Finite Sequentiality of Finitely Ambiguous
Max-Plus Tree Automata
Erik Paul

Institute of Computer Science, Leipzig University, Germany
epaul@informatik.uni-leipzig.de

—— Abstract

We show that the finite sequentiality problem is decidable for finitely ambiguous max-plus tree
automata. A max-plus tree automaton is a weighted tree automaton over the max-plus semiring. A
max-plus tree automaton is called finitely ambiguous if the number of accepting runs on every tree
is bounded by a global constant. The finite sequentiality problem asks whether for a given max-plus
tree automaton, there exist finitely many deterministic max-plus tree automata whose pointwise
maximum is equivalent to the given automaton.

2012 ACM Subject Classification Theory of computation — Quantitative automata; Theory of
computation — Tree languages

Keywords and phrases Weighted Tree Automata, Max-Plus Tree Automata, Finite Sequentiality,
Decidability, Finite Ambiguity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.137
Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This work was partially supported by Deutsche Forschungsgemeinschaft (DFG), Graduier-
tenkolleg 1763 (QuantLA).

1 Introduction

A maz-plus automaton is a finite automaton whose transitions are weighted by real numbers.
A max-plus automaton assigns a weight to each of its runs by adding the weights of the
transitions which constitute the run and it assigns a weight to every word by taking the
maximum over the weights of all runs on the given word. Max-plus automata are weighted
automata [40, 39, 27, 6, 13] over the max-plus semiring. In the form of min-plus automata,
they were originally introduced by Imre Simon as a means to show the decidability of the
finite power property [42, 43] and they enjoy a continuing interest [26, 19, 22, 7, 12, 16, 28].
They have found applications in many different contexts, for example to determine the star
height of a language [18], to prove the termination of certain string rewriting systems [44],
and to model discrete event systems [23]. They also appear in the context of natural language
processing [29], where probabilities are often computed in the min-plus semiring as negative
log-likelihoods for reasons of numerical stability.

Like finite automata, max-plus automata are by definition non-deterministic devices.
However, while every finite automaton can be determinized [36], the same is in general
not true for max-plus automata [22]. Actually, it is a long-standing open question whether
given a max-plus automaton, the existence of an equivalent deterministic automaton can be
decided. This problem is commonly known as the sequentiality problem and is one of the
most prominent open questions about max-plus automata. For practical applications, the
execution of a deterministic automaton is of course much more efficient than the execution
of a non-deterministic one, so being able to decide whether a given automaton can be
determinized is very much desirable. While open in general, the sequentiality problem has
been shown to be decidable for some important subclasses of max-plus automata, namely

© Erik Paul;
37 licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 137; pp. 137:1-137:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0814-598X
mailto:epaul@informatik.uni-leipzig.de
https://doi.org/10.4230/LIPIcs.ICALP.2020.137
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

137:2

Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

for unambiguous [29], finitely ambiguous [22], and polynomially ambiguous [21] max-plus
automata. Here, we call a max-plus automaton unambiguous if there exists at most one
run on every word, finitely ambiguous if the number of runs on each word is bounded by a
global constant, and polynomially ambiguous if the number of runs on each word is bounded
polynomially in the length of the word. Note that the classes of deterministic, unambiguous,
finitely ambiguous, polynomially ambiguous, and arbitrary max-plus automata form a strictly
ascending hierarchy [22, 20, 28]. Also, deciding the degree of ambiguity of a max-plus
automaton can easily be reduced to deciding the degree of ambiguity of a finite automaton.
It is trivial to decide whether a finite automaton is deterministic. Polynomial time algorithms
to decide whether a finite automaton is unambiguous, finitely ambiguous, or polynomially
ambiguous can be found in [8, 45, 41].

While a given max-plus automaton may not be equivalent to a single deterministic max-
plus automaton, this does not exclude the possibility that it is equivalent to the pointwise
maximum of finitely many deterministic automata. The problem of deciding whether a
max-plus automaton possesses such a finitely sequential representation is known as the finite
sequentiality problem. The decidability of the finite sequentiality problem was posed as an
open question in [19] and has been solved only recently for unambiguous [4] and finitely
ambiguous [3] max-plus automata. Note that the class of max-plus automata which possess a
finitely sequential representation lies strictly between the classes of deterministic and finitely
ambiguous max-plus automata, and it is incomparable to the class of unambiguous max-plus
automata [22].

In this paper, we show that the finite sequentiality problem is decidable for finitely
ambiguous maz-plus tree automata. Operating on trees instead of words, max-plus tree
automata are a generalization of max-plus word automata and more generally, they are
weighted tree automata [1, 5, 14, 17] over the max-plus semiring. Applications of max-plus
tree automata include proving the termination of certain term rewriting systems [24] and
they are commonly employed in natural language processing [35] in the form of probabilistic
context-free grammars. Our approach to proving the decidability of the finite sequentiality
problem for finitely ambiguous max-plus tree automata employs ideas from Bala’s proof
of the corresponding result for finitely ambiguous max-plus word automata [3]. However,
due to lack of space, formal proofs had to be omitted in [3] and Bala’s informal description
of his methods does not suffice for reconstruction. Also, no other published version of [3]
exists. We provide an honest attempt to compare our approach to his but note that our
interpretation might not be accurate.

In his proof for max-plus word automata, Bala first introduces the A-Fork property and
then proceeds to show that this property is a decidable criterion characterizing the finite
sequentiality of a finitely ambiguous max-plus automaton. More precisely, he shows that
a finitely ambiguous max-plus automaton possesses a finitely sequential representation if
and only if the A-Fork property is not satisfied. To show the decidability of the A-Fork
property, he shows its expressibility in a decidable fragment of Presburger arithmetic. To
show that an automaton is not finitely sequential if the A-Fork property is satisfied, he uses
pumping techniques similar to those employed in [4] for the finite sequentiality problem of
unambiguous max-plus word automata. This part of his proof most likely employs Ramsey’s
Theorem [37] as it involves “colorings of finite hypercubes”. His proof for the existence of a
finitely sequential representation in case that the A-Fork property is not satisfied employs
transducers and the notions of critical pairs and close approrimations, none of which occur
in our approach. We are thus unsure about the nature of this particular part of the proof,
but it most likely uses a reduction to the decidability of the finite sequentiality problem for
unambiguous automata.

E. Paul

Our approach is as follows. First, we introduce the separation property, a twofold
modification of the A-Fork property. On the one hand, we endow our new property with
a criterion accounting for the non-linear structure of trees. This new criterion is inspired
by the criterion we added in [34] to the fork property [4], the property characterizing finite
sequentiality of unambiguous max-plus word automata, in order to obtain the tree fork
property, the property characterizing finite sequentiality of unambiguous max-plus tree
automata. On the other hand, we strengthen the A-Fork property as with only the first
modification, our new property would wrongly characterize some finitely sequential automata
as not being finitely sequential. We then show that the separation property is decidable by
employing Parikh’s Theorem [31, 15] for a reduction to the decidability of the satisfiability

of systems of linear inequalities over the rational numbers with integer solutions [30, 9].

