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Abstract
In this paper, we study the notion of adversarial Stackelberg value for two-player non-zero sum
games played on bi-weighted graphs with the mean-payoff and the discounted sum functions. The
adversarial Stackelberg value of Player 0 is the largest value that Player 0 can obtain when announcing
her strategy to Player 1 which in turn responds with any of his best response. For the mean-payoff
function, we show that the adversarial Stackelberg value is not always achievable but ε-optimal
strategies exist. We show how to compute this value and prove that the associated threshold problem
is in NP. For the discounted sum payoff function, we draw a link with the target discounted sum
problem which explains why the problem is difficult to solve for this payoff function. We also provide
solutions to related gap problems.
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1 Introduction

In this paper, we study two-player non-zero sum infinite duration quantitative games played
on graph games. In non-zero sum games, the notion of worst-case value is not rich enough to
reason about the (rational) behavior of players. More elaborate solution concepts have been
proposed in game theory to reason about non-zero sum games: Nash equilibria, subgames
perfect equilibria, admissibility, and Stackelberg equilibria are important examples of such
solution concepts, see e.g. [18] and [19].

Let us first recall the abstract setting underlying the notion of Stackelberg equilibria
and explain the variant that is the focus of this paper. Stackelberg games are strategic
games played by two players. We note Σ0 the set of strategies of Player 0, also called
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the leader, and Σ1 the set of strategies of Player 1, also called the follower. Additionally,
the game comes with two (usually R-valued) payoff functions, Payoff0 and Payoff1, that
determine the payoff each player receives: if σ0 ∈ Σ0 and σ1 ∈ Σ1 are chosen then Player 0
receives the payoff Payoff0(σ0, σ1) while Player 1 receives the payoff Payoff1(σ0, σ1). Both
players aim at maximizing their respective payoffs, and in a Stackelberg game, players play
sequentially as follows. 1 Player 0, the leader, announces her choice of strategy σ0 ∈ Σ0.
2 Player 1, the follower, announces his choice of strategy σ1 ∈ Σ1. 3 Both players receive
their respective payoffs: Payoff0(σ0, σ1) and Payoff1(σ0, σ1). Due to the sequential nature
of the game, Player 1 knows the strategy σ0, and so to act rationally (s)he should choose
a strategy σ1 that maximizes the payoff Payoff1(σ0, σ1). If such a strategy σ1 exists, it is
called a best-response 1 to the strategy σ0 ∈ Σ0. In turn, if the leader assumes a rational
response of the follower to her strategy, this should guide the leader when choosing σ0 ∈ Σ0.
Indeed, the leader should choose a strategy σ0 ∈ Σ0 such that the value Payoff0(σ0, σ1) is as
large as possible when σ1 is a best-response of the follower.

Two different scenarios can be considered in this setting: either the best-response σ1 ∈ Σ1
is imposed by the leader (or equivalently chosen cooperatively by the two players), or the
best-response is chosen adversarially by Player 1. In classical results from game theory
and most of the close related works on games played on graphs [13, 15], with the exception
of [17], only the cooperative scenario has been investigated. But, the adversarial case is
interesting because it allows us to model the situation in which the leader chooses σ0 ∈ Σ0
only and must be prepared to face any rational response of Player 1, i.e. if Player 1 has
several possible best responses then σ0 should be designed to face all of them. In this paper,
our main contribution is to investigate the second route. As already noted in [17], this route
is particularly interesting for applications in automatic synthesis. Indeed, when designing a
program, and this is especially true for reactive programs [20, 2], we aim for robust solutions
that works for multiple rational usages, e.g. all the usages that respect some specification or
that maximize some measure for the user.

To reflect the two scenarios above, there are two notions of Stackelberg values. First,
the cooperative Stackelberg value is the largest value that Player 0 can secure by proposing a
strategy σ0 and a strategy σ1 to the follower with the constraint that σ1 is a best-response for
the follower to σ0. Second, the adversarial Stackelberg value is the largest value that Player 0
can secure by proposing a strategy σ0 and facing any best response σ1 of the follower to the
strategy σ0. In this paper, we mostly concentrate on the adversarial Stackelberg value, for
infinite duration games played on bi-weighted game graphs for the mean-payoff function and
the discounted sum function. The cooperative case has been studied in [13, 15] and we only
provide some additional results when relevant for that case (see also related works below).

Main contributions. First, we consider the mean-payoff function. For this payoff function,
best responses of Player 1 to a strategy σ0 ∈ Σ0 not always exist (Lemma 3). As a consequence,
the cooperative (CSV) and adversarial (ASV) Stackelberg values are defined using ε-best
responses. While strategies of Player 0 to achieve CSV always exist as shown in [13], we show
that it is not the case for ASV (Theorem 4). The ASV can only be approached in general and
memory may be necessary to play optimally or ε-optimally in adversarial Stackelberg games
for the mean-payoff function (Theorem 4). We also provide results for related algorithmic

1 As we will see later in the paper, sometimes, best-responses are not guaranteed to exist. In such cases,
we need to resort to weaker notions such as ε-best-responses. We leave those technical details for later
in the paper.
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problems. We provide a notion of witness for proving that the ASV is (strictly) above some
threshold (Theorem 5), and it is the basis for an NP algorithm to solve the threshold problem
(Theorem 7). Finally, we show how the ASV can be computed effectively (Theorem 12).

Second, we consider the discounted sum function. In that case, best responses of Player 1
to strategies σ0 ∈ Σ0 of Player 0 always exist (Lemma 13). The CSV and ASV are directly
based on best-responses in that case. Then we draw a link between the target discounted
sum problem and the CSV threshold problem (Lemma 15). The target discounted sum
problem has been studied recently in [1], left open there for the general case and shown to be
related to other open problems in piecewise affine maps and the representation of numbers in
nonintegral bases. As a consequence, we introduce a relaxation of the threshold problems for
both CSV and ASV in the form of gap problems (or promised problems as defined in [12]).
We provide algorithms to solve those gap problems (Theorem 17) both for CSV and ASV.
Finally, we prove NP-hardness for the gap problems both for CSV and ASV (Theorem 18).

Closely related work. The notions of cooperative and adversarial synthesis have been
introduced in [11, 17], and further studied in [7, 10]. Those two notions are closely related to
our notion of cooperative and adversarial Stackelberg value respectively. The games that are
considered in those papers are infinite duration games played on graphs but they consider
Boolean ω-regular payoff functions or finite range ω-regular payoff functions. Neither the
mean-payoff function nor the discounted sum payoff function are ω-regular, and thus they
are not considered in [11, 17]. The ω-regularity of the payoff functions that they consider
is central to their techniques: they show how to reduce their problems to problems on tree
automata and strategy logic. Those reductions cannot be used for payoff functions that are
not ω-regular functions and we need specific new techniques to solve our problems.

