ < 1
2 and since the entropy function H decreases in [ 1

2 , 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Substitute to Equation (2), we get that

Pr[E(x)] ≤ 2(H(δ)−2(1−δ))`.

Thus,

∑
x∈{0,1}N

Pr[E(x)] ≤
∞∑
`=1

2`−1 · 2(H(δ)−2(1−δ))`

= 1
2

∞∑
`=1

2(H(δ)+2δ−1)`.

One can verify that for δ = 0.05 the above geometric sum is strictly smaller than 1, and the
theorem follows. J

3.1 Improving the distance
We now show a method for improving the distance. We illustrate it to obtain a bound of
0.136 on the distance, which proves Theorem 2, though we believe that the method can be
used to push the bound further. It is fairly easy to show that the distance of a 4-color tree
code cannot be larger than 1/2.

I Theorem 14. There exists a fixing of the sequence {Ri}i such that the function T is a
tree code with distance 0.136.

Proof. For the proof it will be convenient to consider a specific representation of F4. We
make use of the standard construction of F4 as a quotient of the polynomial ring over F2
with respect to an ideal generated by a degree 2 irreducible element as follows. Note that
t2 + t+ 1 ∈ F2[t] is irreducible, and so K = F2[t]/〈t2 + t+ 1〉 is a field of 4 elements which
we will take as the construction for F4. Let α be the class of t in K. In this representation,
the field F4 consists of the elements 0, 1, α, α+ 1 where α2 + α+ 1 = 0.

Consider the sequence {Ri}i∈N as in the beginning of the section but with the fixings
R1 = 1 and R2 = α. Observe that for every x ∈ F`−1

2 with ` ≥ 2 it holds that a(x, 1) = 1
and a(x, 2) = α+ x1. In particular, a(x, 1), a(x, 2) are both non-zeros and so h(x) ≥ 2. Let
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`0 ≥ 2 be an integer parameter to be chosen later on. By the above, we have that for every
x ∈ F`−1

2 with ` ≤ `0 it holds that

h(x)
`
≥ 2
`0
. (3)

For x ∈ {0, 1}`−1 denote by E1,α(x) the event h(x) < δ` with the {Ri}i∈N as defined
above, namely, R1 = 1, R2 = α and the rest of the random variables {Ri | i ≥ 3} are
independent and uniformly distributed over F4. Once we establish a bound of

Pr

 ⋃
|x|≥`0

E1,α(x)

 < 1 (4)

for some choice of δ then, combined with Equation (3), we will establish the existence of a
tree code with distance at least

min
(

2
`0
, δ

)
.

Consider any x ∈ {0, 1}`−1 with ` ≥ `0 + 1. The event E1,α(x) holds if and only if there
exists a set T ⊆ {3, . . . , `} of size |T | ≥ d(1− δ)`e such that for every k ∈ T , a(x, k) = 0. By
taking the union bound over all such sets T , and using that a(x, 3), . . . , a(x, `) are independent
and each is uniformly distributed over F4, we get that

Pr[E1,α(x)] ≤
(

`− 2
d(1− δ)`e

)
4−d(1−δ)`e

≤
(

`

d(1− δ)`e

)
4−d(1−δ)`e

By Lemma 7, we have that

1
`
· log2

(
`

d(1− δ)`e

)
≤ H

(
d(1− δ)`e

`

)
.

As we will choose δ < 1
2 and the entropy function H decreases in [ 1

2 , 1] we have that

H

(
d(1− δ)`e

`

)
≤ H(1− δ) = H(δ).

Thus,

Pr[E1,α(x)] ≤ 2(H(δ)−2(1−δ))`.

By substituting the above equation to Equation (4), we get that

∑
|x|≥`0

Pr[E1,α(x)] ≤
∞∑

`=`0+1
2`−1 · 2(H(δ)−2(1−δ))`.

Write β = 2H(δ)+2δ−1. Then, the above is bounded by

1
2

∞∑
`=`0+1

β` = β`0+1

2(1− β) .

CCC 2020



11:14 Palette-Alternating Tree Codes

Consider the real polynomial

f`0(x) = x`0+1 − 2(1− x).

We have that

f ′`0
(x) = (`0 + 1)x`0 + 2

Since `0 ≥ 2, f ′`0
(x) > 0 for all x ≥ 0. Further, f`0(0) = −2 and f`0(1) = 1. Thus, f`0(x)

has a single root β`0 ∈ [0, 1] (in fact, β`0 is monotone-increasing as a function of `0, and
β`0 → 1 as `0 →∞). For a fixed choice of `0, by choosing β < β`0 and solving for δ (recall
β = 2H(δ)+2δ−1) to obtain δ`0 , we get that there exists a fixing of {Ri | i ≥ 3} such that the
obtained tree code has distance at least min(δ`0 ,

2
`0

). Thus, the obtained bound is

max
`0≥2

min
(
δ`0 ,

2
`0

)
.

One can verify that `0 = 14 maximizes the above equation to get distance larger than
0.136. J

4 Palette-Alternating Tree Codes

In this section we prove Theorem 4. To this end we recall the definition of the (field) trace
function Tr : F4 → F2 that is given by Tr(x) = x+ x2. Observe that the trace function is an
F2-linear map whose image and kernel are F2. In particular, if X is uniform over F4, then
Tr(X) is uniform over F2.