This means in particular that we show the decidability of the finite sequentiality problem
only for automata with weights in the rationals. Then we employ Ramsey’s Theorem to
show that no finitely sequential representation exists whenever the separation property is
satisfied. Due to the criterion accounting for the non-linearity of trees, this is considerably
more difficult than in [3] and it is in fact the most technical and the most challenging aspect
of our result. Finally, we show that if the separation property is not satisfied for a given
max-plus tree automaton, then we can construct finitely many unambiguous max-plus tree
automata which all do not satisfy the tree fork property and whose pointwise maximum is
equivalent to the automaton. By [34], these unambiguous automata then possess finitely
sequential representations. Combining these, we obtain a finitely sequential representation of
the original automaton.

2 Preliminaries

For a set X, we denote the power set of X by P(X) and the cardinality of X by |X|. For
two sets X and Y and a mapping f: X — Y, we call X the domain of f, denoted by
dom(f). For a subset X' C X, we call the set f(X')={y €Y | Iz € X': f(z) = y} the
image or range of X' under f. The restriction of f to X', denoted by f[y/, is the mapping
flx: X' =Y defined by f]y/ (z) = f(x) for every x € X'. For an element y € Y, we call
the set f~1(y) = {z € X | f(x) = y} the preimage of y under f. For a second mapping
g: X =Y, we write f = g if for all x € X we have f(z) = g(z).

We let N=1{0,1,2,...}. By N* we denote the set of all finite words over N. The empty
word is denoted by £, and the length of a word w € N* by |w|. The set N* is partially ordered

by the prefix relation <, and totally ordered with respect to the lexicographic ordering <.

Two words from N* are called prefiz-dependent if they are in prefix relation, and otherwise
they are called prefiz-independent.

A ranked alphabet is a pair (I',rkr), often abbreviated by T', where T" is a finite set
and rkr: I' = N a mapping which assigns a rank to every symbol. For every m > 0 we
define T'0™ = rki*(m) as the set of all symbols of rank m. The rank of T is defined as
rk(T") = max{rkr(a) | @ € T'}. The set of (finite, labeled, and ordered) T'-trees, denoted
by T, is the set of all pairs t = (pos(t),label;), where pos(t) C N* is a finite non-empty
prefix-closed set of positions, label;: pos(t) — T' is a mapping, and for every w € pos(t)
we have wi € pos(t) iff 1 < ¢ < rkp(labely(w)). We write t(w) for label;(w) and [¢| for
[pos(t)|. We also refer to the elements of pos(t) as nodes, to € as the root of t, and to
prefix-maximal nodes as leaves. The height of t is defined as height(t) = max,,epos(t) [w|. For
a leaf w € pos(t), the set {v € pos(t) | v <p w} is called a branch of t.

137:3

ICALP 2020

137:4

Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

Now let s,t € Tr and w € pos(t). The subtree of t at w, denoted by t[,,, is a I'-tree
defined as follows. We let pos(tl,,) = {v € N* | wv € pos(t)} and for v € pos(t],,), we let
labely; (v) = t(wv). The substitution of s into w of t, denoted by t(s — w), is a I'-tree defined
as follows. We let pos(t(s — w)) = (pos(t) \ {v € pos(t) | w <p v}) U{wv | v € pos(s)}. For
v € pos(t(s — w)), we let label; (s, (v) = s(u) if v = wu for some u € pos(s), and otherwise
labely (s (v) = t(v). For a € 0™ and trees tq,...,t, € Ty, we also write a(ty,...,t,) to
denote the tree t with pos(t) = {e} U {iw | i € {1,...,m},w € pos(t;)}, label,(¢) = a, and
label; (iw) = t;(w). For a € T®), the tree a() is abbreviated by a.

For a ranked alphabet T', a tree over the alphabet 'y = (T'U {¢}, rkp U {¢ — 0}) is called
a I'-context. Let ¢t € Ty, be a I'-context and let wy, ..., w, € pos(t) be a lexicographically
ordered enumeration of all leaves of ¢ labeled ¢. Then we call ¢t an n-I'-context and define
Qi(t) = w; for i € {1,...,n}. For an n-T'-context ¢ and contexts ti,...,t, € Ir,, we define
tty, ... tn) =ttty — O1(t)) -+ - {tn, = On(t)) by substitution of ¢y, ..., ¢, into the o-leaves of
t. A 1-T-context is also called a T'-word. For a I'-word s, we define s = ¢ and s"*! = s(s")
for n > 0.

A commutative semiring is a tuple (K, ®,®,0, 1), abbreviated by K, with operations sum
@ and product ® and constants 0 and 1 such that (K, ®,0) and (K,®,1) are commutative
monoids, multiplication distributes over addition, and Kk ©0 =0® k = 0 for every x € K. In
this paper, we mainly consider the following two semirings.

The Boolean semiring B = ({0,1},V, A,0,1) with disjunction V and conjunction A.

The maz-plus semiring Qumax = (Q U {—o0}, max, +, —00,0) where the sum and the

product operations are max and +, respectively, extended to QU {—oo} in the usual way.
For a commutative semiring (K,®,®,0,1) and an integer n > 1, the product semiring
(K™, ®,, ®n, 0,,1,) is defined by componentwise operations and the constants 0,, = (0, ...,0)
and 1, = (1,...,1). We will usually denote ®,, and ®,, simply by @ and @.

Let (K,®,®,0,1) be a commutative semiring. A weighted bottom-up finite state tree
automaton (short: WTA) over K and T"is a tuple A = (Q,T, u,v) where @ is a finite set
(of states), I' is a ranked alphabet (of input symbols), pu: U:E(ZFO) QM x T x Q — K (the
function of transition weights), and v: @ — K (the function of final weights). We define
Ay = dom(p). A tuple d € Ay is called a transition and d is called valid if u(d) # 0. A
state ¢ € @ is called final if v(q) # 0.

We call a WTA over the max-plus semiring a max-plus-WTA and a WTA over the Boolean
semiring a finite tree automaton (FTA). We also write a WTA A= (Q,T', u,v) over B as a
tuple A" = (Q, 1,4, F) where 6 ={d € A4 | u(d) =1} and F = {q € Q | v(q) = 1}.

For a tree t € T, a mapping r: pos(t) — @ is called a quasi-run of A on t. For a
quasi-run 7 on ¢ and a position w € pos(t) with t(w) = a € T the tuple t(t,r,w) =
(r(wl),...,r(wm),a,r(w)) is called the transition at w. The quasi-run r is called a (valid)
run if for every w € pos(t) the transition t(¢,r, w) is valid with respect to A. We call a run
r accepting if r(¢) is final. By Run(t) and Acc4(t) we denote the sets of all runs and all
accepting runs of A on ¢, respectively. For a state ¢ € @), we denote by Run4(¢, ¢) the set of
all runs r € Runy4(t) such that r(e) = q.

