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Abstract

Dynamic networks of concurrent pushdown systems (DCPS) are a theoretical model for multi-
threaded recursive programs with shared global state and dynamical creation of threads. The
(global) state reachability problem for DCPS is undecidable in general, but Atig et al. (2009) showed
that it becomes decidable, and is in 2EXPSPACE, when each thread is restricted to a fixed number
of context switches. The best known lower bound for the problem is EXPSPACE-hard and this lower
bound follows already when each thread is a finite-state machine and runs atomically to completion
(i.e., does not switch contexts). In this paper, we close the gap by showing that state reachability is
2EXPSPACE-hard already with only one context switch. Interestingly, state reachability analysis
is in EXPSPACE both for pushdown threads without context switches as well as for finite-state
threads with arbitrary context switches. Thus, recursive threads together with a single context
switch provide an exponential advantage.

Our proof techniques are of independent interest for 2EXPSPACE-hardness results. We introduce
transducer-defined Petri nets, a succinct representation for Petri nets, and show coverability is
2EXPSPACE-hard for this model. To show 2EXPSPACE-hardness, we present a modified version of
Lipton’s simulation of counter machines by Petri nets, where the net programs can make explicit
recursive procedure calls up to a bounded depth.
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1 Introduction

There is a complexity gap between EXPSPACE and 2EXPSPACE that shows up in several
problems in the safety verification of multithreaded programs.

Atig, Bouajjani, and Qadeer [1] study safety verification for dynamic networks of concur-
rent pushdown systems (DCPS), a theoretical model for multithreaded recursive programs
with a finite shared global state, where threads can be recursive and can dynamically spawn
additional threads. Unrestricted reachability is undecidable in this model. To ensure decid-
ability, like many other works [16, 11, 14, 10], they assume a bound K that restricts each
thread to have at most K context switches. For safety verification in this model, formulated
as global state reachability, they show a lower bound of EXPSPACE and an upper bound of
2EXPSPACE, “closing the gap” is left open.

Kaiser, Kroening, and Wahl [8] study safety verification of multithreaded non-recursive
programs with local and global Boolean variables. In this model, an arbitrary number of
non-recursive threads execute over shared global state, but each thread can maintain local
state in Boolean variables. Although their paper does not provide an explicit complexity
bound, a lower bound of EXPSPACE and an upper bound of 2EXPSPACE can be derived
from a reduction from Petri net coverability and their algorithm respectively.

Interestingly, when we restrict the models to disallow either context switches (i.e., each
thread runs atomically to completion) or local state in the form of the pushdown stack or local
variables (but allow arbitrary context switches), safety verification is in EXPSPACE [1, 7].

Thus, the complexity gap asks whether or not the combination of local state (maintained
in local variables or in the stack) and bounded context switching provides additional power
to computation. In this paper, we show that indeed it does. In fact, the combination of local
state and just one context switch is sufficient to achieve 2EXPSPACE lower bounds for these
problems. This closes the complexity gap.

We believe the constructions and models that we use along the way are of independent
interest. We introduce transducer-defined Petri nets (TDPNs), a succinct representation for
Petri nets. The places in a TDPN are encoded using words over a fixed alphabet, and the
transitions are described by length-preserving transducers. We show that coverability for
TDPNs is 2EXPSPACE-complete1 and give a polynomial-time reduction from coverability for
TDPNs to safety verification for DCPS with one context switch.

The idea of the latter reduction is to map a (compressed) place to the stack of a thread
and a marking to the set of currently spawned threads. A key obstacle in the simulation is
to “transfer” potentially exponential amount of information from before a transition to after
it through a polynomial-sized global store. We present a “guess and verify” procedure, using
non-determinism and the use of additional threads to verify a stack content letter-by-letter.

In order to show 2EXPSPACE-hardness for TDPNs, we introduce the model of recursive
net programs (RNPs), which add the power of making possibly recursive procedure calls to
the model of net programs (i.e., programs with access to Petri net counters). The addition
of recursion enables us to replace the “copy and paste code” idea in Lipton’s construction
to show EXPSPACE-hardness of Petri net coverability [13] with a more succinct and cleaner
program description where the copies are instead represented by different values of the local
variables of the procedures. The net effect is to push the requirement for copies into the call
stack of the RNP while maintaining a syntax which gives us a RNP which is polynomial in the

1 After submitting this work, the authors were made aware of “(level 1) counter systems with chained
counters” from [3], for which 2EXPSPACE-hardness of state reachability is shown in [3, Theorem 14].
The 2EXPSPACE-hardness of coverability in TDPN could also be deduced from that result.
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size of a given counter program. When the stack size is bounded by an exponential function
of the size of the program, we get a 2EXPSPACE-lower bound. We show that recursive net
programs with exponentially large stacks can be simulated by TDPNs.

Finally, we note that the 2EXPSPACE lower bound holds for DCPS where each stack is
bounded by a linear function of the size. Such stacks can be encoded by polynomially many
local Boolean variables, giving us a 2EXPSPACE lower bound for the model of Kaiser et al.

In summary, we introduce a number of natural 2EXPSPACE-complete problems and,
through a series of reductions, close an exponential gap in the complexity of safety verification
for multithreaded recursive programs.

2 Dynamic Networks of Concurrent Pushdown Systems (DCPS)

In this section, we define the model of DCPS and then state our main result. Intuitively, a
DCPS consists of a finite state control and several pushdown threads with local configurations,
one of them being the active thread. A local configuration contains the number of context
switches the thread has already performed, as well as the contents of its local stack. An
action of a thread may specify a new thread with initially one symbol on the stack to be
spawned as an inactive thread. The active thread can be switched out for one of the inactive
threads at any time. When a thread is switched out, its context switch number increases by
one. One can view this model as a collection of dynamically created recursive threads (with
a call stack each), that communicate using some finite shared memory (the state control).