Let ε be a given parameter and define b = d1/εe. Let {Ri}i∈N be a sequence of independent
random variables, each is uniformly distributed over F4 except that R1 is fixed to R1 = 1.
We define a palette-alternating tree code with b palette sets Σ0, . . . ,Σb−1 such that Σ0 = F4
and Σi = F2 for i > 0. Let x ∈ FN

2 . For every k ∈ N, define

Sk(x) =
k∑
i=1

Rk+1−ixi,

where addition and multiplication are performed in F4 and, as usual, F2 is identified with
the unique subfield of two elements in F4. The coloring function is given by

T (x)k =
{
Sk(x), k ≡b 0;
Tr(Sk(x)), otherwise.

I Theorem 15. The function T above is a palette-alternating tree code with rate 1− ε and
distance δ = Ω(ε log−1(1/ε)).

Proof. First, observe that T is indeed an online function with rate larger than 1− ε. Further
Definition 9 can be carried over to the more general case of palette-alternating tree codes.
We turn to prove an analog to Claim 10.

B Claim 16. Let v be a depth-n vertex in T . Let ` ≥ 1 and x, y ∈ F`−1
2 . Then, for every

k ∈ {1, . . . , `} it holds that

av(x, y, k) =
{
Rk + Sk−1(y − x), n+ k ≡b 0;
Tr(Rk + Sk−1(y − x)), otherwise.
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Proof. Fix k ∈ {1, . . . , `}. Assume first that n+ k ≡b 0. Then,

T (pv ◦ 0 ◦ x)n+k =
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

=
n∑
i=1

Rn+k+1−i(pv)i +
n+k∑
i=n+1

Rn+k+1−i(0 ◦ x)i−n

=
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k =
n∑
i=1

Rn+k+1−i(pv)i +
k∑
i=1

Rk+1−i(1 ◦ y)i.

Thus,

av(x, y, k) =
k∑
i=1

Rk+1−i(1 ◦ y)i −
k∑
i=1

Rk+1−i(0 ◦ x)i

= Rk +
k−1∑
i=1

Rk−i(y − x)i

= Rk + Sk−1(y − x).

Assume now that n+ k 6≡b 0. Using that Tr is F2-linear,

T (pv ◦ 0 ◦ x)n+k = Tr
(
n+k∑
i=1

Rn+k+1−i(pv ◦ 0 ◦ x)i

)

= Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

n+k∑
i=n+1

Tr (Rn+k+1−i) (0 ◦ x)i−n

= Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(0 ◦ x)i.

Similarly

T (pv ◦ 1 ◦ y)n+k = Tr
(

n∑
i=1

Rn+k+1−i(pv)i

)
+

k∑
i=1

Tr(Rk+1−i)(1 ◦ y)i.

Thus, again by F2-linearity of Tr,

av(x, y, k) = Tr(Rk) +
k−1∑
i=1

Tr(Rk−i)(y − x)i

= Tr(Rk + Sk−1(y − x)). C

B Claim 17. Let v be a depth-n vertex and x, y ∈ F`−1
2 distinct. Then, the random variables

av(x, y, 1), . . . , av(x, y, `) are independent. Moreover, let k ∈ [`]. If n+k ≡b 0 then av(x, y, k)
is uniformly distributed over F4 and otherwise it is uniform over F2.
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Proof. By Claim 16, if n+k ≡b 0 then av(x, y, k) = Rk+Lk where Lk is a linear combination
of R1, . . . , Rk−1. Thus, in this case, av(x, y, k) is independent of the joint distribution of
av(x, y, 1), . . . , av(x, y, k − 1). Otherwise, namely n + k 6≡b 0, we have that av(x, y, k) =
Tr(Rk+Lk) = Tr(Rk)+Tr(Lk). Since for every fixing of Lk, av(x, y, k) is uniform over F2, we
have that av(x, y, k) is independent of the joint distribution of av(x, y, 1), . . . , av(x, y, k − 1).
As this holds for every k ∈ [`] we have that av(x, y, 1), . . . , av(x, y, `) are independent and
their marginal distributions are as stated. C

B Claim 18. Let u, v be two vertices with depth n,m, respectively such that n ≡b m. Let
x, y ∈ F`−1

2 . Then,

hv(x, y) = hu(x, y),
hv(x, y) = hv(0`−1, y − x).

Proof. Let Ck = Rk + Sk−1(y − x). By Claim 16,

au(x, y, k) =
{
Ck, n+ k ≡b 0;
Tr(Ck), otherwise.

As Ck is independent of the choice of u and n ≡b m we have that au(x, y, k) is the same
random variable as av(x, y, k). Since this holds for every k, we have that hv(x, y) = hu(x, y).

We turn to prove the the second asserted equality. Assume first that k ∈ [`] is such that
n+ k ≡b 0. By Claim 16,

au(x, y, k) = Rk + Sk−1(y − x)
= Rk + Sk−1((y − x)− 0`−1)
= au(0`−1, y − x, k),

where observe that for the last equality we are using the fact that F2 is a subfield of F4
and so y − x ∈ F`−1

2 . Indeed, recall that av’s second argument is a binary string and so the
equality above would have been meaningless otherwise. The case n + k 6≡b 0 follows by a
similar argument and using the F2-linearity of Tr. C

Given Claim 18, we can simplify our notation as follows. Let v0 denote the root of the
tree. For i = 1, . . . , b− 1 let vi denote the left son of vi−1. For every i ∈ {0, 1, . . . , b− 1} and
x ∈ {0, 1}`−1 we define the random variables

ai(x, k) = avi(0`, 1 ◦ x, k),
hi(x) = hvi(0`−1, x).

