
On the Structure of Solution Sets to Regular
Word Equations
Joel D. Day1

Loughborough University, UK
J.Day@lboro.ac.uk

Florin Manea
Georg-August Universität, Göttingen, Germany
florin.manea@informatik.uni-goettingen.de

Abstract
For quadratic word equations, there exists an algorithm based on rewriting rules which generates a
directed graph describing all solutions to the equation. For regular word equations – those for which
each variable occurs at most once on each side of the equation – we investigate the properties of this
graph, such as bounds on its diameter, size, and DAG-width, as well as providing some insights into
symmetries in its structure. As a consequence, we obtain a combinatorial proof that the problem of
deciding whether a regular word equation has a solution is in NP.
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1 Introduction

A word equation is a tuple (α, β), usually written α
.= β, such that α and β are words

comprised of letters from a terminal alphabet Σ = {a, b, . . .} and variables from a set
X = {x, y, z, . . .}. Solutions are substitutions of the variables for words in Σ∗ making both
sides identical. For example, one solution to the word equation xaby .= ybax is given by
x→ b and y → bab. A system of equations is a set of equations, and a solution to the system
is a substitution for the variables which is a solution to all the equations in the system.

One of the most fundamental questions concerning word equations is the satisfiability
problem: determining whether or not a word equation has a solution. Makanin [22] famously
showed in 1977 that the satisfiability problem for word equations is decidable by giving
a general algorithm. Since then, several further algorithms have been presented. Most
notable among these are the algorithm given by Plandowski [25] which demonstrated that
the satisfiability problem is in PSPACE, the algorithm based on Lempel-Ziv encodings by
Plandowksi and Rytter [26], and the method of recompression by Jeż, which has since been
shown to require only non-deterministic linear space [15, 16]. On the other hand, it is easily
seen that solving word equations is NP-hard due to fact that the subcase when one side of
the equation consists only of terminals is exactly the pattern matching problem which is
NP-complete [3, 12]. It remains a long-standing open problem whether or not the satisfiability
problem for word equations is contained in NP.
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Recently, there has been elevated interest in solving more general versions of the satisfiab-
ility problem, originating from practical applications in e.g. software verification where several
string solving tools capable of solving word equations are being developed [1, 4, 6, 18, 2] and
database theory [14, 13], where one asks whether a given (system of) word equation(s) has a
solution which satisfies some additional constraints. Prominent examples include requiring
that the substitution for a variable x belongs to some regular language Lx (regular con-
straints), or that the lengths of the substitutions of the variables satisfy a set of given linear
diophantine equations. Adding regular constraints makes the problem PSPACE complete
(see [10, 25, 27], while it is another long standing open problem whether the satisfiability
problem with length constraints is decidable. There are also many other kinds of constraints,
however many lead to undecidable variants of the satisfiability problem [7, 19]. The main
difficulty in dealing with additional constraints is that the solution-sets to word equations are
often infinite sets with complex structures. For example, they are not parametrizable [24], and
the set of lengths of solutions is generally not definable in Presburger arithmetic [20]. Thus,
a better understanding of the solution-sets and their structures is a key aspect of improving
our ability to solve problems relating to word equations both in theory and practice.

Quadratic word equations (QWEs) are equations in which each variable occurs at most
twice. For QWEs, a conceptually simple and easily implemented algorithm exists which
produces a representation of the set of all solutions as a graph. Despite this, however, the
satisfiability problem for quadratic equations remains NP-hard, even for severely restricted
subclasses [8, 11], while inclusion in NP, and whether the satisfiability problem with length
constraints is decidable, have remained open for a long time, just as for the general case.

The algorithm solving QWEs is based on iteratively rewriting the equation(s) according to
some simple rules called Nielsen transformations. If there exists a sequence of transformations
from the original equation to the trivial equation ε .= ε, then the equation has a solution.
Otherwise, there is no solution. Hence the satisfiability problem becomes a reachability
problem for the underlying rewriting transformation relation, which we denote ⇒NT . It is
natural to represent this relation as a directed graph G⇒NT in which the vertices are word
equations and the edges are the rewriting transformations. This has the advantage that the
set of all solutions to an equation E corresponds exactly to the set of walks in the graph
starting at E and finishing at the trivial equation ε .= ε.2 Consequently, the properties of
the subgraph of G⇒NT containing all vertices reachable from E (denoted G⇒NT

[E] ) are also
informative about the set of solutions to the equation. For example, in [24] a connection
is made between the non-parameterisability of the solution set of E and the occurrence of
combinations of cycles in the graph. Since equations with a parametrisable solution set are
much easier to work with when dealing with additional constraints, this also establishes a
connection between the structure of G⇒NT

[E] and the potential (un)decidability of variants of
the satisfiability problem. Moreover, new insights into the structure and symmetries of these
graphs are necessary for better understanding and optimising the practical performance of
the algorithm.

2 Each choice of edge in a walk can be seen as a decision about the corresponding solution. It is not
necessarily true that different walks will result in different solutions. However, all possible decisions
are accounted for, so it is guaranteed that for every solution there is a walk from E to ε .= ε which
corresponds to that solution.
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Our Contribution

We consider a subclass of QWEs called regular equations (RWEs) introduced in [23]. A
word equation is regular if each variable occurs at most once on each side of the equation.
Thus, for example, xaby .= ybax is regular while xabx .= ybay is not. Understanding RWEs
is a vital step towards understanding the quadratic case, not only because they constitute
a significant and general subclass, but also because many non-regular quadratic equations
can exhibit the same behaviour as regular ones (consider, e.g. zz .= xabyybax for which all
solutions must satisfy z = xaby = ybax). The satisfiability problem was shown in [8] to be
NP-hard for RWEs, and shown to be NP-complete in [9] for some restricted subclasses of
RWEs including the classes of regular-reversed and regular-ordered equations.

For RWEs E, we investigate the structure of the graphs G⇒NT

[E] , and as a consequence, are
able to describe some of their most important properties. We achieve this by first noting that
G⇒NT

[E] can be divided into strongly connected components G⇒[E′] for which all the vertices are
equations of the same length (⇒ shall be used to denote the restriction of ⇒NT to length
preserving transformations only). The “full” graph G⇒NT

[E] is comprised of these individual
components G⇒[E′] arranged in a DAG-like structure of linear depth (see Section 3) and
therefore many properties and parameters of the “full” graph G⇒NT

[E] are determined by the
equivalent properties and parameters of the individual components G⇒[E′]. We then focus
on the structure of the subgraphs G⇒[E′], and as a result are able to give bounds on certain
parameters such as diameter, size, and DAG-width.

