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Abstract
We consider two natural subclasses of deterministic top-down tree-to-tree transducers, namely,
linear and uniform-copying transducers. For both classes we show that it is decidable whether
the translation of a transducer with look-ahead can be realized by a transducer without look-
ahead. The transducers constructed in this way, may still make use of inspection, i.e., have an
additional tree automaton restricting the domain. We provide a second procedure which decides
whether inspection can be removed and if so, constructs an equivalent transducer without inspection.
The construction relies on a fixpoint algorithm that determines inspection requirements and on
dedicated earliest normal forms for linear as well as uniform-copying transducers which can be
constructed in polynomial time. As a consequence, equivalence of these transducers can be decided
in polynomial time. Applying these results to deterministic bottom-up transducers, we obtain that
it is decidable whether or not their translations can be realized by deterministic uniform-copying
top-down transducers without look-ahead (but with inspection) – or without both look-ahead and
inspection.
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1 Introduction

Even though top-down and bottom-up tree transducers are well-studied formalisms that were
introduced already in the 1970’s (by Rounds [13] and Thatcher [14] independently, and by
Thatcher [15], respectively), some fundamental questions have remained open until today. A
prominent example of such a question is: can we decide for a given deterministic bottom-up
tree transducer whether or not its translation can be realized by a top-down tree transducer?
We answer this question affirmatively, however, for a slight restriction on the considered
top-down tree transducers: they must be uniform-copying (uc). This means that all copies
of the same input subtree must be processed by the same state.

It is well-known that for every deterministic bottom-up tree transducer an equivalent
deterministic top-down tree transducer can be constructed which, however, makes use of
regular look-ahead [7]. That transducer indeed is uc. The question which we ask therefore is:
can regular look-ahead in uc transducers be eliminated? In order to answer this question, we
provide a canonical earliest normal form for uc (as well as for linear) deterministic top-down
transducers with and without look-ahead. We prove that if an earliest such transducer A
can be realized by such a transducer A′ without look-ahead (but with input inspection),
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then A must be synchronizing, twinning, and erasing. To understand the synchronizing
property, consider a transducer with look-ahead that translates an input tree of the form
a(f(t1, t2))) into the tree 〈a, f〉(t1, t2), where 〈a, f〉 is a binary output symbol. Clearly this
translation can be done by a transducer without look-ahead: it outputs nothing at the
root node, keeps the node label in its state, and at its child outputs the corresponding
binary symbol. Now consider that a(f(g(t1), t2))) is translated to 〈a, g〉(f(t1, t2)). Such a
translation cannot be realized by a transducer without look-ahead. The information about
the g-node cannot be “synchronized” at the f -node because it comes after the output must
be produced (contradicting the order of origins of output nodes [12], see also [10, 11]).

The twinning property is similar to the string case [5] (see also [2, 3]), but now for paths.
To understand the erasing property, consider a transducer with the following rules.

q0(a(x1 : he)) → a(a(e)) qid(a(x1 : hf )) → a(qid(x1))
q0(a(x1 : hf )) → a(qid(x1)) qid(f) → f

q0(f) → f

Here, input trees are of the form a(· · · a(e) · · · ) or a(· · · a(f) · · · ). The look-ahead automaton
has two states he and hf , indicating that the input tree is of the first form (e-leaf) or the
second form (f -leaf). The transducer translates input trees of the first form to the fixed tree
a(a(e)) and realizes the identity on trees of the second form. This translation cannot be
realized by a transducer without look-ahead. The erasing property demands that if an input
path depends on two different look-ahead states h1, h2, where for h1 a constant output tree
is produced (viz. the tree a(a(e))), then for h2 no output may be produced in any loop.

Given a uc transducer A with look-ahead that is synchronizing, twinning, and erasing
we construct an equivalent uc transducer with inspection (if it exists), i.e., a uc transducer
where the domain is given separately via some top-down deterministic tree automaton.

The third highlight of our contribution is a procedure that removes inspection (if possible).
The idea here is quite different from what we have discussed until now. Let us consider an
example. The domain automaton accepts trees of the form f(t1, t2) where t2 is an arbitrary
binary tree (with internal nodes labeled f and leaves labeled a or b) and t1 is a tree which
has a left-most leaf labeled a and a right-most leaf labeled b. The transducer has this rule:

q0(f(x1, x2))→ f(f(b, b), qid(x2)),

where state qid realizes the identity. Does there exist an equivalent top-down tree transducer
without inspection? As it turns out, the answer is “yes”. The idea is that the output subtree
f(b, b) can be used to simulate inspection! These are the rules of an equivalent transducer
without inspection:

q0(f(x1, x2))→ f(q(x1), qid(x2)) qa(f(x1, x2))→ qa(x1) qb(f(x1, x2))→ qb(x2)
q(f(x1, x2)) → f(qa(x1), qb(x2)) qa(a)→ b qb(b)→ b

We show that it is decidable for a given top-down deterministic tree language, whether
or not it can be simulated on a given output tree. The challenge now is that it may be
necessary to delay outputting certain output subtrees, until rules are encountered which
require these output trees for simulating their inspection needs. Similar as before, such
delay is only possible along input paths and must stop when two input subtrees of an input
node are processed. Using a fixpoint algorithm we are able to determine whether or not
sufficiently large output subtrees can be made available in order to satisfy all inspection needs.
The approach we have sketched here is quite different from earlier methods for look-ahead
removal [9] that rely on difference bounds, i.e., the differences in the translation with respect
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to different look-ahead states. In order to obtain an effective construction, however, so
far a variety of technical restrictions had to be introduced – implying that even for linear
deterministic top-down tree transducers, look-ahead removal remained an open problem. To
the best of our knowledge, this paper is the first to present look-ahead removal for natural
and known subclasses of top-down tree transducers.

2 Basics

Let Σ denote a ranked alphabet. Then Σk is the set of all symbols in Σ of rank k. As
usual, we define the set TΣ of all (finite) trees over Σ as the set of all strings t = f(t1, . . . , tk)
where f ∈ Σk for some k ≥ 0 and t1, . . . , tk ∈ TΣ. For convenience, we also write f for
f() if f is of rank 0. A subtree of that form is also called leaf. Let X = {xi | i ∈ N}
denote an infinite set of distinct variables which is disjoint from any other occurring ranked
alphabet (be it the input or the output alphabet of a transducer). All elements of the
set X are assumed to have rank 0. For a finite set J ⊆ N we denote by XJ the set of
variables {xj | j ∈ J}, and we write TΣ(XJ) for the set of all trees t over Σ ∪ XJ . E.g.,
f(h(x2), a) ∈ TΣ({x2}) where f ∈ Σ2, h ∈ Σ1, and a ∈ Σ0. Trees in TΣ(XJ) are also called
patterns. Of particular importance is the set of unary patterns TΣ({x1}) = TΣ(x1). This
set forms a free monoid where the monoid operation “·” is substitution into the variable
x1. The tree t = f(h(x1), g(a, h(x1))), e.g., can be uniquely factored into f(x1, g(a, x1)) and
h(x1). We thus write f(h(x1), g(a, h(x1))) = f(x1, g(a, x1)) · h(x1). We also consider the set
CΣ ⊆ TΣ(x1) of contexts over Σ which is the subset of unary patterns which contain exactly
one occurrence of x1. Technically, this means that each context t either is equal to x1, or is
of the form t = f(t1, . . . , tk) for some f ∈ Σk for some k ≥ 1 and 1 ≤ j, j′ ≤ k so that tj is a
context and tj′ ∈ TΣ for all j′ 6= j.

In the following, Σ and ∆ denote fixed non-empty ranked alphabets of input and output
symbols, respectively. In this paper, we consider deterministic top-down tree transducers
with uniform copying, or uc-transducers for short. Intuitively, uniform copying means that
each subtree of the input is processed at most once – while the produced output may be
copied arbitrarily often. This restriction is trivially met by linear deterministic top-down
transducers – but also by those that arise from the top-down simulation of deterministic
bottom-up transducers by means of regular look-ahead. Here, we refrain from introducing
transducers with look-ahead and inspection separately, as this would result in awkward
duplication of almost identical definitions. Instead, we find it convenient to introduce yet
another model, namely, deterministic transducers with (unambiguous) advice – which later
can be instantiated either with top-down deterministic inspection (no interference with the
computation of the transducer, only restriction to relevant input) or bottom-up deterministic
look-ahead (interference with the computation as well as restriction to relevant input).