In [13, 15], the cooperative scenario for Stackelberg game is studied for mean-payoff and
discounted sum respectively. Their results are sufficient to solve most of the relevant questions
on the CSV but not for ASV. Indeed, the techniques that are used for CSV are closely related
to the techniques that are used to reason on Nash equilibria and build on previous works [4]
which in turn reduce to algorithmic solutions for zero-sum one dimensional mean-payoff (or
discounted sum games). For the ASV in the context of the mean-payoff function, we have
to use more elaborate multi-dim. mean-payoff games and a notion of Pareto curve adapted
from [3]. Additionally, we provide new results on the CSV for the discounted sum function.
First, our reduction that relates the target discounted sum problem to the CSV is new and
gives additional explanations why the CSV is difficult to solve and not solved in the general
case in [15]. Second, while we also leave the general problem open here, we show how to solve
the gap problems related to both CSV and ASV. Finally, the authors of [14] study incentive
equilibria for multi-player mean-payoff games. This work is an extension of their previous
work [13] and again concentrates on CSV and does not consider ASV.

Structure of the paper. In Sect. 2, we introduce the necessary preliminaries for our
definitions and developments. In Sect. 3, we consider the adversarial Stackelberg value for
the mean-payoff function. In Sect. 4, we present our results for the discounted sum function.

2 Preliminaries and notations

Arenas. A (bi-weighted) arena A = (V,E, 〈V0, V1〉, w0, w1) consists of a finite set V of
vertices, a set E ⊆ V × V of edges such that for all v ∈ V there exists v′ ∈ V such that
(v, v′) ∈ E, a partition 〈V0, V1〉 of V , where V0 (resp. V1) is the set of vertices for Player 0
(resp. Player 1), and two edge weight functions w0 : E 7→ Z, w1 : E 7→ Z. In the sequel, we
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denote the maximum absolute value of a weight in A by W . As arenas are directed weighted
graphs, we use, sometimes without recalling the details, the classical vocabulary for directed
graphs. E.g., a set of vertices S ⊆ V is a strongly connected component of the arena (SCC
for short), if for all s1, s2 ∈ S, there exists a path from s1 to s2 and a path from s2 to s1.

Plays and histories. A play in A is an infinite sequence of vertices π = π0π1 · · · ∈ V ω such
that for all k ∈ N, (πk, πk+1) ∈ E. We denote by PlaysA the set of plays in A, omitting the
subscript A when the underlying arena is clear from the context. Given π = π0π1 · · · ∈ PlaysA
and k ∈ N, the prefix π0π1 . . . πk of π (resp. suffix πkπk+1 . . . of π) is denoted by π≤k (resp.
π≥k). An history in A is a (non-empty) prefix of a play in A. The length |h| of an history
h = π≤k is the number |h| = k of its edges. We denote by HistA the set of histories in A, A
is omitted when clear from the context. Given i ∈ {0, 1}, the set Histi

A denotes the set of
histories such that their last vertex belongs to Vi. We denote the last vertex of a history
h by last(h). We write h ≤ π whenever h is a prefix of π. A play π is called a lasso if it
is obtained as the concatenation of a history h concatenated with the infinite repetition of
another history l, i.e. π = h · lω with h, l ∈ HistA (notice that l is not necessary a simple
cycle). The size of a lasso h · lω is defined as |h · l|. Given a vertex v ∈ V in the arena A, we
denote by Succ(v) = {v′|(v, v′) ∈ E} the set of successors of v and by Succ∗ its transitive
closure.

Games. A game G = (A, 〈Val0,Val1〉) consists of a bi-weighted arena A, a value function
Val0 : PlaysA 7→ R for Player 0 and a value function Val1 : PlaysA 7→ R for Player 1. In this
paper, we consider the classical mean-payoff and discounted-sum value functions. Both are
played in bi-weighted arenas.

In a mean-payoff game G = (A, 〈MP0,MP1〉) the payoff functions MP0,MP1 are defined
as follows. Given a play π ∈ PlaysA and i ∈ {0, 1}, the payoff MPi(π) is given by MPi(π) =
lim infk→∞ 1

kwi(π≤k), where the weight wi(h) of an history h ∈ Hist is the sum of the weights
assigned by wi to its edges. In our definition of the mean-payoff, we have used lim inf, we
will also need the lim sup case for technical reasons. Here is the formal definition together
with its notation: MPi(π) = lim supk→∞ 1

kwi(π≤k)
For a given discount factor 0 < λ < 1, a discounted sum game is a game G =

(A, 〈DSλ0 ,DSλ1 〉) where the payoff functions DSλ0 ,DSλ1 are defined as follows. Given a play
π ∈ PlaysA and i ∈ {0, 1}, the payoff DSλi (π) is defined as DSλi (π) =

∑∞
k=0 λ

kwi(πk, πk+1).

Strategies and payoffs. A strategy for Player i ∈ {0, 1} in a game G = (A, 〈Val0,Val1〉) is
a function σ : HistiA 7→ V that maps histories ending with a vertex v ∈ Vi to a successor of v.
The set of all strategies of Player i ∈ {0, 1} in the game G is denoted Σi(G), or Σi when G is
clear from the context.

A strategy has memory M if it can be realized as the output of a finite state machine
with M states. A memoryless (or positional) strategy is a strategy with memory 1, that is,
a function that only depends on the last element of the given partial play. We note ΣML

i

the set of memoryless strategies of Player i, and ΣFM
i its set of finite memory strategies.

A profile is a pair of strategies σ̄ = (σ0, σ1), where σ0 ∈ Σ0(G) and σ1 ∈ Σ1(G). As we
consider games with perfect information and deterministic transitions, any profile σ̄ yields,
from any history h, a unique play or outcome, denoted Outh(G, σ̄). Formally, Outh(G, σ̄)
is the play π such that π≤|h|−1 = h and ∀k ≥ |h| − 1 it holds that πk+1 = σi(π≤k) if
πk ∈ Vi. The set of outcomes (resp. histories) compatible with a strategy σ ∈ Σi∈{0,1}(G)
after a history h is Outh(G, σ) = {π | ∃σ′ ∈ Σ1−i(G) such that π = Outh(G, (σ, σ′))} (resp.
Histh(σ) = {h′ ∈ Hist(G) | ∃π ∈ Outh(G, σ), n ∈ N : h′ = π≤n}.
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Each outcome π in G = (A, 〈Val0,Val1〉) yields a payoff Val(π) = (Val0(π),Val1(π)), where
Val0(π) is the payoff for Player 0 and Val1(π) is the payoff for Player 1. We denote by
Val(h, σ̄) = Val(Outh(G, σ̄)) the payoff of a profile of strategies σ̄ after a history h.

Usually, we consider game instances such that players start to play at a fixed vertex
v0. Thus, we call an initialized game a pair (G, v0), where G is a game and v0 ∈ V is
the initial vertex. When the initial vertex v0 is clear from context, we speak directly of
G,Out(G, σ̄),Out(G, σ), Val(σ̄) instead of (G, v0), Outv0(G, σ̄), Outv0(G, σ),Val(v0, σ̄) . We
sometimes simplify further the notation omitting also G, when the latter is clear from the
context.

Best-responses and adversarial value in zero-sum games. Let G = (A, 〈Val0,Val1〉) be a
(Val0,Val1)-game on the bi-weighted arena A. Given a strategy σ0 for Player 0, we define
two sets of strategies for Player 1. His best-responses to σ0, noted BR1(σ0), and defined as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′1 ∈ Σ1 : Val1(Outv(σ0, σ1)) ≥ Val1(Outv(σ0, σ
′
1))} .