A multiset m : S → N over a set S maps each element of S to a natural number. Let
M[S] be the set of all multisets over S. We treat sets as a special case of multisets where
each element is mapped onto 0 or 1. We sometimes write m = [[a1, a1, a3]] for the multiset
m ∈ M[S] such that m(a1) = 2, m(a3) = 1, and m(a) = 0 for each a ∈ S\{a1, a3}. The
empty multiset is denoted ∅. The size of a multiset m, denoted |m|, is given by

∑
a∈S m(a).

Note that this definition applies to sets as well.
Given two multisets m,m′ ∈M[S] we define m⊕m′ ∈M[S] to be a multiset such that

for all a ∈ S, we have (m ⊕m′)(a) = m(a) + m′(a). We also define the natural order �
on M[S] as follows: m �m′ iff there exists m∆ ∈M[S] such that m⊕m∆ = m′. We also
define m	m′ for m′ �m analogously: for all a ∈ S, we have (m	m′)(a) = m(a)−m′(a).

A Dynamic Network of Concurrent Pushdown Systems (DCPS) A = (G,Γ,∆, g0, γ0)
consists of a finite set of (global) states G, a finite alphabet of stack symbols Γ, an initial
state g0 ∈ G, an initial stack symbol γ0 ∈ Γ, and a finite set of transition rules ∆. Elements
of ∆ have one of the two forms (1) g|γ ↪→ g′|w′, or (2) g|γ ↪→ g′|w′ . γ′, where g, g′ ∈ G,
γ, γ′ ∈ Γ, w′ ∈ Γ∗, and |w′| ≤ 2. Rules of the first kind allow the DCPS to take a single step
in one of the pushdown threads while the second additionally spawn a new thread with top
of stack symbol γ′. The size of A is defined as |A| = |G|+ |Γ|+ |∆|.

The set of configurations of A is G × (Γ∗ × N) × M[Γ∗ × N]. Given a configuration
〈g, (w, i),m〉, we call g the (global) state, (w, i) the local configuration of the active thread,
and m the multiset of the local configurations of the inactive threads. The initial configuration
of A is 〈g0, (γ0, 0), ∅〉. For a configuration c of A, we will sometimes write c.g for the state
of c and c.m for the multiset of threads of c (both active and inactive). The size of a
configuration c = 〈g, (w, i),m〉 is defined as |c| = |w|+

∑
(w′,j)∈m |w′|.

For i ∈ N we define the relation ⇒i=→i ∪ 7→i on configurations of A, where →i and 7→i

are defined as follows:
〈g, (γ.w, i),m〉 →i 〈g′, (w′.w, i),m′〉 for all w ∈ Γ∗ iff (1) there is a rule g|γ ↪→ g′|w′ ∈ ∆
and m′ = m or (2) there is a rule g|γ ↪→ g′|w′ . γ′ ∈ ∆ and m′ = m⊕ [[(γ′, 0)]].
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〈g, (w, i),m ⊕ [[(w′, j)]]〉 7→i 〈g, (w′, j),m ⊕ [[(w, i+ 1)]]〉 for all j ∈ N, g ∈ G,

m ∈M[Γ∗ × N], and w,w′ ∈ Γ∗.
For b ∈ N we define the relation ⇒≤b:=

⋃b
i=0 ⇒i. We use ⇒∗i and ⇒∗≤b to denote the

reflexive, transitive closure of ⇒i and ⇒≤b, respectively.
Given K ∈ N, a state g of A is K-bounded reachable iff 〈g0, (γ0, 0), ∅〉 ⇒∗≤K 〈g, (w, i),m〉

for some (w, i) ∈ Γ∗ × {0, . . . ,K} and m ∈M[Γ∗ × {0, . . . ,K + 1}].
Intuitively, a local configuration (w, i) describes a pushdown thread with stack content w

that has already performed i context switches. The relation →i corresponds to applying the
two kinds of transition rules at i context switches. Both of them define pushdown transitions,
which the active thread can perform. Type (2) also spawns a new inactive pushdown thread
with 0 context switches, whose initial stack content consists of a single specified symbol. For
each i ∈ N, the relation 7→i corresponds to switching out the active thread and raising its
number of context switches from i to i + 1, while also switching in a previously inactive
thread. For a fixed K, the K-bounded state reachability problem (SRP[K]) for a DCPS is :
Input A DCPS A and a global state g
Question Is g K-bounded reachable in A?
This corresponds to asking whether the global state g is reachable if each thread can perform
at most K context switches.

I Theorem 1 (Main Result). For each K ≥ 1, the problem SRP[K] is 2EXPSPACE-complete.

The fact that SRP[K] is in 2EXPSPACE for any fixed K follows from the results of Atig
et al. [1]. They use a slightly different variant of DCPS. However, it is possible to show a
reduction from SRP[K] for our variant to SRP[K + 2] for theirs.

Our main result is to show 2EXPSPACE-hardness for SRP[1]. One may also adapt the
results of Atig et al. to the problem where K is part of the input (encoded in unary), to
derive an EXPSPACE lower bound and a 2EXPSPACE upper bound. Our result immediately
implies 2EXPSPACE-hardness for this problem as well.

In the remaining sections we prove the lower bound in Theorem 1. In Section 3, we
introduce transducer-defined Petri nets (TDPN), a succinct representation for Petri nets
for which we prove the coverability problem is 2EXPSPACE-complete. Then, we show a
reduction from the coverability problem for TDPNs to the SRP[1] problem. In Section 4, we
prove hardness for coverability of TDPNs, completing the proof.