A finite tree automaton over Σ, (for short, TA) B consists of
1. a finite set H of states,
2. a subset F ⊆ H of accepting states, and a transition relation δ ⊆

⋃
k≥0H × Σk ×Hk.

The computation of B on some input tree t can be represented by a tree in TT where the ranked
alphabet T consists of all transitions τ = 〈h, f, h1 . . . hk〉 ∈ δ where the rank of τ equals the
rank of the input symbol f . For h ∈ H, an h-computation φ for some t = f(t1, . . . , tk) ∈ TΣ
is a tree φ = τ(φ1, . . . , φk) where φi is a hi-computation for ti for all i = 1, . . . , k. We write
h : t to indicate that there is an h-computation for t. We write domB(h) = {t ∈ TΣ | h : t}
and define the set of trees accepted by B as L(B) = {t ∈ TΣ | ∃h0 ∈ F such that h0 : t}. An
(h, h′)-computation φ of B on some context t ∈ CΣ is analogously defined as a context in CT
where h is the state at the root and h′ is assumed at the variable leaf. We write (h, h′) : t to
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indicate that a (h, h′)-computation for t exists. In particular, (h, h) : x1 for every state h
of B. In general, we assume that every occurring TA B is trim, i.e., every transition of B
occurs in some accepting computation, i.e., some h-computation with h ∈ F . We call B

bottom-up deterministic, when for every tuple (f, h1 . . . hk) ∈ Σk ×Hk, there is at most
one h ∈ H so that 〈h, f, h1 . . . hk〉 ∈ δ;
top-down deterministic when F consists of a single state only, and for every k ≥ 0 and pair
(h, f) ∈ H ×Σk, there is at most one tuple (h1 . . . hk) ∈ Hk such that 〈h, f, h1 . . . hk〉 ∈ δ;
unambiguous, if for each t ∈ TΣ, there is at most one h ∈ F and at most one h-computation
φ of B for t.

It is well-known that B is unambiguous whenever B is bottom-up deterministic, or top-down
deterministic. In the following definition, we assume that the TA B is trim, unambiguous,
and has a single accepting state h0.

A deterministic uniform-copying top-down tree transducer with advice over Σ and ∆ (for
short, a DTA

uc transducer, or uc-transducer, or a DTA
uc) A is a tuple (B,Q, ι, T0, R) where

1. B is an unambiguous advice TA with a single final state h0;
2. Q is a finite set of states together with a mapping ι : Q→ H

3. T0 is an axiom which is either a tree from T∆, or of the form T0 = p · q0(x1) where
p ∈ T∆(x1) with q0 ∈ Q and ι(q0) = h0;

4. R is the set of rules such that for every transition 〈h, f, h1 . . . hk〉 of B and every state
q ∈ Q with ι(q) = h, R contains one rule

q(f(x1 : h1, . . . , xk : hk))→ T (1)

where f ∈ Σk for some k ≥ 0, and T = p {xj 7→ qj(xj) | j ∈ J} where p ∈ T∆(XJ) for
some subset J ⊆ {1, . . . , k} and for all j ∈ J , qj ∈ Q with ι(qj) = hj (thus {xj 7→ . . . } is
our notation of substituting leaves labeled xj by the correspoding trees).

A uc-transducer is linear, if each input variable xi occurs at most once in the right-hand side
of every rule (we also say “DTA

lin transducer”).
We remark that we view the set Q of states of A as symbols of rank 1 distinct from all

symbols in ∆. Given an h-computation φ of B on some input tree t ∈ TΣ, the rule (in R) at
each node of t is uniquely determined by the state q ∈ Q (with ι(q) = h) at the root of t,
and the transitions chosen in φ. Assume that t = f(t1, . . . , tk), and φ = τ(φ1, . . . , φk) for
τ = 〈h, f, h1 . . . hk〉. A q-computation ψ of A on t with output s is given by ρ(σ1, . . . , σk)
provided the following holds:
1. ρ is a rule of the form (1);
2. if j ∈ J , then σj is a qj-computation for tj with some output sj and otherwise, σj = φj ;
3. s = T{xj 7→ sj | j ∈ J}.
If such a q-computation for t exists with output s, we write q : t→ s.

As for TAs, we not only require the notion of a q-computation of A for input trees t ∈ TΣ
with output s, but also the notion of a (q, h)-computation of A on a context t ∈ CΣ with
output s. Let φ denote a (ι(q), h)-computation of B. If t = x1, then x1 is a (q, h)-computation
for x1 with output s = q(x1) whenever ι(q) = h. Assume that t = f(t1, . . . , tk) and tj ∈ CΣ
is a context, and let φ = τ(φ1, . . . , φk) denote the corresponding (ι(q), h)-computation of B.
Assume that the rule ρ is of the form (1). Then ρ(ψ1, . . . , ψk) is a (q, h)-computation for t
with output s = p{xj 7→ sj | j ∈ J}, if the following holds:
1. If j′ 6∈ J , then ψj′ = φj′ ;
2. If j′ ∈ J \ {j}, then ψj′ is a qj-computation for tj′ with output sj′ ;
3. If j′ = j ∈ J , then ψj′ is a (qj , h)-computation for tj with output sj .
We remark that if s is non-ground, i.e., is not contained in T∆, then s = s′ · q′(x1) with
ι(q′) = h. If such a (q, h)-computation exists, we write (q, h) : t→ s.
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The translation of A is the partial mapping [[.]]A : TΣ → T∆ defined by [[t]]A = p0 if the
axiom of A is the ground tree p0 and t ∈ L(B), and [[t]]A = p0 · s if the axiom is of the form
p0 · q0(x1) and q0 : t→ s holds.

Let us briefly list instances of uc-transducers with advice that are of interest here.

Transducers with Look-ahead. If the advice automaton B is chosen as bottom-up de-
terministic, the transducer A is a uc-transducer with regular look-ahead (for short, a DTR

uc
transducer, or a DTR

uc). We remark that the single axiom does not impose a severe restriction.
Consider the generalization of a look-ahead automaton B with a non-singleton set F of
accepting states and, accordingly, equip A with one dedicated axiom Th for each accepting
state h ∈ F . Instead, we may introduce a fresh unary input symbol $ and define a new
look-ahead automaton B′ with a single fresh accepting state h0 and a transducer A′ with
a single axiom such that L(B′) = {$(t) | t ∈ L(B)} and [[$(t)]]A′ = s holds iff [[t]]A = s

holds. In order to achieve that, we add to the set of transitions of B, all transitions 〈h0, $, h〉,
h ∈ F , and likewise introduce a fresh axiom q0(x1) for A′ together with a fresh state q0 where
ι(q0) = h0 and the rules q0($(x1 : h))→ Th whenever h ∈ F and Th is the axiom of A for h.

Transducers with Inspection. If the advice automaton B is chosen as top-down determin-
istic, the transducer A can be considered as a uc-transducer with inspection automaton B
(for short, a DTI

uc transducer, or a DTI
uc). In this case, the state annotations hi in the rule

(1), can be dropped since these are obtained from ι(q) (q the current state of the transducer)
and the input symbol f . A deterministic bottom-up tree transducer in the classical sense,
e.g., as in [6] is obtained in our model as a DTA

uc transducer where Q = H and ι is the
identity. A classical deterministic top-down tree transducer with uniform copying, on the
other hand, is obtained as a DTI

uc transducer where the inspection does not restrict the
domain. This can be achieved, e.g., by setting H = Q ∪ {>} for a fresh symbol > and
ι(q) = q. Moreover, for each f ∈ Σk, 〈>, f,>k〉 ∈ δ as well as 〈q, f, q′1 . . . q′k〉 ∈ δ whenever
there is a rule q(f(x1, . . . , xk))→ T such that for each i = 1, . . . , k, q′i = qi if qi(xi) occurs
in T and q′i = > otherwise.