Define

δ = c1ε log−1(1/ε),
`0 = 12dε−1 log(1/ε)e,

for some constant c1 ∈ [0, 1] to be set later on. Observe that for every fixing of the sequence
{Ri}, T is a palette-alternating tree code with distance δ if and only if for every x ∈ {0, 1}`−1

and i ∈ {0, 1, . . . , b − 1} it holds that hi(x) ≥ δ`. Indeed, by definition, T is a palette-
alternating tree code with distance δ if and only if for every vertex v, ` ≥ 1, and every
distinct x, y ∈ {0, 1}`−1 it holds that hv(x, y) ≥ δ`. However, by Claim 18, the random
variable hv(x, y) is the same as the random variable hi(y − x) for i = depth(v) mod b.
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For x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b − 1} denote by Ei(x) the event hi(x) < δ`. Note
that as R1 = 1 and since Tr(1) = 1 we have that hi(x) ≥ 1 for every x. Thus, for |x| < `0 we
have that

h(x)
|x|+ 1 ≥

1
`0
.

Therefore, in order to prove Theorem 15 it suffices to prove that

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 < 1.

Indeed, this will give a bound of min
(

1
`0
, δ
)

= Ω(ε log−1(1/ε)) on the distance.
Fix x ∈ {0, 1}`−1 and i ∈ {0, 1, . . . , b− 1}. Observe that Ei(x) holds if and only if there

exists a set T ⊆ [`] of size d(1 − δ)`e such that for every k ∈ T , ai(x, k) = 0. For ease of
readability we ignore the ceiling in the calculations below. Recall that ai(x, 1), . . . , ai(x, `)
are independent. Further, 1− 1

b fraction of them are uniform over F2 whereas the remaining
1
b fraction are uniform over F4. Note that by our choice of parameters, δ < 1/b. Thus, for
any γ ≥ 0 and a fixed T , we have that

Pr [∀k ∈ T ai(x, k) = 0] ≤ 2−(1− 1
b−γ)`4−( 1

b−δ+γ)`

≤ 2−(1− 1
b )`4−( 1

b−δ)`

= 2−(1+ 1
b−2δ)`.

By taking the union bound over the choice of T , and using Lemma 7, we get that

Pr[Ei(x)] ≤
(

`

d(1− δ)`e

)
2−(1+ 1

b−2δ)`

≤ 2−(1+ 1
b−2δ−H(δ))`.

By the union bound,

Pr

 ⋃
|x|≥`0

b−1⋃
i=0

Ei(x)

 ≤ ∑
|x|≥`0

b−1∑
i=0

Pr[Ei(x)] (5)

≤ b ·
∞∑
`=`0

2`−1 · 2−(1+ 1
b−2δ−H(δ))`

= b

2 ·
∞∑
`=`0

2(H(δ)+2δ− 1
b )`.

By taking c1 sufficiently small and using Lemma 8, we get that H(δ) + 2δ − 1/b ≤ −ε/3.
Therefore, Equation (5) is bounded above by

b ·
∞∑
`=`0

2−ε`/3 = b · 2−ε`0/3

1− 2−ε/3

≤ bε4

1− 2−ε/3

≤ 2ε3

1− 2−ε/3 ,

where the penultimate inequality follows by our choice of `0 and the last inequality follows
since b = d1/εe. One can verify that the above is strictly bounded by 1 for any ε < 1/3. J
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5 The Interactive Coding Scheme

In this section we prove Theorem 6. In the first section we set up the framework over
which our coding scheme will be defined. In Section 5.2 we present our coding scheme and
Sections 5.3, 5.4 contain the analysis.

5.1 Setting up the framework

Round types

Throughout the scheme Alice and Bob send information in an alternating manner. More
precisely, at even rounds Alice would decide on a bit to be sent and at odd rounds, Bob
will decide what bit to send. Let t ≥ 0. If t is even we say that it is an Alice’s round and
otherwise it is a Bob’s round.

Epochs

We further partition the rounds as follows. Let c be a parameter to be set later on. The
protocol is divided to epochs where each epoch consists of 2c+2 rounds. The first epoch starts
from round 0 to round 2c+1 and is denoted by e0 = [0, 2c+2). The second epoch is denoted by
e1 = [2c+2, 4c+4) and, generally, the k’th epoch consists of rounds [k(2c+2), (k+1)(2c+2)).
Let t be an Alice’s round and consider m = t mod (2c+ 2). If m = 2c, then t is referred
to as Alice’s bit sync round, and otherwise, t is called an Alice’s edge round. Similarly, for
t a Bob’s round, let m = t mod (2c+ 2). If m = 2c + 1, then t is a Bob’s bit sync round.
Otherwise, t is called Bob’s edge round.

We denote by edges(e) the sequence of 2c bits sent throughout the edge rounds during
epoch e, and define syncA(e), syncB(e) the bits sent by Alice and Bob during their sync
rounds, respectively.