3 Transducer Defined Petri Nets (TDPN)

In this section, we prove the lower bound in Theorem 1 by reducing coverability for a
succinct representation of Petri nets, namely TDPN, to SRP[1] for DCPS. We first recall
some definitions about Petri nets, transducers and problems related to them.

I Definition 2. A Petri net is a tuple N = (P, T, F, p0, pf ) where P is a finite set of
places, T is a finite set of transitions with T ∩ P = ∅, F ⊆ (P × T ) ∪ (T × P ) is its flow
relation, and p0 ∈ P (resp. pf ∈ P ) its initial place (resp. final place). A marking of N is a
multiset m ∈M[P ]. For a marking m and a place p we say that there are m(p) tokens on p.
Corresponding to the initial (resp. final) place we have the initial marking m0 = [[p0]] (resp.
final marking mf = [[pf ]]). The size of N is defined as |N | = |P |+ |T |.

A transition t ∈ T is enabled at a marking m if {p | (p, t) ∈ F} �m. If t is enabled in m,
t can be fired, which leads to a marking m′ with m′ = m⊕ {p | (t, p) ∈ F} 	 {p | (p, t) ∈ F}.
In this case we write m t−→ m′. A marking m is coverable in N if there is a sequence
m0

t1−→m1
t2−→ . . .

tl−→ml such that m �ml. We call such a sequence a run of N .
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p1 p2

t

t = (p1, p2) ∈ L(Tmove)

p1

p2

p3t

t = (p1, p2, p3) ∈ L(Tfork)

p1

p2

p3

t

t = (p1, p2, p3) ∈ L(Tjoin)

Figure 1 The types of transitions defined by the three transducers.

The coverability problem for Petri nets is defined as:
Input A Petri net N .
Question Is mf coverable in N?

I Definition 3. For n ∈ N, a (length preserving) n-ary transducer T = (Σ, Q, q0, Qf ,∆)
consists of an alphabet Σ, a finite set of states Q, an initial state q0 ∈ Q, a set of final states
Qf ⊆ Q, and a transition relation ∆ ⊆ Q× Σn ×Q. For a transition (q, a1, . . . , an, q

′) ∈ ∆
we also write q (a1,...,an)−−−−−−→ q′. The size of T is defined as |T | = n · |∆|.

The language of T is the n-ary relation L(T ) ⊆ (Σ∗)n containing precisely those n-
tuples (w1, . . . , wn), for which there is a transition sequence q0

(a1,1,...,an,1)−−−−−−−−→ q1
(a1,2,...,an,2)−−−−−−−−→

. . .
(a1,m,...,an,m)−−−−−−−−−→ qm with qm ∈ Qf and wi = ai,1ai,2 · · · ai,m for all i ∈ {1, . . . , n}. Such a

transition sequence is called an accepting run of T .

We note that in the more general (i.e. non-length-preserving) definition of a transducer, the
transition relation ∆ is a subset of Q× (Σ ∪ ε)n ×Q. All transducers we consider in this
paper are length-preserving.

I Definition 4. A transducer-defined Petri net N = (winit , wfinal , Tmove, Tfork, Tjoin)
consists of two words winit , wfinal ∈ Σl for some l ∈ N, a binary transducer Tmove and two
ternary transducers Tfork and Tjoin. Additionally, all three transducers share Σ as their
alphabet. This defines an explicit Petri net N(N ) = (P, T, F, p0, pf ) :

P = Σl.
T is the disjoint union of Tmove, Tjoin and Tfork

2 where
Tmove = {(w,w′) ∈ Σl × Σl | (w,w′) ∈ L(Tmove)},
Tfork = {(w,w′, w′′) ∈ Σl × Σl × Σl | (w,w′, w′′) ∈ L(Tfork)}, and
Tjoin = {(w,w′, w′′) ∈ Σl × Σl × Σl | (w,w′, w′′) ∈ L(Tjoin)}.

p0 = winit and pf = wfinal.
∀t ∈ T :

If t = (p1, p2) ∈ Tmove then (p1, t), (t, p2) ∈ F .
If t = (p1, p2, p3) ∈ Tfork then (p1, t), (t, p2), (t, p3) ∈ F .
If t = (p1, p2, p3) ∈ Tjoin then (p1, t), (p2, t), (t, p3) ∈ F .

An accepting run of one of the transducers, which corresponds to a single transition of N , is
called a transducer-move. The size of N is defined as |N | = l + |Tmove|+ |Tfork|+ |Tjoin|.

A Petri net defined by transducers in this way can only contain three different types of
transitions, each type corresponding to one of the three transducers. These transition types
are depicted in Figure 1. The coverability problem for TDPN is given by:
Input A TDPN N .
Question Is mf = [[wfinal ]] coverable in the corresponding explicit Petri net N(N )?

2 Note that a tuple (w, w′, w′′) ∈ Tjoin is different from the same tuple in Tfork . In the interest of
readability, we have chosen not to introduce a 4th coordinate to distinguish the two.

ICALP 2020
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Observe that the exlicit Petri net N(N ) has |Σ|l places, which is exponential in the size
of N . This means that TDPN are exponentially succinct representations of Petri nets.

It is a common theme in complexity theory to consider succinct versions of decision
problems [12, 6, 15]. The resulting complexity is usually one exponent higher than the
original version. In fact, certain types of hardness proofs can be lifted generically [15] (but
such a simple argument does not seem to apply in our case). The hardness proof in the
following is deferred to Section 4.

I Theorem 5. The coverability problem for TDPN is 2EXPSPACE-complete.

