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Abstract
In 2015, it was shown that reachability for arbitrary directed graphs can be updated by first-order
formulas after inserting or deleting single edges. Later, in 2018, this was extended for changes of
size log n

log log n
, where n is the size of the graph. Changes of polylogarithmic size can be handled when

also majority quantifiers may be used.
In this paper we extend these results by showing that, for changes of polylogarithmic size,

first-order update formulas suffice for maintaining (1) undirected reachability, and (2) directed
reachability under insertions. For classes of directed graphs for which efficient parallel algorithms
can compute non-zero circulation weights, reachability can be maintained with update formulas that
may use “modulo 2” quantifiers under changes of polylogarithmic size. Examples for these classes
include the class of planar graphs and graphs with bounded treewidth. The latter is shown here.

As the logics we consider cannot maintain reachability under changes of larger sizes, our results
are optimal with respect to the size of the changes.
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1 Introduction

Suppose we are given a graph G whose edge relation is subjected to insertions and deletions
of edges. Which resources are required to update the reachability relation of the graph?

Recently it was shown that if one is allowed to store auxiliary relations, then the
reachability relation can be updated after single edge insertions and deletions using first-order
logic formulas with access to the graph, the stored relations, and the changed edges [4]. In
other words, the reachability query is contained in the dynamic complexity class DynFO [19].
From a database perspective, this means that it can be updated with core-SQL queries; from
the perspective of circuit complexity, this means that reachability can be updated by circuits
of polynomial size in constant-time due to the correspondence of first-order logic and AC0

established by Barrington, Immerman, and Straubing [1].
Understanding single edge insertions and deletions is an important first step. Yet in

applications, changes to a graph G often come as bulk set ∆E of changed edges. It is natural
to ask, how large the set ∆E of edges can be such that reachability can be maintained with the
same resources as for single edge changes – that is with first-order formulas or, respectively,
AC0 circuits. Using existing lower bounds for circuits [21], it is easy to see that DynFO (or
DynAC0, respectively) cannot handle changes of size larger than polylogarithmic for many
queries, including the reachability query (see Section 3 for a more detailed discussion).

The best one can hope for is to maintain reachability with first-order formulas for changes
of polylogarithmic size with respect to the size of the graph. In a first step, a subset of
the authors showed that reachability can be maintained in DynFO(≤,+,×) under changes
of size O( logn

log logn ) [7]. Here, the class DynFO(≤,+,×) extends DynFO by access to built-in
arithmetic, which for technical reasons is more natural for bulk changes. Unfortunately, the
techniques used in [7] seem only be able to handle changes of polylogarithmic size in the
extension of DynFO by majority quantifiers, that is, in the class DynFO+Maj(≤,+,×).

In this paper we make progress on handling changes of polylogarithmic size in DynFO by
attacking the challenge from two directions. First, we establish two restrictions for which
reachability can be maintained under these changes.

I Main Theorem 1. Reachability can be maintained in DynFO(≤,+,×) under
insertions of polylogarithmically many edges; and
insertions and deletions of polylogarithmically many edges if the graph remains undirected.

As second contribution of this paper, we provide a meta-theorem for establishing classes
of graphs for which reachability can be maintained under polylogarithmic-size changes with
a slight extension of first-order logic. In this extension, DynFO+Mod 2(≤,+,×), formulas
used for updating the reachability information and the auxiliary relations may use parity
quantifiers in addition to the traditional universal and existential quantifiers.

I Main Theorem 2. Reachability can be maintained in DynFO+Mod 2(≤,+,×) under in-
sertions and deletions of polylogarithmically many edges on classes of graphs for which
polynomially bounded non-zero circulation weights can be computed in AC.

Here a weighting function for the edges of a graph has non-zero circulation, if the
weight of every directed cycle is non-zero (see Section 6 for details). The class AC contains
queries computable by circuits of polynomial size and polylogarithmic depth. Examples



S. Datta, P. Kumar, A. Mukherjee, A. Tawari, N. Vortmeier, and T. Zeume 122:3

for graph classes for which non-zero circulation weights can be computed in AC include
the class of planar graphs and graphs with bounded treewidth. The latter is shown here.
We note that isolating weights, a concept closely related to non-zero circulation weights,
have been used previously in dynamic complexity for establishing that reachability is in
non-uniform DynFO+Mod 2(≤,+,×) under single edge changes [3], a precursor result to
reachability in DynFO.

For our results, we employ two techniques of independent interest. The first technique
relies on the power of first-order logic on structures of polylogarithmic size. It is well-known
that reachability can be computed by a uniform circuit family of size NO(N1/d) and depth 2d.
An immediate consequence is that all NL-queries can be expressed by first-order formulas
for graphs with n nodes but only polylogarithmically many edges. Thus, for maintaining a
query under changes ∆E of polylogarithmic size, a dynamic program can (1) do an arbitrary
NL-computation on ∆E, and (2) update the auxiliary data by combining the computed
information with the previous auxiliary data using a first-order formula.

The second technique we rely on is a slight generalization of the “Muddling Lemma”
from [6]. The Muddling Lemma reduces the requirements for proving that a query is in
DynFO: a query is in DynFO if, essentially, one can update the query for polylog many
steps starting from auxiliary data precomputed in AC. Here we observe that this can be
strengthened for changes of polylogarithmic size: a query is in DynFO if, essentially, one can
update the query under one polylogarithmic-size change from auxiliary data precomputed
in AC.

Parts of the results presented here have been included in the PhD thesis of Nils Vort-
meier [24].

Outline. After recalling the dynamic complexity framework in Section 2, we shortly outline
barriers for the size of bulk changes in Section 3 and recall useful techniques in Section 4.
Afterwards we present our results for DynFO in Section 5 and for DynFO+Mod 2(≤,+,×) in
Section 6.

2 The dynamic setting

We briefly repeat the essentials of dynamic complexity, closely following [7] which in turn
builds on [20]. The goal of a dynamic program is to answer a given query on a relational input
structure subjected to changes that insert tuples into the input relations or delete tuples from
them. The program may use auxiliary information represented by an auxiliary structure over
the same domain as the input structure. Initially, both input and auxiliary structure are
empty; and the domain is fixed during each run of the program. Whenever a change to the
input structure occurs, the auxiliary structure is updated by means of first-order formulas.

Changes. For a (relational) structure I over domain D and schema σ, a change ∆I consists
of sets R+ and R− of tuples for each relation symbol R ∈ σ. The result I + ∆I of an
application of the change ∆I to I is the input structure where RI is changed to (RI∪R+)\R−.
The size of ∆I is the total number of tuples in relations R+ and R− and the set of affected
elements is the (active) domain of tuples in ∆I.

Dynamic Programs and Maintenance of Queries. A dynamic program consists of a set
of update rules that specify how auxiliary relations are updated after changing the input
structure. Let I be the current input structure over schema σ and let A be the auxiliary
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structure over some schema σaux. An update rule for updating an `-ary auxiliary relation T
after a change is a first-order formula ϕ over schema σ ∪ σaux with ` free variables. After a
change ∆I, the new version of T is T def= {ā | (I + ∆I,A) |= ϕ(ā)}, so, the updated auxiliary
relation includes all tuples ā such that ϕ(ā) is satisfied when it is evaluated on the changed
input structure and the old auxiliary structure. Note that a dynamic program can choose to
have access also to the old input structure by storing it in its auxiliary relations.