Rewinding mechanism

As the adversary introduce some fraction of errors, the coding scheme should incorporate a
“regret mechanism” using which the parties can revert back parts of the already exchanged
messages. To formalize that, we will make use of the pair of functions

rewind : {S,X}∗ → {S,X}∗,
survive : {S,R,X}∗ → {S,X}∗,

which are defined as follows. Let n ≥ 1. We define rewind(Xn) = Xn. Let v ∈ {S,X}n\{Xn}
and denote i ∈ [n] the largest index such that vi = S. Then,

rewind(v)j =
{
vj j 6= i;
X j = i.

We define the function survive recursively as follows. Let v ∈ {S,R,X}n,

survive(v) =
{

rewind(survive(v0, . . . , vn−1)) ◦X vn = R;
survive(v0, . . . , vn−1) ◦ vn vn 6= R.
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Decoding the pointer jumping path

We describe now how to decode a rooted path in the pointer jumping game from the bits
that were sent during a sequence of epochs. To formalize that, we define the function PJPath
that given a sequence of epochs (e0, . . . , en), computes a rooted path in the depth-n tree T
as follows. Define h : e→ {S,R} by

h(e) = R ⇐⇒ syncA(e) ∨ syncB(e) = 1

where an epoch is initialized with syncA(e) = syncB(e) = 0. Denote (m0, . . . ,mn) =
survive(h(e0), . . . , h(en)) and let i1 < · · · < i` be the indices such that mi1 = · · · = mi` = S.
Finally, set

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`)).

where path is defined in the preliminaries.

B Claim 19. Let e0, . . . , en+1 be a sequence of epochs such that syncA(en+1)∨syncB(en+1) =
0, then

v(PJPath(e0, . . . , en)) = ancestor(v(PJPath(e0, . . . , en+1)), 2c).

If on the other hand syncA(en+1) ∨ syncB(en+1) = 1, then

ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).

Proof. For the first direction of the claim, note that as h(en+1) = S it follows that

survive(h(e0), . . . , h(en+1)) = survive(h(e0), . . . , h(en)) ◦ S.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and 0 ≤ i1 < · · · < i` ≤ n where ` ≥ 0, the
indices such that mi1 = · · · = mi` = S. Thus, the set of indices that corresponds to an S
symbol in survive(h(e0), . . . , h(en)) ◦ S is exactly {i1, . . . , i`, n+ 1}. Hence,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`) ◦ edges(en+1)),

and so ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)).
For the other direction, by definition, h(en+1) = R and so

survive(h(e0), . . . , h(en+1)) = rewind(survive(h(e0), . . . , h(en))) ◦X.

Let (m0, . . . ,mn) = survive(h(e0), . . . , h(en)) and i1 < · · · < i` the indices such that mi1 =
· · · = mi` = S. By the definition of the rewind function, if ` > 0 then the indices i1, . . . , i`−1
correspond to an S symbol in rewind(survive(h(e0), . . . , h(en))). Thus,

PJPath(e0, . . . , en) = path(edges(ei1) ◦ · · · ◦ edges(ei`));
PJPath(e0, . . . , en+1) = path(edges(ei1) ◦ · · · ◦ edges(ei`−1)).

Therefore, ancestor(v(PJPath(e0, . . . , en)), 2c) = v(PJPath(e0, . . . , en+1)) as stated. In the
case that ` = 0, recall that root(T ) = ancestor(root(T ),m) for all m ∈ N concluding the
proof. C
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Transcript notations

Let T C be the palette-alternating tree code from Theorem 15 set with distance parameter
δT C whose value will be set later on. Denote by TCEnc,TCDec the encoding and decoding
functions of T C, respectively where we decode to minimize the distance from the received
word to a codeword. At every round, one of the parties would decide on a bit to be sent.
That bit is not sent over the channel as is but rather is encoded using a palette-alternating
tree code. For an even integer t ≥ 0 we denote by (a0, a2, . . . , at) those bits that Alice would
“like” to send from round 0 until round t. As mentioned above, the actual symbols that
Alice sends are obtained by encoding these bits using T C. Similarly, for an odd t ≥ 1 we
denote (b1, b3, . . . , bt) the bits Bob would like to send. For an even integer t ≥ 0 we define
ã(t) = (ã(t)0, ã(t)2, . . . , ã(t)t) to be the bits that are decoded, via TCDec, given the received
transmission to Bob at round t. Note that ã(t)i may not equal ã(t′)i for distinct times t, t′,
and certainly may not equal ai.

For an odd t, we define rA(t) = (a0, b̃(t)1, a2, b̃(t)3, . . . , b̃(t)t) and similarly for an even t,
rB(t) = (ã(t)0, b1, ã(t)2, b3, . . . , ã(t)t). We further define r(t) = (a0, b1, a2, . . . , bt) for odd t
and r(t) = (a0, b1, a2, . . . , at) for even t. Recall that for a given set of edges E′, we defined
v(E′) to be the unique vertex in T with largest depth that is reachable from the root using
the edge set E′. We define

pA(t) = PJPath(rA(t));
γA(t) = v(pA(t));
αA(t) = v(pA(t) ∩ (EA ∪ Y )).