Traditionally, succinct versions of graphs and automata feature a compression using circuits [6,
15] or formulas [12]. One could also compress Petri nets by using circuits to accept binary
encodings of elements (p, t) or (t, p) of the flow relation. It is relatively easy to reduce
coverability for TDPN to this model by encoding transitions t as the pair or triple of places
that they correspond to, yielding 2EXPSPACE-hardness. We consider transducers because
they make the reduction to DCPS more natural. 2EXPSPACE-membership for any such
representation follows by first unravelling the Petri net and then checking coverability [17].

We now show that coverability for TDPN can be reduced in polynomial time to SRP[1]
for DCPS. The goal of the reduction is, given a TDPN N = (winit , wfinal , Tmove, Tfork,

Tjoin), to produce a DCPS A(N ) with a global state halt such that wfinal is coverable in N
iff halt is 1-bounded reachable in A(N ). We outline the main ideas and informally explain
the solution to some technical issues that arise.

Representation of Markings. The main idea behind the simulation of a TDPN N by a
DCPS A(N ) is that a token on a place w of N is represented by a thread with stack content
w. Extending this idea, a marking is represented by a multiset of threads, one for each token.

Initialization. The initial marking of N is [[winit ]] and A(N ) starts by going into a special
state where it always fills its stack with winit and then moving to a global state main. We
need O(l) states in the global memory for the initialization.

Simulation of one Transducer-move. In the sequel, we explain the simulation of a single
transducer-move from Tmove; the changes required to be made in the case of Tjoin and Tfork
are explained at the end. Remembering the choice of transducer incurs a multiplicative cost
of 3 in the global memory. The transducer-move requires us to do two things: Read the stack
contents of a particular input thread which corresponds to a place w from which a token is
removed; after which we need to create an output thread which corresponds to a place w′ to
which a token is added. This results in the following issue regarding input threads:
Issue 1: How can an input thread communicate its stack content w which comes from an

exponentially large space of possibilities (since this space is Σl) given the requirement for
the global state space to be polynomial in |N |?

Solution 1: We pop the contents of the thread while simultaneously spawning bit-threads,
each of which contains one letter of w along with the index i ∈ {1, . . . , l} of the letter
and the information that w is a place from which a token is being removed; all of which
is coded into a single bit-symbol.

Note that we have two types of threads: bit-threads and token-threads (i.e., those whose
stack contents encode a token’s position). Moreover, these two types of threads have disjoint
sets of stack symbols: bit-symbols and token-symbols. The idea used to solve Issue 1 and
read the stack contents, cannot be used in reverse to create an output token-thread since it
is not possible to populate a stack with information from bit-threads.
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Issue 2: How do we ensure the creation of appropriate output threads?
Solution 2: We implement a “guess-and-verify” procedure whereby we first guess the contents

of an output token-thread while simultaneously producing bit-threads corresponding to
w′; this is followed by a verification of the transition by comparing bit-threads produced
corresponding to w and w′, in a bit-by-bit fashion.

In particular, our simulation of a single transducer-move corresponds to a loop on the global
state main which is broken up into three stages: Read, guess and verify. The implementation
of this loop ensures that a configuration c of A(N ) where c.g = main has a multiset c.m
of threads faithfully representing a marking m̃ of N in that c.m contains exactly m̃(w′′)
token-threads with stack content w′′ for each place w′′ of N and no other threads.

We note that the discussion so far shows how the run of a N can be simulated when the
schedule switches contexts at appropriate times. We must also ensure that new behaviors
cannot arise due to context switches at arbitrary other points. We accomplish this by using
global locks that ensure unwanted context switches get stuck.
Issue 3: How do we control the effect of arbitrary context switches?
Solution 3: The global state is partitioned in such a way as to only enable operations on

bit-symbols while in some states and token-symbols in others. We ensure that for every
bit-symbol γ, there is at most one thread with top of stack γ at any given time. Thus
with the help of global control, we make sure unwanted context switches to bit-threads get
the system stuck. The problem reduces to avoiding unwanted context switches between
token-threads.
We use a locking mechanism. We add an extra > symbol at the top of every token-thread
when it is first created. A read-stage always begins in a special state used for unlocking a
thread (i.e. removing >). While reading a particular thread, the global state disallows
any transition on > or bit-symbols. Since all inactive token-threads have > as the top
of stack symbol, this implies that the system cannot proceed until it switches back to
the unlocked token-thread. Similarly, during the guess-stage where we are creating a
new token-thread, transitions are disallowed on > and bit-symbols. The verify-stage only
operates on bit-threads and switching to a token-thread is similarly pointless.

We now describe the three stages. Recall that the global state keeps the information that
the current step is a transducer-move from Tmove.

Read-stage. We non-deterministically switch to a token-thread t0 containing w as stack
content, which we need to read. As explained earlier, we produce bit-threads decorated
appropriately and at the end of this stage, we have popped all of t0 and created l bit-threads;
t0 ceases to exist. The number of global states required in the stage is O(l).

Guess-stage. Next, we create a new token-thread with w′ as its stack contents by non-
deterministic guessing, simultaneously spawning bit-threads for each letter of w′. At the
end of this stage l more bit-threads have been added to the task buffer (for a total of 2l
bit-threads) along with a token-thread containing w′. As in the read-stage, the number of
global states used in this stage is O(l).

Verify-stage. We guess a sequence of transitions δ1 . . . δl of Tmove on-the-fly; we guess δi

which must be of the form qi−1
(wi,w′

i)−−−−−→ qi where wi (resp. w′i) the ith letter of w (resp.
w′). We verify our guess by comparing each δi with the corresponding bit-threads bi, b

′
i with

index i produced in the read-stage from w,w′ respectively, before moving on to δi+1. During
the verification, the bit-threads are killed. We enforce the condition that the target state of
δi matches the source state of δi+1.