For a state S = (I,A) of the dynamic program P with input structure I and auxiliary
structure A we denote the state of the program after applying a change sequence α and
updating the auxiliary relations accordingly by Pα(S).

The dynamic program maintains a q-ary query Q under changes of size k if it has a q-ary
auxiliary relation Ans that at any time stores the result of Q applied to the current input
structure. More precisely, for each non-empty sequence α of changes of size k, the relation
Ans in Pα(S∅) and Q(α(I∅)) coincide, where the state S∅

def= (I∅,A∅) consists of an input
structure I∅ and an auxiliary structure A∅ over some common domain that both have empty
relations, and α(I∅) is the input structure after applying α.

If a dynamic program maintains a query, we say that the query is in DynFO. Similarly to
DynFO one can define variants with built-in auxiliary relations and with more powerful update
formulas. For instance, the class DynFO(≤,+,×) contains queries that can be maintained
by first-order update formulas with access to three particular auxiliary relations <,+, and
× which are initialized as a linear order and the corresponding addition and multiplication
relations; in the class DynFO+Mod p, update formulas may use modulo-p-quantifiers in
addition to existential and universal quantifiers.

We state our results for dynamic classes with access to the arithmetic relations ≤,+
and ×. Handling bulk changes without access to arithmetic leads to technical issues which
distract from the fundamental dynamic properties. See [7, 24] for further discussions on this
topic and how our results can be stated for DynFO in an adapted setting which takes these
technical issues into account.

For the construction of dynamic programs in this paper we assume that changes either
only insert edges or only delete edges. This is no restriction, as corresponding update formulas
can be combined to process a change that inserts and deletes edges at the same time, by
first processing the inserted edges and then processing the deleted edges.

3 Barriers for the size of bulk changes

In the following we outline why it is not possible to maintain reachability under changes
of larger than polylogarithmic size with first-order formulas, even in the presence of parity
quantifiers.

The idea is simple. A classical result by Smolensky states that for computing the number of
ones modulo a prime q occurring in a bit string of length n, an AC[p] circuit of depth d requires
2Ω(n1/2d) many gates, for each prime p distinct from q (see [21] or, for a modern exposition, [17,
Theorem 12.27]). A simple, well-known reduction yields that deciding reachability for graphs
with n edges which are disjoint unions of paths also requires AC[p] circuits of size 2Ω(n1/2d).
Indeed, computing the number of ones in w = a1 · · · an modulo q can be reduced to reachability
as follows. Consider the graph with nodes {(i, k) | 1 ≤ i ≤ n+ 1 and 0 ≤ k < q} and edges
{((i, k), (i+ 1, k)) | ai = 0} ∪ {((i, k), (i+ 1, k + 1 mod q)) | ai = 1}. It is easy to see that (i)
the graph has O(n) edges and is a disjoint union of q paths, and (ii) there is a path from
(1, 0) to (n+ 1, 0) if and only if the number of ones in w is 0 modulo q.
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These lower bounds for circuit sizes immediately translate into lower bounds for first-order
formulas with modulo p quantifiers via the correspondence due to Barrington, Immerman,
and Straubing [1].

I Theorem 1. Let f(n) ∈ logω(1) n be a function from N to N and let p be a prime. There
is no FO+Mod p formula with access to built-in relations that defines
1. whether the size of a unary relation U with |U | ≤ f(n) is divisible by q, for primes q

distinct from p;
2. reachability in graphs with at most f(n) edges, even for disjoint unions of paths.

Proof sketch.
(a) Let f(n) be some function from logω(1) n. Suppose, towards a contradiction, that there

is an FO+Mod p formula with access to built-in relations that defines whether the size
of a unary relation U with |U | ≤ f(n) is divisible by q, for some primes p 6= q. Then,
by [1], for every n there is an AC[p] circuit of some fixed depth d that decides that
question for inputs if size n, and the size of this circuit is polynomial in n. That is
a contradiction, as by Smolensky’s lower bound every such circuit needs to have size
2Ω(f(n)1/2d) = 2log(n)ω(1) = nω(1).

(b) This part can be proven analogously to Part (a), using the circuit lower bound for graph
reachability. J

Those lower bounds have the immediate consequence that DynFO cannot deal with bulk
changes of larger than polylogarithmic size. Indeed, from any formula that updates the result
of a query after an insertion of f(n) tuples into an initially empty input relation one can
construct a formula that defines the query for inputs of size f(n).

I Corollary 2. Let f(n) ∈ logω(1) n be a function from N to N and let p be a prime. Then
the following queries cannot be maintained in DynFO+Mod p for bulk changes of size ≤ f(n),
even if the auxiliary relations may be initialized arbitrarily:
1. divisibility of the size of a unary relation by a prime q 6= p, and
2. reachability in graphs, even if restricted to disjoint unions of paths.

4 Techniques and Tools

In the previous section we recalled that FO(≤,+,×), even if equipped with modulo p

quantifiers, is not very expressive in general. That changes when we are only interested in
small substructures of our input: FO(≤,+,×) can express every NL-computable query on
subgraphs of polylogarithmic size.

I Theorem 3. Let k and c be arbitrary natural numbers, and let Q be a k-ary, NL-computable
graph query. There is an FO(≤,+,×) formula ϕ over schema {E,D} such that for any graph
G with n nodes, any subset D of its nodes of size at most logc n and any k-tuple ā ∈ Dk:
ā ∈ Q(G[D]) if and only if (G,D) |= ϕ(ā). Here, G[D] denotes the subgraph of G induced
by D.

Proof. We prove the result for the reachability query. As reachability is NL-complete under
FO(≤,+,×)-reductions [16], and every FO(≤,+,×)-reduction maps an instance of size logc n
to an instance of size logcd n for a fixed d ∈ N, the full result follows.

It is well-known (see for example [2, p. 613]), that for every d ∈ N there is a uniform
circuit family for reachability where the circuit for inputs of size N has depth 2d and size
NO(N1/d). Suppose the input size N is only logc n, for some c ∈ N and pick d def= 2c. Then
the circuit size
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NO(N1/d) =(logc n)O((logc n)1/d)

=(logn)cO((logn)c/d) = (logn)O((logn)c/2c) = (logn)O(
√

logn)

=2O(log logn
√

logn) ⊆ 2O(
√

logn
√

logn) = 2O(logn) = nO(1)

is polynomial in n, so, the circuit is a uniform AC0 circuit for reachability for graphs of size
logc n. The existence of ϕ follows by the equivalence of uniform AC0 and FO(≤,+,×) [1]. J

The Muddling Lemma simplifies the maintenance of queries under single edge changes [6].
It states that for many natural queries Q, in order to show that Q can be maintained, it is
enough to show that the query can be maintained for a bounded number of steps. In the
following we recall the necessary notions and extend the lemma to bulk changes.