For a run r € Run4(t), the weight of r is defined by wt 4(¢,7) = Owepos(t) w(t(t,r,w)).
The behavior of A, denoted by [A], is the mapping defined for every ¢t € Tr by [A](t) =
D,eacenw(Wtalt,r) ©v(r(e))), where the sum over the empty set is O by convention. The
support of a WTA A is the set supp(A) = {t € Tr | [A](t) # 0}. The support of an FTA A
is also called the language accepted by A and denoted by L£(A). A subset L C Tr is called
recognizable if there exists an FTA A with L = L(A).

E. Paul

For a WTA A = (Q,T, u,v), a run of A on a I'-context ¢ is a run of the WTA A’ =
(Q,To, 1/, v) on ¢, where p/(0,q) = 1 for all ¢ € Q and p/(d) = p(d) for all d € Ay. We
denote Run%(t) = Runa (¢) and for » € Run®(t) write wt%(¢,r) = wta/(¢,7). For an
n-I'-context ¢ € Tr, and states qo, ..., qn, we denote by Run%(q1,- .., qn,t, qo) the set of all
runs 7 € Run%(¢) such that r(e) = go and r(0;(t)) = ¢; for every i € {1,...,n}.

We consider the set I' x @ as an alphabet by defining rkrxg(a,q) = rkr(a) for every
pair (a,q) € T' x Q and identify every tree t' € Tty with the pair (¢,7) given by t =
(pos(t'), mr olabely) € Tt and r = mg o labely, where 7p: I'x Q@ = T'and mg: I' x Q — Q
are the projections. For a I-word s € T, a state ¢ € @, and a run 7, € Run%(q, s, q), we
define (s,75)° = (0,q) and (s,75)" T = (5,74)((5,75)" — O1(s)) for n > 0.

We call a WTA A = (Q,T, u,v) over K and I' trim if for every p € Q, there exist ¢t € Tr,
r € Accy(t), and w € pos(t) with 7(w) = p. The trim part of A is the automaton obtained
from A by removing all states p € @ for which no such ¢, r, and w exist. This process
obviously has no influence on [A]. We call A complete if for every m > 0, a € T and
(q1y---,qm) € Q™, there exists at least one ¢ € Q with u(q1,...,qm,a,q) # 0. We call A
deterministic or sequential if for every m >0, a € ™ and (qq,...,qm) € Q™, there exists
at most one ¢ € @ with u(q1,...,qm,a,q) # 0. If there exists an integer M > 1 such that
|[Acca(t)| < M for every t € Tr, we call A M-ambiguous. We call A finitely ambiguous if it
is M-ambiguous for some M > 1 and unambiguous if it is 1-ambiguous. We call the behavior
[A] of A finitely sequential if there exist finitely many deterministic WTA A, ..., A, over
K and T such that [A] = @, [A;], where the sum is taken pointwise.

3 The Criterion for Finite Sequentiality

We will show that for a finitely ambiguous max-plus-WTA A, it is decidable whether its
behavior [A] is finitely sequential. For this, we first formulate the separation property, a
generalization of Bala’s A-Fork property [3]. Then we show that it is decidable whether
the separation property is satisfied and that the behavior of a max-plus-WTA is finitely
sequential if and only if the separation property is not satisfied. In the following, let I" be
a ranked alphabet. We begin by recalling the tree fork property and the related concepts
of rivals, reachers, distinguishers, and forks. Intuitively, two states of a finitely ambiguous
max-plus-WTA A are called rivals if they can be reached by the same tree u and they can
loop in the same I'-word s but the weights of these loops differ. The tree u is then called a
reacher of p and ¢ and the I'-word s a distinguisher for p and ¢q. For two rivals p and ¢, a
I'-word f is called a p-g-fork if f can both loop in p and also go from p to ¢, in a bottom-up
sense. We say that A satisfies the tree fork property if there exist two rivals p and ¢ such
that either there exists a p-g-fork or p and ¢ can occur at prefix-independent positions in
some run of A. Formally, these definitions are as follows.

» Definition 1. Let A = (Q,T', u,v) be a finitely ambiguous max-plus-WTA. Two states
p,q € Q are called rivals if there exists a tree u € Tt with Run_g(u,p) # 0 and Run4(u,q) # 0
and a T-word s with runs r, € Run®(p, s,p) and r, € Run(q, s,q) such that wt%(s,rp) #
wt(s,7q). In this case, we call u a p-g-reacher and s a p-g-distinguisher. We say that A
satisfies the tree fork property if at least one of the following two conditions is satisfied.
(i) There exist rivals p,q € Q and a T-word f with Run4(p, f,p) # 0 and Run4(p, f,q) # 0.
In this case, we call f a p-g-fork.
(ii) There exist rivals p,q € Q, a 2-I'-context t € Tr,, and a run r € Run(t) with
r(Q1(t)) = p and r(O2(t)) = q. In this case, we call t a p-g-split.

137:5

ICALP 2020

137:6

Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

We have the following theorem relating the tree fork property to finite sequentiality of
unambiguous max-plus-WTA.

» Theorem 2 ([34]). The behavior of a trim unambiguous maz-plus-WTA A is finitely
sequential if and only if A does not satisfy the tree fork property. If [A] is finitely sequential,
a finitely sequential representation of A can be effectively constructed.

For finitely ambiguous max-plus-WTA, however, the tree fork property does not capture
finite sequentiality. To see why, consider an unambiguous max-plus-WTA A satisfying the
tree fork property [34, 4, 22] and let L be the largest weight used in \A. Then construct
a one-state max-plus-WTA B whose every transition weight and every final weight is L.
Clearly, B is deterministic and we have [B] > [A]. By taking the disjoint union AU B of
A and B, we obtain a 2-ambiguous max-plus-WTA which satisfies the tree fork property
but whose behavior coincides with that of the deterministic automaton B. In this particular
example, the states relevant for the tree fork property to be satisfied are not relevant at all
for the behavior of the automaton.

For the rest of this paper, let A be a trim finitely ambiguous max-plus-WTA over the
ranked alphabet I'. In order to reduce the finite sequentiality problem of finitely ambiguous
max-plus-WTA to that of unambiguous max-plus-WTA, we decompose 4 into a maximum
of finitely many unambiguous max-plus-WTA A;, ..., Ay and then analyze the interplay
of these latter automata. We can do so as in fact, every finitely ambiguous WTA can be
decomposed into finitely many unambiguous WTA [22, 32]. This is a common approach when
dealing with finite ambiguity [22, 25, 33] and is also used by Bala in the corresponding proof
for words [3]. In the simplest case, if Aj,..., Ax all do not satisfy the tree fork property,
we find a finitely sequential representation of A by constructing such a representation for
each A, and then combining all of these. However, if some A,, does satisfy the tree fork
property, we have to analyze whether this automaton contributes enough to the behavior of
A for there not to exist a finitely sequential representation of A. For an easier analysis of the
automata Ayq, ..., Ay, we normalize their final weights and consider their product as follows.