ICALP 2020
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Claim. Killing a bit-thread t′ with a single stack symbol γ′ can be simulated by a DCPS.
Consider the following sequence of operations starting from global state g with an active
thread t which contains only one symbol γ on the stack:

1. Spawn a thread t′′ with a special symbol γspawn and move to a special kill-state kill which
contains information regarding the state g prior to the kill operation and stack symbols
of t and t′.

2. Switch to a thread with symbol γ′ and pop its contents while moving to a special state
return which is forwarded the information contained in kill.

3. Switch to the thread with γspawn as top of stack and replace it with γ and at the same
time go to global state g.

This concludes our proof sketch of the claim. Adding a kill operation to a DCPS only incurs
a polynomial increase in the size of the DCPS.

In our setting, the net result of the sequence of operations simulating a kill-move is to
remove the two bit-threads bi, b

′
i from the multiset of threads without changing the global

state or the top of stack symbol γ. The special states kill (resp. return) ensure that if
one switches to a thread whose top of stack is different from γ′ in Step 2 (resp. γspawn in
Step 3), no transition can be made. We return to our discussion regarding the sequence of
transitions δi.

Since this process of checking the transducer-move occurs bit-by-bit, we require O(l|Tmove|)
many global states in this stage. At the end of the verification process, A(N ) is once again in
state main and the new multiset is the result of the addition of a w′ thread and removal of the
w thread from the old multiset of threads. We can now simulate the next transducer-move.

Checking for Coverability. At any point when A(N ) is in the state main, it makes a non-
deterministic choice between simulating the next transducer-move or checking for coverability.
In the latter case, it goes into a special check state where the active thread is compared letter
by letter with wfinal in a process similar to initialization. At the end of the checking process,
A(N ) reaches the state halt. If the check fails at any intermediate point, A(N ) terminates
without reaching the halt state. We require a further O(l) states for checking coverability.

Fork and Join. We have shown above how a single transducer-move is simulated assuming
that it is a transducer-move from Tmove. In general, the transducer-move could be from
Tjoin or Tfork as well. In these two cases, we have triples of the form (w,w′, w′′) accepted by
the transducer. However, in the former, we read w,w′ and guess w′′ while in the latter, we
read w and guess w′, w′′. In the case of Tjoin , once we have read w, we non-deterministically
switch to a thread containing w′ as its contents. Whenever the threads picked during the
read-stage and the threads created during the guess-stage do not agree with the guessed
transitions of the transducer-move, we encounter a problem during the verify-stage and A(N )
terminates without reaching the halt state.

Context Switches. Every thread (other than the initial one for winit) is created during
the guess-stage and then switched out once. The next time it is switched in, it is read and
ceases to exist. This implies that there exists a run of A(N ) simulating a run of N where
every thread undergoes at most one context switch. Conversely, we show that a run of
A(N ) reaching halt where every thread is bounded by at most 1 context switch implies the
existence of a run in N which covers the final marking as desired.



P. Baumann, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 111:9

This concludes our overview of the construction of A(N ) and completes the reduction
of coverability for TDPN to SRP[1] for DCPS. The global memory is polynomial in the size
of N . Similarly, the stack alphabet is expanded to include O(l · |Σ|) bit symbols, hence
the alphabet of A(N ) is polynomial as well. In summary, A(N ) can be produced in time
polynomial in the size of the input.
I Remark 6. Our lower bound holds already for DCPS where the stack of each thread
is bounded by a linear function of the size of the DCPS. Thus, as a corollary, we get
2EXPSPACE-hardness for a related model in which each thread is a Boolean program, i.e.,
where each thread has its stack bounded by a constant but has a polynomial number (in
the size of |G|+ |Γ|+ |∆|) of local Boolean variables. This closes the gap from [8] as well as
other similar models studied in the literature [2, 9, 4].

4 Recursive Net Programs (RNP)

We prove Theorem 5 by adapting the Lipton construction [13], as it is explained in [5], to our
succinct representation of Petri nets. Our construction requires two steps. First we reduce
termination for bounded counter programs to termination for Petri net programs which do
not allow zero tests. Second, we reduce termination of net programs with to coverability for
TDPN.

For the first step, we have to show how we can simulate the operation of a bounded
counter program with one without zero tests. In the Lipton construction, this is achieved
by constructing a gadget that performs zero tests for counters bounded by some bound B.
These gadgets are obtained by transforming a gadget for bound B into a gadget for B2.
Starting with B = 2 and applying this transformation n times leads to a gadget for B = 22n .
One then has to argue that the resulting net program still has linear size in the parameter n.
For a 2EXPSPACE lower bound, one would need to simulate a program where the bound is
triply exponential in n. A naive implementation of the gadget would then lead to a program
with triply exponential counter values, but exponential program size in n.

In order to argue later that the resulting program can be encoded in a small TDPN, we
will present the Lipton construction in a different way. Instead of growing the program with
every gadget transformation, we implement the gadgets recursively using a stack. We call
these programs recursive net programs (RNP). This way, when we instantiate the model
for a triply exponential bound on the counters (to get 2EXPSPACE-hardness instead of
EXPSPACE-hardness), the resulting programs still have polynomial size control flow. Note
that at run time, such programs can have an exponentially deep stack; however, this very
large stack does not form part of the program description. We shall show that RNP have a
natural encoding as TDPN.

For the second step, we reduce termination for RNP to coverability for TDPN. To this
end, we borrow some techniques from the original construction to translate an RNP into
an exponential sized Petri net. We then assign binary addresses to its places and construct
transducers for those pairs and triples that correspond to transitions. This results in a TDPN
of polynomial size. Finally, we argue that we do not need the whole exponential sized Petri
net to reason about the transducers, and that just a polynomial size part suffices. This then
gives us a polynomial time procedure.

