
Sensitive Instances
of the Constraint Satisfaction Problem
Libor Barto
Department of Algebra, Faculty of Mathematics and Physics,
Charles University, Praha 8, Czech Republic
barto@karlin.mff.cuni.cz

Marcin Kozik
Theoretical Computer Science, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland
marcin.kozik@uj.edu.pl

Johnson Tan
Department of Mathematics, University of Illinois, Urbana-Champaign, Urbana, IL, USA
jgtan2@illinois.edu

Matt Valeriote
Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
matt@math.mcmaster.ca

Abstract
We investigate the impact of modifying the constraining relations of a Constraint Satisfaction
Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely
we investigate sensitive instances: an instance of the CSP is called sensitive, if removing any tuple
from any constraining relation invalidates some solution of the instance. Equivalently, one could
require that every tuple from any one of its constraints extends to a solution of the instance.

Clearly, any non-trivial template has instances which are not sensitive. Therefore we follow the
direction proposed (in the context of strict width) by Feder and Vardi in [13] and require that only
the instances produced by a local consistency checking algorithm are sensitive. In the language
of the algebraic approach to the CSP we show that a finite idempotent algebra A has a k + 2
variable near unanimity term operation if and only if any instance that results from running the
(k, k + 1)-consistency algorithm on an instance over A2 is sensitive.

A version of our result, without idempotency but with the sensitivity condition holding in a
variety of algebras, settles a question posed by G. Bergman about systems of projections of algebras
that arise from some subalgebra of a finite product of algebras.

Our results hold for infinite (albeit in the case of A idempotent) algebras as well and exhibit a
surprising similarity to the strict width k condition proposed by Feder and Vardi. Both conditions
can be characterized by the existence of a near unanimity operation, but the arities of the operations
differ by 1.
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1 Introduction

One important algorithmic approach to deciding if a given instance of the Constraint
Satisfaction Problem (CSP) has a solution is to first consider whether it has a consistent set
of local solutions. Clearly, the absence of local solutions will rule out having any (global)
solutions, but in general having local solutions does not guarantee the presence of a solution.
A major thrust of the recent research on the CSP has focused on coming up with suitable
notions of local consistency and then characterizing those CSPs for which local consistency
implies outright consistency or some stronger property. A good source for background
material is the survey article [7].

Early results of Feder and Vardi [13] and also Jeavons, Cooper, and Cohen [15] establish
that when a template (i.e., a relational structure) A has a special type of polymorphism,
called a near unanimity operation, then not only will an instance of the CSP over A that has
a suitably consistent set of local solutions have a solution, but that any partial solution of it
can always be extended to a solution. The notion of local consistency that we investigate
in this paper is related to that considered by these researchers but that, as we shall see, is
weaker.

The following operations are central to our investigation.

I Definition 1. An operation n(x1, . . . , xk+1) on a set A of arity k + 1 is called a near
unanimity operation on A if it satisfies the equalities

n(b, a, a, . . . , a) = n(a, b, a, . . . , a) = · · · = n(a, a, . . . , a, b) = a

for all a, b ∈ A.

Near unanimity operations have played an important role in the development of universal
algebra and first appeared in the 1970’s in the work of Baker and Pixley [1] and Huhn [14].
More recently they have been used in the study of the CSP [13, 15] and related questions
[2, 12]. The main results of this paper can be expressed in terms of the CSP and also in
algebraic terms and we start by presenting them from both perspectives. In the concluding
section, Section 6, a translation of parts of our results into a relational language is provided,
along with some open problems.

1.1 CSP viewpoint
In their seminal paper, Feder and Vardi [13] introduced the notion of bounded width for
the class of CSP instances over a finite template A. Their definition of bounded width was
presented in terms of the logic programming language DATALOG but there is an equivalent
formulation using local consistency algorithms, also given in [13]. Given a CSP instance I
and k < l, the (k, l)-consistency algorithm will produce a new instance having all k variable
constraints that can be inferred by considering l variables at a time of I. This algorithm
rejects I if it produces an empty constraint. The class of CSP instances over a finite template
A will have width (k, l) if the (k, l)-consistency algorithm rejects all instances from the class
that do not have solutions, i.e., the (k, l)-consistency algorithm can be used to decide if a
given instance from the class has a solution or not. The class has bounded width if it has
width (k, l) for some k < l.
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A lot of effort, in the framework of the algebraic approach to the CSP, has gone in
to analyzing various properties of instances that are the outputs of these types of local
consistency algorithms. On one end of the spectrum of the research is a rather wide class of
templates of bounded width [5] and on the other a very restrictive class of templates having
bounded strict width [13].