Our structural results come in two stages, based on whether the equation belongs to a
the class of “jumbled” equations introduced in Section 4.3. In the first stage, we consider
equations which are not jumbled, and we show that for all such equations E, there exists a
jumbled equation Ê such that G⇒[E] is comprised mainly of several well-connected near-copies
of G⇒[Ê]. For jumbled equations Ê, we show in Section 4.4 that every vertex in G⇒[Ê] is close
to a vertex in a certain normal form. We show that the vertices in this normal form are
determined to a large extent by a property invariant under ⇒ introduced in Section 4.2.

With regards to the diameter of G⇒[E′], we give upper bounds which are polynomial in the
length of the equation. It follows that the diameter of the full graph G⇒NT

[E] is also polynomial,
and consequently, that the satisfiability problem for RWEs is NP-complete. This can be
generalised to systems of equations satisfying a natural extension of the regularity property
(see Section 4.7). We also give exact upper and lower bounds on the number of vertices3
in G⇒[E′] for a subclass of RWEs called basic RWEs (see Section 4.1), as well as describing
exactly for which equations these bounds are achieved. For RWEs which are not basic, we
can infer similar bounds, at the cost of a small (linear in the length of the equation) degree
of imprecision. Since in the worst case (e.g. for equations without a solution), running the
algorithm will perform a full “search” of the graph, the number of vertices is integral to the
running time of the algorithm, and is potentially a better indicator of difficult instances than
the complexity class alone. An example of this, comes from comparing two subclasses of
RWEs called regular-ordered and regular rotated equations. It follows from our results that
while both classes have an NP-complete satisfiability problem, if E′ is regular-ordered, then
G⇒[E′] will contain at most n vertices, where n is the length of the equation, while if E′ is
regular rotated, but not regular-ordered, then G⇒[E′] will contain

n!
2 vertices, indicating a vast

difference in the number of vertices the algorithm would have to visit.

3 We consider the number of vertices, rather than edges, because it is the number of vertices which is
relevant to the performance of the algorithm, and by definition of ⇒NT , the out-degree of the graph is
bounded by a constant so the the number of edges is linear in the number of vertices.
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Motivated by generalisations of the satisfiability problem permitting additional constraints,
we also consider the connectivity of the graphs G⇒NT

[E] . To do this, we use DAG-width, a
measure for directed graphs which is in several ways analogous to treewidth for undirected
graphs. Intuitively, equations for which G⇒NT

[E] has low DAG-width are likely to be more
amenable when considering additional constraints such as length constraints (see Section 3.3).
We give an example class of equations for which the DAG-width is unbounded, as well as
a class for which the DAG-width is at most two. The latter includes the class of regular-
ordered equations which is the most general subclass of QWEs for which it is known that
the satisfiability problem with length constraints is decidable [20], and we expect that both
cases will be interesting classes to consider in the context of this problem.

2 Preliminaries

For a set S, we denote the cardinality of S by Card(S). Let Σ be an alphabet. By Σ∗, we
denote the set of all words over Σ, and by ε the empty word. By Σ+, we denote the free
semigroup Σ∗\{ε}. A word u is a prefix (resp. suffix) of a word w if there exists v such that
w = uv (resp. w = vu). Similarly, u is a factor of w if there exist v, v′ such that w = vuv′.
A prefix/suffix/factor is proper if is neither the whole word w, nor ε. The length of a word
w is denoted |w|, while for a ∈ Σ, |w|a denotes the number of occurrences of a in w. For a
word w = a1a2 . . . an with ai ∈ Σ for 1 ≤ i ≤ n, the notation w[i] refers to the letter ai in
the ith position. By wR, we denote the reversal anan−1 . . . a1 of the word w. Two words
w1, w2 are conjugate (written w1 ∼ w2) if there exist u, v such that w1 = uv and w2 = vu.

We shall generally distinguish between two types of alphabet: an infinite set X =
{x1, x2, . . .} of variables, and a set Σ = {a, b, . . .} of terminal symbols. We shall assume that
Card(Σ) ≥ 2, and that there exists an order on X leading to a lexicographic order on X∗.
For a word α ∈ (X ∪Σ)∗, we shall denote by var(α) the set {x ∈ X | x is a factor of α}. We
shall denote by qv(α) the set {x ∈ var(α) | |α|x = 2}. A word equation is a tuple (α, β) ∈
(X ∪ Σ)∗ × (X ∪ Σ)∗, usually written α .= β. Solutions are morphisms h : (X ∪ Σ)∗ → Σ∗
with h(a) = a for all a ∈ Σ such that h(α) = h(β). The satisfiability problem is the problem
of deciding algorithmically whether a given word equation has a solution. For equations
E given by α .= β, we shall often extend notations regarding words in (X ∪ Σ)∗ to E for
convenience, so that, e.g. |E| = |αβ|, var(E) = var(αβ) and qv(E) = qv(αβ). An equation
α
.= β is quadratic if |αβ|x ≤ 2 for all x ∈ X. It is regular if |α|x ≤ 1 and |β|x ≤ 1 hold

for all x ∈ X. Thus all regular equations are quadratic, but not all quadratic equations
are regular. We shall usually abbreviate regular (resp. quadratic) word equation to RWE
(resp. QWE). For Y ⊆ X, let πY : (X ∪ Σ∗)→ Y ∗ be the morphism such that πY (x) = x if
x ∈ Y and πY (x) = ε otherwise; i.e. πY is a projection from (X ∪ Σ)∗ onto Y ∗. A regular
equation E given by α .= β is regular-ordered if πqv(E)(α) = πqv(E)(β), it is regular rotated
if πqv(E)(α) ∼ πqv(E)(β) and it is regular reversed if πqv(E)(α) = πqv(E)(β)R.