And his ε-best-responses to σ0, for ε > 0, noted BRε1(σ0), and defined as:

{σ1 ∈ Σ1 | ∀v ∈ V · ∀σ′1 ∈ Σ1 : Val1(Outv(σ0, σ1) ≥ Val1(Outv(σ0, σ
′
1))− ε} .

We also introduce notations for zero-sum games (that are needed as intermediary steps in
our algorithms). The adversarial value that Player 1 can enforce in the game G from vertex
v as: WCV 1(v) = supσ1∈Σ1 infσ0∈Σ0 Val1(Outv(σ0, σ1)). Let A be an arena, v ∈ V one of its
states, and O ⊆ PlaysA be a set of plays (called objective), then we write A, v |=� i� O,
if ∃σi ∈ Σi · ∀σ1−i ∈ Σ1−i : Outv(A, (σ, σ′)) ∈ O, for i ∈ {0, 1}. Here the underlying
interpretation is zero-sum: Player i wants to force an outcome in O and Player 1 − i

has the opposite goal. All the zero-sum games we consider in this paper are determined
meaning that for all A, for all objectives O ⊆ PlaysA we have that: A, v |= � i� O iff
A, v 2� 1− i� PlaysA \ O.

Convex hull and Fmin. First, we need som e additional notations and vocabulary related to
linear algebra. Given a finite set of d-dim. vectors X ⊂ Rd, we note the set of all their convex
combinations as CH(X) = {v | v =

∑
x∈X αx · x ∧ ∀x ∈ X : αx ∈ [0, 1] ∧

∑
x∈X αx = 1},

this set is called the convex hull of X. We also need the following additional, and less
standard notions, introduced in [5]. Given a finite set of d-dim. vectors X ⊂ Rd, let fmin(X)
be the vector v = (v1, v2, . . . , vd) where vi = min {c | ∃x ∈ X : xi = c}, i.e. the vector
v is the pointwise minimum of the vectors in X. Let S ⊆ Rd, then Fmin(S) = {fmin(P ) |
P is a finite subset of S}. The following proposition expresses properties of the Fmin(S)
operator that are useful for us in the sequel. The interested reader will find more results
about the Fmin operator in [5].

I Proposition 1. For all sets S ⊆ Rd, for all x ∈ Fmin(S), there exists y ∈ S such that
x ≤ y. If S is a closed bounded set then Fmin(S) is also a closed bounded set.

In the sequel, we also use formulas of the theory of the reals with addition and order,
noted 〈R,+,≤〉, in order to define subsets of Rn. This theory is decidable and admits effective
quantifier elimination [8].

ICALP 2020
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3 Adversarial Stackelberg value for mean-payoff games

Mean-payoffs induced by simple cycles. Given a play π ∈ PlaysA, we note inf(π) the set of
vertices v that appear infinitely many times along π, i.e. inf(π) = {v | ∀i ∈ N·∃j ≥ i : v = πj}.
It is easy to see that inf(π) is an SCC in the underlying graph of the arena A. A cycle c is a
sequence of edges that starts and stops in a given vertex v, it is simple if it does not contain
any other repetition of vertices. Given an SCC S, we write C(S) for the set of simple cycles
inside S. Given a simple cycle c, for i ∈ {0, 1}, let MPi(c) = wi(c)

|c| be the mean of wi weights
along edges in the simple cycle c, and we call the pair (MP0(c),MP1(c)) the mean-payoff
coordinate of the cycle c. We write CH(C(S)) for the convex-hull of the set of mean-payoff
coordinates of simple cycles of S. The following theorem relates the d-dim. mean-payoff
values of infinite plays and the d-dim. mean-payoff of simple cycles in the arena.

I Theorem 2 ([5]). Let S be an SCC in the arena A, the following two properties hold: (i) for
all π ∈ PlaysA, if inf(π) ⊆ S then (MP0(π),MP1(π)) ∈ Fmin(CH(C(S))) (ii) for all (x, y) ∈
Fmin(CH(C(S))), there exists π ∈ PlaysA such that inf(π) = S and (MP0(π),MP1(π)) = (x, y).
Furthermore, the set Fmin(CH(C(S))) is effectively expressible in 〈R,+,≤〉.

In the sequel, we denote by ΦS(x, y) the formula with two free variables in 〈R,+,≤〉 such
that for all (u, v) ∈ R2, (u, v) ∈ Fmin(CH(C(S))) if and only if ΦS(x, y)[x/u, y/v] is true.

On the existence of best-responses for MP. We start the study of mean-payoff games
with some considerations about the existence of best-responses and ε-best-responses for
Player 1 to strategies of Player 0.

I Lemma 3. There is a mean-payoff game G and a strategy σ0 ∈ Σ0(G) such that BR1(σ0) =
∅. For all mean-payoff games G and finite memory strategies σ0 ∈ ΣFM

0 (G), BR1(σ0) 6= ∅.
For all mean-payoff games G, for all strategies σ0 ∈ Σ0(G), for all ε > 0, BRε1(σ0) 6= ∅.

Proof sketch - full proof in the full version [9]. First, in the arena of Fig. 1, we consider
the strategy of Player 0 that plays the actions c and d with a frequency that is equal to
1− 1

k for c and 1
k for d where k is the number of times that Player 1 has played a in state 1

before sending the game to state 2. We claim that there is no best response of Player 1 to
this strategy of Player 0. Indeed, taking a one more time before going to state 2 is better for
Player 1.

Second, if Player 0 plays a finite memory strategy, then a best response for Player 1 is
an optimal path for the mean-payoff of Player 1 in the finite graph obtained as the product
of the original game arena with the finite state strategy of Player 0. Optimal mean-payoff
paths are guaranteed to exist [16].

Finally, the existence of ε-best responses for ε > 0, is guaranteed by an analysis of
the infinite tree obtained as the unfolding of the game arena with the (potentially infinite
memory) strategy of Player 1. Branches of this tree witness responses of Player 1 to the
strategy of Player 0. The supremum of the values of those branches for Player 1 is always
approachable to any ε > 0. J

According to Lemma 3, the set of best-responses of Player 1 to a strategy of Player 0 can
be empty. As a consequence, we need to use the notion of ε-best-responses (which are always
guaranteed to exist) when we define the adversarial Stackelberg value:

ASV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

inf
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) and ASV(v) = sup
σ0∈Σ0

ASV(σ0)(v)
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1 2 3

(0,0)

a
(0,0)
b

(0,1)

d

(0,2)

c
(0,2)
c

(0,1)
d

Figure 1 A mean-payoff game in which there exists a Player 0’s strategy σ0 such that BR1(σ0) = ∅.

v0v1 v2
(0, 1)

(0,1)(0,2)

(1,1)

(1,1)

Figure 2 In this game, ASV(v0) = 1 but there is no Player 0 strategy to achieve this value.