We remark that in the same way, deterministic linear top-down tree transducers with
look-ahead as well as deterministic linear bottom-up transducers and deterministic linear
top-down transducers with inspection are instances of linear DTA

uc transducers.

3 A Dedicated Earliest Normal Form for uc-Transducers with Advice

In this section we present the construction of earliest normal-forms for uc-transducers with
advice. We also indicate how a corresponding construction is obtained for linear transducers.
In the following, we fix some unambiguous TA B for advice. A construction of earliest
top-down transducers has already been provided in [8] for top-down deterministic domain
automata B and as well as in [4] for bottom-up deterministic B. Here, we are slightly more
liberal by allowing unambiguous B to generalize both cases. The constructions from [8, 4],
on the other hand, neither preserve linearity nor uniform-copying.

I Example 1. Consider a linear top-down transducer with the rules:

q0(g(x1)) → q1(x1) q0(a) → a

q1(f(x1, x2)) → f(q0(x1), q0(x2)) q0(b) → b

and the axiom q0(x1). The (canonical) earliest transducer constructed according to the
methods in [8] has the same axiom q0(x1), but the rules:
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q0(g(x1)) → f(q11(x1), q12(x1)) q0(a) → a

q11(f(x1, x2)) → q0(x1) q0(b) → b

q12(f(x1, x2)) → q0(x2)

where no inspection automaton is required. The non-linearity in the first rule arises inevitably,
because the output f -node is already determined at this point and therefore must be output
for the transducer to be earliest.

We introduce dedicated constructions which allow to construct equivalent canonical trans-
ducers, but retain linearity or uniform-copying. It turns out that these normal forms can be
obtained in polynomial time. Our key insight is that dedicated notions should be provided
for the notion of maximal common prefix of a given set S of trees. In [8], a pattern such as
p = a(x1, g(x1)) was used to represent the common part of trees in S (note that they do
not use the symbol x1, but the symbol > to denote “any tree”). This meant for an element
t ∈ S such as t = a(b, g(c)) that different occurrences of the symbol x1 in p could correspond
to not necessarily isomorphic subtrees of t, in the example, b and c, respectively. In that
point, we will now be more restrictive and only allow substitutions, i.e., equal replacements
of the occurrences of the single variable x1 in patterns. For a distinction, we call such
patterns uniform. Let us denote by P∆ the set T∆ ∪ T∆(x1) ∪ {⊥} of all ground trees and
unary patterns, extended with one specific element ⊥. This set forms a partial order where
for t1, t2 ∈ P∆, t1 v t2 iff t1 = ⊥ or t1 = t2{x1 7→ s} for some s ∈ T∆ ∪ T∆(x1). In fact,
P∆, partially ordered in this way, forms a complete lattice with finite ascending chains. In
particular, the top-most element is x1, and the binary least upper bound operation t for
incomparable elements t1, t2 6= ⊥, is given by t1 t t2 = s where s is the maximal prefix such
that s{x1 7→ t′i} = ti for suitable trees t′i (i = 1, 2).

We remark that uniform patterns may contain more than one occurrence of x1 – all
representing, though, isomorphic subtrees. Let P(1)

∆ ⊆ P∆ denote the subset T∆ ∪ C∆ ∪ {⊥}
of all elements which either equal ⊥ or contain at most one occurrence of x1. Patterns in
that set are also called 1-patterns. For the induced partial ordering on P(1)

∆ , we again obtain
a complete lattice with finite ascending chains only. For a distinction, let us denote the least
upper bound operation with respect to P(1)

∆ with t(1).

I Example 2. The difference between the two least upper bound operations becomes apparent
when considering trees which differ in more than one subtree:

f(g(a, a), c) t f(g(b, b), c) = f(g(x1, x1), c)
f(g(a, a), c) t(1) f(g(b, b), c) = f(x1, c).

On the other hand, f(g(a, a), c) t f(g(b, b), d) = f(g(a, a), c) t(1) f(g(b, b), d) = x1. We
remark that the earliest construction in [8] would return f(g(x1, x1), x1) in the latter case –
implying that the place holder x1 no longer represents isomorphic subtrees.

For q ∈ Q, let

prefA(q) =
⊔
{s ∈ T∆ | ∃t ∈ TΣ. q : t→ s} and pref(1)

A (q) =
⊔(1){s ∈ T∆ | ∃t ∈ TΣ. q : t→ s}

In the following, we show that prefA : Q → P∆ as the least solutions of the set CA of
constraints. The case of pref(1)

A is analogous. The set CA consists of one constraint c(ρ) for
each rule ρ of A. Assume that τ ≡ q(f(. . .))→ T of A where T = p{xj 7→ qj(xj) | j ∈ J}
for some p ∈ T∆(XJ) and suitable qj ∈ Q. Then the constraint c(τ) is given by

σ(q)] w [[T ]]]σ] (2)
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where the value [[T ]]]σ] returns ⊥ if for any state qj , j ∈ J , σ](qj) = ⊥. Otherwise, assume
that p′ is obtained from p and σ] by replacing qj(xj) with σ](qj) · xj where j ∈ J and
with σ](qj) whenever σ](qj) is ground. If p′ is ground, we set [[T ]]]σ] = p′. If p′ contains
occurrences of xj for a single j ∈ J , i.e., is of the form p′ = p′′ · xj for some p′′ ∈ T∆(x1),
then [[T ]]]σ] = p′′. Otherwise, i.e., if p′ contains occurrences of more than one variable,
then [[T ]]]σ] = u where u ∈ T∆(x1) is the maximal prefix such that p′ = u · p′′ for some p′′
containing all xj , i.e., u has maximal size with this property and thus is least with respect to
the ordering on patterns.

I Example 3. Let T = f(g(q2(x2), a), g(q2(x2), q1(x1)), and thus p = f(g(x2, a), g(x2, x1)).
Then for σ] = {q1 7→ a, q2 7→ h(x1)}, we have that p′ = f(g(h(x2), a), g(h(x2), a)), and thus,
[[T ]]]σ] = f(x1, x1) · g(x1, a) · h(x1) = f(g(h(x1), a), g(h(x1), a)).

We remark that each right-hand side of a constraint in CA represents a function which is
distributive in each argument, i.e., commutes with the binary operator t in each accessed
argument σ](qj). Recall that any distributive function is also monotonic. Since the partial
ordering on P∆ and likewise on P(1)

∆ are complete lattices with finite ascending chains, the
constraint system (2) as well as the respective system for linear transducers and 1-patterns,
has a least solution. We thus obtain:

I Lemma 4. Let prefA(q), q ∈ Q, denote the least solution of the set of constraints (2) over
the complete lattice P∆ (P(1)

∆ ). Then for every a ∈ Q,

prefA(q) =
⊔
{s | ∃t ∈ TΣ. q : t→ s} (3)

holds. Moreover, this least solution can be computed in polynomial time.

Proof. Recall that by our assumption, the advice automaton is trim. Therefore, according
to our construction, there is a q-computation for every state q ∈ Q, i.e., prefA(q) 6= ⊥ for
each q ∈ Q. The equality in equation (3) then is due to the fixpoint transfer lemma [1].
More explicitly, let X(i)

q denote the ith iterate of the fixpoint iteration for the constraint
system for i ≥ 0. By induction on i, it can be verified that X(i)

q equals the maximal common
prefix of all s such that q : t → s for trees t ∈ TΣ of depth less than i. Thereby, the
prefixes X(i+1)

q can be determined from the preixes X(i)
q in polynomial time. This is obvious

for linear transducers A. When A is uniform copying, and general uniform patterns are
used, polynomial time can be obtained when trees are represented as dags where isomorphic
subtrees are represented only once. Since the number of iterations required for reaching the
least fixpoint of the constraint system is bounded by the size of the transducer A, the overall
complexity statement follows. J

Now let A denote some uc-transducer (linear transducer) A with advice and a non-empty
set of states. In particular, the axiom of A contains an occurrence of some state q0 (with
ι(q0) = h0). We call A an earliest uc-transducer (linear transducer), if prefA(q) = x1
(pref(1)