To be more precise, we now formally introduce instances of the CSP.

I Definition 2. An instance I of the CSP is a pair (V, C) where V is a finite set of variables,
and C is a set of constraints of the form ((x1, . . . , xn), R) where all xi are in V and R is an
n-ary relation over (possibly infinite) sets Ai associated to each variable xi.

A solution of I is an evaluation f of variables such that, for every ((x1, . . . , xn), R) ∈ C
we have (f(x1), . . . , f(xn)) ∈ R; a partial solution is a partial function satisfying the same
condition.

The CSP over a relational structure A, written CSP(A), is the class of CSP instances
whose constraint relations are from A.

I Example 3. For k > 1, the template associated with the graph k-colouring problem is
the relational structure Dkcolour that has universe {0, 1, . . . , k − 1} and a single relation
6=k= {(x, y) | x, y < k and x 6= y}. The template associated with the HORN-3-SAT problem
is the relational structure Dhorn that has universe {0, 1} and two ternary relations R0, R1,
where Ri contains all the triples but (1, 1, i). It is known that CSP(Dhorn) has width (1, 2),
that CSP(D2colour) has width (2, 3), and that for k > 2, CSP(Dkcolour) does not have bounded
width (see [7]).

Instances produced by the (k, l)-consistency algorithm have uniformity and consistency
properties that we highlight.

I Definition 4. The CSP instance I is k-uniform if all of its constraints are k-ary and every
set of k variables is constrained by a single constraint.

An instance is a (k, l)-instance if it is k-uniform and for every choice of a set W of l
variables no additional information about the constraints can be derived by restricting the
instance to the variables in W .

This last, very important, property can be rephrased in the following way: for every set
W ⊆ V of size l, every tuple in every constraint of I|W participates in a solution to I|W (where
I|W is obtained from I by removing all the variables outside of W and all the constraints
that contain any such variables).

Consider the notion of strict width k introduced by Feder and Vardi [13, Section 6.1.2].
Let A be a template and let us assume, to avoid some technical subtleties, that every
relation in A has arity at most k. The class CSP(A) has strict width (k, l) if whenever the
(k, l)-consistency algorithm does not reject an instance I from the class then “it should be
possible to obtain a solution by greedily assigning values to the variables one at a time
while satisfying the inferred k-constraints.” In other words, if I is the result of applying the
(k, l)-consistency algorithm to an instance of CSP(A), then any partial solution of I over at
least k variables can be extended to a solution. The template A is said to have strict width k
if it has strict width (k, l) for some l > k.

A polymorphism of a template A is a function on A that preserves all of the relations of
A. Feder and Vardi prove the following.

I Theorem 5 (see Theorem 25, [13]). Let k > 1 and let A be a finite relational structure
with relations of arity at most k. The class CSP(A) has strict width k if and only if it has
strict width (k, k + 1) if and only if A has a (k + 1)-ary near unanimity operation as a
polymorphism.

ICALP 2020
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Using this Theorem we can conclude that CSP(D2colour) from Example 3 has strict width 2
since the ternary majority operation preserves the relation 6=2. In fact this operation preserves
all binary relations over the set {0, 1}. On the other hand, CSP(Dhorn) does not have strict
width k for any k ≥ 3.

Following the algebraic approach to the CSP we replace templates A with algebras A.

I Definition 6. An algebra A is a pair (A,F) where A is a non-empty set, called the
universe of A and F = (fi | i ∈ I) is a set of finitary operations on A called the set of basic
operations of A. The function that assigns the arity of the operation fi to i is called the
signature of A. If t(x1, . . . , xn) is a term in the signature of A then the interpretation of t
by A as an operation on A is called a term operation of A and is denoted by tA.

The CSP over A, written CSP(A), is the class of CSP instances whose constraint relations
are amongst those relations over A that are preserved by the operations of A (i.e., they are
subuniverses of powers of A).

A number of important questions about the CSP can be reduced to considering templates
that have all of the singleton unary relations [7]; the algebraic counterpart to these types of
templates are the idempotent algebras.

I Definition 7. An operation f : An → A on a set A is idempotent if f(a, a, . . . , a) = a for
all a ∈ A. An algebra A is idempotent if all of its basic operations are.

It follows that if A is idempotent then every term operation of A is an idempotent operation.
As demonstrated in Example 22, several of the results in this paper do not hold in the
absence of idempotency.

The characterization of strict width in Theorem 5 has the following consequence in terms
of algebras.

I Corollary 8. Let k > 1 and let A be a finite relational structure with relations of arity at
most k. Let A be the algebra with the same universe as A whose basic operations are exactly
the polymorphisms of A. The following are equivalent:
1. A has a near unanimity term operation of arity k + 1;
2. in every (k, k + 1)-instance over A, every partial solution extends to a solution.