» Lemma 3 ([41, 22, 32, 10]). We can effectively find an integer M € N and construct a
trim WTA U = (Q,T, u,v) over QM. and T such that

U is unambiguous,

w(Ay) € QM U {(—o0,...,—00)} and v(Q) C {(0,...,0),(—00,...,—00)}, and

for every t € Tr we have [A](t) = maxM, =;([U](2)),
M — Qumax is the projection to the i-th coordinate for everyi € {1,..., M}.

max

where m;: Q

Let U be the automaton we obtain for A from Lemma 3. For a tree t € Tr, a I'-word
s € Tr,, runs 1, € Runy(¢), rs € Rung,(s), states p, ¢ € Q, and a coordinate i € {1,..., M},
we let wt;(t, 1) = mi(wty(t,71)), Wti(s,75) = mi(wt (s, 75)), and wtg (p, s, q) = wt (s, r]) for
the unique run 7] € Rung,(p, s, q). We define the concepts of rivals, reachers, distinguishers,
and forks for U as follows.

» Definition 4. Letic {1,...,M}, p,q € Q, t € Tr, and r € Accy(t).
We call p and q i-rivals if there exists a tree w € Tr such that Runy(u,p) # 0 and
Runy(u,q) # 0 and a T-word s such that Runy,(p,s,p) # 0, Run;,(q,s,q) # 0, and
wts(p, s,p) # wt$(q,s,q). In this case, we also call u a p-g-reacher and s an i-p-q-
distinguisher.
We call a T-word f an i-p-g-fork if p and q are i-rivals, Rung,(p, f,p) # 0, and
Rung,(p, f,q) # 0.

E. Paul

We say that (t,r) is i-p-q-fork-broken if there exist positions wy,, wq, € pos(t) such that
Wq <p Wy, T(wp) = p, r(we) = g, and (t(o — wp)),, is an i-p-q-fork.
We say that (t,r) is i-p-g-split-broken if p and q are i-rivals and there exist two prefix-
independent positions wy, w, € pos(t) with r(wy) = p and r(w,) = q.
When appropriate, we may drop some of the hyphenated modifiers from the terms above;
for example, we will refer to (t,r) as i-fork-broken if there exist states p,q € Q such that
(t,r) is i-p-q-fork-broken and as i-split-broken if there exist states p,q € Q such that (t,r) is
i-p-q-split-broken. We call (t,r) i-broken if it is i-fork-broken or i-split-broken.

Our concept of brokenness, is inspired by Bala’s notion of “broken paths” [3]. Of course,
as his proof is concerned with words, the concept of split-brokenness does not exist. His
notion of brokenness corresponds to our notion of fork-brokenness. Employing the notion
of brokenness, Bala characterizes finite sequentiality of finitely ambiguous max-plus word
automata using the A-Fork property. Translated to tree automata, the A-Fork property is
defined as follows. We say that U/ satisfies the A-Fork property if for every constant C' > 0,
there exists a tree ¢ € T and an accepting run r € Accy(t) such that for some weight-
maximal coordinate 7, i.e., with wt;(¢,7) = Jrnaxj-w:1 wt,;(t,7), we have that (¢,r) is i-broken
and for every coordinate j such that (¢,7) is not j-broken, we have wt;(¢,7) < wt;(¢,r) — C.
In other words, the A-Fork property is satisfied if broken coordinates are able to dominate
non-broken coordinates by an arbitrarily large margin. Bala shows that a finitely ambiguous
max-plus word automaton is finitely sequential if and only if the corresponding automaton
U does not satisfy the A-Fork property. For tree automata, however, this criterion does
not capture finite sequentiality. More precisely, if we know that there do not exist a tree
t and a run 7 on ¢ such that (¢,r) is split-broken, then the A-Fork property does capture
finite sequentiality also for tree automata. However, if U satisfies the A-Fork property due to
split-broken coordinates dominating non-broken coordinates, the behavior of A may still be
finitely sequential. This is evidenced by the following example.

» Example 5. Consider the scenario for U as defined in Figure 1. The support of U consists
of all trees of the form c(b*(a™(d;)), bl(a;‘(dj))) with 4,7 € {1,2}, k,1 > 0, and m,n > 0. A
valid run on such a tree necessarily assigns states from {p1,p2,p} to the left branch of the
tree and states from {q1, g2, q} to the right branch of the tree. Moreover, if a branch begins
with a letter d;, this branch is assigned states from {p;, g;, p, ¢}. In particular, we see that U
is unambiguous. The states p and g are 2-rivals as we see from the p-g-reacher u = b(a1(d1))
and the 2-p-g-distinguisher s = b(¢). By considering the trees t,, = c¢(b(a}(d1)), b(a%(dz))), we
see that runs exist where p and ¢ occur prefix-independently and the weight of coordinate 2 is
arbitrarily larger than the weights of coordinates 1 and 3 since we have [U](t,) = (—n,0, —n).
However, in t,, the subtrees below p and ¢ are distinct, thus a deterministic automaton can
distinguish between them.

In fact, if U is given this way, we can construct a finitely sequential representation
of [A] as follows. All trees of the form c(b*(a}*(dy)),b!(a}(d;))) are assigned the weight
(—m—n+k+1—2k—1,k+1—2), so coordinate 3 is always dominant. Similarly, coordinate 1
is dominant for trees of the form c(b*(a*(dz)), b (a%(d2))). These trees can be handled by
the deterministic max-plus-WTA obtained from U by removing the states ¢; and ¢o, letting
u(p,p,c, T) = (0,0,0), and replacing p with 7 o u and 73 o , respectively. For trees of the
form c(b*(a*(d1)), b (a5 (dz))), we remove the states ps and g; from U and then construct
three deterministic max-plus-WTA by replacing p by 71 o p, w2 o u, and 73 o p, respectively.
For the trees c(b*(af'(dz)), b (a}(d1))) we can proceed similarly. The pointwise maximum
of the automata constructed this way is then equivalent to [LA]. This example shows in
particular that if U satisfies the A-Fork property, [A] can still be finitely sequential.

137:7

ICALP 2020

137:8

Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

V(T) = (0707 O) M(p7 b>p) = (17 1, 1) :U/(phahpl) = :u’(q17a17q1) = (_1707 O)
(P, q,c, T)=1(0,0,0) plg,b,q) =(1,-1,1) p(p2,a2,p2) = p(gz, a2,92) = (0,0,-1)
H(pl,b,p) = H(p27b7p) = /L(qhby q) = H(qz,b, Q) = (0707 O)
p(di,p1) = p(di, q1) = p(dz, p2) = p(dz, g2) = (0,0,0)
() ()
JONOX JOROL
(1,1,1) (1,-1,1) (1,1,1) (1,-1,1)
JONOL JONOL
(=1,0,0) (0,0,-1) (0,0,-1) (=1,0,0)

Figure 1 A scenario for the automaton &: The automaton ({p1,p2,q1,¢2,p,¢, T}, T, p,v) over
the ranked alphabet T' = {a1, a2, b, ¢,d1,d2} where ¢ € I'® | ay,a2,b € T and di,ds € T©. All
unspecified weights are assumed to be —oco. The states p and q are 2-rivals.