Given a set S and binary relation R ⊆ S × S, we denote the reflexive-transitive closure
of R as R∗. For each s ∈ S, we denote by [s]R the set {s′ | sR∗s′}. The relation R may be
represented as a directed graph, which we denote GR, with vertices from S and edges from
R. Usually, we will be interested in the subgraph of GR containing vertices belonging to
[s] for some s ∈ S. Thus, for a subset T of S we shall denote by GRT the subgraph of GR
containing vertices from T . Given a (directed) graph G, with vertices V (G) and edges E(G),
a root vertex is some v ∈ V (G) such that there does not exist (u, v) ∈ E(G). We denote
by diam(G) the diameter: the maximum length of a shortest (directed) path between two
vertices. For W,V ′ ⊆ V (G), we say that W guards V ′ if for all (u, v) ∈ E(G) with u ∈ V ′,
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we have v ∈ V ′ ∪W . If G is acyclic, we write v1 ≤G v2 if there is a directed path from v1 to
v2 in G or v1 = v2. Following [5], A DAG-decomposition of G is a pair (D,χ) such that D is
a directed acyclic graph (DAG) with vertices V (D), and χ = {Xd | d ∈ V (D)} is a family of
subsets of V (G) satisfying:
(D1) V (G) =

⋃
d∈V (D)

Xd,

(D2) if d, d′, d′′ ∈ V (D) such that d ≤D d′ ≤D d′′, then Xd ∩Xd′′ ⊆ Xd′ ,
(D3) For all edges (d, d′) of D, Xd ∩Xd′ guards X≥d′\Xd, where X≥d′ =

⋃
d′′≥Dd′

Xd′′ , and

for all root vertices d, X≥d is guarded by ∅.
The width of the DAG-decomposition is max{Card(Xd) | d ∈ V (D)}. The DAG-width of G
is the minimum width of any possible DAG-decomposition of G and is denoted dgw(G).

3 Solving regular word equations

In this section we present the algorithm for solving QWEs discussed in the introduction as a
rewriting system given by a relation ⇒NT . The rewriting transformations are derived from
morphisms called Nielsen transformations, and we shall abuse this terminology slightly and
generally also refer to the rewriting transformations themselves as Nielsen transformations.
The Nielsen transformations never introduce new variables or terminal symbols, and never
increase the length of the equation. They also preserve the properties of being quadratic
(resp. regular). Thus, given a quadratic (resp. regular) word equation, the possible space of
all equations reachable via Nielsen transformations is finite. Moreover, given an equation
which has a solution h, there is always at least one Nielsen transformation which produces
an equation which has a solution, such that the new equation or the new solution is shorter
than the previous one. It follows that, given an equation which possesses a solution, it is
possible to reach the equation ε .= ε after finitely many rewriting steps. For a more detailed
description of the algorithm, we refer the reader to e.g. Chapter 12 of [21].

3.1 Nielsen transformations
The Nielsen transformations are defined as follows: for x ∈ X ∪ Σ and y ∈ X, let ψx<y :
(X ∪ Σ)∗ → (X ∪ Σ)∗ be the morphism given by ψx<y(y) = xy and ψx<y(z) = z if z 6= y.
We define the rewriting transformations via the relations ⇒L, ⇒R,⇒> as follows. Suppose
we have a QWE E of the form xα

.= yβ where x, y ∈ X ∪ Σ and α, β ∈ (X ∪ Σ)∗. Then:
1. if x ∈ qv(E) and x 6= y, then xα .= yβ ⇒L xψy<x(α) .= ψy<x(β), and
2. if y ∈ qv(E) and x 6= y, then xα .= yβ ⇒R ψx<y(α) .= yψx<y(β), and
3. if x ∈ X\ qv(E), then xα .= yβ ⇒> xα

.= β, and
4. if y ∈ X\ qv(E), then xα .= yβ ⇒> α

.= yβ, and
5. if x = y, then xα .= yβ ⇒> α

.= β.
Moreover, for a QWE E of the form α

.= β with α, β ∈ (X ∪ Σ)∗, and for each Y ⊆ var(E),
we have the additional transformations α .= β ⇒> πX\{Y }(α) .= πX\{Y }(β). Now, our full
rewriting relation, ⇒NT , is given by ⇒L ∪ ⇒R ∪ ⇒>. For convenience, we shall define ⇒
to be ⇒L ∪ ⇒R. We shall call the rewriting transformations in ⇒ length-preserving, since
they are exactly those for which the resulting equation has the same length as the original.

I Remark 1. Let E,E′ be QWEs such that E ⇒NT E
′. If E is regular, then E′ is regular.

Moreover, if E ⇒ E′, then var(E) = var(E′), qv(E) = qv(E′), and |E| = |E′|.

If E1, E2 are RWEs such that E1 ⇒L E2, then it follows from the definitions that there
exist x, y ∈ X and α1, α2, β1, β2,∈ (X\{x, y})∗ such that E1 is given by xα1yα2

.= yβ1xβ2
and E2 is given by xα1yα2

.= β1yxβ2. Extending this observation to multiple applications of
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124:6 On the Structure of Solution Sets to Regular Word Equations

⇒L, we may conclude that the set {E2 | E1 ⇒∗L E′2} is exactly the set {xα1yα2
.= β3xβ2 |

β3 ∼ yβ1}. A similar statement can be made for ⇒∗R. Consequently, ⇒∗L and ⇒∗R are
symmetric. Since they are reflexive and transitive by definition, we get the following.
I Remark 2. Let E be a RWE and Z ∈ {L,R}. Then Card({E′ | E ⇒∗Z E′}) < |E| and ⇒∗Z
is an equivalence relation. It follows that ⇒∗ is also an equivalence relation.

The following well-known result forms the basis for the algorithm for solving QWEs.

I Theorem 3 ([21]). Let E be a QWE. Then E has a solution if and only if E ⇒∗NT ε
.= ε.

3.2 The graph of all solutions
Theorem 3 provides the basis for treating the satisfiability of QWEs as a reachability problem
for the rewriting relation ⇒NT . Since any relation R is naturally represented as a (directed)
graph GR, it is also natural to interpret the resulting algorithm as a search in the graph
G⇒NT

[E] , in order to determine whether a path exists in the graph from the original equation
E to the trivial equation ε .= ε. In fact, the graph G⇒NT

[E] can tell us significantly more than
simply whether a solution to E exists: every walk from E to ε .= ε in G⇒NT

[E] corresponds to a
solution to E and likewise, every solution to E is represented by a walk in G⇒NT

[E] from E to
ε
.= ε. Thus the graphs G⇒[E] contain a full description of all solutions to E, and as such, their

properties and structure are of inherent interest to the study of QWEs and their solutions.
An immediate example of this is the diameter, which is strongly related to the complexity of
the satisfiability problem, as demonstrated in the following proposition.

I Proposition 4. Let C be a class of QWEs. Suppose there exists k ∈ N such that for each
E ∈ C, we have diam(G⇒NT

[E] ) ∈ O(|E|k). Then the satisfiability problem for C is in NP.