The implication “1 implies 2” in Corollary 8 remains valid for general algebras, not
necessarily coming from finite relational structures with restricted arities of relations. However,
the converse implication fails even if A is assumed to be finite and idempotent.

I Example 9. Consider the rather trivial algebra A that has universe {0, 1} and no basic
operations. If I is a (2, 3)-instance over A then since, as noted just after Theorem 5, every
binary relation over {0, 1} is invariant under the ternary majority operation on {0, 1} it
follows that every partial solution of I can be extended to a solution. Of course, A does not
have a near unanimity term operation of any arity.

What this example demonstrates is that in general, for a fixed k, the k-ary constraint
relations arising from an algebra do not capture that much of the structure of the algebra.
Example 22 provides further evidence for this.

Our first theorem shows that for finite idempotent algebras A, by considering a slightly
bigger set of (k, k + 1)-instances, over CSP(A2), rather than over CSP(A), we can detect the
presence of a (k + 1)-ary near unanimity term operation. Moreover, it is enough to consider
only instances with k + 2 variables. We note that every (k, k + 1)-instance over A can be
easily encoded as a (k, k + 1)-instance over A2.
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I Theorem 10. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has a near unanimity term operation of arity k + 1;
2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;
3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends

to a solution.
In Theorem 20 we extend our result to infinite idempotent algebras by working with local
near unanimity term operations.

Going back the original definition of strict width: “it should be possible to obtain a
solution by greedily assigning values to the variables one at a time while satisfying the
inferred k-constraints” we note that the requirement that the assignment should be greedy is
rather restrictive. The main theorem of this paper investigates an arguably more natural
concept where the assignment need not be greedy.

I Definition 11. An instance of the CSP is called sensitive, if removing any tuple from any
constraining relation invalidates some solution of the instance.

In other words, an instance is sensitive if every tuple in every constraint of the instance
extends to a solution. For (k, k + 1)-instances, being sensitive is equivalent to the instance
being a (k, n)-instance, where n is the number of variables present in the instance. We
provide the following characterization.

I Theorem 12. Let A be a finite, idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has a near unanimity term operation of arity k + 2;
2. every (k, k + 1)-instance over A2 is sensitive;
3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.
Exactly as in Theorem 10 we can consider infinite algebras at the cost of using local near
unanimity term operations (see Theorem 21).

In conclusion we investigate a natural property of instances motivated by the definition
of strict width and provide a characterization of this new condition in algebraic terms. A
surprising conclusion is that the new concept is, in fact, very close to the strict width concept,
i.e., for a fixed k one characterization is equivalent to a near unanimity operation of arity
k + 1 and the second of arity k + 2.

1.2 Algebraic viewpoint

Our work has as an antecedent the papers of Baker and Pixley [1] and of Bergman [8] on
algebras having near unanimity term operations. In these papers the authors considered
subalgebras of products of algebras and systems of projections associated with them. Baker
and Pixley showed that in the presence of a near unanimity term operation, such a subalgebra
is closely tied with its projections onto small sets of coordinates.

I Definition 13. A variety of algebras is a class of algebras of the same signature that is
closed under taking homomorphic images, subalgebras, and direct products. For A an algebra,
V(A) denotes the smallest variety that contains A and is called the variety generated by A.
A variety V has a near unanimity term of arity k+ 1 if there is some (k+ 1)-ary term in the
signature of V whose interpretation in each member of V is a near unanimity operation.

Here is one version of the Baker-Pixley Theorem:

ICALP 2020
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I Theorem 14 (see Theorem 2.1 from [1]). Let A be an algebra and k > 1. The following
are equivalent:
1. A has a (k + 1)-ary near unanimity term operation;
2. for every r > k and every Ai ∈ V(A), 1 ≤ i ≤ r, every subalgebra R of

∏r
i=1 Ai

is uniquely determined by the projections of R on all products Ai1 × · · · × Aik for
1 ≤ i1 < i2 < · · · < ik ≤ r;

3. the same as condition 2, with r set to k + 1.
In other words, an algebra has a (k + 1)-ary near unanimity term operation if and only if
every subalgebra of a product of algebras from V(A) is uniquely determined by its system of
k-fold projections into its factor algebras. A natural question, extending the result above,
was investigated by Bergman [8]: when does a given “system of k-fold projections” arise from
a product algebra?