Our fundamental idea to adapt the A-Fork property to tree automata is to formulate
our version not for U but for a covering of U. Oversimplifying, a covering of an automaton
is a new automaton obtained by enhancing the states of the original automaton with
additional capacities to store information. A prominent example of a covering construction
is the Schiitzenberger covering of an automaton. The Schiitzenberger covering in particular
has already been employed in a number of decidability results for max-plus automata
[22, 4, 3, 33, 34]. For more background on coverings, see [38].

Here, we construct from ¢/ an unambiguous automaton U with the same behavior as U
and whose states are tuples from Q x P(Q) x P(Q* x P(Q?)). Every run r of U on a tree
t € Tt will correspond uniquely to a run of & on ¢, given by projecting to the first entry. For
a position w, the second entry of r(w) will be the set of all states ¢ € @ which can be reached
by t[,,, i-e., for which Runy(¢[,,,q) is non-empty. The third entry of r(w) will contain a
tuple (p,q,p’,¢’,Y) if and only if ¢],, can reach p and ¢ with two runs r, and rg, these runs
visited p’ and ¢’ simultaneously at some position v in the past, and Y consists of all pairs of
states which these runs visited simultaneously up to v. More precisely, the third entry of
r(w) will consist of all tuples (p, ¢, p’,q’,Y) such that (1) there exist runs r, € Runy(t/,,,p)
and rq € Runy(tl,,, q), (2) for some position below w, i.e., some position v € pos(t[,,), we
have r,(v) = p’ and r¢(v) = ¢, and (3) Y is the set of all pairs of states (rp(vu),rq(vu))
with u € pos(t[,,,). Our intention of considering the covering U is to increase the knowledge
we have about each pair of rivals. For two rivals of U, all we know is what the definition of
rivals specifies. For two rivals of U on the other hand, we can show that they are necessarily
of the form (p, P,V) and (¢, P,V) where p and ¢ are rivals of &{. This allows us to infer
statements about the rivals of U which are not necessarily true for the rivals of ¢. The
precise construction of U is as follows.

» Construction 6. We define U = (Q,T', u,v) as the trim part of the automaton U’ =
(Q,T', i', V') defined as follows. We let Q' = Q x P(Q) x P(Q* x P(Q?)) and for subsets
Py,...,P, C Q and a letter a € T" with rkp(a) = m, we let succ(P,...,Pn,a) = {qo |
3(q1,---5qm) € Py X ... X Py, with u(q1,- .-, qm,a,q0) € QM}. Fori € {1,...,rkr(a)} and
states (p,q,p’,q,Y) € Q* x P(Q?), we let succ(Py,...,Pn,(p,q,p',q¢,Y),i,a) =

E. Paul

succ(Py, ..., Pi—1,{p}, Pix1,- .., Pm,a)xsuce(Py, ..., Pi_1,{q}, Pit1,. .., Pm,a)x{p } x{¢'} x
{Y}. For V C Q* x P(Q?) and p,q € Q, we let visited(p,q, V) = {0, ¢) | (p,q,7',¢,Y) €
V for some Y C Q?}. Then for a € T' with tkr(a) = m and (po, Po, Vo), - - -, (Pms P, Vin) €

Ql7 we define V/(pOa P07 ‘/0) = V(IPO) and l*l’/((ph Pla ‘/l)a) (pm7 P’rn7 Vm)7 a, (pO7PO; VO)) =
w(p1, -y Pm,a,po) if Py =succ(Py,..., Py, a) and with

V=U~, Upap.avyevs suce(Pr, ..., Po, (p, q,0,4¢,Y),i,a)

we have Vo = VU {(p,q.p,4,Y) | p,q € P and

Y = visited(p, ¢, V) U {(p, q)}}

(—o0,...,—00) otherwise.

Then U satisfies the properties described above. We let m1: Q — Q, m2: Q — P(Q), and
73: Q = P(Q* x P(Q?)) be the projections, and let wt; and wt{ be defined for U in the
same way we defined wt; and wt{ for ¢. Furthermore, we note that the concepts of rivals,
reachers, distinguishers, and forks as defined for ¢/ in Definition 4 apply to U in a similar
fashion.

Finally, we introduce our version of the A-Fork property. To allow for easier proofs, we
use a different formulation and consequently a different name. But in fact, U satisfies the
separation property if and only if it satisfies the A-Fork property in the way we translated it
to trees earlier.

» Definition 7. Let C € N. We call a set I C {1,..., M} C-separable if there exists a tree
t € Tr and a run v € Accy(t) such that

(i) ifi eI, then (t,r) is i-broken and

(i) ifje{1,...,M}\ I, then wt;(t,r) < wt;(t,r) — C forallicI.
In this case, we also say that (t,r) is I-C-separated. We call I separable if it is C-separable
for every C € N and define T as the set of all separable subsets I C {1,...,M}. IfT is
non-empty, we say that U satisfies the separation property or, for short, that U is broken.

Our main result is to prove the following theorem relating the separation property to the
finite sequentiality problem of finitely ambiguous max-plus-WTA.

» Theorem 8. The behavior [A] of A is finitely sequential if and only if U is not broken.
Moreover, it is decidable whether U is broken. In particular, it is decidable whether [A] is
finitely sequential.

We separate the proof of Theorem 8 into three parts. Due to lack of space, we have to
restrict ourselves to brief descriptions of our methods. In Section 3.1, we outline that it is
decidable whether U is broken. This part of the proof does not follow any idea from [3] as
in his proof, Bala reduces the decidability of the A-Fork property to the decidability of a
decidable fragment of Presburger arithmetic. In Section 3.2, we show that if U is broken,
then [A] is not finitely sequential. This part of the proof employs ideas from [4, 3, 34], but
extends these non-trivially. This particular proof is the most challenging and technical aspect
of our result. Finally, in Section 3.3, we outline how to construct finitely many deterministic
max-plus-WTA whose pointwise maximum is equivalent to [A] in case that U is not broken.
Although this part is inspired by an idea in [3], we are not sure whether we employ this idea
in the same way.