Many properties will be determined mostly (i.e. up to some small imprecision) on the
subgraphs obtained by restricting our rewriting relation to length-preserving transformations
only (i.e. to ⇒). Since the rewriting relation ⇒NT allows us to preserve or decrease the
length, but never increase it again, any walk in the graph will visit a subgraph containing
equations of each length only once, and in order of decreasing length.

The following proposition is an example of how we may infer a global property of G⇒NT

[E]
from its “local” values in the individual subgraphs G⇒[E′].

I Proposition 5. Let E be a QWE. Then
1. diam(G⇒NT

[E] ) ≤ 1 + (|E|+ 1) max{diam(G⇒[E′]) | E ⇒∗NT E′}, and
2. dgw(G⇒NT

[E] ) = max{dgw(G⇒[E′]) | E ⇒∗NT E′}.

In what follows, we shall focus predominantly on the structure of the (sub)graphs G⇒[E′]
corresponding to the length-preserving transformations given by ⇒. This has the advantage
of allowing us to apply further restrictions, including a reduction to the case of basic equations
introduced in Section 4.1, without significantly altering the structure of the graph.

3.3 Solving equations modulo constraints
For many kinds of additional constraint, it is possible to adapt the algorithm by finding, for
each Nielsen transformation, an appropriate corresponding transformation of the constraints.
For example, if x, y, z ∈ X and we have the length constraint |x| = |z|, when we apply the
Nielsen transformation associated with ψy<x to our equation, we replace each occurrence of
x with yx. Thus, the updated constraint would be |x|+ |y| = |z|. However, in some cases,
including length constraints, the resulting space of possible combinations of equations and
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constraints becomes infinite, meaning the algorithm is no longer guaranteed to terminate.
A possible solution to this is to find finite descriptions of the potentially infinite sets of
constraints which may occur alongside each equation. The task of finding such descriptions,
and consequently the decidability of the corresponding extended satisfiability problems, is
dependent on the structural properties of the graph, as can be seen e.g. in [20, 24].

4 Properties of the graphs G⇒NT

[E] for regular equations E

The remainder of the paper concentrates on describing the structure of the graphs G[E]
for RWEs E. Our general description of G[E] is comprised of several steps, with each
one accounting for a particular aspect. The first step (Section 4.1) describes the effect of
terminal symbols, single-occurrence variables, and ’decomposability’ on the structure of G[E],
essentially reducing the structure of G[E] to G[E′] for a “basic” equation E′ which does not
contain any of these features. The second step (Section 4.3) describes a particular symmetric
structure which arises from the same factor(s) occurring on both sides of the equation once
we have simplified the equations by eliminating the aforementioned features. This allows for
a description of G[E′] as a combination of (near) copies of some smaller graph G[E′′] where
E′′ is a “jumbled equation” obtained by deleting the appropriate variables from E′. Finally,
we are able to show (Section 4.4) that for jumbled equations E′′, all vertices in G[E′′] are
“close” to a vertex from a small subset conforming to a very particular structure called Lex
Normal Form, allowing us to draw conclusions in Sections 4.5 and 4.6 about the diameter,
number of vertices and connectivity (DAG-width) of G[E]. Finally, in Section 4.7 we note a
generalisation of our results to systems of equations.

4.1 Basic equations: a convenient abstraction
The current section is devoted to reducing the study of the graphs G⇒[E] to the case of basic
equations. This has several advantages, including a significant reduction in the size of
the graphs which is useful for working with examples, as well as allowing for the simpler
formulation of precise results, e.g. regarding the size of the graphs in Section 4.6, as well as
avoiding unnecessary repetition in the formal statements and their proofs..

I Definition 6 (Basic Equations). Let E be a QWE given by α .= β. Then E is decomposable
if there exist proper prefixes α′, β′ of α and β such that var(α′) ∩ qv(E) = var(β′) ∩ qv(E).
Otherwise, E is indecomposable. E is basic if it is indecomposable and α, β ∈ qv(E)∗.

A RWE is basic only if both sides of the equation are permutations of the same set of
variables, for example x1x2x3

.= x3x1x2 and xywz .= wzxy are both basic and regular while
xyzw

.= yxzw and xy .= yz are not. It is easily verified that the property of being basic is
preserved under ⇒∗. In order to formally present our reduction from arbitrary RWEs to
basic RWEs, we need the following notion for graphs which are structurally similar.

I Definition 7 (Isolated path compression). Let G1, G2 be (directed) graphs. We say that G1
is an isolated path compression of order n of G2 if G2 may be obtained from G1 by replacing
each edge (e, e′) in G1 by a path (e, e1), (e1, e2), . . . (ek−1, ek), (ek, e′) such that k ≤ n and
e1, e2, e3, . . . , ek are new vertices unique to the edge (e, e′).

Informally, an isolated path compression of a graph is obtained simply by replacing
“isolated paths” (paths whose internal vertices are not adjacent to to any vertices outside the
path) of a bounded length with single edges. It is easy to see that many structural properties
are thus preserved.

ICALP 2020



124:8 On the Structure of Solution Sets to Regular Word Equations

G1 G2

Figure 1 The graph G1 is an isolated path compression of order two of the graph G2.

I Remark 8. Consider graphs G1, G2 such that G1 is an isolated path compression of order n of
G2. If dgw(G1) = 1, then dgw(G2) ∈ {1, 2}. If dgw(G1) ≥ 2, then the dgw(G1) = dgw(G2).
Moreover, diam(G2) ≤ (n+ 1) diam(G1), and the number of vertices (resp. edges) in G2 is
at most the number of vertices in G1 plus n times the number of edges of G1.

Using isolated path compressions, it is possible to describe the structure of the graph
G⇒[E] for any RWE E in terms of the graph G⇒[E′] for a basic RWE E′.

I Theorem 9. Let E be a RWE given by α .= β. Let α′, β′ be the shortest non-empty prefixes
of α, β respectively such that var(α′)∩ qv(E) = var(β′)∩ qv(E). Let E′ be the equation given
by πqv(E)(α′)

.= πqv(E)(β′). Then E′ is basic, and G⇒[E′] is isomorphic to an isolated path
compression of order |E| of G⇒[E].