Note that such a system can be viewed as a k-uniform CSP instance: indeed, following
the notation of Theorem 14, we can introduce a variable xi for each i ≤ r and a constraint
((xi1 , . . . , xik ); proji1,...,ik R) for each 1 ≤ i1 < i2 < · · · < ik ≤ r. In this way the original
relation R consists of solutions of the created instance (but in general will not contain all of
them). In this particular instance, different variables can be evaluated in different algebras.
Note that the instance is sensitive, if and only if it “arises from a product algebra” in the
sense investigated by Bergman.

We will say that I is a CSP instance over the variety V (denoted I ∈ CSP(V)) if all the
constraining relations of I are algebras in V. In the language of the CSP, Bergman proved
the following:

I Theorem 15 ([8]). If V is a variety that has a (k+ 1)-ary near unanimity term then every
(k, k + 1)-instance over V is sensitive.

In commentary that Bergman provided on his proof of this theorem he noted that a
stronger conclusion could be drawn from it and he proved the following theorem. We note
that this theorem anticipates the results from [13] and [15] dealing with templates having
near unanimity operations as polymorphisms.

I Theorem 16 ([8]). Let k > 1 and V be a variety. The following are equivalent:
1. V has a (k + 1)-ary near unanimity term;
2. any partial solution of a (k, k + 1)-instance over V extends to a solution.

Theorem 15 provides a partial answer to the question that Bergman posed in [8], namely
that in the presence of a (k+1)-ary near unanimity term, a necessary and sufficient condition
for a k-fold system of algebras to arise from a product algebra is that the associated CSP
instance is a (k, k + 1)-instance.

In [8] Bergman asked whether the converse to Theorem 15 holds, namely, that if all
(k, k + 1)-instances over a variety are sensitive, must the variety have a (k + 1)-ary near
unanimity term? He provided examples that suggested that the answer is no, and we confirm
this by proving that the condition is actually equivalent to the variety having a near unanimity
term of arity k + 2. The main result of this paper, viewed from the algebraic perspective
(but stated in terms of the CSP), is the following:

I Theorem 17. Let k > 1. A variety V has a (k + 2)-ary near unanimity term if and only
if each (k, k + 1)-instance of the CSP over V is sensitive.

The “if” direction of this theorem is proved in Section 3, while a sketch of a proof of the
“only if” direction can be found in Section 5 (the complete reasoning is included in the full
version of this paper). We note that a novel and significant feature of this result is that it
does not assume any finiteness or idempotency of the algebras involved.
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1.3 Structure of the paper
The paper is structured as follows. In the next section we introduce local near unanimity
operations and state Theorem 10 and Theorem 12 in their full power. In Section 3 we
collect the proofs that establish the existence of (local) near unanimity operations. Section 4
contains a proof of a new loop lemma, which can be of independent interest, and is necessary
in the proof in Section 5. In Section 5 we provide a sketch of the proof showing that, in the
presence of a near unanimity operation of arity k+ 2, the (k, k+ 1)-instances are sensitive. A
complete proof of this fact, which is our main contribution, can be found in the full version
of this paper. Finally, Section 6 contains conclusions.

2 Details of the CSP viewpoint

In order to state our results in their full strength, we need to define local near unanimity
operations. This special concept of local near unanimity operations is required, when
considering infinite algebras.

I Definition 18. Let k > 1. An algebra A has local near unanimity term operations of arity
k + 1 if for every finite subset S of A there is some (k + 1)-ary term operation nS of A such
that

nS(b, a, . . . , a, a) = nS(a, b, a, . . . , a) = · · · = nS(a, a, . . . , b, a) = nS(a, a, . . . , a, b) = a.

for all a, b ∈ S.

It should be clear that, for finite algebras, having local near unanimity term operations of
arity k + 1 and having a near unanimity term operation of arity k + 1 are equivalent, but
for arbitrary algebras they are not. The following provides a characterization of when an
idempotent algebra has local near unanimity term operations of some given arity; it will be
used in the proofs of Theorems 20 and 21. It is similar to Theorem 14 and is proved in the
full version of this paper.

I Theorem 19. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A has local near unanimity term operations of arity k + 1;
2. for every r > k, every subalgebra of Ar is uniquely determined by its projections onto all

k-element subsets of coordinates;
3. every subalgebra of Ak+1 is uniquely determined by its projections onto all k-element

subsets of coordinates.

We are ready to state Theorem 10 in its full strength:

I Theorem 20. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has local near unanimity term operations of arity k + 1;
2. in every (k, k + 1)-instance over A2, every partial solution extends to a solution;
3. in every (k, k + 1)-instance over A2 on k + 2 variables, every partial solution extends

to a solution.