4.1 From Bounded Counter Programs to RNP
Bounded Counter Programs. A counter program is a finite sequence of labelled commands
separated by semicolons. Let l, l1, l2 be labels and x be a variable (also called a counter).
The labelled commands have one of the following five forms:
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(1) l : inc x; // increment
(2) l : dec x; // decrement
(3) l : halt
(4) l : goto l1; // unconditional jump
(5) l : if x = 0 then goto l1 else goto l2; // conditional jump

Variables can hold values over the natural numbers, labels have to be pairwise distinct,
but can otherwise come from some arbitrary set. For convenience, we require each program
to contain exactly one halt command at the very end. The size |C| of a counter program C

is the number of its labelled commands.
During execution, all variables start with initial value 0. The semantics of programs

follows from the syntax, except for the case of decrementing a variable whose value is
already 0. In this case, the program aborts, which is different from proper termination, i.e.,
the execution of the halt command. It is easy to see that each counter program has only one
execution, meaning it is deterministic. This execution is k-bounded if none of the variables
ever reaches a value greater than k during it.

Let expm+1(x) := exp(expm(x)) and exp1(x) = exp(x) := 2x. The N -fold exponentially
bounded halting problem (also called termination) for counter programs (HP[N ]) is given by:
Input A unary number n ∈ N and a counter program C.
Question Does C have an expN (n)-bounded execution that reaches the halt command?
We make use of the following well-known result regarding this problem:

I Theorem 7. For each N > 0, the problem HP[N + 1] is N -EXPSPACE-complete.

The proof for arbitrary N matches the proof for N = 1, which the Lipton construction used.

Recursive Net Programs. The definition of recursive net programs (RNP) also involves
sequences of labelled commands separated by semicolons. Let l, l1, l2 be labels, x be a variable,
and proc be a procedure name. Then the labelled commands can still have one of the previous
forms (1) to (4). However, form (5) changes from a conditional to a nondeterministic jump,
and there are two new forms for procedure calls:

(1) l : inc x; // increment
(2) l : dec x; // decrement
(3) l : halt
(4) l : goto l1; // unconditional jump
(5) l : goto l1 or goto l2; // nondeterministic jump
(6) l : call proc; // procedure call
(7) l : return; // end of procedure

In addition to labelled commands, these programs consist of a finite set PROC of procedure
names and also a maximum recursion depth k ∈ N. Furthermore, they not only contain
one sequence of labelled commands to serve as the main program, but also include two
additional sequences of labelled commands for each procedure name proc ∈ PROC. The
second sequence for each proc is not allowed to contain any call commands and serves as a
sort of “base case” only to be called at the maximum recursion depth. Each label has to be
unique among all sequences and each jump is only allowed to target labels of the sequence it
belongs to. Each RNP contains exactly one halt command at the end of the main program.
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For proc ∈ PROC let #c(proc) be the number of commands in both of its sequences added
together and let #c(main) be the number of commands in the main program. Then the size
of an RNP R is defined as |R| = dlog ke+ #c(main) +

∑
proc∈PROC #c(proc).

The semantics here is quite different compared to counter programs: If the command
“l : call proc” is executed, the label l gets pushed onto the call stack. Then if the stack
contains less than k labels, the first command sequence pertaining to proc, which we now call
proc<max, is executed. If the stack already contains k labels, the second command sequence,
proc=max, is executed instead. Since proc=max cannot call any procedures by definition, the
call stack’s height (i.e. the recursion depth) is bounded by k. On a return command, the last
label gets popped from the stack and we continue the execution at the label occurring right
after the popped one.

How increments and decrements are executed depends on the current recursion depth d
as well. For each variable x appearing in a command, k + 1 copies x0 to xk are maintained
during execution. The commands inc x resp. dec x are then interpreted as increments resp.
decrements on xd (and not x or any other copy). As before, all these copies start with value 0
and decrements fail at value 0, which is different from proper termination.

Instead of a conditional jump, we now have a nondeterministic one, that allows the
program execution to continue at either label. Regarding termination we thus only require
there to be at least one execution that reaches the halt command. This gives us the following
halting problem for RNP:
Input An RNP R

Question Is there an execution of R that reaches the halt command?

We now adapt the Lipton construction to recursive net programs. We start with a
exp2(n)-bounded counter program C with a set of counters X and construct an RNP R(C)
with maximum recursion depth n + 1 that terminates iff C terminates. The number of
commands in R(C) will be linear in |C|.

Auxiliary Variables. The construction of R(C) involves simulating the zero test. To this
end, we introduce for each counter x ∈ X a complementary counter x̄ and ensure that the
invariant x0 + x̄0 = exp2(n) always holds. We can then simulate a zero test on x by checking
that x̄ can be decremented exp2(n) times. This requires us to implement a decrement by
exp2(n) in linearly many commands and also a similar increment to reach a value of exp2(n)
for x̄ from its initial value 0 at the start of the program. Furthermore, we need helper
variables s, s̄, y, ȳ, z, and z̄. We also sometimes need to increment or decrement the (d+1)th
copy of one of these six variables at recursion level d. As an example, for incrementing sd+1
in this way, we define the procedure s_inc:

s_inc<max : inc s; return s_inc=max : inc s; return

The analogous procedures for s̄, y, ȳ, z, and z̄ are defined similarly.