4.2 A useful invariant
When reasoning about the graphs G⇒[E], we need a way to help determine whether, for two
equations E1, E2, we have E1 ⇒∗ E2. Usually, showing that E1 ⇒∗ E2 is not a problem,
since it is sufficient to simply find a sequence of length-preserving Nielsen transformations
from E1 to E2. However, showing that E1 6⇒∗ E2 presents more of a challenge. The naive
way would be to enumerate all vertices in G⇒[E1] and show that E2 is not among them.
However, this is not suitable for generic reasoning, and, even in concrete cases, is inelegant
and time-consuming. The following is a property of basic RWEs which is preserved under ⇒
and thus provides a concise and more general means for showing that E1 6⇒∗ E2. It is an
indispensable component of the proofs of our main results.

I Definition 10 (The invariant ΥE). Let # be a new symbol not in X. Let E be a basic
RWE such that Card(var(E)) > 1. Then we may write E as xα1yα2

.= yβ1xβ2 with
x, y ∈ X and α1, α2, β1, β2 ∈ (X\{x, y})∗. Let ZE = var(α1α2β1β2) ∪ {#}. Let the function
QE : ZE → X2 be defined as follows: for each z ∈ ZE\{#}, let QE(z) = (u, v) where uz is
a factor of xα1yα2 and vz is a factor of yβ1xβ2. Let QE(#) = (u, v) where uy is a factor of
xα1yα2 and vx is a factor of yβ1xβ2. Let ΥE = {QE(z) | z ∈ ZE}.

I Theorem 11. Let E1, E2 be basic RWEs such that E1 ⇒∗ E2. Then ΥE1 = ΥE2 .

As an example, let E1 be the basic RWE given by xuzwy
.= ywuxz. Then ZE1 =

{u, z, w,#} and QE1 is the function such that QE1(u) = (x,w), QE1(z) = (u, x), QE1(w) =
(z, y) and QE1(#) = (w, u). Thus, ΥE1 = {(w, u), (x,w), (u, x), (z, y)}. Similarly, if E2 is the
basic RWE given by xuwzy .= yuxwz, then ΥE2 = {(x, y), (u, x), (w,w), (z, u)}. Consequently,
we may conclude that E1 6⇒∗ E2 (and symmetrically E2 6⇒∗ E1).

Since the invariant ΥE provides a necessary condition on when two basic RWEs belong to
the same equivalence class under⇒∗, we might also ask whether it is also sufficient, and hence
characteristic. However, this is not the case. For instance, if E1 is given by xuvwy .= ywvux

and E2 is given by xwvuy .= yuvwx, then ΥE1 = ΥE2 = {(x, v), (u,w), (v, y), (w, u)} but it
can be verified by enumerating [E1]⇒ and [E2]⇒ that E1 6⇒∗ E2.
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4.3 A special case of symmetry
The invariant property ΥE introduced in the previous section is a set of pairs of variables.
The case that (x, x) ∈ ΥE for some x ∈ var(E) is special in the sense that it leads to a
particular symmetrical structure in G⇒[E]. Intuitively, (x, x) ∈ ΥE when there exists y ∈ X
and α .= β ∈ [E]⇒ such that xy is a factor of both α and β. Hence the number of variables
x such that (x, x) ∈ ΥE is, in a sense, a measure of the “jumbledness” of E.

I Definition 12 (Jumbled Equations and ∆(E)). Let E be a basic RWE. Let ∆(E) = {x ∈
var(E) | (x, x) ∈ ΥE}. If Card(∆(E)) = 0, then E is jumbled.

Note that since ΥE is invariant under ⇒∗, so is the property of being (not) jumbled. Any
basic RWE E can be turned into a jumbled equation by simply erasing each x ∈ ∆(E).

I Lemma 13. Let E be a basic RWE given by α .= β and let Y = var(E)\∆(E). Then the
equation EY given by πY (α) .= πY (β) is jumbled.

The following theorem describes the structure of G⇒[E] for a RWE E which is not jumbled
in terms of G⇒[EY ] where EY is obtained from E by deleting the variables in ∆(E).

I Theorem 14. Let E be a basic RWE given by α .= β. Let Y = var(E)\∆(E). Let EY be the
equation πY (α) .= πY (β). Let V = [EY ]⇒. Let Φ be the set of morphisms ϕ : Y ∗ → var(E)∗
satisfying ϕ(y) ∈ ∆(E)∗y for all y ∈ Y , and

∑
y∈Y
|ϕ(y)|x = 1 for all x ∈ ∆(E). For each

ϕ ∈ Φ, let ϕ(V ) denote the set {ϕ(α′) .= ϕ(β′) | α′ .= β′ ∈ V }. Then:
1.

⋃
ϕ∈Φ

ϕ(V ) ⊆ [E]⇒,

2. for each E′ ∈ [E]⇒ and Z ∈ {L,R}, there exists E′′ ∈
⋃
ϕ∈Φ

ϕ(V ) such that E′ ⇒∗Z E′′,

3. for each ϕ ∈ Φ, there exists a subgraph Hϕ of G⇒[E] containing ϕ(V ) such that G⇒[EY ] is
isomorphic to a structure-preserving contraction of order Card(∆(E)) of Hϕ.

4. if d = diam(G⇒[EY ]), then diam(G⇒[E]) ∈ O(d|E|2).

Theorem 14 deserves a few remarks. Firstly, we note that, recalling Remark 2, it follows
from statements 1. and 2. of the theorem that

⋃
ϕ∈Φ

ϕ(V ) is a dense subset of the vertices

of G⇒[E] in the sense that every vertex is at most distance |E| away from one contained in⋃
ϕ∈Φ

ϕ(V ). Moreover, since each morphism ϕ ∈ Φ is injective, the sets ϕ(V ) are pairwise

disjoint. Consequently, G⇒[E] is made up of many (one for each ϕ ∈ Φ) slightly modified copies
of the graph G⇒[α .=β], with the remaining vertices creating short paths between the different
copies. Due to the bound on the diameter, we see that these copies are well connected.
Finally, it is worth noting that Card(Φ) grows exponentially w.r.t.Card(∆(E)).