Similarly,

pB(t) = PJPath(rB(t));
γB(t) = v(pB(t));
αB(t) = v(pB(t) ∩ (EB ∪X)).

5.2 The coding scheme
The coding scheme is composed of two parts. The first consists of R rounds and the second
of additional 2τR rounds where τ is a parameter to be chosen later on. We turn to describe
the first part of the scheme. The second part is described in Section 5.2.2.

5.2.1 Part 1 of the coding scheme
We present the scheme from Alice’s point of view. The scheme from Bob’s point of view can
be easily inferred. As mentioned, Alice’s algorithm is partitioned to epochs. At the first
round of epoch ek = [k(2c + 2), (k + 1)(2c + 2)) Alice computes vA = γA(k(2c + 2) − 1).
We will make sure to maintain the invariant that at odd times t, γA(t) ∈ VA. In particular,
vA ∈ VA. For each round type, Alice proceeds as follows:

5.2.1.1 Alice’s edge round

Let t be an Alice’s edge round, namely, t is an even integer with t 6≡ 2c (mod 2c+ 2).
1. At the edge rounds, Alice maintains vA in order to choose at which is the bit that she

would like to send at round t. Alice sets at ← πA(vA). This operation is well-defined as
we will be making sure also to maintain the invariant that in Alice’s edge rounds vA ∈ VA.

2. Transmit TCEnc(a0, a2, . . . , at)t/2.
3. Update vA ← son(vA, at).
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5.2.1.2 Bob’s edge round

Let t be Bob’s edge round, namely, t is odd with t 6≡ 2c + 1 (mod 2c + 2). At this round
Bob sent a bit to Alice who, in turn, proceeds by updating vA as follows:
1. vA ← son(vA, b̃(t)t), where, recall b̃(t) is the bit-string Alice decoded from the received

transcript at round t.

5.2.1.3 Alice’s bit sync round

Let t ≡ 2c (mod 2c+ 2). Notice that αA(t− 1) is an ancestor of γA(t− 1). We consider the
following cases according to αA(t− 1), γA(t− 1) locations:
1. If αA(t− 1) = γA(t− 1), then

a. at ← 0 (0 encodes “hold”)
b. Transmit TCEnc(a0, a2, . . . , at)t/2

2. If αA(t− 1) is a strict ancestor of γA(t− 1) then
a. at ← 1 (1 encodes “revert”)
b. Transmit TCEnc(a0, a2, . . . , at)t/2

5.2.2 Part 2 of the coding scheme
Recall that the coding scheme is divided to two parts. We now present the second part
which take place during rounds [R, (1 + 2τ)R]. This part is not partitioned to epochs and
we describe it per round. We define the function counterA : V → N that is initialized to 0.
Recall that n denotes the depth of the tree T . More precisely, our convention is that edges
leaving vertices of depth larger than n always point to their left son.

5.2.2.1 Alice’s edge round

Let t be an Alice’s round, namely, t is an even integer.
1. Alice sets at ← 0.
2. Transmit TCEnc(a0, a2, . . . , at)t/2.

5.2.2.2 Bob’s edge round

Let t be a Bob’s round, namely, t is odd. At this round, Bob sent a bit to Alice who, in turn,
proceeds by updating counterA as follows:
1. Alice computes γA(t).
2. If depth(γA(t)) ≥ n, denote by v the unique ancestor of γA(t) of depth n. Alice sets

counterA(v) = counterA(v) + 1.

5.2.2.3 Final round

Alice returns the vertex v that maximizes counterA(v). The analysis will show that such
vertex exists and is unique.

5.2.2.4 Remark

Note that in most rounds, TCEnc outputs a symbol in F2 which corresponds to a single bit
transmitted. At the rounds in which the symbol is an F4-element, we send the information
in two rounds and the round of the other party in between is ignored. For simplicity, we
make this issue transparent to the coding scheme.
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5.3 A simpler analysis with sub-optimal rate

In this section we prove that the coding scheme above, when set with suitable parameters
δT C , c, τ , has rate 1− Õ( 3

√
ε). Many of the ideas and results used in this section will be used

for the proof of Theorem 6, to be presented in Section 5.4, which requires additional ideas.
We assume R is an integral multiple of 2c+ 2 and let k be the number of epochs, namely,
R = (2c+ 2)k.

Good rounds

We say that t ∈ [R] is good if the decoding at round t succeeds. More precisely, when t is
even, round t is good if

(a0, a2, . . . , at) = (ã(t)0, ã(t)2, . . . , ã(t)t).

Similarly, an odd t is good if

(b1, b3, . . . , bt) = (b̃(t)1, b̃(t)3, . . . , b̃(t)t).

We make use of the following lemma proved by Schulman [29] (see also Section 2.1.3
in [12]).

I Lemma 20 ([29]). Let T C be a palette-alternating tree code with distance δT C. Assume
the channel has at most ε-fraction errors. Then, at most

µ , 2ε/δT C

fraction of rounds are bad.