We note that when best-responses to a strategy σ0 exist, then as expected the following
equality holds, because BR1(σ0) = BR0

1(σ0) and BRε1
1 (σ0) ⊆ BRε2

1 (σ0) for all ε1 ≤ ε2, ε should
be taken equal to 0:

ASV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

inf
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) = inf
σ1∈BR1(σ0)

MP0(Outv(σ0, σ1))

Finally, we note that changing the sup over ε into an inf in our definition, we get the classical
notion of worst-case value in which the rationality of Player 1 and his payoff are ignored. We
also recall the definition of CSV, the cooperative Stackelberg value:

CSV(σ0)(v) = sup
ε≥0 | BRε1(σ0)6=∅

sup
σ1∈BRε1(σ0)

MP0(Outv(σ0, σ1)) and CSV(v) = sup
σ0∈Σ0

CSV(σ0)(v)

The interest reader is referred to [13] for an in-depth treatment of this value.

The adversarial Stackelberg value may not be achievable. In contrast with results in [13]
that show that CSV can always be achieved, the following statement expresses the fact that
the adversarial Stackelberg value may not be achievable but it can always be approximated
by a strategy of Player 0.

I Theorem 4. There exists a mean-payoff game G in which Player 0 has no strategy which
enforces the adversarial Stackelberg value. Furthermore, for all mean-payoff games G, for all
vertices v ∈ V , for all ε > 0, there exists a strategy σ0 ∈ Σ0 such that ASV(σ0)(v) > ASV(v)−ε.
Memory is needed to achieve high ASV.

Proof sketch - full proof in the full version [9]. First, consider the game depicted in Fig 2.
In this game, ASV(v0) = 1 and it is not achievable. Player 0 needs to ensure that Player 1
does not take the transition from v0 to v2 otherwise she gets a payoff of 0. To ensure this,
Player 0 needs to choose a strategy (that cycles within {v0, v1}) and that gives to Player 1
at least 1 + ε with ε > 0. Such strategies gives 1− ε to Player 0, and the value 1 cannot be
reached.

Second, by definition of the ASV, the value is obtained as the sup over all strategies of
Player 0. As a consequence, ε-optimal strategies (for ε > 0) exist. J
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Witnesses for the ASV. Given a mean-payoff game G, we associate with each vertex v, the
following set of pairs of real numbers: Λ(v) = {(c, d) ∈ R2 | v |=� 1� MP0 ≤ c∧MP1 ≥ d}.
We say that v is (c, d)-bad if (c, d) ∈ Λ(v). Let c′ ∈ R. A play π in G is called a (c′, d)-witness
of ASV(v) > c if it starts from v, (MP0(π),MP1(π)) = (c′, d), c′ > c and π does not contain
any (c, d)-bad vertex. A play π is called a witness of ASV(v) > c if it is a (c′, d)-witness of
ASV(v) > c for some c′, d. The following theorem justifies the name witness.

I Theorem 5. Let G be a mean-payoff game and v be one of its vertices. ASV(v) > c iff
there exists a play π in G such that π is a witness of ASV(v) > c.

Proof. From right to left. Assume the existence of a (c′, d)-witness π and let us show that
there exists a strategy σ0 which forces ASV(σ0)(v) > c. We define σ0 as follows:
1. for all histories h ≤ π such that last (h) belongs to Player 0, σ0(h) follows π.
2. for all histories h 6≤ π where there has been a deviation from π by Player 1, we assume

that Player 0 switches to a strategy that we call punishing. This strategy is defined as
follows. In the subgame after history h′ where h′ is a first deviation by Player 1 from
π, we know that Player 0 has a strategy to enforce the objective: MP0 > c ∨MP1 < d.
This is true because π does not cross any (c, d)-bad vertex. So, we know that h′ 2
� 1� MP0 ≤ c ∧ MP1 ≥ d which entails the previous statement by determinacy of
n-dimension mean-payoff games [21] (here n = 2).

3. for all other histories h, Player 0 can behave arbitrarily as those histories are never
reached when Player 0 plays as defined in point 1 and 2 above.

Let us now establish that the strategy σ0 satisfies ASV(σ0)(v) > c. We have to show the
existence of some ε ≥ 0 such that BRε1(σ0) 6= ∅ and for all σ1 ∈ BRε1(σ0), MP0(Outv(σ0, σ1)) >
c holds. For that, we consider two subcases:
1. supσ1 MP1(Outv(σ0, σ1)) = d = MP1(π). This means that any strategy σ1 of Player 1

that follows π is for ε = 0 a best-response to σ0. Now let us consider any strategy
σ1 ∈ BR0

1(σ0). Clearly, π′ = Outv(σ0, σ1) is such that MP1(π′) ≥ d. If π′ = π, we
have that MP0(π′) = c′ > c. If π′ 6= π, then when π′ deviates from π, we know that
σ0 behaves as the punishing strategy and so we have that MP0(π′) > c ∨MP1(π′) < d.
But as σ1 ∈ BR0

1(σ0), we conclude that MP1(π′) ≥ d, and so in turn, we obtain that
MP0(π′) > c.

2. supσ1 MP1(Outv(σ0, σ1)) = d′ > d. Let ε > 0 be such that d′ − ε > d. By Lemma 3,
BRε1(σ0) 6= ∅. Let us now characterize the value that Player 0 receives against any
strategy σ1 ∈ BRε1(σ0). First, if σ1 follows π then Player 0 receives c′ > c. Second, if σ1
deviates from π, Player 1 receives at least d′ − ε > d. But by definition of σ0, we know
that if the play deviates from π then Player 0 applies her punishing strategy. Then we
know that the outcome satisfies MP0 > c∨MP1 < d. But as d′− ε > d, we must conclude
that the outcome π′ is such that MP0(π′) > c.

From left to right. Let σ0 such that ASV(σ0)(v) > c. Then by the equivalence shown in the
proof of Theorem 4, we know that

∃ε ≥ 0 : BRε1(σ0) 6= ∅ ∧ ∀σ1 ∈ BRε1(σ0) : Outv(σ0, σ1) > c (1)

Let ε∗ be a value for ε that makes eq. (1) true. Take any σ1 ∈ BRε
∗

1 (σ0) and consider
π = Outv(σ0, σ1). We will show that π is a witness for ASV(v) > c.

We have that MP0(π) > c. Let d1 = MP1(π) and consider any π′ ∈ Outv(σ0). Clearly if
MP1(π′) ≥ d1 then there exists σ′1 ∈ BRε

∗

1 (σ0) such that π′ = Outv0(σ0, σ
′
1) and we conclude

that MP0(π′) > c. So all deviations of Player 1 w.r.t. π against σ0 are either giving him
a MP1 which is less than d1 or it gives to Player 0 a MP0 which is larger than c. So π
is a (MP0(π),MP1(π))-witness for ASV(v) > c as we have shown that π never crosses an
(c,MP1(π))-bad vertex, and we are done. J
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The following statement is a direct consequence of the proof of the previous theorem.

I Corollary 6. If π is a witness for ASV(v) > c then all π′ such that: π′(0) = v, the set of
vertices visited along π and π′ are the same, and MP0(π′) ≥ MP0(π) and MP1(π′) ≥ MP1(π),
are also witnesses for ASV(v) > c.

Small witnesses and NP membership. Here, we refine Theorem 5 to establish membership
of the threshold problem to NP.