For all of our proofs, it is crucial that for every two states of U, we can decide whether
they are rivals [2, Section 4], [11, Section 5.4]. For two rivals of an unambiguous automaton,
it is in fact quite easy to give an upper bound on the size of their smallest distinguisher
and smallest reacher. Thus, deciding whether two states are rivals reduces to checking for

137:9

ICALP 2020

137:10 Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

finitely many trees whether they can reach both states and checking for finitely many I'-words
whether they are a distinguisher for these two states. For Section 3.3, we require an even
more precise statement, namely that if s is a distinguisher for two rivals p and q, then we
can obtain a p-g-distinguisher of height at most 4|Q|? by removing loops from the unique
runs looping in p and q. For this, we employ the notion of a truncation. Simply put, for a
I-word s and a run r on s, a truncation of (s,r) is any pair (s’,r’) of a I-word s’ and a run
r’ on s which can be obtained by repeatedly cutting loops from (s,r).

» Definition 9. Let s,s’ € Tr, be T'-words, r € Rung,(s), and v’ € Rung,(s’). We say
that (s',r') is a truncation of (s,r), denoted by (s,r) =8 (s',1r’), if there exists a mapping
g: pos(s’) — pos(s) such that g(e) = &, g(01(s")) = 01(s), for all w € pos(s’) we have
t(s', ', w) = t(s,r,g(w)), and for all wi,we € pos(s’) we have g(wi) <, g(ws) if and only
if wr <, wa and g(wy) <p g(ws) if and only if w1 <p ws.

We can use truncations to bound the size of distinguishers as follows.

» Lemma 10 ([11, Lemma 5.10],[34]). Let p,q € Q be i-rivals for some i € {1,..., M}, let
u € Tt be a p-q-reacher, let f € Ty, be a p-q-fork, let s € Tr, be an i-p-q-distinguisher,
and let rp, € Rung,(p,s,p) and rq € Rung(q,s,q). Then there exists a p-q-reacher u'
with height(u') < |Q|?, a p-q-fork f' with height(f') < 2|Q|?, and an i-p-q-distinguisher s’
with height(s’) < 4|Q|? such that for the runs r;, € Rung,(p, s',p) and r; € Rung(q,5’,q),
(s',rp,) is a truncation of (s,rp) and (s',ry) is a truncation of (s,rq). In particular, for
every two states p,q € Q, it is decidable whether p and q are rivals.

3.1 Decidability

In order to show that it is decidable whether U is broken, we construct a covering U of U with
the capability to detect the broken coordinates of a run of U. The covering U possesses the
same behavior as U and each run of U corresponds to exactly one run of U. We construct U
by adding to each state of Q one entry containing all states reachable on the current subtree,
one entry containing all states visited on the current run, one entry containing all pairs (p, q)
of states such that q is reachable by a run which visited p at a position where our current run
also visited p, and one entry containing a record of all broken coordinates. This allows us to
infer the brokenness of a run directly from the state at its root. More precisely, we construct
U = (Q,T, i,v) with states from Q = Q x P(Q) x P(Q) x P(Q?) x {0,1}™ such that if
t € Tr, 7 € Runy(t), w € pos(t), and 7(w) = (q, P, V, W, a), then the following statements
hold. We have (1) the projection mq: Q — Q to the first coordinate induces a bijection
mq: Accy(t) — Accy(t) preserving weights of runs, (2) P = {p € Q | Runy(¢[,,p) # 0},
(3) V = {nqo(wv) | v € pos(t],)}, (4) W = {(p;,p2) € Q| for some v € pos(t],) we
have mq o 7(wv) = p; and Rung,(py, t{(¢ — wo)|,,, ps) # 0}, and (5) a[i] = 1 if and only if
(t,mq oT)[, is i-broken.

We let dy,...,dp be an enumeration of A; and for a tree ¢t € Ty and a run 7 €
Rung;(¢), define the transition Parikh vector of (t,7) by p(¢,7) = ([{w € pos(t) | t(¢,7, w) =
di}],...,{w € pos(t) | t(t,7,w) = dp}|), i.e., we count the number of occurrences of
each transition in (¢,7). We can employ Parikh’s Theorem [31, 15] to show that the set
p(U) = {p(t,r) | t € Tr,r € Accy(t)} is semilinear, i.e., that there exist integers k, k1, . . . , ky,
vectors a!) € NP and matrices 31 € NP>k (1 ¢ {1,... k}) with p(U) = Ule{oz(l)—i—ﬁ(l))? |
X = (Xy,...,Xy,) € N¥1}. We note that Parikh’s Theorem is effective, so we can effectively
compute all of these integers, vectors, and matrices.

Next, we let Q = (fi(dy),...,u(dp)) € QM*P be a matrix containing the transition weight
vectors of dy, ..., dp, let wi, .. .,wyr be the rows of Q, and let C' = 1 +max{|w;a®) —w;a®] |
,7€{l,...,.M}le{l,....k}}. For I C{1,...,. M}, welet D; ={le{l,...,D} | d; =

E. Paul

(G1,--yqm,a,(q, P,V,W,a)) € Ay such that a[i] = 1 <> i € I} be the set of all indices of
transitions whose root state indicates brokenness of exactly the coordinates in I. Furthermore,
for every I € {1,..., D} welet a(V[1],...,a)[D] be the entries of oY) and SW[1],..., sV [D]
be the rows of (). Tt is then elementary to show that every set I C {1,..., M} is separable
iff it is C-separable iff for some [€ {1,..., M}, the system of linear inequalities below
possesses an integer solution. The satisfiability of systems of linear inequalities over the
rationals with integer solutions is decidable [30][9, Theorem 3.4]. There are only finitely
many such systems to consider, so it is decidable whether I is separable. To decide whether
U is broken, it suffices to check whether there exists a separable subset I C {1,..., M}.

(WiBD —w; BN X > w;aV —wia® 4+ C X>0 (iel,jel%
S BVEX =1 Y al[d] =Y > Vx> > > oW
deD; deD; ICI'CM deDy ICI'CM deDy,

3.2 Necessity

To show that [A] is not finitely sequential if U is broken, we assume that [A] can be
represented as a finite maximum of deterministic max-plus-WTA A,,..., Ay and employ
Ramsey’s Theorem [37] to obtain a contradiction. Although not stated explicitly, Bala’s
proof for words [3] most likely also involves some form of Ramsey’s Theorem as his proof
of U being broken implying [A] to not be finitely sequential “deals with colorings of finite
hypercubes”. In our proof for tree automata, we are able to handle fork-brokenness without
employing Ramsey’s Theorem. This suggest that applying our approach to word automata
yields a proof which is simpler than the corresponding one used in [3]. The reason for this is
that our separation property considers sets of coordinates instead of the single coordinates
which the A-Fork property considers. For the separable sets I € Z which are minimal with
respect to set inclusion, we are able to prove a statement for I-C-separated pairs (¢,r) which
greatly facilitates dealing with fork-brokenness and enables us to deal with split-brokenness
in the first place. Namely, if (¢,r) is I-C-separated for a sufficiently large C' and no subset
of I is separable, then for every p € r(pos(t)), every I'-word s with height(s) < 4|Q|? and
Rung,(p, s,p) # 0, and every two coordinates i, j € I we have wt{(p,s,p) = wtJ(p, s, p)-
For the proof, we choose a sufficiently large C, a set I € Z which is minimal with respect to
set inclusion, and an I-C-separated pair (¢,r). Then we construct from (¢,r) new trees which

require more than N deterministic max-plus-WTA in order to be assigned the correct weight.