4.4 Normal forms and block decompositions
Having described the structure G⇒[E] for equations E which are not jumbled in the previous
section, it remains to consider equations which are jumbled. In this case, the structure of
G⇒[E] is more intricate and a different approach is required. Our main insight for jumbled
equations is the existence of certain normal forms, from which every vertex is polynomial
distance away. By constructing these normal forms in a specific way based on reversals, we
are able to take full advantage of the invariant ΥE from Section 4.2 when reasoning about
which of these normal forms may occur. The first normal form is defined as follows.
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G⇒[E] G⇒[EY ]

A
B

E
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D
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Figure 2 Example illustrating Theorem 14. On the left is G⇒
[E] for the equation E given by

x1yx2x3x4
.= x4x3yx2x1. Note that ∆(E) = {y}, so Y = {x1, x2, x3, x4} and EY is x1x2x3x4

.=
x4x3x2x1. The graph G⇒

[EY ] is shown on the right, where the equations in [EY ]⇒ have been labelled
A,B,C,D,E, F,G. The set Φ contains four morphisms ϕi, 1 ≤ i ≤ 4, such that ϕi(xi) = yxi

and ϕi(xj) = xj for j 6= i. For each Z ∈ {A,B,C,D,E, F,G} given by αZ
.= βZ , Zi denotes the

equation ϕi(αZ) .= ϕi(βZ). The graph G⇒
[E] contains a “near-copy” of G⇒

[EY ] corresponding to each
of the morphisms ϕi. Each copy can be made exact by contracting length-two paths (dashed)
passing through the intermediate vertices i1, i2, . . . , i6. For example, the subgraph containing
the vertices A1, B1, C1, D1, E1, F1, G1 can be made isomorphic to G⇒

[EY ] by contracting the paths
(A1, i4, E1), (B1, i5, D1), and (C1, i1, C1) into single edges (A1, E1), (B1, D1) and (C1, C1).

I Definition 15 (Normal Form). Let E be a basic RWE. Then E is in normal form if it can
be written as xα1α2, . . . αky

.= yαR1 α
R
2 . . . α

R
k x where x, y ∈ X, αi ∈ X+ for 1 ≤ i ≤ k, and

|αi| ≤ 3 for 1 ≤ i < k.

We can obtain an equation in normal form from any basic RWE by applying a polynomial
number of rewriting operations.

I Theorem 16. Let E be a jumbled basic RWE. Then there exists E which is in normal
form and such that E ⇒n1 E and E ⇒n2 E for some n1, n2 ∈ O(|E|3).

The idea behind the first normal form is to divide the RWE into pairs (αi, αRi ) which are
regular-reversed word equations (although solutions to the full equation E are not necessarily
solutions to these smaller equations), and for which all but one belong to a finite number
of cases (i.e. three cases depending on the length of αi). Forcing the sub-equations to be
regular-reversed gives us the most control when working with the invariant ΥE . Some intuition
behind this fact can be derived from the observation that if we know that a (complete) basic
RWE E is regular-reversed, we can uniquely reconstruct it from the leftmost two variables
on the LHS and ΥE . Indeed, any regular-reversed basic RWE E can be written in the form
x1x2 . . . xn

.= xnxn−1 . . . x1, meaning that ΥE = {(xi−1, xi+1 | 2 ≤ i ≤ n} ∪ {(xn−1, x2)},
and if we know x1, then we may infer from ΥE all the odd-index variables (x3, x5, . . .) and if
we know x2 then we may infer all the even-index variables (x4, x6, . . .).

Rather than looking at the pairs (αi, αRi ) in isolation, in order to take full advantage of the
invariant ΥE , we actually need to consider pairs of the form (αiαi+1 . . . αj , α

R
i α

R
i+1 . . . α

R
j ).

We shall call such pairs blocks, which we define formally below. Our second normal form will
be a restriction of the first, and is based on the notion of blocks.
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B0 B1 B2 B3

Initial (A) Standard (B) Standard (A) End (A)

x z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 y
y z2 z1 z5 z4 z3 z7 z6 z8 z10 z9 z11 z15 z14 x13 x12 x

Figure 3 A depiction of the equation E given by xz1z2z3z4z5z6z7z8z9z10z11z12z13z14z15y
.=

yz2z1z5z4z3z7z6z8z10z9z11z15z14z13z12x where x, y and zi for 1 ≤ i ≤ 15 are variables. The LHS
and RHS of the equation are aligned vertically. The block decomposition B = (B0, B1, B2, B3) of
E is shown with solid rectangles and with the variety and type of the block written beneath. The
additional divisions into the factors αi, α

R
i required by the definition of normal form are indicated

by dashed lines (so that, i.e. α1 = z1z2, α2 = z3z4z5, α3 = z6z7, α4 = z8, z5, α5 = z9z10, α6 = z11

and α7 = z12z13z14z15). In order for the equation to satisfy the definition of Lex Normal Form, the
variables highlighted in bold must be lexicographically minimal with respect to the appropriate sets
Γi. Note that Γ1 = {zi | 3 ≤ i ≤ 15}\{z4}. In particular, Γ1 consists of the first variable in the
block B1 (x3) along with (nearly) all variables on the LHS of the equation occurring to the right of
z3, excluding the rightmost variable (y), and since B1 is Type B, also excluding the second variable
in the block B1 (namely z4). On the other hand, since B2 is Type A, in this case we do not need to
exclude the second variable in the block B2, so Γ2 = {zi | 8 ≤ i ≤ 15}. Assuming an underlying
lexicographic order for which zi+1 is greater than zi, we can conclude that E is in Lex Normal Form.

I Definition 17 (Blocks). We define 3 variations of blocks which may each have up to two
types.
1. A standard block is a pair (α1α2 . . . αj , α

R
1 α

R
2 . . . α

R
j ) such that j ≥ 1, αi ∈ X∗ for

1 ≤ i ≤ j, |α1| ∈ {1, 3}, and for each i, 1 < i ≤ j, |αi| = 2. It is Type A if |α1| = 1 and
Type B if |α1| = 3.

2. An initial block is a pair (xα1 . . . αj , yα
R
1 . . . α

R
j ) with j ≥ 0, x, y ∈ X with x 6= y, and

αi ∈ (X\{x, y})∗ for 1 ≤ i ≤ j such that |αi| = 2 for 1 ≤ i ≤ j. All initial blocks are
Type A.

3. An end block is a pair (γ1δy, γ2δ
Rx) where x, y ∈ X with x 6= y, and γ1, γ2, δ ∈

(X\{x, y})∗ with |δ| ≥ 1 such that (γ1, γ2) is a block (initial or standard). It is Type A if
(γ1, γ2) is Type A, and Type B otherwise.

Given an equation which is in normal form, we may decompose it uniquely into blocks
in the following manner. The intuition behind this decomposition is that if we fix the
invariant property ΥE , then each block (with the exception of the final block) is determined
entirely by the block preceding it and its first (leftmost in the first element) variable. This
gives us a crucial degree of control when considering which equations in normal form may
appear in G⇒[E].