I Theorem 7. Given a mean-payoff game G, a vertex v and a rational value c ∈ Q, it can
be decided in nondeterministic polynomial time if ASV(v) > c.

Proof of Thm. 7 relies on the existence of small witnesses established in the following lemma:

I Lemma 8. Given a mean-payoff game G, a vertex v and c ∈ Q, ASV(v) > c if and only
if there exists an SCC reachable from v that contains two simple cycles `1, `2 such that: (i)
there exist α, β ∈ Q such that α ·w0(`1) + β ·w0(`2) = c′ > c, and α ·w1(`1) + β ·w1(`2) = d

(ii) there is no (c, d)-bad vertex v′ along the path from v to `1, the path from `1 to `2, and
the path from `2 to `1.

Proof sketch - full proof in the full version [9]. Theorem 5 establishes the existence of a
witness π for ASV(v) > c. In turn, we show here that the existence of such a π can be
established by a polynomially checkable witness composed of the following elements. First,
a simple path from v to the SCC in which π gets trapped in the long run, (ii) two simple
cycles (that can produce the value (c′, d) of π) by looping at the right frequencies along the
two cycles. Indeed, (MP0(π),MP1(π)) only depends on the suffix in the SCC in which it
gets trapped. Furthermore, by Theorem 2, Proposition 1 and Corollary 6, we know that
the mean-payoff of witnesses can be obtained as the convex combination of the mean-payoff
coordinates of simple cycles, and 3 such simple cycles are sufficient by the Carathéodory
baricenter theorem. A finer analysis of the geometry of the sets allows us to go to 2 cycles
only (see the full proof in [9]). J

Proof of Theorem 7. According to Lemma 8, the nondeterministic algorithm that estab-
lishes the membership to NP guesses a reachable SCC together with the two simple cycles
`1 and `2, and parameters α and β. Additionally, for each vertex v′ that appears along the
paths to reach the SCC, on the simple cycles `1 and `2, and to connect those simple
cycles, the algorithm guesses a memoryless strategy σv

′

0 for Player 0 that establishes
v′ 2� 1� MP0 ≤ c ∧MP1 ≥ d which means by determinacy of multi-dimensional mean-
payoff games, that v′ � � 0� MP0 > c ∨MP1 < d. The existence of those memoryless
strategy is established in Propositions 20 and 21 in the full version [9] (in turn those proposi-
tions rely on results from [21]). Those memoryless strategies are checkable in PTime [16]. J

Computing the ASV in mean-payoff games. The previous theorems establish the existence
of a notion of witness for the adversarial Stackelberg value in non zero-sum two-player mean-
payoff games. This notion of witness can be used to decide the threshold problem in NPtime.
We now show how to use this notion to effectively compute the ASV. This algorithm is also
based on the computation of an effective representation, for each vertex v of the game graph,
of the infinite set of pairs Λ(v). The following lemma expresses that a symbolic representation
of this set of pairs can be constructed effectively. This result is using techniques that have
been introduced in [3].
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I Lemma 9. Given a bi-weighted game graph G and a vertex v ∈ V , we can effectively
construct a formula Ψv(x, y) of 〈R,+,≤〉 with two free variables such that (c, d) ∈ Λ(v) if
and only if the formula Ψv(x, y)[x/c, y/d] is true.

Extended graph game. From the graph game G = (V,E,w0, w1), we construct the extended
graph game Gext = (V ext, Eext, wext

0 , wext
1 ), whose vertices and edges are defined as follows.

The set of vertices is V ext = V × 2V . With an history h in G, we associate a vertex in
Gext which is a pair (v, P ), where v = last (h) and P is the set of the vertices traversed
along h. Accordingly the set of edges and the weight functions are defined as Eext =
{((v, P ), (v′, P ′)) | (v, v′) ∈ E ∧ P ′ = P ∪ {v′}} and wext

i ((v, P ), (v′, P ′)) = wi((v, v′)), for
i ∈ {0, 1}. Clearly, there exists a bijection between the plays π in G and the plays πext in
Gext which start in vertices of the form (v, {v}), i.e. πext is mapped to the play π in G that is
obtained by erasing the second dimension of its vertices.

I Proposition 10. For all game graph G, the following holds:
1. Let πext be an infinite play in the extended graph and π be its projection into the original

graph G (over the first component of each vertex) , the following properties hold: (i) For all
i < j: if πext(i) = (vi, Pi) and πext(j) = (vj , Pj) then Pi ⊆ Pj. (ii) MPi(πext) = MPi(π),
for i ∈ {0, 1}.

2. The unfolding of G from v and the unfolding of Gext from (v, {v}) are isomorphic, and so
ASV(v) = ASV(v, {v}).

By the first point of the latter proposition and since the set of vertices of the graph is
finite, the second component of any play πext stabilises into a set of vertices of G which we
denote by V ∗(πext).

We now show how to characterize ASV(v) with the notion of witness introduced above
and the decomposition of Gext into SCC. This is formalized in the following lemma:

I Lemma 11. For all mean-payoff games G, for all vertices v ∈ V , let SCCext(v) be the set
of strongly-connected components in Gext which are reachable from (v, {v}), then we have

ASV(v)= max
S∈SCCext(v)

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

Proof. First, we note the following sequence of equalities:

ASV(v)
= sup{c ∈ R | ASV(v) ≥ c}
= sup{c ∈ R | ASV(v) > c}
= sup{c ∈ R | ∃π : π is a witness for ASV(v) > c}
= sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c}
= maxS∈SCCext(v) sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext)=S}

The first two equalities are direct consequences of the definition of the supremum and
that ASV(v) ∈ R. The third is a consequence of Theorem 5 that guarantees the existence
of witnesses for strict inequalities. The fourth equality is a consequence of point 2 in
Proposition 10. The last equality is the consequence of point 1 in Proposition 10. J

By definition of Gext, for all SCC S of Gext, there exists a set of vertices of G which we
also denote by V ∗(S) such that any vertex of S is of the form (v, V ∗(S)). The set of bad
thresholds for S is then defined as Λext(S) =

⋃
v∈V ∗(S) Λ(v). Applying Lemma 9, we can

construct a formula ΨS(x, y) which symbolic encodes the set Λext(S).
Now, we are equipped to prove that ASV(v) is effectively computable. This is expressed

by the following theorem and established in its proof.
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I Theorem 12. For all mean-payoff games G, for all vertices v ∈ V , the value ASV(v) can be
effectively expressed by a formula ρv in 〈R,+,≤〉 and explicitly computed from this formula.