A (q) = x1) for all states q of A. If this is not yet the case, we construct a transducer A′
of the same kind as A as follows where we only present the construction for uc transducers
(the linear case is analogous). The set Q′ of states of A′ is obtained from the set Q of states
of A by Q′ = {q ∈ Q | prefA(q) 6∈ T∆}. Assume that the axiom T0 of A equals T0 = p · q0(x1).
If prefA(q0) = s ∈ T∆, then the axiom T ′0 of A′ is given by T ′0 = p · s. Otherwise, the new
axiom T ′0 is given by T ′0 = p · prefA(q0) · q0(x1). Now assume that q ∈ Q′, and prefA(q) = u.
Then for each rule q(f(x1 : h1, . . . , xk : hk)) → p{xj 7→ qj(xj) | j ∈ J} of A, A′ has a rule
q(f(x1 : h1, . . . , xk : hk)→ T ′ where T ′ is defined as follows. For j ∈ J , let sj = prefA(qj) if
prefA(qj) ∈ T∆, and sj = uj · qj(xj) if prefA(qj) = uj ∈ T∆(x1). Then u must be a prefix of
p{xj 7→ sj | j ∈ J}, and we choose T ′ such that p{xj 7→ sj | j ∈ J} = u · T ′ holds.
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I Lemma 5. Assume that A is a DTA
uc and A′ the DTA

uc as constructed above. Then,
1. For each state q of A′ with u = prefA(q), it holds that

a. If q : t→ s holds for A, then q : t→ s′ holds for A′ for some s′ ∈ T∆ so that s = u · s′,
and vice versa,

b. If q : t→ s′ holds for A′, then q : t→ u · s′ holds for A.
c. A and A′ are equivalent where prefA′(q) = x1 holds for all states q of A′.

2. A′ can be constructed from A in polynomial time.

The analogous properties hold for DTA
lin transducers.

Due to this lemma, we obtain that for each uc-transducer (linear transducer) an equivalent
earliest transducer can be constructed in polynomial time. In fact that transducer can
further be minimized. For that, we define ≡ as the coarsest equivalence relation on states
such that q ≡ q′ implies that ι(q) = ι(q′), and for each input symbol f ∈ Σ there is a rule
q(f(x1 : h1, . . . , xk : hk)) → T iff there is a rule q′(f(x1 : h1, . . . , xk : hk)) → T ′ such that
T = p{xj 7→ qj(xj) | j ∈ J} and T ′ = p{xj 7→ q′j(xj) | xj ∈ XJ} for some common pattern
p ∈ T∆(XJ) and states qj , q′j ∈ Q such that for all j ∈ J , qj ≡ q′j holds.

I Lemma 6. Let A be an earliest uc-transducer ( linear transducer) and ≡ the equivalence
relation as defined above. Then the following holds:
1. q ≡ q′ iff for all [[q]]A = [[q′]]A;
2. ≡ can be constructed in polynomial time.
The proof of Lemma 6 follows closely the corresponding proof of Theorem 13 of [8]. Putting
Lemmas 5 and 6 together, we obtain:

I Theorem 7. For each DTA
uc (DTA

lin) transducer A, a unique canonical earliest DTA
uc (DTA

lin)
transducer A′ can be constructed such that (1) A′ has at most as many states as A, (2) A′ is
equivalent to A, and (3) A′ can be constructed in polynomial time.

4 How to Remove Look-ahead

In the following, we assume that we are given a deterministic top-down tree transducer A
with regular look-ahead. By Theorem 7, we may assume that A is earliest. Our goal is
to decide whether the translation of A can be realized by a deterministic top-down tree
transducer without look-ahead (but with inspection). A necessary condition for the latter
is that the domain of the given translation can be accepted by a top-down deterministic
automaton. By assumption, the domain of the translation of A is given by the set L(B) of
all trees accepted by B. If the translation can be realized by a uc-transducer with inspection
only, L(B) = L(B′) for some top-down deterministic automaton B′. One such B′ can be
obtained by means of the powerset construction. The set H ′ of states of B′ are subsets of
states of B where in particular, {h0} ∈ H ′ is the accepting state. Moreover, if S ⊆ H is a
state in H ′, then for every input symbol f ∈ Σk and every j ∈ {1, . . . , k},

Sj = {hj ∈ H | ∃h ∈ S, h1, . . . , hj−1, hj+1, . . . , hk ∈ H. 〈h, f, h1 . . . hk〉 ∈ δ} ∈ H ′

and 〈S, f, S1 . . . Sk〉 is in the transition relation of B′. As B is assumed to be trim, the
automaton B′ constructed in this way, is trim as well. Checking whether or not L(B) = L(B′)
is decidable. In fact, the two automata are equivalent iff for each transition 〈S, f, S1 . . . Sk〉
constructed for B′, and every tuple of states (h1, . . . , hk) ∈ S1× . . .×Sk there is some h ∈ S
such that 〈h, f, h1 . . . hk〉 is a transition of B.
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Let us thus assume that B and B′ are equivalent. The following construction is given for
uniform copying transducers (the construction for linear transducers is analogous). Let us
assume that the earliest DTR

uc transducer A is canonical and equivalent to a DTI
uc transducer.

As the case where the axiom T0 of A is ground, is trivial, we now assume that the axiom is
non-ground, i.e., T0 = s0 · q0(x1) with ι(q0) = h0. Then we construct a DTI

uc transducer A′ as
follows. The states of A′ are given by 〈ρ〉 for mappings ρ which assign to the states h in some
set S ∈ H ′, trees ρ(h) which are either in T∆ or of the form ρ(h) = s · q(x1) where s ∈ T∆(x1)
and q ∈ Q is a state of A with ι(q) = h. For that mapping ρ, we define ι′(〈ρ〉) = S. The
axiom of A′ is given by T ′0 = s0 · 〈{h0 7→ q0(x1)}〉.

Assume now that 〈ρ〉 is a state of A′ with domain S. Consider some input symbol f ∈ Σ
of rank k ≥ 0 where 〈S, f, S1 . . . Sk〉 is a transition of B′. Let p′ denote a pattern in T∆(XJ′)
for some J ′ ⊆ {1, . . . , k}. Let ρi, i = 1, . . . , k be mappings with domains Si such that for
h ∈ S and 〈h, f, h1 . . . hk〉 ∈ δ,
1. If ρ(h) ∈ T∆, then hj ∈ Sj for all j ∈ {1, . . . , k}, and ρ(h) = p′{xj 7→ ρj(hj) | j ∈ J ′};
2. If ρ(h) = s · q(x1), and A has a rule of the form (1), then J ⊆ J ′ and s · p = p′{xj 7→ uj |

j ∈ J ′} where uj = ρj(hj) if ρj(hj) is ground, and uj = ρj(hj) · xj otherwise.
3. For each j ∈ J ′, the mapping ρj is (up to states in Q) prefix-free, i.e., the longest common

prefix of ρj(h), h ∈ Sj , in T∆(x1) is x1.
If A is equivalent to some DTuc transducer, p′ and ρj with these properties must always exist,
and then are uniquely defined.

I Example 8. Assume that ρ = {h1 7→ f(a, g(c)), h2 7→ f(b, g(c)), h3 7→ f(a, b), h4 7→
f(b, b), h5 7→ c} and for the binary input symbol f , B has the transitions 〈h1, f, hahc〉, 〈h2, f ,
hbhc〉, 〈h3, f, hahb〉, 〈h4, f, hbhb〉 while there is no transition for f resulting in state h5. By
comparing the outputs for h1 and h2, we identify the subtrees a and b whose outputs
cannot be decided depending on the input symbol f alone, but require information about
the first child of f . Likewise, by comparing the outputs for h3 and h4, we identify the
corresponding subtrees g(a) and b whose outputs can be discriminated only depending on
the second child of f in the input. Accordingly, the pattern is given by p′ = f(x1, x2) where
ρ1 = {ha 7→ a, hb 7→ b} and ρ2 = {hc 7→ g(c), hb 7→ b}.