A query Q is almost domain-independent if there is a c ∈ N such that Q(A)[(adom(A) ∪
B)] = Q(A[(adom(A) ∪ B)]) for all structures A and sets B ⊆ A \ adom(A) with |B| ≥ c.
Here, adom(A) denotes the active domain, i.e. the set of domain elements that are used in
some tuple of A. A query Q is (C, f)-maintainable, for some complexity class C and some
function f : N→ R, if there is a dynamic program P and a C-algorithm A such that for
each input structure I over a domain of size n, each linear order ≤ on the domain, and
each change sequence α of length |α| ≤ f(n), the relation Q in Pα(S) and Q(α(I)) coincide,
where S = (I,A(I,≤)).

The Muddling Lemma from [6] has been formulated for bulk changes in [7, 24]1.

I Theorem 4 ([7, 24]). Let Q be an NL-computable, almost domain independent query, and
let c ∈ N be arbitrary. If the query Q is (ACd, logd n)-maintainable under changes of size
logc n for some d ∈ N, then Q is in DynFO(≤,+,×) under changes of size logc n.

The previous theorem can be strengthened as follows.

I Theorem 5. Let Q be an NL-computable, almost domain independent query, and let c ∈ N
be arbitrary. If the query Q is (ACd, 1)-maintainable under changes of size logc+d n for some
d ∈ N, then Q is in DynFO(≤,+,×) under changes of size logc n.

Proof. Let Q and d be as in the theorem statement, and let A be an ACd algorithm and
P a dynamic program that witness that Q is (ACd, 1)-maintainable under changes of size
logc+d n. By Theorem 4 it suffices to show that there is an ACd algorithm A′ and a dynamic
program P ′ that witness that Q is (ACd, logd n)-maintainable under changes of size logc n.

We choose A′ as A. The program P ′ just stores the at most logc+d n changes that
accumulate during the logd n steps, and in each step uses P to answer Q, using the initial
auxiliary relations computed by A. J

5 Handling Polylog Changes with DynFO

So far we do not know how to maintain directed reachability under polylogarithmically many
changes in DynFO(≤,+,×). In this section we show that reachability can be maintained
in DynFO(≤,+,×) under insertions of polylogarithmically many edges for arbitrary graphs
(disallowing any deletions), and under insertions and deletions of polylogarithmic size for
undirected graphs.

1 The statement and proof in [7] is slightly flawed and has been corrected in [24].
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The general idea is similar in both cases. After changing polylogarithmically many edges
with an effect on nodes Vaff, the dynamic program (1) computes a structure of polylogarithmic
size on Vaff, (2) uses Theorem 3 to compute helpful information for this structure, and (3)
updates the auxiliary relations by combining this information with the previous auxiliary data.
Both (1) and (3) are performed by first-order formulas, and (2) uses an NL-computation.

I Theorem 6. Reachability is in DynFO(≤,+,×) under insertions of size logc n, for every
c ∈ N.

Proof. Let c ∈ N be fixed. We construct a dynamic program with a single auxiliary relation
Ans which stores the transitive closure of the current graph.

Whenever a set E+ of edges is inserted into the current graph G = (V,E), the dynamic
program updates Ans with the help of the transitive closure relation of a graph H defined
as follows. The nodes of H are the nodes Vaff affected by the change, that is, the nodes
incident to edges in E+. The edge set EH of H contains the newly inserted edges E+, and
additionally edges (u, v) for all pairs (u, v) of nodes from Vaff that are connected by a path in
G. Observe that H is of size O(logc n) and first-order definable from G,E+ and Ans. Hence,
by Theorem 3, the transitive closure of H can be defined by a first-order formula.

The transitive closure relation of G′ def= (V,E ∪ E+) can now be constructed from the
transitive closures of G and H. To this end observe that the transitive closure of H equals
the transitive closure relation of G′ restricted to Vaff: it accounts for all paths from a node
u ∈ Vaff to another node v ∈ Vaff that may use both newly inserted edges and edges that
are already present in G. For this reason, every path ρ in G′ consists of three consecutive
subpaths ρ1ρ2ρ3 = ρ, where ρ1 and ρ3 are defined as the maximal subpaths of ρ that do not
rely on edges from E+. These subpaths already exist in G and are represented in Ans. The
subgraph ρ2 by definition starts and ends at nodes from Vaff, so its existence is given by the
transitive closure relation of H.

Hence, the transitive closure of G′ can be defined by the formula ϕ(s, t) def= Ans(s, t) ∨
∃x1∃x2

(
Ans(s, x1) ∧TCH(x1, x2) ∧Ans(x2, t)

)
. J

I Theorem 7. Reachability on undirected graphs can be maintained in DynFO(≤,+,×) under
changes of size logc n, for every c ∈ N.

Proof. The dynamic program from [9] that maintains undirected reachability in DynFO
under single-edge changes uses, in addition to the transitive closure relation of the input
graph, two binary auxiliary relations that represent a directed spanning forest of the input
graph and its transitive closure, respectively. We show that these relations can still be
maintained in DynFO(≤,+,×) under changes of logc n many edges, for fixed c ∈ N.

Recall that it suffices to treat insertions and deletions independently, as they can be
handled subsequently by a dynamic program.

For edge insertions, the construction idea is very similar to the proof of Theorem 6. We
define a graph H, where nodes correspond to connected components of the input graph that
include an affected node, and edges indicate that some inserted edge connects the respective
connected components. As this graph is of polylogarithmic size, thanks to Theorem 3 we can
express a spanning forest for H and its transitive closure in FO(≤,+,×), which is sufficient
to update the respective relations for the whole input graph.

In the case of edge deletions, the update formulas need to replace deleted spanning tree
edges, whenever this is possible. Our approach is very similar to the case of edge insertions.
The spanning tree decomposes into polylogarithmically many connected components when
edges are deleted. These components can be merged again if non-tree edges exist that connect
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them, and these edges become tree edges of the spanning forest. For a correspondingly
defined graph of polylogarithmic size we can again define a spanning forest and its transitive
closure, and from this information select the new tree edges.