Good epochs

We say that epoch e = [t, t + 2c + 2) is good if each round r ∈ [t − 1, t + 2c] is good and
otherwise we call it bad. Note that for an epoch to be good we require that the last round
of the previous epoch is good though do not require the last round of the current epoch
to be good. Note further that at least 1 − (2c + 2)µ fraction of the epochs are good. We
wish to define vertices analog to γA(t), αA(t) and γB(t), βB(t) that are defined according to
what was actually sent by the parties in the first t rounds rather than according to what was
received. Formally, define

γ(t) = v(PJPath(r(t)));
α(t) = v(PJPath(r(t)) ∩ (EA ∪ Y ));
β(t) = v(PJPath(r(t)) ∩ (EB ∪X)),

where recall that r(t) is defined in the paragraph presenting our transcript notations in
Section 5.1. Let v(t) be the least common ancestor of α(t), β(t) in T . Observe that v(t) is
equal to either α(t) or β(t) and in particular is an ancestor of γ(t).

B Claim 21. Let e = [t, t+ 2c+ 2) be a good epoch such that v(t− 1) 6= γ(t− 1). Then,

syncA(e) = 1 ∨ syncB(e) = 1.
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Proof. Observe that the hypothesis of the claim implies that v(t− 1) is a strict ancestor of
γ(t− 1). As γ(t− 1) is a strict ancestor of γ(t+ 2c− 1) and since v(t+ 2c− 1) = v(t− 1) it
follows that v(t+ 2c− 1) 6= γ(t+ 2c− 1). As round t+ 2c− 1 is good, it holds that

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

Furthermore, by the definition of αA and βB it follows that

αA(t+ 2c− 1) = α(t+ 2c− 1);
βB(t+ 2c− 1) = β(t+ 2c− 1).

Thus, as v(t+ 2c− 1) 6= γ(t+ 2c− 1), at least one of the following holds αA(t+ 2c− 1) 6=
γA(t+ 2c− 1) or βB(t+ 2c− 1) 6= γB(t+ 2c− 1). Hence, at least one of the parties set its
sync bit to 1. C

Short-split epochs

We define the indicator function

nearAncestor(v(t), γ(t)) =
{

1 dist(v(t), γ(t)) ∈ (0, 2c);
0 otherwise.

A good epoch e = [t, t+ 2c+ 2) is called a short-split epoch if

nearAncestor(v(t− 1), γ(t− 1)) = 1.

B Claim 22. The number of short-split epochs is bounded above by the number of bad
epochs.

Proof. Consider any two short-split epochs e = [t, t+ 2c+ 2), e′ = [t′, t′ + 2c+ 2) with t < t′.
Since e is a short-split epoch, then e is good and also v(t− 1) 6= γ(t− 1). By Claim 21, Alice
or Bob set their sync bit to 1. By Claim 19 it holds that γ(t+ 2c+ 1) = ancestor(γ(t− 1), 2c).
Observe that as d < 2c, this results in v(t+ 2c+ 1) = γ(t+ 2c+ 1).

Observe further that, until the arrival of a bad epoch, at epoch e′′ = [t′′, t′′ + 2c+ 2) we
have that v(t′′ − 1) = γ(t′′ − 1). Since e′ is a short-split epoch, v(t′ − 1) 6= γ(t′ − 1). It then
follows that there exists a bad epoch preceding e′. Since the first epoch is not short-split,
the claim follows. C

Potential function for the progress

For an integer i ≥ 0 and t = (2c+ 2)i− 1, consider the following potential function

Φ(t) = 2depth(v(t))− depth(γ(t)).

Recall that depth(γ(t)) ≥ depth(v(t)) and so when Φ(t) ≥ n it holds that depth(v(t)) ≥ n.

B Claim 23. If e = [t, t+ 2c+ 2) is a good epoch that is not short-split, then Φ(t+ 2c+ 1) =
Φ(t− 1) + 2c. Otherwise, Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c.

Proof. By Claim 19, dist(γ(t+ 2c+ 1), γ(t− 1)) ≤ 2c. Observe that by Claim 19 and by the
definition of v it follows that dist(v(t+ 2c+ 1), v(t− 1)) ≤ 2c as well. Thus, the assertion
Φ(t+ 2c+ 1) ≥ Φ(t− 1)− 6c follows. Let then e be a good epoch that is not short-split, and
consider the following cases:
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1. First assume that v(t − 1) = γ(t − 1). As epoch e is good, it follows that at the edge
rounds, Alice and bob extends the same (correct) path, and so

v(t+ 2c− 1) = γ(t+ 2c− 1). (6)

Since round t+ 2c− 1 is good,

γA(t+ 2c− 1) = γ(t+ 2c− 1) = γB(t+ 2c− 1).

The above equation together with Equation (6) implies that

αA(t+ 2c− 1) = γA(t+ 2c− 1);
βB(t+ 2c− 1) = γB(t+ 2c− 1).