Example 8 illustrates the perhaps most complicated case, namely, when all outputs stored in
ρ are ground. Given that J ′, p′ and ρj , j ∈ J ′, with the given properties exist, we add to A′
the states 〈ρj〉, j ∈ J ′, together with the rule

〈ρ〉(f(x1 : S1, . . . , xk : Sk))→ p′{xj 7→ 〈ρj〉(xj) | j ∈ J ′}. (4)

The resulting transducer is a DTI
uc transducer A′ which is equivalent to A. Now assume

that the construction successfully terminates. The following two lemmas summarize the
properties of the resulting transducer A′.

I Lemma 9. Consider a state 〈ρ〉 of A′ for some mapping ρ with domain S, h ∈ S and
t ∈ TΣ with h : t.
1. If ρ(h) = u is ground, then 〈ρ〉 : t→ u;
2. If ρ(h) = u · q(x1) for some u ∈ T∆(x1), and q : t→ s, then 〈ρ〉 : t→ u · s.

I Lemma 10. Assume that t ∈ CΣ is a context where (S0, S) : t holds in B′ for S0 = {h0}.
1. S = {h ∈ H | ∃sh. (q0, h) : t → sh}, i.e., S is the set of all h such that there is a

(q0, h)-computation of A for t;
2. Assume that for each h ∈ S, (q0, h) : t → sh. Then (〈ρ0〉, S) : t → s for ρ0 = {h0 7→

q0(x1)} so that the following holds:
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If s is ground, then sh is ground for each h ∈ S, and s = sh holds for each h ∈ S;
If s = s′ · 〈ρ〉(x1), then ρ is a mapping with domain S, and for each h ∈ S,
ρ(h) is ground iff sh is ground where s′ · ρ(h) = sh.
If ρ(h) = uh · q(x1) for some uh, then s′ · uh · q(x1) = sh.

The proof of these two lemmas is by induction on the structure of t, following the definition
of A′. We conclude that, upon successful termination, A and A′ are equivalent. It thus
suffices to prove successful termination whenever A is equivalent to some DTuc transducer.

We introduce three properties. The DTR
uc transducer A is called synchronizing, if for every

input tree t0 ∈ CΣ, input symbol f ∈ Σ of rank k ≥ 0 and look-ahead states h′1, h′2 so that
(q0, hi) : t→ si · qi(x1) for i = 1, 2, the following holds. Let qi(f(x1 : hi,1, . . . , xk : hi,k))→ Ti
be rules of A according to (1) where both T1 and T2 are non-ground. Then one of the
following two cases occurs.
Case 1. There are patterns p1, p2 ∈ T∆(XJ ) which agree in their sets of occurring variables,
and factorizations Ti = pi{xj 7→ ui,j | j ∈ J} for i = 1, 2 such that

s1 · p1 = s2 · p2,
for each j ∈ J , each ui,j is either ground, or is of the form s′ · q′(xj) for suitable s′, q′.

Case 2. There is some j such that both T1 = s′1 · q′1(xj) and T2 = s′2 · q′2(xj) for suitable
s′1, s

′
2 ∈ T∆(x1) and states q′1, q′2 ∈ Q.

Secondly, the DTR
uc transducer A is called twinning, if the following holds for all states

q1, q2 and contexts t, t′ ∈ CΣ such that (q0, ι(qi)) : t→ si ·qi(x1) and (qi, ι(qi)) : t′ → s′i ·qi(x1).
Either s′1 = s′2 = x1,
or there are trees u, v ∈ T∆(x1) such that s1 = s2 · w, s′1 = v · w and s′2 = w · v or vice
versa, s2 = s1 · w, s′2 = v · w and s′1 = w · v for suitable w, v ∈ T∆(x1).

Finally, the DTR
uc transducer A is called erasing, if the following holds for all input trees

t, t′ ∈ CΣ and states h1, h2 ∈ H. Assume that (q0, hi) : t → si for i = 1, 2 where s1 is of
the form s′1 · q(x1) (thus, ι(q) = h1) and s2 is ground. Then (q, h1) : t′ → u · q(x1) for some
u ∈ T∆(x1) and (h2, h2) : t′ implies that u = x1.

The variation ||t1, t2|| of t1, t2 ∈ T∆(x1) is the minimal depth of u1, u2 such that ti =
t0 · ui, i = 1, 2 for a t0 ∈ T∆(x1). The DTR

uc transducer A has bounded variation if ∃K ≥ 0
such that for every t ∈ CΣ and h1, h2 ∈ H with (q0, hi) : t → si for i = 1, 2, ||s′1, s′2||≤ K

holds. – Assume that A is synchronizing, erasing and twinning. Then the outputs of any
two computations for the same input tree, cannot not differ much. Intuitively, the variation
is synchronized at branching rules, does not increase in monadic loops and may increase only
marginally once one of the outputs is ground. Let us define the size |A| of some DTA

uc A as
the sum of the sizes of all rules of A where the size of the rule (1) is k + 1 plus the number
on nodes in the right-hand side. Altogether, we prove:

I Lemma 11. Assume that the domain of A is top-down deterministic where the bottom-up
deterministic look-ahead automaton B has m ≥ 1 states.
1. If A is equivalent to some DTI

uc A
′, then A is synchronizing, erasing and twinning.

2. If the DTR
uc A is synchronizing, erasing and twinning, then A has bounded variation where

the bound is given by |A| · (|A|+m).

Proof. The proof that A then must be twinning follows along the same lines as for word
transducers. Here, we only consider synchronization. Assume that A is equivalent to some
DTI

uc A
′, and ({h0}, S) : t for some t ∈ CΣ and state S of B′. Then (q̄, S) : t→ s0 · q̄(x1) holds

for the initial state q̄0 of A′ and some state q̄ of A′ where ι(q̄0) = {h0} and ι(q̄) = S. Assume
that there is a transition q̄(f(. . .))→ T of A′. Consider any h ∈ S so that 〈h, f, h1 . . . hk〉 is
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a transition of B, and assume that (q0, h) : t0 → s · q(x1) for some s ∈ T∆(x1). Since A is
assumed to be earliest, we have that s0 · u0 = s for some u0 ∈ T∆(x1). Moreover, there is a
rule q(f(x1 : h1, . . . , xk : hk))→ T ′ of A for f . We consider three cases.

1. T is ground. Then T ′ is ground with s0 · T = s · T ′ = s0 · u0 · T ′. Consequently by
top-cancellation, T = u0 · T ′ holds.

2. T contains occurrences of a single variable xj only, i.e., is of the form p · q̄′(xj) for some
state q̄′ of A′. If T ′ is ground, then s0 · p · v = s · T ′ = s0 · u · T ′ for some v ∈ T∆, i.e.,
p · v = u0 · T ′. If T ′ in non-ground, it necessarily is of the form T ′ = p′ · q′(xj) where
(again by top-cancellation) p · u′ = u0 · p′ holds for some u′ ∈ T∆(x1).

3. T contains occurrences of variables xj1 6= xj2 . Let J denote the set of indices j so that
xj occurs in T . Then T = u0 · p{xj 7→ q̄j(xj) | j ∈ J} holds for some p ∈ T∆(XJ ) so that
T ′ = p{xj 7→ uj | j ∈ J} for some uj which are either ground or of the form sj · qj(xj)
with qj ∈ Q.

Now assume that we have (q0, hi) : t0 → si · qi(x1), and let (q̄0, S) : t→ s0 · q̄(x1) denote the
corresponding computation of the DTI

uc A
′. In particular, this means that h1, h2 ∈ S, and we

can apply the observations listed above. Let qi(fi(x1 : hi,1, . . . , xk : hi,k)→ Ti, i = 1, 2, be
rules of A for qi and f such that T1, T2 are both non-ground. Then there also must be a rule
q̄(f(. . .))→ T of A′ where T is not ground as well, i.e., the first of the three cases does not
apply. Now, assume that the monadic second case of the synchronization property also does
not apply. Then T contains at least two variables, and there are factorizations T = ui · pi
for i = 1, 2 so that Ti = piτi for substitutions of τi mapping each xj to some ground tree or
expression si,j · qi,j(xj) where si = s0 · ui. We conclude that

s1 · p1 = s0 · u1 · p1 = s0 · u2 · p2 = s2 · p2

holds. Finally, consider some j where h1,j = h2,j = h′ for some h′. Assume for a contradiction
that τ1(h′) 6= τ2(h′), and consider any input tree t′ so that h′ : t′. Since h1 6= h2 holds, some
j′ 6= j exists so that h1,j′ 6= h2,j′ holds. In particular, this means that the right-hand side
T of ρ for f contains an occurrence of q̄′(xj) for some state q̄′ of A′. Then q̄′ : t′ → s′ for
some ground tree s′. If τi(h) = vi · q′i(xj) for states q′i of A, then q′i : t′ → s′i with s′ = vi · s′i.
Now since A is earliest, it follows that v1 = v2 must hold while q′1 and q′2 are equivalent, as
their outputs coincide for each input. Since A is canonical, this further means that q′1 = q′2.
Likewise, if τ1(h′) = s′1 is ground, then necessarily τ2(h′) also must be ground and coincide.
Thus, the synchronization property follows.