We explain both cases in more detail. Let G = (V,E) be the undirected input graph
of size n with transitive closure Ans, and let S and TCS be a directed spanning forest for
G and its transitive closure, respectively. Suppose that a set E+ of size at most logc n is
inserted. We define a graph H as follows. It contains a node v ∈ V if (1) v is affected,
that is, if E+ contains an edge of v, and (2) v is the smallest affected node in its connected
component of G with respect to ≤. It contains an edge (u, v) if (u′, v′) ∈ E+ for some nodes
u′, v′ with (u, u′) ∈ Ans and (v, v′) ∈ Ans, so, if the connected components of u and v are
connected by an inserted edge. The graph H is easily seen to be FO-definable using Ans.
Because H is of polylogarithmic size with respect to n and a spanning forest of a graph can
be computed2 in NL, we can define a spanning tree SH as well as its transitive closure TCSH

in FO(≤,+,×), thanks to Theorem 3.
The update formulas define updated auxiliary relations for the graph G′ = (V,E ∪E+) as

follows. Intuitively, an edge (u, v) ∈ SH means that the connected components of u and v in
G shall be connected in G′ directly by a new tree edge. There might be several edges in E+

that may serve this purpose, and we need to choose one of them. So, an edge (u′, v′) ∈ E+

becomes part the updated spanning forest if there is an edge (u, v) ∈ SH such that u′ and u
as well as v′ and v are in the same connected component of G, respectively, and (u′, v′) is the
lexicographically minimal edge with these properties. This is clearly FO(≤,+,×)-expressible
using the old auxiliary relations. The old tree edges from S are taken over to the updated
version, although some directions need to be inverted, if for a newly chosen tree edge (u′, v′)
the node v′ was not the root of the directed spanning tree of its connected component.
First-order formulas that determine which edges need to be reversed and that provide the
adjusted transitive closure for the components of the spanning forest are given in [9]. The
relation TCS is updated by combining this information with TCSH

.
We note that Ans is first-order expressible from TCS . In conclusion, all auxiliary relations

can be updated in FO(≤,+,×).
Now suppose that a set E− of at most logc n edges is deleted. Let S′ be the spanning

forest that results from S after all tree edges from E− are removed, and let TCS′ be its
transitive closure, which is easily FO-expressible from TCS . Similarly as above we define a
graph H, with nodes being the minimal affected nodes in a weakly connected component of
S′, which are connected by an edge if the respective weakly connected components of S′ are
connected by some edge from E \ E−. The same way as above, FO(≤,+,×) formulas can
define a spanning forest and its transitive closure for H and then use this information to
define a spanning forest and its transitive closure for the changed graph G′ = (V,E \E−). J

6 Handling Polylog Changes with DynFO+Mod 2

While we have seen, in the last section, that reachability for directed graphs can be maintained
under edge insertions of polylogarithmic size, a matching result for edge deletions is still
missing. Two intermediate results were shown in [7], building on the work of [13]: reachability
can be maintained in DynFO(≤,+,×) under insertions and deletions that affect logn

log logn
nodes, and in DynFO+Maj under insertions and deletions of polylogarithmically many edges.

2 For example the breadth-first spanning forest with the minimal nodes of each component, with respect to
≤, as roots can be computed with the inductive counting technique due to Immerman and Szelepcsényi
[15, 22].
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In this section, we adapt the proof of the latter result, also using ideas that appear
in [3], and show that reachability can be maintained in DynFO+Mod 2(≤,+,×) under edge
insertions and deletions of polylogarithmic size for classes of directed graphs for which
non-vanishing weight assignments can be computed in AC, that is, by polynomial-size circuits
of polylogarithmic depth. This is possible for example for planar graphs [23], as well as for
graphs with bounded treewidth, as we show towards the end of this section.

We start by giving the necessary definitions regarding isolating and non-vanishing weight
assignments.

6.1 Isolating and non-vanishing weights
A weighted directed graph (G,w) consists of a graph G = (V,E) and a weight assignment
w : E → Z that assigns an integer weight w(e) to each edge e ∈ E. The weight assignment w
is bounded by a function f(|V |) if w assigns only weights from the interval [−f(|V |), f(|V |)].

The weighted graph (G,w) is min-unique if (1) w only gives positive weights to the edges
E, and (2) if some path from s to t exists, for some pair s, t of nodes, then there is a unique
path from s to t with minimum weight under w. Here, the weight of a path (and in general
every sequence of edges) is the sum of the weights of its edges. If (G,w) is min-unique, we
say that w isolates (minimal paths in) G.

Define G~

~

= (V,E~

~

) to be the bidirected extension of G, where E~

~

def= {(u, v), (v, u) | (u, v) ∈
E}. A weight assignment w is skew-symmetric if w(u, v) = −w(v, u) for all (u, v) ∈ E~

~

. It
has non-zero circulation if the weight of every simple directed cycle in G~

~

is non-zero (here, a
cycle is simple if no node occurs twice).

From polynomially bounded non-zero circulation weights for G~

~

we can easily compute
isolating weights for G.

I Lemma 8. Let G = (V,E) be a graph with n nodes, and let w be skew-symmetric non-zero
circulation weight assignment for G~

~

, which is bounded by nk for some k ∈ N. Then w′ with
w′(e) = w(e) + nk+2 for every e ∈ E isolates G.

Proof. All weights in w′ are clearly positive. It remains to show that w′ isolates minimal
paths in G. Assume, towards a contradiction, that there are two different s-t-paths ρ1, ρ2
with the same minimal weight under w′ in G, for some nodes s and t. Without loss of
generality, they are both simple paths, as otherwise they cannot be minimal. Let u be the
last node visited by both paths before they differ for the first time, and let v be the first
node after u that is visited by both paths. Let ρuv1 , ρuv2 be the subpaths in ρ1, ρ2 from u to
v, respectively. If these subpaths have different weights, say, w′(ρuv1 ) < w′(ρuv2 ), then we
can replace ρuv2 by ρuv1 in ρ2 and get a lighter path, contradicting the assumption that both
ρ1 and ρ2 are paths with minimal weight. So, w′(ρuv1 ) = w′(ρuv2 ) needs to hold. Then also
w(ρuv1 ) = w(ρuv2 ) holds, because w(ρ) and w′(ρ) differ by a multiple of nk+2 for any path ρ,
and the difference between w(ρ) and w(ρ′) is at most nk+1, for simple paths ρ and ρ′. So,
w′ cannot compensate weight differences under w. But then the concatenation of ρuv1 and
the reverse of ρuv2 is a simple cycle in G~

~

with weight w(ρuv1 )− w(ρuv2 ) = 0, contradiction the
assumption that w has non-zero circulation. J

We explain how (families of) polynomially bounded weight assignments for graphs are
represented in relational structures. Let V be the node set of a weighted graph of size n. We
identify V with the set {0, . . . , n− 1} of numbers according to the given linear order ≤. A
tuple (a1, . . . , ak) of nodes then represents the number

∑k
i=1 ain

i−1. A (partial) function
f : V k → V ` is represented as a (k+`)-ary relation F over V , such that for each ā ∈ V k there
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is at most one b̄ ∈ V ` with (ā, b̄) ∈ F . We say that f is FO(≤,+,×)-definable if F is defined
by an FO(≤,+,×) formula ψ(x̄, ȳ), where x̄ = x1, . . . , xk and ȳ = y1, . . . , y`. An FO(≤,+,×)
formula ψ(z̄, x̄, ȳ), with z̄ = z1, . . . , zm, defines a family {f(c̄) : V k → V ` | c̄ ∈ V m} of
functions.

6.2 Maintaining Reachability in weighted graphs
We now state and prove the main result of this section.

I Theorem 9. Let G be a class of graphs for which polynomially bounded skew-symmetric
non-zero circulation weights can be computed in AC. Then, reachability for graphs in G is in
DynFO+Mod 2(≤,+,×) under changes of size logc n, for every c ∈ N.