If (t,r) is fork-broken, we construct trees and runs of U with increasingly more alterations of
forks and distinguishers. This approach is similar to the method used in [4] and [34] to deal
with fork-brokenness. The challenge we face in adapting the proof from [34] to our situation
is that we have to ensure that in the runs we construct, the coordinates from I dominate the
other coordinates. In our constructions we may therefore only make “small” modifications to
(t,r). Our solution relies on the minimality of I and involves constructing more than the
N + 1 trees sufficient for the proofs in [4, 34]. The case where (¢,r) is split-broken is much
more complicated and is in fact the only reason we have to use the covering automaton U
instead of U. As split-brokenness does not apply to words, this was not an issue in [3]. Our
approach vastly extends the idea used to deal with split-brokenness in [34]. In [34], we relied
on replacing the subtrees below the prefix-independent rivals of a split-broken run by other
suitable trees. However, Example 5 shows that this is not possible in our scenario as these
subtrees may be indispensable to ensure that broken coordinates dominate all non-broken

coordinates. Here, we instead modify the subtrees present and construct trees and runs of .

For this, we employ the properties of U, pumping techniques, and Ramsey’s Theorem.

137:11

ICALP 2020

137:12 Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

3.3 Sufficiency

To show that [.A] is finitely sequential if U is not broken, we show that in this case we can
construct M unambiguous max-plus-WTA which all do not satisfy the tree fork property and
whose pointwise maximum is equivalent to [.A]. By Theorem 2, we obtain a finitely sequential
representation of A by constructing one for each of the unambiguous max-plus-WTA. We
essentially construct the unambiguous automata by removing problematic runs from U
and then projecting to the coordinates 1,..., M. Our fundamental idea is the following.
First, let £ be the smallest difference between the weights of two coordinates of a loop in a
P-word of height at most 4|Q|?, i.e., for X = {|wt{(p, s, p) — wt5(q,s,q)| | p,q € Q,i,j €
{1,...,M},s is a I-word with height(s) < 4|Q|?, Rung,(p, s, p) # 0, Rung,(q, s,q) # 0}, let
¢ =min X \ {0}. Then assume that (¢,r) is i-p-q-broken and that the maximum of wty, (¢, r)
is in coordinate i. Furthermore, assume that in r, some i-p-q-distinguisher s of height at most
4|QJ? loops N times in p, where N € N is some integer, and that wt;(p, s,p) < wt;(q, s, q).
By removing the loops of s in p from (¢,r) and inserting them back as loops in q, we
increase the weight of coordinate i by N, but leave the weights of all non-broken coordinates
unchanged. Thus, coordinate ¢ then dominates all non-broken coordinates by a margin of at
least N€. As i cannot dominate all non-broken coordinates by an arbitrarily large margin, N
cannot be arbitrarily large. In turn, this means that if N is sufficiently large, then wty,(¢,r)
cannot take its maximum weight in coordinate ¢. This implies that the weight of coordinate
1 can be discarded if some distinguisher loops in both of its rivals too many times.

We employ this idea in the following way. We define the set R = {(i,p,q,s) €
{1,..., M} x Q* x Tr, | i € {1,...,M}, s is an i-p-q-distinguisher, height(s) < 4|Q|?}
and define the constant N = {MC’{’W, where C' is as in Section 3.1. We note that R
is computable, as by Lemma 10, we can decide for every two states p,q € Q whether
they are rivals or not. Let ¢ € Tr, r € Runy(t), (¢,p,q,s) € R, rp € Rung,(p, s,p), and
rq € Rung,(q,s,q). We call (¢,r)

(1, p, q, s)-fork-broken if there exist positions up, Vp, Wp, Wq, Ug, Vq € pos(t) with vy <p
Ug <p Wq <p Wp <p Vp <p up such that (t,r)(c — up)l, > (s,rp) N (t,1) (0 —
Uug) [y, >8 (s, rq) VL, r(wp) = p, r(wg) = q, and t{o — wp) lw, is & p-g-fork.

(4,p,q, s)-split-broken if there exist positions up, vp,uq, vq € pos(t) such that vy <p
Up, Vg <p Uq, Vp and vg are prefix-independent, (¢,r)(c — up)l, > (s,rp)N 1 and
(t,r)(0 — uq) qu >8 (s, rq)N+1'

Following the idea above, we can show that if (¢,r) is (4, p, q, s)-broken, then wt;(¢,r) <
[A](¢). Furthermore, we can show that for every i € {1,..., M}, we can construct a complete
and deterministic FTA B; over the alphabet I' x Q which accepts a tree (¢,r) € Trxq if
and only if there does not exist (¢,p,q,s) € R such that (¢,r) is (¢, p, q, s)-broken. Via a
product-like construction, we can employ B; to construct a WTA C; which “filters” the runs of
U so that the runs of C; correspond exactly to those runs of U which are not (¢, p, q, s)-broken
for any (i,p,q,s) € R. Then C; is not i-broken as otherwise, we can construct an accepting
run r of C; on a tree t whose projection to Q yields an i-broken pair (¢,r) which loops an
i-p-q-distinguisher s for N + 1 times in both p and q. As by Lemma 10, s can be truncated
to a distinguisher of height at most 4|Q|?, (¢,r) is thus (i, p,q, s)-broken. We obtain the
contradiction that r is not accepting. Consequently, projecting the weights of each automaton
C; to the i-th coordinate yields M unambiguous max-plus-WTA whose pointwise-maximum
coincides with [A]] and which all do not satisfy the tree fork property.

E. Paul

—— References

1

10

11

12

13

14

15

16

17

18

Athanasios Alexandrakis and Symeon Bozapalidis. Weighted grammars and Kleene’s theorem.
Information Processing Letters, 24(1):1-4, 1987.

Cyril Allauzen and Mehryar Mohri. Efficient algorithms for testing the twins property. Journal
of Automata, Languages and Combinatorics, 8(2):117-144, 2003.

Sebastian Bala. Which finitely ambiguous automata recognize finitely sequential functions?
(extended abstract). In Krishnendu Chatterjee and Jir{ Sgall, editors, 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS), volume 8087 of
Lecture Notes in Computer Science, pages 86-97. Springer, 2013.

Sebastian Bala and Artur Koninski. Unambiguous automata denoting finitely sequential
functions. In Adrian-Horia Dediu, Carlos Martin-Vide, and Bianca Truthe, editors, 7th
International Conference on Language and Automata Theory and Applications (LATA), volume
7810 of Lecture Notes in Computer Science, pages 104-115. Springer, 2013.