By the algorithm both Alice and Bob sets their sync bit to 0, namely, syncA(e) =
syncB(e) = 0. Thus, together with Claim 19 and Equation (6),

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1)) + 2c,
depth(v(t+ 2c+ 1)) = depth(v(t− 1)) + 2c,

and it follows that Φ(t+ 2c+ 1) = Φ(t− 1) + 2c.
2. Consider now the case that v(t− 1) is a strict ancestor of γ(t− 1). By Claim 21 it follows

that syncA(e) = 1 or syncB(e) = 1. Then, by Claim 19 it holds that ancestor(γ(t−1), 2c) =
γ(t+ 2c+ 1). Since e is not a short-split epoch, v(t− 1) is an ancestor of γ(t+ 2c+ 1),
and by the definition of v this implies v(t+ 2c+ 1) = v(t− 1). Thus, it holds that

depth(γ(t+ 2c+ 1)) = depth(γ(t− 1))− 2c,
depth(v(t+ 2c+ 1)) = depth(v(t− 1)),

and

Φ(t+ 2c+ 1) = Φ(t− 1) + 2c,

concluding the proof. C

By Claim 22, there are at least (1− 2(2c+ 2)µ)k good epochs which are not short-split.
By Claim 23, Φ increases by at least 2c in every such epoch. In the remaining epochs, Φ
decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥ ((1− 2(2c+ 2)µ)2c+ 2(2c+ 2)µ · (−6c))k
= (1− 8(2c+ 2)µ) · 2ck

=
(

1−
(

4
2c+ 2 + 16cµ

))
R.

By setting c to be an integer c = Θ(1/√µ), we get Φ(R) =
(
1−Θ(√µ)

)
R. Now setting

R = (1 + Θ(√µ))n, the first part of the scheme assures that depth(v(R)) ≥ n.

Analysis of part 2 of the scheme

Let vpj be the unique ancestor of v(R) of depth n in T , it is well defined as the analysis
of Part 1 of the scheme assures that depth(v(R)) ≥ n. Recall that the second part of the
scheme contains 2τR rounds. By Lemma 20, there are at most

(1 + 2τ)µR
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bad rounds. By the algorithm, for every good odd round in Part 2 of the scheme, Alice
increases counterA(vpj) by 1. Observe that in the final round Alice returns the vertex that
maximizes counterA and so the assertion counterA(vpj) > (τR)/2 implies that the simulation
will terminates successfully. By setting τ = 6µ, we get

τ

2R > (1 + 2τ)µR

which guarantees that the majority of both Alice’s and Bob’s rounds in the second part of
the coding scheme are good. This concludes the proof of the theorem.

Calculating the rate

At each round of the simulation, a palette-alternating tree code symbol is sent instead of
a single bit. By Theorem 4 T C has rate 1−O(δT C log(1/δT C)). Setting δT C = 3

√
ε, we get

that the simulation uses(
1 +O

(√
ε

δT C

))(
1 +O

(
δT C log

(
1
δT C

)))
n =

(
1 +O

(
3
√
ε log

(
1
ε

)))
n

bits. Thus, the coding scheme rate is 1− Õ( 3
√
ε) as stated.

5.4 Optimal analysis
In this section we prove Theorem 6. We make use of the same coding scheme analyzed in
Section 5.3. The improved analysis follows by applying a more delicate analysis of the bad
rounds locations as a function of the errors introduced by the adversary.

Let T C be a palette-alternating tree code with distance δT C . Denote by E = {e1, . . . , eεR}
the set of rounds at which the adversary has introduced errors, where 0 ≤ e1 < · · · < eεR ≤ R.
A set of consecutive errors C = {ej , . . . , ej+r−1} is called a cluster of errors (with respect to
T C or more precisely δT C) if

∀` ∈ [r − 1] ej+` − ej ≤
2`
δT C

.

We define the cluster interval of C by I(C) = [ej , ej + 2r/δT C ]. We denote by C the set of
all clusters (with respect to E).

B Claim 24. Let C1, C2 ∈ C with C1 ⊆ C2. Then, I(C1) ⊆ I(C2).

Proof. Let C1 = {ei, . . . , ej}, C2 = {em, . . . , ek} with m ≤ i ≤ j ≤ k. By definition, it holds
that I(C1) = [ei, ei + 2(j − i+ 1)/δT C ] , I(C2) = [em, em + 2(k −m+ 1)/δT C ]. As ei ∈ C2
we have that ei ≤ em + 2(i−m)/δT C , and so

ei + 2(j − i+ 1)
δT C

≤ em + 2(j −m+ 1)
δT C

≤ em + 2(k −m+ 1)
δT C

,

which, together with em ≤ ei, concludes the proof. C

We will be interested to study clusters on sub-intervals of [0, R] and in particular we wish
to consider clusters that are, in a sense, maximal in the sub-interval. To formalize that, let
[a, b] be a sub-interval of [0, R]. A cluster C ∈ C with C ⊆ [a, b] is called [a, b]-maximal if for
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every cluster C ′ ⊆ [a, b] such that C ⊆ C ′ it holds that C ′ = C. A [0, R]-maximal cluster is
simply called maximal. We denote byM[a,b] the set of all [a, b]-maximal clusters, and byM
the set of all maximal clusters.

B Claim 25. Every C1, C2 ∈M[a,b] are either equal or disjoint.

The proof of the above claim is straightforward. Indeed, by adapting the proof of Claim 24,
if false C1 ∪ C2 ∈ C in contradiction to the maximality.

B Claim 26. Let C1, C2 ∈M[a,b] distinct. Then, I(C1) ∩ I(C2) = ∅.

Proof. By Claim 25 we have that C1 ∩ C2 = ∅, and so we may denote C1 = {ei, . . . , ei+j},
C2 = {em, . . . , em+n} with i+j < m. Assume toward a contradiction that I(C1)∩I(C2) 6= ∅,
and so em ∈ [ei, ei+2(j+1)/δT C). Observe that this would imply that C ′ = {ei, . . . , em} ∈ C,
which together with C ′ ⊆ [a, b], stands in contradiction to C1 ∈M[a,b]. C

B Claim 27.∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ ≤ 2εR
δT C

.