Proof. To establish this theorem, we show how to build the formula ρv(z) that is true iff
ASV(v) = z. We use Lemma 11, to reduce this to the construction of a formula that expresses
the existence of witnesses for ASV(v) from (v, {v}):

ASV(v) = max
S∈SCCext(v)

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

As maxS∈SCCext(v) is easily expressed in 〈R,+,≤〉, we concentrate on one SCC S reachable
from (v, {v}) and we show how to express

sup{c ∈ R | ∃πext : πext is a witness for ASV(v, {v}) > c and V ∗(πext) = S}

First, we define a formula that express the existence of a witness for ASV(v) > c. This is
done by the following formula:

ρSv0
(c) ≡ ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y)

Where ΦS(x, y) is the symbolic encoding of Fmin(CH(C(S))) as defined in Theorem 2. This
ensures that the values (x, y) are the mean-payoff values realizable by some path in S. By
Lemma 9, ¬ΨS(c, y) expresses that the path does not cross a (c, y)-bad vertex. So the
conjunction ∃x, y · x > c ∧ ΦS(x, y) ∧ ¬ΨS(c, y) establishes the existence of a witness with
mean-payoff values (x, y) for the threshold c. From this formula, we can compute the ASV
by quantifier elimination in:

∃z · ∀e > 0 · (ρSv0
(z − e) ∧ (∀y · ρSv0

(y) =⇒ y ≤ z))

and obtain the unique value of z that makes the formula true. J

4 Stackelberg values for discounted-sum games

In this section, we study the notion of Stackelberg value in the case of discounted sum
measures. Beside the adversarial setting considered so far, we also refer to a cooperative
framework for discounted sum-games, since we add some results to [15], where the cooperative
Stackelberg value for discounted-sum measures has been previously introduced and studied.

On the existence of best-responses for DS. First, we show that the set of best-responses
for Player 1 to strategies of Player 0 is guaranteed to be nonempty for discounted sum games,
while this was not the case in mean-payoff games.

I Lemma 13. For all discounted sum games G and strategies σ0 ∈ Σ0(G), BR1(σ0) 6= ∅.

Proof. Given σ ∈ Σ0(G), consider S = {DS1(Out(σ, τ)) | τ ∈ Σ1(G)}. S is a non empty
limited subset of R, since for each τ ∈ Σ1(G) it holds DS1(Out(σ, τ)) ≤ W

1− λ , where
W is the maximum absolute value of a weight in G. Hence, S admits a unique superior
extreme s = sup(S). By definition of superior extreme, for each ε > 0, there exists vε ∈ S
such that s ≥ vε > s − ε. Therefore, for each ε > 0 there exists τε ∈ Σ1(G) such that
s ≥ DS1(Out(σ, τε)) > s− ε, i.e.:

0 ≤ s− DS1(Out(σ, τε)) < ε (2)
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We show that this implies that Out(σ) contains a play π∗ such that DS1(π∗) = s, which leads to
BR1(σ) 6= ∅, since Player 1 has a strategy to achieve s = sup({DS1(Out(σ, τ)) | τ ∈ Σ1(G)}).
By contradiction, suppose that Out(σ) does not contain any play π such that DS1(π) = s.
Hence, for each π ∈ Out(σ), it holds that DS1(π) < s and π admits a prefix π≤k such that:

DS1(π≤k) +W
λk

1− λ < s (3)

Hence, we can cut each play in Out(σ) as soon as Equation 3 is accomplished, leading to a
finite tree T (by Konig lemma, since Out(σ) is finitely branching). Let π∗T = π0 . . . πk be a
branch in the finite tree T such that the value v(π∗T ) = s− (DS1(π∗T ) +W λk

1−λ ) is minimal.
Note that, by Equation 3, v(π∗T ) > 0 since v(π∗T ) = s− (DS1(π∗T ) +W λk

1−λ ) > s− s = 0.
Then, for each play π, let π≤p be the longest prefix of π which is also a branch in the

finite tree T . By definition of π∗T , we have:

s− DS1(π) ≥ s− (DS1(π≤p) +W
λp

1− λ ) ≥ v(π∗T ) > 0 (4)

This leads to a contradiction to the fact that for all ε > 0 there exists τ ∈ Σ1(G) such that
s− DS1(Out(σ, τε)) < ε, established within Equation 2. J

Stackelberg values for DS in the adversarial and cooperative settings. The existence
of best-responses allows us to simplify the notion of Stackelberg value for discounted sum
measures, avoiding the parameter ε used for mean-payoff games. In particular, the adversarial
Stackelberg value ASV(v) for discounted sum games is defined for all σ0 ∈ Σ0(G) as:

ASV(σ0)(v) = inf
σ1∈BR1(σ0)

DSλ0 (Outv(σ0, σ1)) and ASV(v) = sup
σ0∈Σ0

ASV(σ0)(v)

As previously announced, we also consider the notion of Stackelberg value for discounted sum
measures in the cooperative setting, where Player 0 suggests a profile of strategies (σ0, σ1)
and Player 1 agrees to play σ1 if the latter strategy is a best response to σ0. Formally, the
cooperative Stackelberg value CSV(v) for discounted sum games is defined as:

CSV(σ0)(v) = sup
σ1∈BR1(σ0)

DSλ0 (Outv(σ0, σ1)) and CSV(v) = sup
σ0∈Σ0

CSV(σ0)(v)

Lemma 15 below links the cooperative Stackelberg value for discounted-sum measures to the
target discounted-sum problem [1] (cfr. Definition 14), whose decidability is notoriously hard
to solve and relates to several open questions in mathematics and computer science [1].

I Definition 14 (Target Discount Sum Problem [1] (TDS)). Given a rational discount factor
0 < λ < 1 and three rationals a, b, t does there exist an infinite sequence w ∈ {a, b}ω such
that

∑∞
i=0 w(i)λi = t?

In particular, given an instance I = (a, b, t, λ) of the TDS problem, Figure 3 depicts a
discounted sum game GI such that I admits a solution iff CSV(v) ≥ λ · t.

I Lemma 15. The target discounted-sum problem reduces to the problem of deciding if
CSV(v) ≥ c in discounted-sum games.

Proof. Let I = (a, b, t, λ) be an instance of the target discounted sum problem and consider
the game GI depicted in Figure 3. We prove that I admits a solution iff CSV(v) ≥ λ · t.
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v

z s a

b

(0,0)

(λ · t− 1,−λ · t) (0, 0)
(b,−b)

(a,−a)

(b,−b)

(a,−a)
(a,−a)

(b,−b)

Figure 3 The instance of TDS I = (a, b, λ, t) admits a solution iff CSV(v) ≥ λ · t.

Suppose that I admits a solution and let w ∈ {a, b}ω such that
∑∞
i=0 w(i)λi = t. Consider

the following strategy σ for Player 0: for all α ∈ {a, b}∗, σ(vsα) = x if w(|α|) = x, where
x ∈ {a, b}. We prove that if τ is a best response to σ, then DS0(Out(σ, τ)) = λ · t. In fact,
Player 1 has two choices from v. Let us denote τs (resp. τz) the strategy that prescribes
to Player 1 to proceed to vertex s (resp. z) out from v. We have that DS1(Out(σ, τs)) =
DS1(Out(σ, τz)) = −λ · t, by definition of σ and GI . Hence, τs is a best response to σ which
guarantees to Player 0 a payoff DS0(Out(σ, τs)) = λ · t.

In the other direction, suppose that I does not admit any solution, i.e. there does not
exist an infinite sequence w ∈ {a, b}ω such that

∑∞
i=0 w(i)λi = t. We prove that for any

strategy σ for Player 0, if τ is a best response of Player 1 to σ then DS0(Out(σ, τ)) < λ · t.
Let σ be an arbitrary strategy for Player 0 and consider the strategy τz for Player 1.