Although this result leaves open whether reachability can be maintained in DynFO(≤,+,×)
under polylogarithmically many edge changes, note that, in light of Corollary 2, it gives a
tight upper bound for the size of changes that can be handled in DynFO+Mod 2(≤,+,×).

We outline the proof strategy, which closely follows the strategy from [7]. Suppose, we
are given a weighted directed graph (G,w) where G = (V,E) is a graph with n nodes and
w is an isolating weight assignment. We represent this weighted graph by an n× n matrix
A(G,w)(x) as follows: if (u, v) ∈ E, then the u-v-entry of A(G,w)(x) is xw(u,v), where x is a
formal variable, otherwise the u-v-entry is 0.

The matrixD def=
∑∞
i=0(AGw

(x))i is a matrix of formal power series in the formal variable x,
and from an s-t-entry

∑∞
i=0 cix

i of this matrix we can read the number ci of paths from s to
t with weight i. Our goal is to determine the coefficients ci modulo 2, for all i up to some
polynomial bound. From this information we can deduce whether there is a path from s to t
in G: as w isolates minimal paths in G, if there is some path from s to t, then there is a
unique path with minimal weight, which means that for the weight ` of this path we have
c` ≡ 1 (mod 2). Otherwise, if no path from s to t exists, c` ≡ 0 (mod 2) for all i.

We use the following insights to actually compute and update the coefficients ci. Notice
that the matrix D is invertible over the ring of formal power series (see [7] and its full
version [8]) and can be written as D = (I −A(G,w)(x))−1, where I is the identity matrix.

So, we need to compute and update the inverse of a matrix. This cannot be done
effectively for matrices of inherently infinite formal power series. For this reason we compute
D only approximately. A b-approximation C of D, for some b ∈ N, is a matrix of formal
polynomials that agrees with the entries of D on the low-degree coefficients ci for all i ≤ b.
This precision is preserved by the matrix operations we use, see [7, Proposition 14]. Note that
it is sufficient to maintain an approximation of D, as for a weighted graph with polynomially
bounded weights the maximal possible weight wmax of a minimal path is bounded by a
polynomial, and thus only the coefficients ci with i ≤ wmax are relevant.

To update the matrix inverse, we employ the Sherman-Morrison-Woodbury identity
(cf. [12]). This identity states that when updating a matrix A to a matrix A+ ∆A, with ∆A
writeable as matrix product UBV , the inverse of A can be updated as follows:

(A+ ∆A)−1 = (A+ UBV )−1 = A−1 −A−1U(I +BV A−1U)−1BV A−1.

When ∆A has only k non-zero rows and columns, there is a decomposition UBV where
B is a k × k matrix.

The right-hand side can be computed in FO+Mod 2(≤,+,×) for k def= logc n. To see this,
we observe that also I +BV A−1U is a k × k matrix. Computing the right-hand side now
requires multiplication and iterated addition of polynomials over Z as well as the computation
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of the inverse of a k × k matrix. As all computations are done modulo 2, this is indeed
possible in FO+Mod 2(≤,+,×) for (matrices of) polynomials with polynomial degree using
results of [11]. We provide more details later.

As we work with isolating weight assignments, our update routines also need to assign
weights to changed edges such that the resulting weight assignment is again isolating. We
show that this can be done if we start with (slightly adjusted) non-zero circulation weights.
Using Theorem 5 we can assume that such an assignment is given, and that we only need to
update the weights once.

Proof sketch (of Theorem 9). Let c be arbitrary. Thanks to Theorem 5 it suffices to show
that there is a d ∈ N such that reachability is (ACd, 1)-maintainable by a dynamic program
P under changes of size logc+d n. Let d′ ∈ N be such that polynomially bounded skew-
symmetric non-zero circulation weights for graphs from G can be computed in ACd

′
, and set

d
def= max(2, d′).
Let G = (V,E) be a graph with n nodes. Let u be skew-symmetric non-zero circulation

weights for G and let nk be the polynomial bound on the weights. Further, let w be the
weight assignment that gives weight nk+2 + u(e) to each edge e ∈ E. Notice that w is
polynomially bounded by nk+3 and isolates G according to Lemma 8.

The ACd initialization computes, as auxiliary information, the weightings u and w and
an nb-approximation C of (I −A(G,w)(x))−1 mod 2, that is, a matrix of formal polynomials
in x that agree with the formal power series in (I −A(G,w)(x))−1 mod 2 on the coefficients
up to degree nb. Here, b ∈ N is a constant to be determined later.

When changing G via a change ∆E with deletions E− and insertions E+, the dynamic
program P handles deletions and insertions subsequently:
(1) Handling of deletions:

(a) Define isolating weights w− for G− def= (V,E \ E−). The weights w− will differ from
w only for the at most logc+d n edges in E−.

(b) Compute an nb-approximation of (I −A(G−,w−)(x))−1 mod 2 using the existing
nb-approximation of (I −A(G,w)(x))−1 mod 2.

(2) Handling of insertions:
(a) Define a family W−/+ of weightings such that one member of the family is isolating

for G−/+ def= (V, (E \ E−) ∪ E+). All weightings of the family will differ from w−

only for the at most logc+d n edges in E+.
(b) Compute an nb-approximation of (I −A(G−/+,w−/+)(x))−1 mod 2 using the existing

nb-approximation of (I −A(G−,w−)(x))−1 mod 2 for all members w−/+ of W−/+.

We first explain Steps (1a) and (2a) in more detail. For computing the isolating weights
w−, the program proceeds as follows. Skew-symmetric non-zero circulation weights u− for
G− are obtained from the non-zero circulation weights u for G by setting the weight of
deleted edges e ∈ E− to 0. As u− gives the same weight to all simple cycles in G− as u gives
to these cycles in G, it has non-zero circulation. Now, the weight assignment w− defined by
nk+2 + u−(e) is isolating for G− due to Lemma 8, and differs from w only for edges in E−.

Computing the isolation weights for insertions is more challenging. In Lemma 11 below
we show that from G−, its transitive closure, and a set E+ of edges of polylogarithmic size
one can FO(≤,+,×)-define a family W−/+ of weight assignments such that one of these
assignments is isolating for G−/+.

For both Steps (1b) and (2b), the inverse of a matrix of polynomials over Z2 of polynomial
degree needs to be updated after changing polylogarithmically many entries (i.e. entries
corresponding to E− and E+, respectively). Inverses can be updated under such changes in

ICALP 2020



122:12 Dynamic Complexity of Reachability: How Many Changes Can We Handle?

FO+Mod 2(≤,+,×) due to Lemma 10 (see below) and the observation that changes ∆A of
size logc+d n to such a matrix can be decomposed into UBV as required by Lemma 10, see
Lemma 7 in [7]. For Step (2b) this is done in parallel for all members of W−/+.