It remains to prove the second assertion of lemma, namely, that every DTR
uc A which is

synchronizing, erasing and twinning, has a variation bounded by |A| · (|A| + m). Let B′
denote the top-down deterministic automaton accepting the domain of A, and assume for a
contradiction that t ∈ CΣ is a context with a minimal number of nodes violating the claim
of the lemma. Let S denote the state of B′ such that ({h0}, S) : t holds. For h1, h2 ∈ S,
assume that (hf , hν) : t → sν , ν = 1, 2, holds for A. Assume that t = t1 · . . . · tm where
ti = fi(ui,1, . . . , ui,ji−1, x1, ui,ji+1, . . . , ui,ki) for some some 1 ≤ ji ≤ ki, some fi ∈ Σki and
ground trees ui,j′ , j′ 6= ji. Let hi,0, . . . , hi,m states of B so that (hi−1, hi) : ti holds for
i = 1, . . . ,m. Clearly, if m = 0, s1 = s2 = x1 and the assertion holds. First, we consider the
case that there is a maximal m′ ≤ m where (q0, h

′
m) : t1 . . . tm′−1 → s′i · qi(x0) holds such

that (qi, hi,m′) : piτi for some p1, p2 ∈ T∆(XJ) and substitutions τi, where
s′1 · p1 = s′2 · p2;
τ1(xj′) = τ2(xj) ∈ T∆ for j′ 6= jm′ ;
τi(xjm′ ) is of the form v′i · q′i(x1) where v′i · q′i(xjm′ ) is a subtree of some right-hand side
of A.
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If m′ = m, then obviously, the claim of the lemma holds. Therefore, either there is no such
m′ or m′ < m. Assume that u is obtained from p1 by substituting xj with τ1(xj) for all
j 6= jm′ . Thus, s′ = s′1 · u is a common prefix of s1 and s2. In case that the properties above
are never satisfied, we set m′ = 0, s′ = x1, and let v′i · q′i(x1) equal qi(x1).

Assume that m′′ ≥ m′ is chosen maximal so that (q′i, hi,m′′) : tm′+1 . . . tm′′ → s′′i · q′′i (xi),
i.e., both outputs are non-ground. The variation for the context t1 · . . . · tm′′ then is given by
||v′1 ·s′′1 ·q′′1 (x1), v′2 ·s′′2 ·q′′2 (x1)||. We claim that this variation is bounded by |A|2. Assume for a
contradiction that this were not the case. Then due to the synchronization property and the
choice of m′, this implies that m′′−m′ > n2 where n is the number of states of A. Therefore,
at least one pair of states occurs at least twice. But then, due to the twinning property, the
same variation is attained with a smaller context – contradicting the minimality of t.

To continue with our argument, we conclude that m′′ must be less than m. By the
definition of m′′ this means that one of the right-hand sides chosen for q′′i and fm′′+1 must
be ground. W.l.o.g., assume that this is the right-hand side T1 for q′′1 . But then due to the
erasing property, the depth of the output for tm′′+1 · . . . · tm is bounded by |A| ·m. Altogether
therefore, the variation is bounded by |A|2 + |A| ·m = |A| · (|A|+m) – in contradiction to
our assumption. This concludes the proof. J

In summary, we obtain:

I Theorem 12. Let A be a DTR
uc. It is decidable whether or not the translation of A can be

realized by a DTI
uc, and if so an equivalent DTI

uc A
′ can be constructed.

A corresponding theorem also holds for DTR
lin transducers.

5 How to Inspect Top-Down Deterministic Languages

Now consider a DTI
uc A with underlying top-down deterministic automaton B which is

assumed to be canonical earliest. For the following, we denote the unique state h of B
with domB(h) = TΣ (given that there is such a state), by >. The DTI

uc (DTI
lin) A is without

inspection (denoted by DTuc and DTlin) if for every rule q(f(x1 : h1, . . . , xk : hk)→ T of A,
hj = > whenever xj does not occur in T . When B does not have a state >, then A is without
inspection only if the right-hand side of every rule of A contains all variables xj occurring in
its left-hand side, i.e., A is non-deleting. Note that a DTuc can easily be changed in such a
way that no advice automaton is present at all (and still the same translation is realized).

Consider a fixed output tree s ∈ T∆. A language L ⊆ TΣ is called DTuc (DTlin) output
recognizable by s iff there is a DTuc (DTlin) A such that [[t]]A is defined iff t ∈ L, where [[t]]A = s

for all t ∈ L. It turns out that a language is output recognizable via some DTuc iff it is output
recognizable via some DTlin. Hence, we drop the qualification. The language L is called
output recognizable (without further mentioning of an output tree) if L is out recognizable by
some s ∈ T∆. Assume that the language L is accepted by the trim top-down deterministic
TA B. Then it can be decided in polynomial time whether or not L is output recognizable,
and if so, whether or not L is output recognizable by a particular given tree s.

I Lemma 13. L(B) is output recognizable iff for every strongly connected component H ′ of
the transition relation of B, every transition 〈h′, f, h1 . . . hk〉 of B, and i with h′, hi ∈ H ′, it
holds that hj = > for all j 6= i.

Let s denote any output tree in T∆ and h a state of B. Then domB(h) is output recognizable
by s if for every transition 〈h, f, h1 . . . hk〉 with subsequence hi1 . . . hir of states different from
>, there is a pattern s′ ∈ T∆(Xr) such that s = s′{xj 7→ sj | j = 1, . . . , r} and domB(hij ) is
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output recognizable by sj for all j = 1, . . . , r. In case that h and one of the hj are contained
in the same strongly connected component of B, then r must equal 1. Accordingly, then
s′ can be chosen as x1. We further remark that the pattern s′ can be chosen to be linear,
i.e., each variable xj occurs exactly once. The constructed transducer thus is in fact, a DTlin.
Finally we note that the set of all states h such that domB(h) is output recognizable by s,
can be determined by a TA running over s.

I Theorem 14. For a given state h of a top-down deterministic TA B,
1. it can be decided in polynomial time whether or not domB(h) is output recognizable;
2. it can be decided in polynomial time whether or not domB(h) is output recognizable by

a particular tree s and if so, a DTlin AB,h,s without inspection can be constructed in
polynomial time with domain domB(h) such that [[t]]AB,h,s

= s for all t ∈ domB(h).

6 How to Satisfy Inspection Needs

In the following, we consider an arbitrary DTI
uc transducer A with underlying top-down

deterministic TA B as inspection automaton. Consider a rule τ of the form q(f(x1 :
h1, . . . , xk : hk)) → T of A. For every xi not occurring in T , it must be verified that the
corresponding subtree of the input is contained in domB(hi). This verification is trivial if
domB(hi) = TΣ. Such a state hi (if present) has been denoted by >. Accordingly, let Jτ
denote the set of indices j such that xj does not occur in the right-hand side of T while at
the same time, hj 6= >. Let us thus call the multiset ητ = {hj | j ∈ Jτ} the inspection need
of the rule τ . Assume that T has disjoint ground subtrees sj , j ∈ Jτ , such that domB(hj) is
output recognizable by sj for j ∈ Jτ . Then the rule τ can equivalently be replaced by a rule
without inspection need. In this case, we say that τ satisfies its inspection need.