Proof. By Claim 26, and since | I(C) | = 2 |C | /δT C for every C ∈ C,∣∣∣∣∣ ⋃
M∈M

I(M)

∣∣∣∣∣ =
∑
M∈M

2 |M |
δT C

.

As all maximal clusters are disjoint (Claim 25),∑
M∈M

|M | ≤ εR,

which concludes the proof. C

I Lemma 28. Let r ∈ [0, R]. If r 6∈
⋃
C∈C
I(C) then r is a good round.

Proof. Denote by σt the palette-alternating tree code symbol that is sent at round t, and
let σ̃t be the received symbol at that round. Denote by (µ1, . . . , µr) the path on T C that
corresponds to the decoded codeword . Assume toward a contradiction that r is bad, namely,
(σ1, . . . , σr) 6= (µ1, . . . , µr). Let ` ∈ [r] be the largest integer such that µr−` 6= σr−`. As
TCDec(σ̃1, . . . , σ̃r) returns the codeword that minimizes the distance, and since µi = σi for
every i < r − `, we have that

∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) ≤ ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)). (7)

Since T C is a palette-alternating tree code with distance δT C ,

∆((µr−`, . . . , µr), (σr−`, . . . , σr)) ≥ (`+ 1)δT C . (8)

Let I = E ∩ [r − `, r], i.e the set of all rounds i such that σi 6= σ̃i in the interval [r − `, r].
Denote | I | = k. AsM[r−`,r] ⊆ C and by the hypothesis of the lemma, it follows that

r 6∈
⋃

C∈M[r−`,r]

I(C).



G. Cohen and S. Samocha 11:27

Observe that⋃
C∈M[r−`,r]

I(C) ⊆ [r − `, r).

Claim 26 states that the intervals of any two maximal clusters are disjoint, hence,∑
C∈M[r−`,r]

| I(C) | ≤ `.

As | I(C) | = 2 |C | /δT C for every C ∈ C and sinceM[r−`,r] forms a partition of I, it follows
that ∑

C∈M[r−`,r]

| I(C) | = 2k
δT C

.

By the above two equations, we have that ` ≥ 2k/δT C . Substituting to Equation (8), we have
that ∆((µr−`, . . . , µr), (σr−`, . . . , σr)) > 2k. Since ∆((σ̃r−`, . . . , σ̃r), (σr−`, . . . , σr)) = k, we
have that ∆((µr−`, . . . , µr), (σ̃r−`, . . . , σ̃r)) > k in contradiction to Equation (7). J

Using the above, we obtain a better bound on the fraction of bad epochs compared to
the bound O(εc/δT C) established in Section 5.3.

I Lemma 29. At most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad.

Proof. Observe that for every C ∈ C there exists a maximal cluster M ∈ M such that
C ⊆M . By Claim 24 it then follows that I(C) ⊆ I(M), and so⋃

C∈C
I(C) =

⋃
M∈M

I(M).

Claim 27 implies that∑
M∈M

| I(M) | ≤ 2εR
δT C

. (9)

Notice that each clusterM intersect with at most d| I(M) | /(c+1)e bad epochs. By Claim 28,
if r 6∈ I(M) for every M ∈M then r is good. Hence there are at most

∑
M∈M

⌈
| I(M) |
c+ 1

⌉
bad epochs. Since the maximal clusters form a partition of E , it follows that |M | ≤ εR.
This, together with Equation (9) yields

∑
M∈M

⌈
| I(M) |
c+ 1

⌉
≤ εR+

∑
M∈M

| I(M) |
c+ 1

≤ εR+ 2εR
δT C(c+ 1)

=
(

4ε
δT C

+ ε(2c+ 2)
)
k.

So, at most (4ε/δT C + ε(2c+ 2)) fraction of the epochs are bad as stated. J
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By Claim 22 and Lemma 29 there are at least (1− 2(4ε/δT C + ε(2c+ 2))) k good epochs
that are not short-split. By Claim 23, in each such epoch, Φ increases by at least 2c. In the
remaining epochs, Φ decreases by at most 6c. Since Φ(−1) = 0 we have that

Φ(R) ≥
((

1− 2
(

4ε
δT C

+ ε(2c+ 2)
))

2c+ 2
(

4ε
δT C

+ ε(2c+ 2)
)
· (−6c)

)
k

=
(

1− 32ε
δT C
− 8ε(2c+ 2)

)
· 2ck

≥
(

1− 2
c
− 32ε
δT C
− 16cε

)
R.

By setting c to be an integer with c = Θ( 1√
ε
) and δT C =

√
ε/ log(1/ε), we get that

Φ(R) ≥
(

1−Θ(
√
ε log(1/ε))

)
R.

By setting R = (1 + Θ(
√
ε log(1/ε)))n, and since T C has rate 1 − Θ(δT C log(1/δT C)) =

1−Θ(
√
ε log(1/ε)), the first part of the scheme assures that depth(v(R)) ≥ n. Similarly to

the analysis of Part 2 from Section 5.3, by setting τ = Θ(µ) = Θ(
√
ε log(1/ε)), Theorem 6

follows.
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