I Definition 18 (Block Decomposition). Let E be a basic RWE in normal form. Then E

may be written as xα1α2 . . . αny
.= yαR1 α

R
2 . . . α

R
nx where x, y ∈ X, αi ∈ X+ for 1 ≤ i ≤ n,

and |αi| ≤ 3 for 1 ≤ i < n. Let I = {i1, i2, . . . , ik} = {i | 1 ≤ i < n and |αi| 6= 2} with
1 ≤ i1 < i2 < . . . < ik < n. If I = ∅, let B = (E). Otherwise, let B = (B0, B1, . . . , Bk)
where for 0 ≤ j ≤ k, the Bj are blocks such that:
1. B0 = (xα1 . . . αi1−1, yα

R
1 . . . α

R
i1−1),

2. Bk = (αik . . . αny, αRik . . . α
R
nx), and

3. for 1 ≤ j < k, Bj = (αij . . . αij+1−1, α
R
ij
. . . αRij+1−1).

Then B is the block decomposition of E.

An example illustrating a block decomposition of an equation in normal form is given
in Figure 3. Since the blocks are fixed by their first variable, it is natural to ask for which
variables we can find an equation in our graph G⇒[E] such that the block begins with that
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variable. In particular, can we find an equation in normal form in G⇒[E] for which the first
variable of each block is lexicographically minimal when going from left to right? The answer
to the question is “nearly”. In other words, if we relax the notion slightly to account for some
specific cases in which we cannot guarantee minimality, then we can always guarantee the
existence of such an equation. This leads to the notion of Lex Normal Form defined below.

I Definition 19 (Lex Normal Form). Let E be a basic RWE in normal form. Then there exist
x, y ∈ X and α, β ∈ (X\{x, y})∗ such that E has the form xαy

.= yβx. Let (B0, B1, . . . , Bn)
be the block decomposition of E. For each i, 0 ≤ i ≤ n, let γi, γ′i ∈ X∗ such that Bi =
(γi, γ′i), let Si = {γi[2], y} whenever Bi is Type B and Si = {y} otherwise, and let Γi =( ⋃
i≤j≤n

var(γj)
)
\Si. A block Bi is lex-minimal if γi[1] is lexicographically minimal in Γi.

The equation E is in Lex Normal Form (LNF) if, for each i, 0 < i < n, Bi is lex-minimal.

Lex Normal Form (see also Fig. 3 for an example) describes the class of equations for
which the first variable of each blocks is lexicographically minimal whenever possible. We
can, in general, guarantee the existence of an equation E′ in G⇒[E] such that the first variable
of each block is lexicographically minimal with the following exceptions. Firstly, we must
exclude the first and last blocks (the first block is fixed completely by ΥE). Secondly, we
must only compare the first variable to other variables occurring further right in the LHS
of the equation, and excluding the rightmost variable on the LHS of the equation (y in the
definition above) and, for blocks of Type B, the second variable in the block. The sets Γi in
the definition account for these exclusions. It turns out that every vertex in G⇒[E] is never
more than a polynomial distance away from a vertex corresponding to an equation in LNF.

I Theorem 20. Let E be a jumbled basic RWE. Then there exists E′ such that E′ is in Lex
Normal Form, and such that E ⇒n1 E′ and E ⇒n2 E for some n1, n2 ∈ O(|E|4).

4.5 Diameter
It was mentioned in the previous section that the choices for the blocks in a block decompos-
ition of an equation in normal form are restricted by the invariant ΥE . We shall now make
full use of that fact to show that the number of equations in LNF in a single graph G⇒[E] is
polynomial in |E|, and as a consequence that the diameter of G⇒[E] is also polynomial. Since
each equation in LNF has a unique block decomposition, it is sufficient to count the possible
block decompositions for a given value of ΥE for which the conditions for LNF hold. The
restrictions imposed on the blocks by ΥE are given formally in the following lemmata.

I Lemma 21. Let E1, E2 be basic RWEs in normal form such that ΥE1 = ΥE2 . Let
(B0, B1, . . . , Bk) and (C0, C1, . . . , C`) be their respective block decompositions and let k, ` > 0.
Then B0 = C0. Moreover, suppose that Bi = Cj, for some i < k − 1, j < `− 1. Let Bi+1 =
(γ1, γ2) and Cj+1 = (δ1, δ2) with γ1, γ2, δ1, δ2 ∈ X∗. If γ1[1] = δ1[1], then Bi+1 = Cj+1.

Lemma 21 tells us that the equations in LNF belonging to a single graph G⇒[E] are
remarkably similar in that they are identical up to the last block of the shorter decomposition.

I Corollary 22. Let E1, E2 be basic RWEs in LNF such that ΥE1 = ΥE2 . Let (B0, B1, . . . , Bk)
and (C0, C1, . . . , C`) be their respective block decompositions and suppose that k, ` > 0. Then
Bi = Ci for 0 ≤ i < min(k, `).

Consequently, two equations in LNF in the graph G⇒[E] with block decompositions con-
taining the same number of blocks may differ only in the final block. Clearly, the number of
blocks is at most Card(var(E)). Thus, in order to show that there are only polynomially
many equations in LNF in G⇒[E], it remains to consider the possibilities for the final block.
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I Lemma 23. Let E1, E2 be basic RWEs in normal form such that ΥE1 = ΥE2 . Let
(B0, B1, . . . , Bk) and (C0, C1, . . . , C`) be their respective block decompositions and suppose that
k, ` > 0. Suppose moreover that Bk−1 = C`−1. Let Bk = (α1α2 . . . αny, α

R
1 α

R
2 . . . α

R
nx) and

C` = (β1β2 . . . βmy, β
R
1 β

R
2 . . . , βRmx), where x, y ∈ X, α1, α2, . . . , αn, β1, β2, . . . , βm ∈ X+,

|α1| = |β1| ∈ {1, 3} and |αi|, |βj | = 2 for 2 ≤ i < n and 2 ≤ j < m. Then if α1[1] = β1[1],
n = m, and αn[1] = βm[1], we have Bk = C`.

Lemma 23 reveals that the options for last block are dependent only on the choices of
three parameters: α1[1], αn[1], and n. Since each of these can take at most |E| possible
values, there are |E|3 possibilities altogether. Thus for each possible number of blocks,
there are at most |E|3 possible block decompositions, and therefore only |E|4 possible block
decompositions respecting the invariant ΥE in total. Since every equation in LNF permits a
unique block decomposition, this gives us our desired polynomial bound.