I Example 15. Consider the rule q(f(x1 : h1, x2 : h2))→ g(x1, r(b)) where domB(h2) equals
the set L = {g(a, t) | t ∈ TΣ}. Then Jτ = {2} where the language L is output realizable with
respect to r(b). The latter can be seen by means of the rules q1(g(x1, x2))→ r(q2(x1)) and
q2(a)→ b. Accordingly, the given rule for q and f satisfies its inspection need.

Our goal is to construct for a given DTI
uc transducer A an equivalent DTuc transducer A′ such

that each rule of A′ satisfies its inspection need. If each rule of A satisfies its inspection need,
this need no longer be the case for the earliest transducer equivalent to A. The reason is that
some ground subtrees of prefixes of right-hand sides may have been moved to the right-hand
sides of other rules. Satisfying inspection needs of rules therefore requires to partly revert
the earliest transformation. In the following, we call a state q of the DTI

uc A constant, if there
is a single output tree s such that s = s′ whenever q : t→ s′ holds.

I Lemma 16. For a partial mapping µ : TΣ → T∆, the following are equivalent: (1) µ is
realized by a DTuc without inspection; (2) µ is realized by a DTI

uc without constant states, but
where all inspection needs are satisfied.

Assume that A′ is a DTuc and A the corresponding DTI
uc in canonical earliest normal form.

This means that for each state q of A and each state q′ ∈ q of A′ with prefA′(q′) = p,
q′ : t→ s′ holds for A′ iff q : t→ s with s′ = p · s holds. In particular, the constant outputs
for some states of A′ may occur as subtrees in p and thus are already produced before A
processes t. In order to recover the (yet unknown) DTuc A′ without inspection from A, we
determine the minimal suffix p′ of p so that all inspections possibly encountered when q

processes its input, can be satisfied. Such a generalized inspection need of a q-computation
is represented by a sequence (M1, ∅) . . . (Mr−1, ∅)(Mr, φ), r ≥ 0, where M1, . . . ,Mr are
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multisets of inspection states and φ is a downward-closed subset of sub-multisets of Mr

with Mr 6∈ ψ. Intuitively, a generalized inspection need is the sequence of future inspections
yet to be simulated. The pair (Mr, φ) to the right is meant to occur farest in the future.
Thereby, the set φ describes which sub-multisets of individual inspections of Mr can already
be accomplished (the available ground terms might be used in more than one way). If
Mr ∈ φ, then all languages domB(h), h ∈Mr, are simultaneously realizable – implying that
the whole pair (Mr, φ) can be dropped.

For a finite multiset G of trees in T∆ and a finite multisetM of states inH, define 〈〈G,M〉〉
as the set of all sub-multisets M ′ of M so that the multiset of languages {domB(h) | h ∈M ′}
are simultaneously output recognizable by means of disjoint subtrees of trees in G.

Now assume that p ∈ T∆(x1) where p = s1 · . . . · sm where each of the sj ∈ T∆(x1) is
irreducible, i.e., cannot be written as a product of patterns different from x1. For p, we
define the auxiliary transformation [[p]]]] as the composition [[s1]]]] ◦ . . . ◦ [[sm]]]] where for an
irreducible pattern s ∈ T∆(x1), the transformation is defined as follows. First, [[s]]]]ε = ε. For
α = α′ (M,φ), the pattern s can only be used to satisfy the inspection need of the last pair
in α. Let G denote the set of maximal distinct ground subtrees of s. Let φ′ denote the set of
multisets of inspection needs which become satisfiable when the ground terms from G are
additionally available, i.e., φ′ = {R1 ∪R2 | R1 ∈ φ,R2 ∈ 〈〈G,M \R1〉〉}. Then [[s]]]]α = α′ if
M ∈ φ′ and [[s]]]]α = α′ (M,φ′) otherwise. Let I the set of all possible generalized inspection
needs. Let us introduce some notation. For a particular state q and input tree t, let us define
the inspection need ηq(t) of q for t as follows. Assume that t = f(t1, . . . , tk) and τ is the rule
of A of the form q(f(x1 : h1, . . . , xk : hk))→ p{xj 7→ qj(xj) | j ∈ J} such that p ∈ T∆(XJ)
holds with hi : ti for i = 1, . . . , k. For the rule τ , we define the transformation

[[τ ]]] : (XJ → I)→ I such that ηq(t) = [[τ ]]]{xj 7→ ηqj
(tj) | j ∈ J} holds.

The transformation [[τ ]]] is defined by case distinction. If J = ∅, i.e., p is ground, we check in
how far p itself is sufficient for ητ to be output realizable. Let φ = 〈〈{p}, ητ 〉〉. Then

[[τ ]]]∅ =
{
ε if ητ ∈ φ
(ητ , φ) otherwise

[[τ ]]]{xj 7→ α} = [[p]]]]((ητ , ∅)α)

Finally, assume that J contains more than one index. Let p = p′{xj 7→ pj · xj | j ∈ J} for
maximal patterns pj ∈ T∆(x1). For αj , j ∈ J , assume that pj = p′j · uj for some minimal
suffix uj ∈ T∆(x1) with [[uj ]]]]αj = ε. These suffixes must exist, whenever A is equivalent to
some DTuc without inspection. Let G denote the set of distinct maximal ground subtrees of
p′{xj 7→ p′j · xj | j ∈ J}, and φ = 〈〈G, ητ 〉〉. Then we define

[[τ ]]]{xj 7→ αj | xj ∈ XJ} =
{
ε if ητ ∈ φ
(ητ , φ) otherwise

We have:

I Lemma 17. Assume that A is the canonical earliest normal form of some DTuc A
′ without

inspection. Let q denote some state of A, i.e., an equivalence class of states of A′. Let q′ ∈ q
be state of A′, let p = prefA′(q′) the maximal common prefix of outputs of A′ for q′, and
t ∈ domB(ι(q)). Then (1) ηq(t) is defined and (2) [[p]]]](ηq(t)) = ε.

The proof is by induction on the structure of t where we use that for q′ : t→ s′ and q : t→ s

we have that s′ = p · s for p = prefA′(q′).
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By computing ηq(t), we partly recover information on the (unknown) common prefix p of
the (yet to be constructed) DTuc A′ for q′. By computing the set of all these inspection needs
for q, we determine the maximal requirement on a suffix of output already produced by A
when reaching q, whose delay then is sufficient to satisfy all possible future inspection needs.
Therefore, let S[q] = {ηq(t) | t ∈ domB(ι(q)}. In order to calculate this set, we construct a
constraint system CI with unknowns Xq, where q is state of A. The system consists of one
constraint per rule of A. Assume that τ is the rule q(f(. . .))→ p{xj 7→ qj(xj) | j ∈ J} where
p ∈ T∆(XJ ) and qj , j ∈ J are states of A. Then the constraint system CI has the constraint

Xq ⊇ {[[τ ]]]{xj 7→ αj | j ∈ J} | ∀j ∈ J. αj ∈ Xqj
}

The given constraint system is over subsets of I where all right-hand sides are monotonic
w.r.t. subset inclusion. Therefore, it has a least solution. Moreover, we have:

I Lemma 18. Assume that A is a canonical DTI
uc transducer which is equivalent to some

DTuc A
′ without inspection. Let Xq, q a state of A, denote the least solution of the system of

constraints CI . Then for each state q of A: (1) Xq = S[q] and (2) the length of each α ∈ S[q]
is bounded by |A|.