Proof. Obviously condition 2 implies condition 3. A proof of condition 3 implying condition
1 can be found in Section 3. The implication from 1 to 2 is covered by Theorem 16. J

Analogously, the main result of the paper, for idempotent algebras, and the full version of
Theorem 12 states:

ICALP 2020
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I Theorem 21. Let A be an idempotent algebra and k > 1. The following are equivalent:
1. A (or equivalently A2) has local near unanimity term operations of arity k + 2;
2. every (k, k + 1)-instance over A2 is sensitive;
3. every (k, k + 1)-instance over A2 on k + 2 variables is sensitive.

Proof. Obviously condition 2 implies condition 3. For a proof that condition 3 implies
condition 1 see Section 3. A sketch of the proof of the remaining implication can be found in
Section 5 (see the full version of this paper for a complete proof). J

The following examples show that in Theorems 19, 20, and 21 the assumption of idempotency
is necessary.

I Example 22. For n > 2, let Sn be the algebra with domain [n] = {1, 2, . . . , n} and with
basic operations consisting of all unary operations on [n] and all non-surjective operations
on [n] of arbitrary arity. The collection of such operations forms a finitely generated clone,
called the Słupecki clone. Relevant details of these algebras can be found in [16, Example
4.6] and [20]. It can be shown that for m < n, the subuniverses of Smn consist of all m-ary
relations Rθ over [n] determined by a partition θ of [m] by

Rθ = {(a1, . . . , am) | ai = aj whenever (i, j) ∈ θ}.

These rather simple relations are preserved by any operation on [n], in particular by any
majority operation or more generally, by any near unanimity operation.

It follows from Theorem 16 that if k > 1 and I is a (k, k + 1)-instance of CSP(S2
2k+1)

then any partial solution of I extends to a solution. This also implies that I is sensitive.
Furthermore any subalgebra of Sk+1

k+2 is determined by it projections onto all k-element sets
of coordinates. As noted in [16, Example 4.6], for n > 2, Sn does not have a near unanimity
term operation of any arity, since the algebra Snn has a quotient that is a 2-element essentially
unary algebra.

3 Constructing near unanimity operations

In this section we collect the proofs providing, under various assumptions, near unanimity or
local near unanimity operations. That is: the proofs of “3 implies 1” in Theorems 20 and
Theorem 21 as well as a proof of the “if” direction from Theorem 17.

In the following proposition we construct instances over A2 (for some algebra A). By
a minor abuse of notation, we allow in such instances two kinds of variables: variables
x evaluated in A and variables y evaluated in A2. The former kind should be formally
considered as variables evaluated in A2 where each constraint enforces that x is sent to
{(b, b) | b ∈ A}.

Moreover, dealing with k-uniform instances, we understand the condition “every set of
k variables is constrained by a single constraint” flexibly: in some cases we allow for more
constraints with the same set of variables, as long as the relations are proper permutations
so that every constraint imposes the same restriction.

I Proposition 23. Let k > 1 and let A be an algebra such that, for every (k, k + 1)-instance
I over A2 on k + 2 variables every partial solution of I extends to a solution. Then each
subalgebra of Ak+1 is determined by its k-ary projections.

Proof. Let R ≤ Ak+1 and we will show that it is determined by the system of projections
projI(R) as I ranges over all k elements subsets of coordinates. Using R we define the
following instance I of CSP(A2). The variables of I will be the set {x1, x2, . . . , xk+1, y12}
and the domain of each xi is A, while the domain of y12 is A2.
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For U ⊆ {x1, . . . , xk+1} of size k, let CU be the constraint with scope U and constraint
relation RU = projU (R). For U a (k − 1)-element subset of {x1, . . . , xk+1}, let CU∪{y12} be
the constraint with scope U ∪ {y12} and constraint relation RU∪{y12} that consists of all
tuples (bv | v ∈ U ∪ {y12}) such that there is some (a1, . . . , ak+1) ∈ R with bv = ai if v = xi
and with by12 = (a1, a2).

The instance I is k-uniform and we will show that it is sensitive. Indeed every tuple in
every constraining relation originates in some tuple b ∈ R. Setting xi 7→ bi and y12 7→ (b1, b2)
defines a solution that extends such a tuple.

In particular I is a (k, k + 1)-instance over A2 with k + 2 variables and so any partial
solution of it can be extended to a solution. Let b ∈ Ak+1 such that projI(b) ∈ projI(R)
for all k element subsets I of [k + 1]. Then b is a partial solution of I over the variables
{x1, . . . , xk+1} and thus there is some extension of it to the variable y12 that produces a
solution of I. But there is only one consistent way to extend b to y12 namely by setting y12
to the value (b1, b2). By considering the constraint with scope {x3, . . . , xk+1, y12} it follows
that b ∈ R, as required. J

Now we are ready to prove the first implication tackled in this section: 3 implies 1 in
Theorem 20.