Program Structure. The program R(C) consists of two parts: The initial part Rinit(C),
which initializes all the complementary counters as mentioned above, followed by Rsim(C),
the part that simulates C. We construct Rsim(C) from C by replacing some of its commands.
Increments of the form inc x are replaced by dec x̄;inc x, decrements dec x are replaced by
dec x;inc x̄. Unconditional jumps and the halt command stay the same. Each conditional
jump (form (5) for counter programs) is replaced by

l : Test(x, lcontinue, l2);
lcontinue : Test(x̄, l1, l2)
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Test(x, lzero, lnonzero) :

goto lnztest or goto lloop;
lnztest : dec x; inc x; goto lnonzero;

lloop : dec x̄; inc x; call s̄_dec; call s_inc;
goto lexit or goto lloop;

lexit : call dec; goto lzero

Test+1(v, lzero, lnonzero) :

goto lnztest or goto lloop;
lnztest : call v_dec; call v_inc; goto lnonzero;

lloop : call v̄_dec; call v_inc;
call s̄_dec; call s_inc;
goto lexit or goto lloop;

lexit : call dec; goto lzero

dec<max :

louter : call y_dec; call ȳ_inc;
linner : call z_dec; call z̄_inc;

dec s; inc s̄;
Test+1(z, lnext, linner);

lnext : Test+1(y, lexit, louter);
lexit : return

dec=max :

dec s; inc s̄; dec s; inc s̄;
return

Figure 2 Definitions of the macros Test and Test+1 as well as the procedure dec. Regarding the
second macro we require v ∈ {y, z}.

where Test(x, lzero, lnonzero) is what we call a macro. We use it as syntactic sugar to be
replaced by its specification for the actual construction of R(C). This is in contrast to
procedures, which refer to specific parts of the program that can be called to increase the
recursion depth.

Test Macros and Decrement Procedure. The macro Test is specified in the left part of
Figure 2. It involves a call to the procedure dec, which is defined in the right part of the
same figure. Below Test we have also specified the variant Test+1, which is used in dec. The
main difference is that Test+1 can only be invoked on variables y or z and acts on their
(d+ 1)th copy at recursion depth d.

Semantically, dec at recursion depth d decrements sd by exp2(n+ 1− d) (and increments
s̄d by the same amount). Both variants of Test simulate a conditional jump and have the
side effect of switching the values xd and x̄d if the tested variable xd was 0. Because of this,
every conditional jump of C gets replaced by two instances of the Test macro, where the
second one reverses the potential side effect.

The decrements of procedure dec are performed via two nested loops that each run
exp2(n − d)-times. Each of these loops uses a helper variable yd+1 or zd+1 that has to be
tested for zero at the end, using the Test+1 macro. This involves transferring the helper
variable’s value to sd+1 and then calling dec at the next recursion depth. Essentially, any
decrement by exp2(j) for some j is implemented using exp2(j − 1) many decrements by
exp2(j − 1) via the nested loops. This iterative squaring of the value by which we decrement
continues down to the base case of exp2(0) = 2.

Semantics. Our construction is semantically very similar to the Lipton construction, barring
two main differences: Firstly, instead of having n+ 1 different procedure definitions of dec
(one per level d), we only need two because of recursion. The case for the Test macros is
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similar, as is the case of the helper variables s, y, z and their complements. Secondly, our
variable copies start with index 0 counting upwards, whereas in the Lipton construction the
variables start with index n and count downwards. This means that for some index d we have
the invariant sd + s̄d = exp2(n+ 1− d) in our construction, where it is sd + s̄d = exp2(d) for
Lipton. While the invariant of the Lipton construction is simpler, ours allows us to define the
recursion depth starting at 0 and going upwards, which seemed more natural for recursion.

Let us give a more precise analysis regarding the effect of the Test macros and dec
procedure. During the execution of dec at recursion depth d, we begin with sd = exp2(n+
1 − d), yd+1 = zd+1 = exp2(n − d), and s̄d = ȳd+1 = z̄d+1 = 0. The invariants sd + s̄d =
exp2(n + 1 − d), yd+1 + ȳd+1 = exp2(n − d), and zd+1 + z̄d+1 = exp2(n − d) are upheld
throughout. At the end we have sd = ȳd+1 = z̄d+1 = 0, yd+1 = zd+1 = exp2(n − d), and
s̄d = exp2(n + 1 − d), meaning the decrements were performed correctly and all helper
variables retain their initial values. The situation is quite similar for Test and Test+1, if
the variable to be tested was initially 0. In the non-zero case, the tested variable is just
decremented and incremented once, whereas no other variables are touched. All executions
that differ from the described behavior are guaranteed to get stuck.

Correctness of these semantics can be proven by induction on the recursion depth. It
requires the assumptions x0 + x̄0 = exp2(n), vd + v̄d = exp2(n+ 1− d), and v̄d = 0 for all
x ∈ X, v ∈ {s̄, y, z}, and d > 0.

Initialization. We now have to construct Rinit(C) in such a way, that it performs all the
necessary increments for these assumptions to hold at the start of Rsim(C). Since this is
again achieved using iterative squaring, we omit the precise construction. It involves calling
a procedure inc to perform the increments on copies of variables at lower recursion depths,
while x0 is incremented in the main program for each x ∈ X.

Size Analysis. To give a brief size analysis of R(C), PROC contains 14 procedure names,
whose corresponding definitions have constant size. For each command in C, Rsim(C)
contains constantly many commands, and Rinit(C) has linearly many commands in the
size of the variable set X. Since wlog. each variable of C is involved in at least one of its
commands, the amount of commands in R(C) is linear in |C|. Here, for doubly exponential
counter values, we would not even need n to be given in unary since only dlog(n+ 1)e factors
into the size of R(C).