I Theorem 24. Let E be a basic RWE. Let S be the set of basic regular equations E′ in Lex
Normal Form for which ΥE = ΥE′ . Then Card(S) ≤ |E|4.

Since every vertex in G⇒[E] is at polynomial distance from a vertex in LNF, and since there
are only polynomially many such vertices, it is straightforward to show that the diameter of
G⇒[E] must also be polynomial: indeed if we have a sufficiently long path between two vertices,
then we must have a long path between two vertices which are close to the same vertex in
LNF. Since they are close to the same vertex, we can find a shortcut between them, and the
initial long path is not minimal. Since the diameter of G⇒[E] is polynomial, it follows from
Theorem 9 (see also Remark 8) and Proposition 5 that the diameter of G⇒NT

[E] is polynomial
whenever E is regular, even in the case that E is not basic.

I Theorem 25. Let E be a basic RWE. Then diam(G⇒[E]) ∈ O(|E|10). Consequently, for any
RWE E, diam(G⇒NT

[E] ) ∈ O(|E|12).

Thus, by Proposition 4, we may infer that the satisfiability problem for RWEs is in NP.
It was already shown in [8] that the satisfiability problem for RWEs is NP-hard, and thus we
obtain matching upper and lower bounds for its complexity.

I Theorem 26. The satisfiability problem for RWEs is NP-complete.

4.6 Size and DAG-width
While the diameter of G⇒[E] is one important parameter, being directly related to the complexity
of the satisfiability problem, it is by no means the only interesting one. The overall size of the
graphs will also play a central role in the practical performance of the algorithm described
in Section 3. For basic RWEs, we have the following tight upper and lower bounds on the
number of vertices in the graphs G⇒[E].

I Theorem 27. Let E be a basic RWE and let n = Card(var(E)). Suppose that n > 1. Let
V be the number of vertices in G⇒[E]. 2n−1 − 1 ≤ V ≤ n!

2 .

It is worth noting that the lower bound given by Theorem 27 is already exponential in
the number of variables. The interpretation of the theorem in the more general (i.e. not
basic) setting therefore tells us that the number of vertices in G⇒[E] is exponential in the
number of variables occurring twice in the appropriate (indecomposable) parts of the LHS
and RHS. In other words, we see the rather intuitive fact here that decomposable equations
are somehow easier to deal with than indecomposable equations of the same length. The
following demonstrates that the bounds given by Theorem 27 are tight.
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I Theorem 28. Let E be a basic RWE and let n = Card(var(α)). Suppose that n > 1. Let
V be the number of vertices in G⇒[E]. Then:
1. V = 2n−1 − 1 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular reversed,
2. V = n!

2 if and only if there exists E′ ∈ [E]⇒ such that E′ is regular rotated.

In addition to the size we are also able to give some insights about the connectedness of
the graphs, which, as discussed in Section 3.3, are of interest when solving RWEs modulo
additional constraints. We show firstly that there exist classes of equations E for which
dgw(G⇒NT

[E] ) may be arbitrarily large.

I Theorem 29. Let x, y, z0, z1, z2, . . . , zn ∈ X. Let E be the RWE given by xz0z1z2 . . . zny
.=

yz0znzn−1 . . . z1x. Then dgw(G⇒NT

[E] ) > n.

Since high connectivity can be seen as an obstacle to deciding the satisfiability problem
with additional constraints, it is also worth noting classes for which the DAG-width is
bounded by a small constant, such as with those described in the next theorem.

I Theorem 30. Let α1, α2, . . . , αn, β1, β2, . . . , βn ∈ X∗ such that var(αi) = var(βi) for
1 ≤ i ≤ n and var(αi) ∩ var(αj) = ∅ for 1 ≤ i, j ≤ n with i 6= j. Let E be the RWE
α1α2 . . . αn

.= β1β2 . . . βn. Then dgw(G⇒NT

[E] ) = 2.

4.7 Extension to systems of equations
So far, we have considered individual equations. However, it is often the case in practice
that there is not just one equation to be solved, but a system of several concurrent equations.
However, while constructions exist which transform a system of equations into a single
equation (see e.g. [17]), the resulting equation will generally not be quadratic/regular. We
extend the definition of regular equations to regular systems as follows.

I Definition 31 (Regular systems). Let Θ = {α1
.= β1, α2

.= β2, . . . , αn
.= βn} be a system of

word equations. An orientation of Θ is any element of {α1
.= β1, β1

.= α1} × {α2
.= β2, β2

.=
α2} × . . .× {αn

.= βn, βn
.= αn}. We say that Θ is regular if it has an orientation for which

each variable occurs at most once across all LHSs and at most once across all RHSs.

I Theorem 32. The satisfiability problem for regular systems of equations is NP-complete.
Moreover, whether a system of word equations is regular can be decided in polynomial time.

5 Conclusions

A famous algorithm for solving quadratic word equations can be used to produce a (directed)
graph containing all solutions to the equation. In the case of regular equations, we have
described some underlying structures of these graphs with the intention of better understand-
ing their solution sets. We give bounds on their diameter and number of vertices, as well as
provide classes with bounded (resp. unbounded) DAG-width. Probably the most significant
result arising from our analysis is that the satisfiability problem for regular word equations
is in NP (and thus NP-complete), which we also extend to regular systems of equations.

We leave open many interesting problems, the most obvious of which is to generalise
our results to the (full) quadratic case. We also believe that our analysis and techniques
open up the possibility to investigate in far more detail the graphs G⇒[E], even in the case
of regular equations. For example, in light of our results, it seems reasonable to suggest
that determining whether E1 ⇒∗ E2 for two regular equations E1 and E2 may be done in
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polynomial time. A particularly nice characterisation of E1 and E2 such that E1 ⇒∗ E2
might yield a much quicker algorithm than the one resulting from our bound on the diameter
of G⇒NT

[E] by significantly reducing the degree of the polynomial. We also expect that a
detailed analysis of the length-reducing transformations and symmetries which may be found
there would be particularly helpful in understanding further the structure of solution sets
and the performance of algorithms solving regular equations in practice.

Finally, we mention the task of investigating the decidability of the satisfiability problem
for regular equations with additional constraints, in particular length constraints, with the
hope that having identified cases where the DAG-width is particularly high/low, along with
improved means to describe precisely the structure of the solution-graphs, might provide
some useful hints with how to proceed in this direction.
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