Proof of “3 implies 1” in Theorem 20. By Theorem 19 it suffices to show that each subal-
gebra of Ak+1 is determined by its k-ary projections. Fortunately, Proposition 23 provides
just that. J

We move on to proofs of “3 implies 1” in Theorem 21 and the “if” direction of Theorem 17.
Similarly, as in the theorem just proved, we start with a proposition.

I Proposition 24. Let k > 1 and let A be an algebra such that every (k, k + 1)-instance I
over A2 on k + 2 variables is sensitive. Then each subalgebra of Ak+2 is determined by its
(k + 1)-ary projections.

Proof. We will show that if R is a subalgebra of Ak+2 then R = R∗ where

R∗ = {a ∈ Ak+2 | projI(a) ∈ projI(R) whenever |I| = k + 1}.

In other words, we will show that the subalgebra R is determined by its projections into all
(k + 1)-element sets of coordinates.

We will use R and R∗ from the previous paragraph to construct a (k, k + 2)-instance
I = (V, C) with V = {x5, . . . , xk+2, y12, y34, y13, y24} where each xi is evaluated in A while
all the y’s are evaluated in A2.

The set of constraints is more complicated. There is a special constraint on a special
variable set ((y12, y34, x5, . . . , xk+2), C) where

C = {((a1, a2), (a3, a4), a5, . . . , ak+2) | (a1, . . . , ak+2) ∈ R∗}.

The remaining constraints are defined using the relation R. For each set of variables
S = {v1, . . . , vk} ⊆ V (which is different than the set for the special constraint) we define
a constraint ((v1, . . . , vk), DS) with (b1, . . . , bk) ∈ DS if and only if there exists a tuple
(a1, . . . , ak+2) ∈ R such that:

if vi is xj then bi = aj , and
if vi is ylm then bi = (al, am).

Note that the instance I is k-uniform.

B Claim 25. I is a (k, k + 1)-instance.
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Let S ⊆ V be a set of size k. If S is not the special variable set, then every tuple in
the relation constraining S originates in some (b1, . . . , bk+2) ∈ R and, as in Proposition 23,
sending xi 7→ bi and ylm 7→ (bl, bm) defines a solution that extends such a tuple. We
immediately conclude, that the potential failure of the (k, k + 1) condition must involve the
special constraint.

Thus S = {y12, y34, x5, . . . , xk+2} and if b is a tuple from the special constraint C then
there is some (a1, . . . , ak+2) ∈ R∗ with

b = ((a1, a2), (a3, a4), a5, . . . , ak+2).

The extra variable that we want to extend the tuple b to is either y13 or y24. Both cases are
similar and we will only work through the details when it is y13. In this case, assigning the
value (a1, a3) to the variable y13 will produce an extension b′ of b to a tuple over S∪{y13} that
is consistent with all constraints of I whose scopes are subsets of {y12, y34, x5, . . . , xk+2, y13}.

To see this, consider a k element subset S′ of {y12, y34, x5, . . . , xk+2, y13} that excludes
some variable xj . Then, by the definition of R∗ there exists some tuple of the form
(a1, a2, . . . , aj−1, a

′
j , aj+1, . . . , ak+2) ∈ R. This tuple from R can be used to witness that the

restriction of b′ to S′ satisfies the constraint DS′ since the scope of this constraint does not
include the variable xj .

Suppose that S′ is a k element subset of {y12, y34, x5, . . . , xk+2, y13} that excludes y12.
By the definition of R∗ there is some tuple of the form (a1, a

′
2, a3, . . . , ak+2) ∈ R. Using this

tuple it follows that the restriction of b′ to S′ satisfies the constraint DS′ . This is because
neither of the variables y12 and y24 are in S′ and so the value a′2 ∈ A2 does not matter. A
similar argument works when S′ is assumed to exclude y34 and the claim is proved.

Since I is a (k, k+ 1)-instance over A2 and it has k+ 2 variables then by assumption, I is
sensitive. We can use this to show that R∗ ⊆ R to complete the proof of this proposition. Let
(a1, . . . , ak+2) ∈ R∗ and consider the associated tuple b = ((a1, a2), (a3, a4), a5, . . . , ak+2) ∈
C. Since I is sensitive then this k-tuple can be extended to a solution b′ of I. Using any
constraints of I whose scopes include combinations of y12 or y34 with y13 or y24 it follows
that the value of b′ on the variables y13 and y24 are (a1, a3) and (a2, a4) respectively. Then
considering the restriction of b′ to S = {x5, . . . , xk+2, y13, y24} it follows that (a1, . . . , ak+2) ∈
R since this restriction lies in the constraint relation DS . J

We are in a position to provide the two final proofs in this section.