Handling Triply Exponential Counter Values. The exact same construction with a maxi-
mum recursion depth of 2n + 1 can be used to simulate a counter program with counters
bounded by exp3(n): Starting with 2 and squaring n-times yields exp2(n), therefore squaring
2n times instead yields exp3(n). The correctness follows from the same inductive proofs as
before. For this changed maximum recursion depth, configurations contain exponentially in
n many counter values and also maintain a call stack of size up to 2n. However, since the
maximum recursion depth can be encoded in binary, its size is still polynomial in the unary
encoding of n. Thus, the halting problem for recursive net programs is 2EXPSPACE-hard.

4.2 From RNP to TDPN
Figure 3 and Figure 4 show how the commands of recursive net programs can be simulated
by Petri net transitions. This is again done in similar fashion to Esparza’s description [5] of
the Lipton construction [13]. As we can see, this involves only the three types of transitions
defined by our transducers.
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l1,d

l2,d

xd

l1 : inc x;
l2 : . . .

l1,d

l2,d

xd

l1 : dec x;
l2 : . . .

l1,d

whalt

l1 : halt;

l1,d

l2,d

l1 : goto l2;

l1,d

l2,d l3,d

l1 : goto l2 or goto l3;

Figure 3 Petri net transitions for five of the seven command types found in recursive net programs.
Here, d ∈ {0, . . . , k}, where k is the maximum recursion depth.

l1,d l1,d_calls_proc l2,d

l3,d+1

· · ·
l4,d+1 return_procd+1

proc : l3 : . . .
...

l4 : return;

l1 : call proc;
l2 : . . .

Figure 4 Petri net transitions for procedure calls found in recursive net programs. Here,
d ∈ {0, . . . , k − 1}, where k is the maximum recursion depth.

Let us give more detail regarding the Petri net construction: Given an RNP R with
maximum recursion depth k we construct a transducer-defined Petri net N = (winit , wfinal ,

Tmove, Tfork , Tjoin), which defines the Petri net N(N ) = (P, T, F, p0, pf ), such that [[pf ]] is
coverable in N(N ) iff there is a terminating execution of R. We begin by arguing about the
shape of N(N ) and then construct our transducers afterwards.

The idea is for N(N ) to start with one place per variable and one place per label, as well
as one auxiliary place for each call command and each proc ∈ PROC, which can be seen in
Figure 4. Additionally, there is also a single auxiliary place whalt for the halt command. Let
the number of all these places be h. Then each such place gets copied k + 1 times, so that a
copy exists for each possible recursion depth. Transitions get added at each recursion depth
d according to Figure 3 and Figure 4, whereas some transitions in the latter also connect to
places of recursion depth d+ 1.

Regarding the transducers, we use the alphabet {0, 1}. Every place address w = u.v has
a prefix u of length dlog he and a postfix v of length dlog ke. We assign each of the h places
that N(N ) started with a number from 0 to h− 1. The binary representation of this number
(with leading zeros) is used for the u-part of its address. For the v-part, we use the binary
representation of the recursion depth d (also with leading zeros), that a particular copy of
this place corresponds to. The address of the place corresponding to the first label in the
main program at recursion depth 0 is used for winit , whereas the one corresponding to whalt
at recursion depth 0 is used for wfinal .

To accept a particular pair or triple of addresses as a transition, each of the three
transducers distinguishes between all possibilities regarding the u-parts. Any pair or triple of
dlog he-length words that matches a particular transition of the right type (move, fork, join)
has a unique path in the transducer, while all non-matching pairs or triples do not. Then for
the v-parts, the transducer needs to either check for equality, if all places correspond to the
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same recursion depth, or for one binary represented number to be one higher. Since it is
clear from the u-parts, whether the recursion depths should all match or not, we can just
connect the unique paths to the correct part of the transducer at the end.

The transducer parts for the first dlog he bits require to distinguish between up to
23 log h = 8h possibilities, meaning they require polynomially in h many states. The parts for
the last dlog ke bits can easily be constructed using polynomially many states in log k. Since
h is linear in the number of commands in R and dlog ke is the size of the binary encoding
of the maximum recursion depth, N is of polynomial size compared to R. Because we can
construct N by first constructing N(N ) without the copies for each recursion depth, this is
feasible in polynomial time. Thus, the coverability problem for transducer-defined Petri nets
is 2EXPSPACE-hard.

5 Discussion

The chain of reductions in Sections 3 and 4 complete the 2EXPSPACE lower bound for
1-bounded reachability for DCPS. In fact, an inspection of the reductions show a technical
strengthening: the 2EXPSPACE lower bound already holds for SRP[1] of DCPS which satisfy
two additional properties, boundedness and local termination.

I Definition 8. A DCPS A is said to be bounded if there is a global bound B ∈ N on the
size of every configuration of every run of A. It is locally terminating if every infinite run
of A contains infinitely many context switches.

Consider the chain of reductions from the halting problem for bounded counter programs
to RNP to TDPN to SRP[1]. The configurations of the counter programs, by definition,
are bounded by a triply-exponential bound on the parameter n. This bound translates to
bounds on the RNP and TDPN instances. In particular, the number of places in the TDPN
produced in the reduction is exponentially bounded in n and the number of tokens on these
places is triple-exponentially bounded in n. The DCPS constructed from the TDPN uses the
stack of a thread to store an address of a place; thus, the height of a stack is bounded by a
polynomial in n. In addition, since the number of tokens in the TDPN correspond to the
number of in-progress threads in the DCPS, this implies a triple exponential (in n) bound on
the number of threads in any execution of the DCPS. Thus, the size of every configuration
in every run of the DCPS is bounded.

Second, the rules of the constructed DCPS do not allow any one thread to run indefinitely.
In other words, any non-terminating run of the DCPS must involve infinitely many threads
and the run contains infinitely many context switches.

I Theorem 9. The SRP[1] problem for bounded, locally terminating DCPS is 2EXPSPACE-
hard.
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