For checking whether there is a path from s to t after the change ∆E to G, the dy-
namic program checks whether there is a member of W−/+ such that the s-t-entry of
(I −A(G−/+,w−/+)(x))−1 mod 2 is non-zero. Since one member of W−/+ is isolating, a path
will be discovered this way. J

In the remainder of this subsection we show how inverses for matrices of polynomials can
be updated under changes of polylogarithmic size, and how weights for inserted edges can be
found.

The following lemma is obtained using the same techniques as in [7]. Here, Z2[[x]] denotes
the ring of formal power series with coefficients from Z2, and Z2[x] denotes its subring that
consists of all finite polynomials.

I Lemma 10. Suppose A ∈ Z2[[x]]n×n is invertible over Z2[[x]], and C ∈ Z2[x]n×n is an
m-approximation of A−1. If A + ∆A is invertible over Z2[[x]] and ∆A can be written as
UBV with U ∈ Z2[x]n×k, B ∈ Z2[x]k×k, and V ∈ Z2[x]k×n, then

(A+ ∆A)−1 ≈m C − CU(I +BV CU)−1BV C

Furthermore, if k ≤ logc n for some fixed c and all involved polynomials have polynomial
degree in n, then the right-hand side can be defined in FO+Mod 2(≤,+,×) from C and ∆A.

Proof sketch. The correctness of the equation can be proved exactly as in Proposition 14
in [7] (there, this is proved for Z[[x]] instead of Z2[[x]]).

We argue that the right-hand side can be defined in FO+Mod 2(≤,+,×). The involved
matrix additions and multiplications modulo 2 can easily be expressed in FO+Mod 2(≤,+,×),
see [11]. It remains to explain how the inverse of the logc n× logc n matrix I +BV CU can
be found.

To this end, recall that the i-j-entry of the inverse of a matrix D is equal to (−1)i+j detDji

detD ,
where Dji is obtained from D by removing the j-th row and the i-th column.

So, it is sufficient to show that the determinant of a logc n× logc n matrix of polynomials
with polynomial degree can be expressed modulo 2. In [7, Lemma 15] it was shown that
such a determinant can be expressed in FO+Maj(≤,+,×), by observing that one only needs
to be able to express the sum of polynomially many polynomials and the product of logc n
many polynomials. This observation is still valid for computing the determinant modulo 2 in
FO+Mod 2(≤,+,×). Both kind of computations are possible modulo 2 in FO+Mod 2(≤,+,×)
as well [11]. J

I Lemma 11. Let G = (V,E) be a graph and let n = |V |. Further, let w be a polynomially
bounded isolating weight assignment for G, and let E+ be a set of O(logc n) edges that
is disjoint from E, for some c ∈ N. Then there is a family W ′ of polynomially many
polynomially bounded weight assignments such that
1. W ′ is FO(≤,+,×)-definable from G, Reach(G), E+ and w,
2. all w′ ∈W ′ agree with w on E,
3. at least one w′ ∈W ′ is isolating for (V,E ∪ E+).

The proof works along the following lines. We use the approach from [18] to obtain
weights for the inserted edges with the following idea: if there is an s-t-path that uses at
least one inserted edge from E+, then there is a unique minimal path under all s-t-paths
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that use at least one such edge, where we ignore the weight of the paths that is contributed
by edges from E. We multiply these constructed weights for the edges from E+ by a large
polynomial to ensure that the combined weight assignment with the existing weights for
edges in E is isolating for the graph (V,E ∪ E+).

The approach from [18] does not lead to polynomially bounded weights in the size of the
graph it is used for. We construct them for a graph with N = O(logc n) many nodes, and
although they are not polynomially bounded in N , they are in n.

We now get to the details of the construction. In the following, we consider graphs with
two sets of edges. An adorned graph G = (V,E, F ) has, besides the set E of real edges,
a further set F of fictitious edges, which is not necessarily disjoint from E. For each pair
s, t of nodes, let P ′s,t be the set of s-t-paths in G that use at least one real edge e ∈ E and
arbitrarily many fictitious edges e′ ∈ F . Let Ps,t be the set of edge sequences that result
from P ′s,t by removing the fictitious edges from the paths.

We say that a weight assignment w real-isolates G, if (1) it maps each real edge e ∈ E
to a positive integer, and (2) each non-empty Ps,t has a unique minimal element under w.
In the following, we will need a stronger property. We say that w strongly real-isolates G,
if in addition for each pair Ps,t and Ps′,t′ of non-empty sets with (s, t) 6= (s′, t′) the unique
minimal elements of Ps,t and Ps′,t′ have different weights under w.

The following lemma can be proved along the lines of [18], see the full version for details.

I Lemma 12. There is a constant β ∈ N such that for every natural number N and every
adorned graph G = (V,E, F ) with V = {1, . . . , N} there is a sequence p̄ = p1, p2, . . . , plogN
of primes, each consisting of at most (β − 2) logN bits, such that the weight assignment

wp̄(e) =
{∑logN

j=1 Nβ(logN−j)(w0(e) mod pj) e ∈ E
0 e ∈ F

strongly real-isolates G. Here, w0(u, v) def= 2(N+1)u+v.

Using this lemma, we can prove Lemma 11.

Proof of Lemma 11. Let Vaff ⊆ V be the set of nodes with edges in E+. We construct an
adorned graph H = (VH , EH , FH) with node set VH

def= Vaff as follows. The set EH of real
edges is EH

def= E+, and the set FH of fictitious edges is FH
def= {(u, v) | u, v ∈ VH , (u, v) ∈

Reach(G)}. So, a fictitious edge (u, v) of H represents the existence of a u-v-path in G.
Let β, p̄ and wp̄ be as promised to exist for H by Lemma 12. Further, let nk be the upper

bound on the weights of w. We define the weight assignment w′ for G′ def= (V,E ∪ E+) as
follows.

w′(e) = w(e) for all e ∈ E,
w′(e) = nk+2 · wp̄(e) for all e ∈ E+ = EH .

We show that w′ isolates G′ first, afterwards we show that w′ is a member of an
FO(≤,+,×)-definable family of weightings.

For showing that w′ isolates G′ suppose, towards a contradiction, that there are two
lightest simple s-t-paths π, ρ in G′ with respect to w′, for some nodes s and t. Let π1π2π3 = π

and ρ1ρ2ρ3 = ρ be the subpaths of π and ρ such that edges from E+ are only used in π2
and ρ2 and those subpaths are minimal with that property. Notice that both π2 and ρ2 are
non-empty, as otherwise ρ and π are also lightest paths in G with respect to w, contradicting
the assumption that w isolates G. Let π′ and ρ′ be the paths in H that correspond to π2
and ρ2, where subpaths of π2 and ρ2 are replaced by fictitious edges. We consider two cases.
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If wp̄(π′) 6= wp̄(ρ′), then the total weight of π and ρ contributed by the edges from
E+ differs by at least nk+2. As the total weight contributed by the remaining edges is
upper-bounded by nk+1, we have that w′(π) 6= w′(ρ), the desired contradiction.