Proof of “3 implies 1” in Theorem 21. By Theorem 19 it suffices to show that each sub-
algebra of Ak+2 is determined by its (k + 1)-ary projections. Fortunately Propositions 24
provides just that. J

Proof of the “if” direction in Theorem 17. For this direction we apply Proposition 24 to
a special member of V, namely the V-free algebra freely generated by x and y, which we
will denote by F. Up to isomorphism, this algebra is unique and its defining property is
that F ∈ V and for any algebra A ∈ V, any map f : {x,y} → A extends uniquely to a
homomorphism from F to A. Consequently, for any two terms s(x, y) and t(x, y) in the
signature of V if sF(x,y) = tF(x,y) then the equation s(x, y) ≈ t(x, y) holds in V.

Let R be the subalgebra of Fk+2 generated by the tuples (y,x,x, . . . ,x), (x,y,x, . . . ,x),
. . . , (x, . . . ,x,y). By Proposition 24, the algebra R is determined by its (k+1)-ary projections
and so the constant tuple (x, . . . ,x) belongs to R. The term generating this tuple from the
given generators of R defines the required (k + 2)-ary near unanimity operation. J
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4 New loop lemmata

A loop lemma is a theorem stating that a binary relation satisfying certain structural and
algebraic requirements necessarily contains a loop – a pair (a, a). In this section we provide
two new loop lemmata, Theorem 31 and Theorem 32, which generalize an “infinite loop
lemma” of Olšák [18] and may be of independent interest. Theorem 32 is a crucial tool for
the proof presented in Section 5.

The algebraic assumptions in the new loop lemmata concern absorption, a concept that
has proven to be useful in the algebraic theory of CSPs and in universal algebra [6]. We
adjust the standard definition to our specific purposes. We begin with a very elementary
definition.

I Definition 26. Let R and S be sets. We call a tuple (a1, . . . , an) a one-S-in-R tuple if for
exactly one i we have ai ∈ S and all the other ai’s are in R.

Next we proceed to define a relaxation of the standard absorbing notion. We follow a
standard notation, silently extending operations of an algebra to powers (by computing them
coordinate-wise).

I Definition 27. Let A be an algebra, R ≤ Ak and S ⊆ Ak. We say that R locally n-absorbs
S if, for every finite set C of one-S-in-R tuples of length n, there is a term operation t of A
such that t(a1, . . . ,an) ∈ R whenever (a1, . . . ,an) ∈ C. We will say that R locally absorbs
S, if R locally n-absorbs S for some n.

Absorption, even in this form, is stable under various constructions. The following lemma
lists some of them and we leave it without a proof (the reasoning is identical to the one in
e.g. Proposition 2 in [6]).

I Lemma 28. Let A be an algebra and R ≤ A2 such that R locally n-absorbs S. Then
R−1 locally n-absorbs S−1; and R ◦R locally n-absorbs S ◦S, and R ◦R ◦R locally n-absorbs
S ◦ S ◦ S etc.

Let us prove a first basic property of local absorption.

I Lemma 29. Let A be an idempotent algebra and R ≤ A2 such that R locally n-absorbs S.
Let (a1, . . . , an) and (b1, . . . , bn) be directed walks in R, and let (ai, bi) ∈ S for each i (see
Figure 1). Then there exists a directed walk from a1 to bn of length n in R.

a1 a2 · · · ai · · · an

b1 b2 · · · bi · · · bn

· · ·

p1
p2 p3 pn−1

pn

Figure 1 Solid arrows represent tuples from R and dashed arrows represent tuples from S.
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Proof. We will show that there is a term operation t of the algebra A such that the following
(n+ 1)-tuple of elements of A is a walk of length n in R from a1 to bn.

(a1 =t(a1, a1, a1, . . . , a1),
t(b1, a2, a2, . . . , a2),
t(b2, b2, a3, . . . , a3),
...
t(bn−1, bn−1, . . . , bn−1, an),

bn =t(bn, bn, bn, . . . , bn)).

In order to choose a proper t we apply the definition of local absorption to the set of (n+ 1)
one-S-in-R tuples corresponding to the steps in the path. J

The loop lemma of Olšák concerns symmetric relations absorbing the equality relation
{(a, a) | a ∈ A}, which is denoted =A. The original result, stated in a slightly different
language, does not cover the case of local absorption. However, a typographical modification
of a proof mentioned in [18] shows that the theorem holds. For completeness sake, we present
this proof in the full version of this paper.