We have two cases to consider depending on wether τz is a best response to σ or not. In the
first case, we have that DS(Out(σ, τz)) = (λ · t−1,−λ · t) and, since τz is a best response to σ,
we need to have DS1(Out(σ, τs)) ≤ −λ ·t. We can not have that DS1(Out(σ, τs)) = −λ ·t, since
this would imply DS0(Out(σ, τi)) = −DS1(Out(σ, τs)) = λ · t contradicting our hypothesis
that I does not admit any solution. Therefore, DS1(Out(σ, τs)) < −λ · t, meaning that τs is
not a best response to σ and CSV(v) = λ · t− 1 < λ · t.

In the second case, where σz is not a best response to σ, we have that DS1(Out(σ, τs)) >
−λ · t which implies that CSV(v) = DS0(Out(σ, τs)) = −DS1(Out(σ, τs)) < λ · t. J

The construction used to link the cooperative Stackelberg value to the target discounted
sum problem can be properly modified2 to prove that infinite memory may be necessary to
allow Player 0 to achieve her CSV, recovering a result originally proved in [15]. In the same
paper, the authors show that in 3-player discounted sum games the cooperative Stackelberg
value cannot be approximated by considering strategies with bounded memory only. In the
next section, we show that this is not the case for 2-player discounted sum games.

Gap problems and their algorithmic solutions. We consider a gap approximation of the
Stackelberg value problem in both the cooperative and the adversarial settings. Given ε > 0
and c ∈ Q, and VAL ∈ {CSV,ASV}, let us define the sets of games:

Yesε,cVAL = {(G, v) | G is a game with VAL(v) > c+ ε}
Noε,cVAL = {(G, v) | G is a game with VAL(v) < c− ε}

The (ε, c)-CSV-gap (resp. (ε, c)-ASV-gap) problem (also referred to as (ε, c)-gap problems or
just gap problems when ε and c are clear from the context) consists in determining if a given
game G and an initial vertex v belong to Yesε,cCSV or Noε,cCSV (resp. Yesε,cASV or Noε,cASV). More

2 Consider the game GI depicted in Figure 3 for a = 0, b = 1, λ = 2
3 , t = 3

2 . By Proposition 1 in [6], Player
0 can achieve 3

2 from s – and therefore CSV(v)=1 – only with infinite memory.
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precisely, solving the Stackelberg value gap problem in e.g. the cooperative setting amounts
to answer Yes if the instance of the game belongs to Yesε,cCSV, answer No if the instance belongs
to Noε,cCSV, never answer or answer arbitrarily otherwise.

Theorem 17 below uses the results in Lemma 16 to provide an algorithm that solves the
Stackelberg value gap problem in the cooperative and adversarial settings, for games with
discounted sum objectives. In particular, Lemma 16, shows that finite memory strategies are
sufficient to witness Stackelberg values strictly greater than a threshold c ∈ Q.

I Lemma 16. Let G be a discounted-sum game and consider c ∈ Q and ε > 0. If Player 0
has a strategy σ0 such that CSV(σ0)(v) > c+ ε (resp. ASV(σ0)(v) > c+ ε), then Player 0 has
a strategy σ∗0 with finite memory M(ε) such that CSV(σ∗0)(v) > c (resp. ASV(σ∗0)(v) > c).
Moreover, M(ε) is computable given ε.

Proof. Let σDS1
min ∈ Σ0 a memoryless strategy for Player 0 minimizing supτ∈Σ1DS1(Out(σ, τ)).

Let σDS1
max ∈ Σ0 be a memoryless strategy for Player 0 that maximizes supτ∈Σ1DS1(Out(σ, τ)).

Such memoryless strategies exist since 2-player (single-valued) discounted-sum games are
memoryless determined. In particular, σDS1

min ∈ Σ0 can be obtained by using standard
algorithms for two players (single-valued) discounted-sum games. In turn, σDS1

max ∈ Σ0 can be
computed by solving a single player (single valued) discounted-sum game, in which all the
nodes are controlled by the maximizer who aims at maximizing DS1.

Cooperative Setting: Let σ∗ ∈ Σ0(G) be a strategy for Player 0 s.t. DS0(Out(σ∗, τ)) > c+ε
for some strategy τ ∈ BR1(σ∗). Denote by π∗ the play π∗ = Out(σ∗, τ) and let N such
that λN W

1− λ <
ε

2 . Given the above premises, consider the finite memory strategy σ′ ∈ Σ0

for Player 0 that follows σ∗ for the first N steps and then either apply the memoryless
strategy σDS1

min ∈ Σ0 or the memoryless strategy σDS1
max ∈ Σ0, depending on the history h

followed up to N . In particular, if h = π∗≤N , then the strategy σ′ prescribes to Player 0 to
follow σDS1

max ∈ Σ0, cooperating with Player 1 at maximizing DS1. Otherwise (h 6= π∗≤N ), the
strategy σ′ prescribes to Player 0 to follow σDS1

min ∈ Σ0, minimizing the payoff of the adversary.
We show that a best response τ ′ for Player 1 to σ′ consists in following π∗ up to N and then
applying the memoryless strategy τDS1

max ∈ Σ1, i.e. maximizing supσ∈Σ0DS1(Out(σ, τ)). In
fact, by definition of σ′ and τ ′ we have that:

DS1(Out(σ′, τ ′)) ≥ DS1(π∗)
for any other strategy τ ′′ 6= τ ′ for Player 1:

if Out(σ′, τ ′′)≤N = x 6= π∗≤N , then:

DS1(Out(σ′, τ ′′)) = DS1(x) + λNDS1(Outx(σDS1
min, τ

′′)) ≤

≤ DS1(x) + λN (supτ∈Σ1(DS1(Outx(σDS1
min, τ))) ≤

≤ DS1(x) + λN (supτ∈Σ1(DS1(Outx(σ∗, τ))) = DS1(π∗) ≤ DS1(Out(σ′, τ ′))

since DS1(π∗) is the payoff (for player 1) of a best response of Player 1 to σ∗.
if Out(σ′, τ ′′)≤N = x = π∗≤N , then:

DS1(Out(σ′, τ ′′)) ≤ DS1(x)+λN ·sup{DS1(π) |π ∈ Plays(G)∧π starts at last(x)} =

= DS1(x) + λN · DS1(Outx(σDS1
max, τ

DS1
max)) = DS1(Out(σ′, τ ′))

Finally, we show that the best response π′ of Player 1 to σ′ guarantees to Player 0 a
payoff greater than c. In fact, DS0(Out(σ′, τ ′)) > DS0(π∗≤N ) − ε

2 > c + ε

2 −
ε

2 = c, since

DS0(π∗≤N ) > c+ ε

2 . Due to the choice of N , having DS0(π∗≤N ) ≤ c+ ε

2 would lead in fact to the

following contradiction: DS0(π∗) ≤ DS0(π∗≤N )+λN W

1− λ < DS0(π∗≤N )+ ε

2 ≤ c+
ε

2 + ε

2 = c+ε,
i.e. DS0(π∗) ≤ c+ ε.
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Adversarial Setting: Let σ ∈ Σ0 be a strategy for Player 0 such that for all τ ∈ BR1(σ) it
holds DS0(Out(σ, τ)) > c + ε. Let N such that λN W