Thus assume, without loss of generality, that wp̄(π′) = wp̄(ρ′). We can assume that both
paths π′ and ρ′ are lightest paths in H: if, say, π′ is not a lightest path, then we can replace
π2 in π by a path that uses lighter edges from E+, leading to an overall lighter path by
the argument of the previous case. Then, because wp̄ strongly isolates H, the edges from
EH = E+ used in π′ and ρ′ must be equal, and the same is true for π2 and ρ2. These edges
must also be used in the same order, as otherwise a path with fewer edges from E+ exists,
which by the argument of previous case is lighter than both π and ρ. Because π and ρ are
different paths, there must be subpaths π∗ and ρ∗ that consist only of edges from E and are
both simple u-v-paths, for some nodes u and v. As w is isolating for G, not both subpaths
can be lightest u-v-paths in G. Say, ρ∗ is not such a lightest path. If we replace ρ∗ in ρ by
the lightest u-v-path in G, we obtain a path that is lighter than ρ, as w′ agrees with w on E.
So, ρ is not a lightest s-t-path in G′ with respect to w′, the desired contradiction. It follows
that w′ is isolating for G′.

The weight assignment wp̄ is clearly FO(≤,+,×)-definable from G,Reach(G), E+, w

and p̄, as H is FO(≤,+,×)-definable, the involved numbers consist of at most polylogarith-
mically many bits, and FO(≤,+,×) can express the necessary arithmetic on numbers of that
magnitude (see [14, Theorem 5.1]). The sequence p̄ consists of O(log logn) many primes (as
H is of size polylog) which in turn are represented by O(log logn) many bits, because H has
only polylogarithmic size in n. So, p̄ can be represented by a tuple of nodes from V , and it
follows that a family W ′ of weight assignments with w′ ∈W ′ is FO(≤,+,×)-definable from
G,Reach(G), E+ and w. J

6.3 Computing weights for bounded-treewidth graphs
In this section, we show that isolating weights for graphs of bounded treewidth can be
computed in LOGSPACE. As an immediate consequence, reachability can be maintained for
such graphs under changes of polylogarithmic size.

A tree decomposition T = (T,B) of a graph G = (V,E) consists of a (rooted, directed)
tree T = (I, F, r), with (tree) nodes I, (tree) edges F , a distinguished root node r ∈ I, and a
function B : I → 2V such that
(1) the set {i ∈ I | v ∈ B(i)} is non-empty for each node v ∈ V ,
(2) there is an i ∈ I with {u, v} ⊆ B(i) for each edge (u, v) ∈ E, and
(3) the subgraph T [{i ∈ I | v ∈ B(i)}] is connected for each node v ∈ V .

We refer to the number of children of a node i of T as its degree, and to the set B(i) as
its bag. We denote the parent node of i by parent(i). The width of a tree decomposition is
defined as the maximal size of a bag minus 1. The treewidth of a graph G is the minimal
width among all tree decompositions of G. A tree decomposition is binary, if all tree nodes
have degree at most 2. Its depth is the length of a longest path from the root r to a leaf
of T . We inductively define the height h(i) of i to be 1 if i is a leaf, and h(i′) + 1 if i is an
inner tree node and i′ is a child of i with maximal height. For a node v ∈ V we denote by
B(v) the highest bag that contains u, and let h(u) def= h(B(u)). This bag B(v) is well-defined
for each node v thanks to condition (3) of the definition of a tree decomposition.

We usually identify tree nodes i and their bag B(i), and use the above notions and
measures directly for bags. We also abuse notation and write B ∈ B if B = B(i) for some
tree node i.
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As a first step we construct isolation weights for bounded treewidth graphs that addition-
ally have bounded degree. Isolation weights for all graphs of bounded treewidth are provided
afterwards.

I Proposition 13. Let c, d, k ∈ N be fixed. Let G = (V,E) be a graph with maximal degree d,
and let n be the number of its nodes. Let T be a binary tree decomposition of G with width k
and depth at most c logn. A polynomially bounded skew-symmetric weight assignment with
non-zero circulation for G can be computed in LOGSPACE.

Proof. The idea for assigning weights is the following. We associate each edge with one
bag of the tree decomposition, namely the highest bag that contains one endpoint of the
edge. For each bag B, we denote the set of all edges that are associated with B by S(B).
As the width of T and the degree of G are bounded by a constant, so is |S(B)|. An edge e
is assigned a weight that depends exponentially on the height of the bag B it is associated
with, and also exponentially on its position in some linear order on S(B). For each cycle C
there is a unique highest bag BC that some of the cycle’s edges is associated with. The idea
for establishing non-zero circulation of C is that its weight is dominated by the weight of the
unique edge which (1) is associated with BC and (2) has largest index in the linear order on
S(B) among all edges of the cycle. As the height of a bag is logarithmic in n and |S(B)| is
bounded by a constant, the weight of every edge is polynomial in n.

We now proceed to the details. For each e ∈ E~

~

, let Be be the (unique) highest bag that
contains one of the end points of e. For a bag B, define the set S(B) of its associated edges
as S(B) def= {e ∈ E~

~

| B = Be}. Observe that the sets S(B) partition the set E~

~

of edges and
that the size of S(B) is bounded by a constant β def= 2d(k + 1), as each bag B contains at
most k + 1 nodes and each node has degree at most d in G and therefore degree at most 2d
in G~

~

. For each S(B) we fix an enumeration of its elements3. Now, for each edge e, we set
h(e) = h(Be) and `(e) = i, if e is the i-th element in the enumeration of S(Be).

We set the weight w(e) of an edge e = (u, v) with u ≤ v to be w(e) def= (4β ·3β+2)h(e) ·3`(e).
The weight of an edge (u, v) with u > v is w(u, v) = −w(v, u). Notice that this weight
assignment is polynomially bounded and skew-symmetric and can be computed in LOGSPACE.
We now show that it has non-zero circulation.

Let C be any simple cycle in G~

~

, and let e1, . . . , em be an enumeration of its edges. Without
loss of generality we assume that e1 is the edge with the maximal weight among all edges in
C. This edge is well-defined, as there is a unique highest bag B such that S(B) contains an
edge of C, and the term 4β · 3β + 2 is strictly greater than 3`(e) for any value of `(e).

We show |w(e1)| > |w(e2) + · · ·+w(em)|, which implies the claim. Actually, we show that
the weight of w(e1) exceeds the combined weight of all other edges e that are either in S(B)
and have `(e) < `(e1) or are in S(B′) for some bag B′ below B in the tree decomposition.
Note that there are

∑h(e1)−1
h=1 2h(e1)−h many of those bags B′, each S(B′) contains at most β

edges, and the weight of each edge is upper bounded by (4β · 3β + 2)h(B′) · 3β .

|w(e2) + · · ·+ w(em)|

<

l(e1)−1∑
i=1

(4β · 3β + 2)h(e1) · 3i +
h(e1)−1∑
h=1

2h(e1)−h · β · (4β · 3β + 2)h · 3β

=
l(e1)−1∑
i=1

(4β · 3β + 2)h(e1) · 3i +
h(e1)−1∑
h=1

2h(e1) · β · (2β · 3β + 1)h · 3β

3 As we devise an LOGSPACE algorithm, we can assume the existence of a linear order on the input.
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= (4β · 3β + 2)h(e1) ·
l(e1)−1∑
i=1

3i + 2h(e1) · β · 3β ·
h(e1)−1∑
h=1

(2β · 3β + 1)h

= (4β · 3β + 2)h(e1) · 3l(e1) − 3
2 + 2h(e1) · β · 3β · (2β · 3β + 1)h(e1) − (2β · 3β + 1)

2β · 3β

< (4β · 3β + 2)h(e1) · 3`(e1) = |w(e1)| J

Non-zero circulation weights cannot only be computed in LOGSPACE for bounded-
treewidth graphs with bounded degree, as given by Proposition 13, but also for all graphs
with bounded treewidth. Also, using a result of Elberfeld, Jakoby and Tantau [10], no tree
decomposition needs to be given as input.