Proof. In order to verify the first statement, we prove by induction that the ith iterate X(i)
q

of the constraint system exactly equals the set of all ηq(t) for trees t of depth less than i.
For a proof of the second statement, we note that each α ∈ S[q] is the inspection need of
some execution starting in q which must be accomplished by every pattern available at q.
More precisely, for every state q of A there is a context t ∈ CΣ such that (q0, h) : t→ u · q(x1)
holds where ι(q) = h. Here, we rely on the minimality of A, implying that each state q can
be reached in this way. Let T ′0 · q0(x1) denote the axiom of A. Then t can be chosen in such
a way that T0 · u consists of at most |A| factors. Since at least one factor of the pattern is
required to realize the inspection at one rule, the upper bound to the lengthes of inspection
needs α ∈ S[q] follows. J

As a consequence, the sets S[q], q a state of A, are effectively computable.
For a finite set S ⊆ I, let tS denote the minimal suffix v of t such that [[v]]]]α = ε for

all α ∈ S. The states of the new DTuc A′ are pairs 〈q, s〉, q a state of A and s ∈ T∆(x1)
an output pattern for A, which will also be called the buffer. Assume that we are given
for each state q of A, the (finite) set S[q] of inspection needs which are to be satisfied by
q-computations. Assume that T ′0 = u · v where v = (T ′0)S[q0]. Then the axiom of A′ is given
by u · 〈q0, v〉(x1). Assume that state 〈q, u〉 of A′ has already been constructed, and τ is a
rule of A of the form q(f(. . .))→ p{xj 7→ qj(xj) | j ∈ J} where p ∈ T∆(XJ).

If J = ∅, A′ has a rule 〈q, u〉(f(. . .))→ u · p. In case that ητ 6= ε, u · p must be sufficient
to satisfy the inspection needs incurred by the rule τ , i.e., 〈〈{u · t}, ητ 〉〉 must contain ητ .

Next assume that J = {j}, i.e., p = p′ · xj . Then [[u · p′]]]]((ητ , ∅)α) = ε must hold for all
α ∈ S[qj ]. Therefore, there is a factorization such that u · p′ = u′ · v where v = (u · p′)S[qj ];
we add the rule 〈q, u〉(f(. . .)) → u′ · 〈q′, v〉(xi) to A′. Finally, assume that J contains at
least two elements. Then p is of the form p = p′{xj 7→ pj · xj | j ∈ J} for p′ ∈ T∆(XJ) and
maximal patterns pj ∈ T∆(x1). For each j ∈ J , there must be a factorization pj = uj · vj
where vj = (pj)S[qj ]. Moreover, the subset G of ground subtrees of u, p′ and uj , j ∈ J , must
be sufficient to satisfy the inspection need of τ itself, i.e., 〈〈G, ητ 〉〉 contains ητ . Then add the
rule 〈q, u〉(f(. . .))→ u · p′{xj 7→ uj · 〈qj , vj〉(xj) | j ∈ J} to A′. Correctness and termination
of the construction follows from the following lemma.
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I Lemma 19. Assume that A is the canonical earliest DTI
uc for a DTuc A

′′ without inspection.
Then the construction in Section 6 terminates with some A′ so that the following properties
are satisfied:
1. A is equivalent to A′;
2. Each inspection need ητ of A′ is satisfiable;
3. For each constructed state 〈q, u〉 of A′, u ∈ T∆(x1) has length at most |A|2 · (a− 1) if a

is the maximal rank of an input symbol.

Proof. Assume that A is equivalent to some A′′ without inspection, i.e., is the canonical
earliest normal form of A′′. This means that for states q1, q2 of A, t1 ∈ CΣ and t2 ∈ TΣ
with (q1, ι(q2)) : t1 → s1 · q2(x1), and q2 : t2 → s2 and all states q′1, q′2 of A′′ so that q′i ∈ qi,
(q′1, ι(q′2)) : t→ s′1 · q′2(x1) and q′2 : t→ s′2, for some s′1, s′2, it holds that v1 · s1 = s′1 · v2 and
v2 · s2 = s′2 for vi = prefA′(q′i).

Consider a pair 〈q, u〉 returned by the construction and let q′ ∈ q denote a state of A′′
contained in q with vq′ = prefA′′(q′). Then u is a suffix of vq′ . Consequently, the set of all
constructed states 〈q, u〉 is finite, and all pre-conditions at the construction of rules are met.
This means that all inspection needs of the resulting transducer are satisfiable. Moreover, we
have that q : t→ s holds for A iff 〈q, u〉 : t→ s′ holds for A′ where u · s = s′ – implying that
A and A′ are equivalent.

It remains to prove item (3), i.e., to provide an upper bound for the lengthes of the
patterns u occurring in the construction as second components of states 〈q, u〉 – not in terms
of the transducer A′′, but in terms of the transducer A, which serves as the input to the
construction. According to thr construction, we know that u is a minimal pattern to satisfy
all generalized inspection needs in S[q].

First, assume that (q, ι(q)) : t→ s · q(x1) holds for A some context t ∈ CΣ so that only
rules τ are applied whose right-hand sides have occurrences of single variables only. In that
case, t = t1 · . . . · tm for irreducible contexts ti ∈ CΣ where each computation for ti consists in
the application of a single rule τi. Case 1 : s = x1. Then ητi

must be ∅ for all i = 1, . . . ,m.
Case 2 : s 6= x1. Then u · s = u1 · v so that all inspections to be satisfied by the τi together
can be satisfied by u1 while v is sufficient to satisfy all generalized inspection needs in S[q].
Accordingly, [[s|A|·(a−1)]]]]α = ε for each α ∈ S[q]. Therefore, s (independently of u) is at
least able to satisfy each (M,φ) occurring inside some α ∈ S[q].

Now assume for a contradiction, that a state 〈q, u〉 is constructed where u is of length
exceeding |A|2 ·(a−1). Then there is a minimal context t ∈ CΣ of the form t = t′ ·t1 · . . . ·tN ·t′′
for N = |A|2 · (a− 1) + 1 such that (q1, ι(q′)) : t′ → s′ · q′(x1), (q′, ι(q′)) : ti → si · q′(x1) for
i = 1, . . . , N with si 6= x1, and (q′, ι(q)) : t′ → s′′ · q(x1) so that for some v0 ∈ T∆(x1), one of
the following two conditions holds:

The axiom of A is of the form s0 · v1 · q1(x1); or
there is a right-hand side of a rule of A which is of the form p{xj 7→ v′j · q′j(xj) | j ∈ J}
for some J of cardinality exceeding 1, where v1 = v′j′ and q1 = q′j′ for some j′ ∈ J .

By construction, all inspection needs along the way, are satisfied by v1 · s′. According to
our observation above, though, u must be a suffix of s2 · . . . · sN · s′′ – contradicting the
minimality of the context t. We conclude that the maximal length of the buffer is bounded
by |A|2 · (a− 1). J

In summary, we have shown:

I Theorem 20. (1) For a DTI
uc (DTI

lin) A it is decidable if is equivalent to a DTuc (DTlin) A′,
and if so, such A′ can be constructed. (2) For a DTR

uc (DTR
lin) A is decidable if A is equivalent

to a DTuc (DTlin) A′, and if so, such A′ can be constructed.
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In Section 2 we have seen that a bottom-up deterministic transducer (DB) can be seen as a
particularly simple DTR

uc transducer. Accordingly, we obtain as a corollary:

I Corollary 21. Let A be a (linear) DB. It is decidable if an equivalent DTI
uc (DTI

lin) or an
equivalent DTuc (DTlin) exists, and if so, such a transducer can be constructed.

7 Conclusion

We showed for two natural subclasses of deterministic top-down tree transducers how to
remove (bottom-up deterministic) look-ahead and replace it whenever possible, with (top-
down deterministic) inspection. We then also showed for the given classes how to remove
inspection (if possible). The constructions are technically intricate, but crucially rely on
canonical earliest normal forms for the transducers in question. As a corollary we obtain
that for a given deterministic bottom-up transducer it is decidable whether or not it can be
realized by a deterministic top-down tree transducer that is either uc or linear.

One may wonder if our results imply that for a given deterministic bottom-up tree
transducer U it is decidable whether or not it can be realized by an arbitrary deterministic
top-down tree transducer. I.e., if U can be realized by top-down transducer can be realized
by a uc such transducer? Interestingly, this is not the case: let ha, hb be look-ahead states
that indicate that the left-most leaf of the input tree is labeled a and b, respectively and
consider a transducer which has these rules (for every h ∈ {ha, hb}):

q0(f(x1 : ha, x2 : h))→ g(a, b, qid(x2)) q0(f(x1 : hb, x2 : h))→ g(c, d, qid(x2))

The corresponding translation can be realized by a deterministic top-down tree transducer!
However, the transducer is not uc (viz. the output leaves a and b must be produced by
different states, but both on the input variable x1).
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