Jean Berstel and Christophe Reutenauer. Recognizable formal power series on trees. Theoretical
Computer Science, 18:115-148, 1982.

Jean Berstel and Christophe Reutenauer. Rational Series and Their Languages, volume 12 of
EATCS Monographs in Theoretical Computer Science. Springer, 1988.

Johanna Bjorklund, Frank Drewes, and Niklas Zechner. An efficient best-trees algorithm for
weighted tree automata over the tropical semiring. In Adrian-Horia Dediu, Enrico Formenti,
Carlos Martin-Vide, and Bianca Truthe, editors, 9th International Conference on Language
and Automata Theory and Applications (LATA), volume 8977 of Lecture Notes in Computer
Science, pages 97-108. Springer, 2015.

Meera Blattner and Tom Head. Automata that recognize intersections of free submonoids.
Information and Control, 35(3):173-176, 1977.

Alexander Bockmayr, Volker Weispfenning, and Michael Maher. Solving numerical constraints.
In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasoning, volume 1,
chapter 12, pages 751-842. Elsevier and MIT Press, 2001.

Bjorn Borchardt. A pumping lemma and decidability problems for recognizable tree series.
Acta Cybernetica, 16(4):509-544, 2004.

Matthias Biichse, Jonathan May, and Heiko Vogler. Determinization of weighted tree automata
using factorizations. Journal of Automata, Languages and Combinatorics, 15(3/4):229-254,
2010.

Laure Daviaud, Pierre Guillon, and Glenn Merlet. Comparison of max-plus automata and joint
spectral radius of tropical matrices. In Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois
Raskin, editors, 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 19:1-19:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017.

Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science. Springer, 2009.

Zoltdn Esik and Werner Kuich. Formal tree series. Journal of Automata, Languages and
Combinatorics, 8(2):219-285, 2003.

Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger. Parikh’s theorem: A
simple and direct automaton construction. Information Processing Letters, 111(12):614-619,
2011.

Emmanuel Filiot, Ismagl Jecker, Nathan Lhote, Guillermo A. Pérez, and Jean-Frangois Raskin.
On delay and regret determinization of max-plus automata. In 32nd Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 1-12. IEEE Computer Society, 2017.
Zoltan Filop and Heiko Vogler. Weighted tree automata and tree transducers. In Manfred
Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata, EATCS
Monographs in Theoretical Computer Science, chapter 9, pages 313—403. Springer, 2009.
Kosaburc Hashiguchi. Algorithms for determining relative star height and star height. In-
formation and Computation, 78(2):124-169, 1988.

137:13

ICALP 2020

137:14 Finite Sequentiality of Finitely Ambiguous Max-Plus Tree Automata

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

35

36

Kosaburo Hashiguchi, Kenichi Ishiguro, and Shuji Jimbo. Decidability of the equivalence
problem for finitely ambiguous finance automata. International Journal of Algebra and
Computation, 12(3):445-461, 2002.

Daniel Kirsten. A Burnside approach to the termination of Mohri’s algorithm for polynomially
ambiguous min-plus-automata. Informatique Théorique et Applications, 42(3):553-581, 2008.
Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In Susanne Albers and Jean-Yves Marion, editors, 26th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 3 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 589-600. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2009.

Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theoretical Computer Science,
327(3):349-373, 2004.

Jan Komenda, Sébastien Lahaye, Jean-Louis Boimond, and Ton van den Boom. Max-plus
algebra in the history of discrete event systems. Annual Reviews in Control, 45:240-249, 2018.
Adam Koprowski and Johannes Waldmann. Max/plus tree automata for termination of term
rewriting. Acta Cybernetica, 19(2):357-392, 2009.

Stephan Kreutzer and Cristian Riveros. Quantitative monadic second-order logic. In 28th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 113-122. IEEE
Computer Society, 2013.

Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. International Journal of Algebra and Computation, 4(3):405-426,
1994.

Werner Kuich and Arto Salomaa. Semirings, Automata, Languages, volume 5 of EATCS
Momnographs in Theoretical Computer Science. Springer, 1986.

Filip Mazowiecki and Cristian Riveros. Pumping lemmas for weighted automata. In Rolf
Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of Computer
Science (STACS), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 50:1-50:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2018.

Mehryar Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269-311, 1997.

George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

Rohit Jivanlal Parikh. On context-free languages. Journal of the ACM, 13(4):570-581, 1966.
Erik Paul. On finite and polynomial ambiguity of weighted tree automata. In Srecko Brlek and
Christophe Reutenauer, editors, 20th International Conference on Developments in Language
Theory (DLT), volume 9840 of Lecture Notes in Computer Science, pages 368-379. Springer,
2016.

Erik Paul. The equivalence, unambiguity and sequentiality problems of finitely ambiguous
max-plus tree automata are decidable. In Kim G. Larsen, Hans L. Bodlaender, and Jean-
Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 53:1-53:13. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017.

Erik Paul. Finite sequentiality of unambiguous max-plus tree automata. In Rolf Nieder-
meier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of
Computer Science (STACS), volume 126 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 55:1-55:17. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2019.

Slav Petrov. Latent variable grammars for natural language parsing. In Coarse-to-Fine Natural
Language Processing, Theory and Applications of Natural Language Processing, chapter 2,
pages 7-46. Springer, 2012.

Michael O. Rabin and Dana S. Scott. Finite automata and their decision problems. IBM
Journal of Research and Development, 3(2):114-125, 1959.

E. Paul

37 Frank P. Ramsey. On a problem of formal logic. Proceedings of the London Mathematical
Society, series 2, 30:264—-286, 1930.

38 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

39 Arto Salomaa and Matti Soittola. Automata-Theoretic Aspects of Formal Power Series. Texts
and Monographs in Computer Science. Springer, 1978.

40 Marcel-Paul Schiitzenberger. On the definition of a family of automata. Information and

41

42

43

44

45

Control, 4(2-3):245-270, 1961.

Helmut Seidl. On the finite degree of ambiguity of finite tree automata. Acta Informatica,
26(6):527-542, 1989.

Imre Simon. Limited subsets of a free monoid. In 19th Annual Symposium on Foundations of
Computer Science (FOCS), pages 143-150. IEEE Computer Society, 1978.

Imre Simon. Recognizable sets with multiplicities in the tropical semiring. In Michal P. Chytil,
Ladislav Janiga, and Vaclav Koubek, editors, 13th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 324 of Lecture Notes in Computer Science,
pages 107-120. Springer, 1988.

Johannes Waldmann. Weighted automata for proving termination of string rewriting. Journal
of Automata, Languages and Combinatorics, 12(4):545-570, 2007.

Andreas Weber and Helmut Seidl. On the degree of ambiguity of finite automata. Theoretical
Computer Science, 88(2):325-349, 1991.

137:15

ICALP 2020

	Introduction
	Preliminaries
	The Criterion for Finite Sequentiality
	Decidability
	Necessity
	Sufficiency