I Theorem 14. Let k ∈ N be fixed and let G = (V,E) be a graph with treewidth at most k.
A polynomially bounded skew-symmetric weight assignment with non-zero circulation for G
can be computed in LOGSPACE.

The idea for proving Theorem 14 is as follows. From a given graph G with treewidth
at most k we construct a graph G′ with treewidth and degree O(k) as well as a tree
decomposition. The graph G′ basically results from a tree decomposition T of G by making
a copy of a node v for every bag of T that contains v. These copies are connected by an edge
if the corresponding bags in T are. Using Proposition 13, we obtain non-zero circulation
weights for G′, and we show that they can be translated to non-zero circulation weights
for G.

Proof. Fix k ∈ N and let G = (V,E) be a graph with treewidth at most k. Let n be
the size of V . There are constants c1, c2 ∈ N that only depend on k such that a binary
tree decomposition T = (T,B) of G of width at most c1k and depth at most c2 logn can
be computed in LOGSPACE [10]. From G and T we construct a graph G′ = (V ′, E′) as
follows. Let V ′ be the set V ′ def= {vB | B ∈ B, v ∈ B} and let E′ def= {(vB , vB′) | B′ =
parent(B)} ∪ {(uB , vB) | (u, v) ∈ E, u 6∈ parent(B) or v 6∈ parent(B)}. So, we have one copy
vB of a node v ∈ V for each bag B such that v is contained in B. Two copies of a node are
connected by an edge if they originate from adjacent bags in the tree decomposition, and
there is an edge between two copies uB and vB , originating from the same bag B, if B is the
highest bag of T that contains both endpoints u and v.

The degree of G′ is bounded by c1k+3. The tree decomposition T ′ = (T,B′) that replaces
each bag B of T by {vB | v ∈ B}∪ {vparent(B) | v ∈ parent(B)} is a tree decomposition of G′
and has width at most 2c1k+ 1. Furthermore, it is binary and has depth at most c2 logn. So,
by Proposition 13, one can compute in LOGSPACE polynomially bounded, skew-symmetric
non-zero circulation weights w′ for G′.

We construct a weight function w for G~

~

as follows. For that, we associate with each
edge (u, v) ∈ E~

~

a sequence P (u, v) of edges in G′~

~

. Recall that for each edge (u, v) there is
a highest bag in which both u and v appear. The bag above that bag contains either (a)
none of the two vertices, or (b) v but not u, or (c) u but not v. The definition of P (u, v)
distinguishes these three cases:
1. Suppose B(u) = B(v). We set P (u, v) = (uB(u), vB(v)).
2. Suppose B(u) is a proper descendant of B(v). Let B = B(u) and B′ = B(v). We set

P (u, v) = (uB , vB), (vB , vparent(B)), . . . , (vparent(···(parent(B))), vB′).
3. Suppose B(v) is a proper descendant of B(u). Let B = B(u) and B′ = B(v). We set

P (u, v) = (uB , uparent(···(parent(B′)))), . . . , (uparent(B′), uB′), (uB′ , vB′).
Now, let w(u, v) be the sum

∑
e∈P (u,v) w

′(e) of the weights of the edges e in P (u, v). Because
w′ is a polynomially bounded skew-symmetric weight assignment, so is w.
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It remains to show that w has non-zero circulation. Let C be an arbitrary simple cycle in
G~

~

. We need to show that w assigns a non-zero weight to C. Let e1, . . . , em be the sequence of
edges that constitutes C, and letW ′ be the sequence P (e1), . . . , P (em) of edges. By definition,
the weight of C under w is the same as the weight of W ′ under w′.

Note that W ′ constitutes a cycle in G′~

~

which is not necessarily simple: some nodes might
be visited more than once. We show that we can construct from W ′ a simple cycle C′ by
removing parts of W ′ with total weight 0. As a result, C′ has the same weight as W ′ under
w′. Because w′ has non-zero circulation, the weight of C′ and W ′ is non-zero, and so is the
weight of C under w.

Suppose that some node uB is visited twice by W ′. Then W ′ has the subsequence
P (v, u)P (u, v′) for some nodes v and v′, because u is visited only once in C and no node
appears twice in a single sequence P (u, u′). Moreover, it most be that h(u) is greater than both
h(v) and h(v′), or smaller than both h(v) and h(v′), and either B(v) is a descendent of B(v′)
or B(v′) is a descendant of B(v). We consider the case that h(u) is greater than both h(v) and
h(v′), and B(v′) is a descendant of B(v). The other cases are analogous. Then P (v, u)P (u, v′)
visits the nodes vB(v), uB(v), uparent(B(v)), . . . , uB(u), . . . uparent(B(v)), uB(v), . . . , uB(v′), v

′
B(v′)

in that order. The closed walk from uB(v) to uB(u) and back to uB(v) has, because of
skew-symmetry, a total weight of 0 under w′. So, the corresponding edges can be removed
from W ′ without changing the weight. Repeating this step results in a simple cycle C′ with
the same weight under w′ as C under w. As w′ has non-zero circulation, the weight of C′ is
non-zero, and so is the weight of C. J

7 Conclusion

The complexity of maintaining (variants of) the reachability query is the dominant research
question in dynamic complexity theory. With this paper we basically settle this question for
reachability in undirected graphs, at least with respect to the size of a change: reachability in
undirected graphs is in DynFO(≤,+,×) if and only if the changes have at most polylogarithmic
size. For reachability in directed graphs, we can only show this for insertions of polylogarithmic
size, and the main open problem is whether this can be extended to also allow for deletions
of single edges, non-constantly many edges, or even polylogarithmically many edges.

We give preliminary results for classes of graphs for which non-zero circulation weights
can be computed in AC: reachability for these graphs is in DynFO+Mod 2(≤,+,×) under
insertions and deletions of polylogarithmic size. We show that one can compute such weight
assignments for graphs with bounded treewidth. Other graph classes for which this is possible
include the class of planar graphs [23], and in general all graphs with bounded genus, which
one can show using results from [5].

A question for further research is whether reachability for classes of directed graphs can
be maintained in DynFO(≤,+,×) under insertions and deletions of polylogarithmic size.
Candidate classes are graphs with bounded treewidth, and directed acyclic graphs.
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