1− λ <
ε

2 and consider the unfolding T
of Out(σ) up to N . For each maximal root-to-leaf branch b of T , color its leaf last(b) green
if b is the prefix π≤N of some play π = Out(σ, τ) such that τ ∈ BR1(σ). Otherwise, let the
leaf last(b) of b be colored by red. We show that the finite memory strategy σ∗ ∈ Σ0 that
prescribes to Player 0 to follow σ up to N and then:

from each green node apply the memoryless strategy σDS1
max ∈ Σ0 (i.e. cooperate with

Player 1 to maximize the payoff DS1)
from each red node apply the memoryless strategy σDS1

min ∈ Σ0 (i.e. minimize the payoff
DS1 of the adversary )

is such that ASV (σ∗) > c. Let d = sup{DS1(Out(σ, τ))|τ ∈ Σ1(G)} and consider π ∈ Out(σ∗).
First, we show that if π contains a green node then DS0(π≤N) > c. In fact, DS0(π≤N ) >

DS0(π≤N ) − λN W

1− λ > c + ε

2 −
ε

2 = c, since λN W

1− λ <
ε

2 by definition of N and since

DS0(π≤N ) > c + ε

2 being last(π≤N ) a green node (witnessing that π≤N is the prefix of a
play π′ compatible with a best response of Player 1 to σ∗, for which DS0(π′) > c + ε).

Moreover, there is a play π ∈ Out(σ∗) containing a green node for which DS1(π) ≥ d. This
is because of two reasons. First, a play in Out(σ) compatible with a best response to σ by
Player 1 is of the form hvπ′, where hv is a maximal root-to-leaf branch b of T with last(b) = v

green (by definition of green nodes). Second, for each hystory hv such that hv is a maximal
root-to-leaf branch b of T with last(b) = v green, Out(σ∗) contains a play hvπ̄, where π̄
is a play starting in v maximizing DS1. Therefore DS1(hvπ̄) = DS1(hv) + λNDS1(π̄) ≥
DS1(hv) + λNDS1(π′)) = d, where hvπ′ is a play compatible with a best response of Player 1
to σ. To conclude our proof, we need just to show that each play π ∈ Out(σ∗) containing a
red node is such that DS1(π) < d. In fact, being last(π≤N ) red, the history π≤N can not be
a prefix of any play in Out(σ) compatible with a best response of Player 1 to σ. In other
words, by playing σ Player 0 allows the adversary to gain a payoff that is at most r < d on
each play π = hvπ′ with v red. Therefore, switching her strategy from σ to σ∗ (i.e. playing
σ for the first N turns and then switching to the memoryless strategy σDS1

min ∈ Σ0) Player 0 is
sure to let Player 1 gain a payoff that is at most r′ ≤ r < d on each play π = hvπ′ with v red.

As a conclusion, against σ∗ Player 1 can achieve at least a value d. Hence, each best
response to σ∗ visits a green node (if it does not, then DS1 < d which is a contradiction).
This guarantees that DS0 > c. J

The approximation algorithm for solving the Stackelberg values gap problems introduced
in Theorem 17 roughly works as follows. Given a discounted sum game G, a rational threshold
c ∈ Q and a tolerance rational value ε > 0, the procedure checks whether there exists a
strategy σ0 ∈ Σ0(G) with finite memory M(ε) such that ASV(σ0) > c (resp. CSV(σ0) > c ).
If such a strategy exists, the procedure answers Yes, otherwise it answers No. The correctness
of the outlined procedure follows directly from Lemma 16.

I Theorem 17. The (ε, c)-gap problems for both the CSV and ASV are decidable for games
with discounted-sum objectives.

We conclude this subsection by providing a reduction from the partition problem to our gap
problems (for both CSV and ASV), showing NP-hardness for the corresponding problems.

I Theorem 18. The (ε, c)-gap problems for both the CSV and ASV are NP-hard for games
with discounted-sum objectives, where ε and c are given as input.
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v0v1 1 2 n v2· · ·

(0,0)

0, T − 2
3 (0, 0)

(w(1), 0) (w(n), 0)

(0, w(1)) (0, w(n))

(0,0)

Figure 4 Arena for hardness proof of the gap problem.

Proof. We do a reduction from the Partition problem to our gap problems, working for
both CSV and ASV. Let us consider an instance of the partition problem defined by a set
A = {1, 2, . . . n}, a function w : A→ N0. The partition problem asks if there exists B ⊂ A
such that

∑
a∈B w(a) =

∑
a∈A\B w(a). W.l.o.g., we assume

∑
a∈A w(a) = 2 · T for some T .

To define our reduction, we first fix c to T − 1
2 , and the two parameters λ ∈ (0, 1) and

ε > 0 by choosing values that respect the following two constraints:

T · λn+1 > T − 1
2 + ε (T − 1) · λn+1 < T − 1

2 − ε (5)

It is not difficult to see that such values always exist and they can be computed in polynomial
time from the description of the partition problem. Then, we construct the bi-weighted arena
A depicted in Fig. 4. In this arena, Player 1 has only two choices in the starting state of the
game v0. There, he can either send the game to the state v1, and get a payoff of T − 2

3 , or
he can go to state 1.

From state 1, Player 0 can simulate a partition of the elements of A by choosing edges:
left edges simulate the choice of putting the object corresponding to the state in the left
class and right edges simulate the choice of putting the corresponding object in the right
class. Let D0 and D1 be the discounted sum obtained by Player 0 and Player 1 when
arriving in v2. Because λ and ε have been chosen according to eq. (5) , we have that:
D0 > T − 1

2 + ε ∧D1 > T − 1
2 + ε if and only if the choices of edges of Player 0 correspond

to a valid partition of A.
Indeed, assume that B ⊆ A is a solution to the partition problem. Assume that Player 0

follows the choices defined by B. Then when the game reaches state v2, the discounted
sum of rewards for both players is larger than T · λn+1. This is because along the way to
v2, the discounted factor applied on the rewards obtained by both players has always been
smaller than λn+1 as they were equal to λi+1 for all i ≤ n. Additionally, we know that sum
of (non-discounted) rewards for both players is equal to T as B is a correct partition. Now,
it should be clear that both ASV(v0) and CSV(v0) are greater than T − 1

2 + ε as in the two
cases, Player 1 has no incentive to deviate from the play that goes to v1 as Player 1 would
only get T − 2

3 which is strictly smaller than D1.
Now, assume that there is no solution to the partition problem. In that case, Player 0

cannot avoid to give less than T − 1 to herself or to Player 1 when going from v0 to v2. In
the first case, its reward is less than T − 1 and in the second case, the reward of Player 1 is
less than T − 1 and Player 1 has an incentive to deviate to state v1. In the two cases, we
have that both ASV(v0) and CSV(v0) are less than T − 1

2 − ε. So, we have established that
the answer to the gap problem is yes if the partition instance is positive, and the answer is
no if the partition instance is negative. J
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