I Theorem 30 ([18]). Let A be an idempotent algebra and R ≤ A2 be nonempty and
symmetric. If R locally absorbs =A, then R contains a loop.

In order to apply this theorem in the case of sensitive instances, we need to generalize it.
In the following two theorems we will gradually relax the requirement that R is symmetric.
In the first step, we substitute it with a condition requiring a closed, directed walk in the
graph (i.e., a sequence of possibly repeating vertices, with consecutive vertices connected by
forward edges and the first and last vertex identical). Recall that R−1 is the inverse relation
to R and let us denote by R◦l the l-fold relational composition of R with itself.

I Theorem 31. Let A be an idempotent algebra and R ≤ A2 contain a directed closed
walk. If R locally absorbs =A, then R contains a loop.

Proof. Let n denote the arity of the absorbing operations. The proof is by induction on
l ≥ 0, where l is a number such that there exists a directed closed walk from a1 to a1 of
length 2l.

We start by verifying that such an l exists. Take a directed walk (a1, . . . , ak−1, ak = a1)
in R. We may assume that its length k is at least n, since we can, if necessary, traverse
the walk multiple times. An application of Lemma 29 to the relations R,=A and tuples
(a1, . . . , an), (a1, . . . , an) gives us a directed walk from a1 to an of length n. Appending this
walk with the walk (an, an+1, . . . , ak = a1) yields a directed walk from a1 to a1 of length
k + 1. In this way, we can get a directed walk from a1 to a1 of any length greater than k.

Now we return to the inductive proof and start with the base of induction for l = 0 or
l = 1. If l = 0, then we have found a loop. If l = 1 we have a closed walk of length 2, that is,
a pair (a, b) which belongs to both R and R−1. We set R′ = R ∩R−1 and observe that R′ is
nonempty and symmetric, and it is not hard to verify that R′ locally absorbs =A. Olšák’s
loop lemma, in the form of Theorem 30, gives us a loop in R.

Finally, we make the induction step from l − 1 to l. Take a closed walk (a1, a2, . . .)
of length 2l and consider R′ = R◦2. Observe that R′ contains a directed closed walk of
length 2l−1 (namely (a1, a3, . . .)), and that R′ locally absorbs =A (by Lemma 28), so, by the
inductive hypothesis, R′ has a loop. In other words, R has a directed closed walk of length 2
and we are done by the case l = 1. J
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Note that we cannot further relax the assumption on the graph by requiring that, for
example, it has an infinite directed walk. Indeed the natural order of the rationals (taken
for R) locally 2-absorbs the equality relation by the binary arithmetic mean operation
(a+ b)/2 (i.e., all the absorbing evaluations are realized by a single operation). The same
relation locally 4-absorbs equality with the near unanimity operation n(x, y, z, w) which,
when applied to a ≤ b ≤ c ≤ d, in any order, returns (b+ c)/2.

Nevertheless, we can strengthen the algebraic assumption and still provide a loop; the
following theorem is one of the key components in the proof sketch provided in Section 5 (albeit
applied there with l = 1).

I Theorem 32. Let A be an idempotent algebra and R ≤ A2 contain a directed walk of
length n− 1. If R locally n-absorbs =A and R◦l locally n-absorbs R−1 for some l ∈ N then
R contains a loop.

Proof. By applying Lemma 29 similarly as in the proof of Theorem 31, we can get, from a
directed walk of length n− 1, a directed walk (a1, a2, . . .) of an arbitrary length. Moreover,
by the same reasoning, for each i and j with j ≥ i+ n− 1, there is a directed walk from ai
to aj of any length greater than or equal to j − i.

Consider the relations R′ = R◦ln
2 and S = (R−1)◦n2 , and tuples

c = (c1, . . . , cn) := (an2 , a(n+1)n, . . . a(2n−1)n), and
d = (d1, . . . , dn) := (an, a2n . . . , an2)

By the previous paragraph and the definitions, both c and d are directed walks in R′, and
(ci, di) ∈ S for each i. Moreover, since R◦l locally n-absorbs R−1, Lemma 28 implies that
R′ locally absorbs S. We can thus apply Lemma 29 to the relations R′, S and the tuples
c,d and obtain a directed walk from c1 = an2 to dn−1 = an2 in R′. This closed walk in turn
gives a closed directed walk in R and we are in a position to finish the proof by applying
Theorem 31. J

5 Consistent instances are sensitive (sketch of a proof)

In this section we present the main ideas that are used to prove the “only if” direction in
Theorem 17 and “1 implies 2” in Theorem 21. These ideas are shown in a very simplified
situation, in particular, only the case that k = 2 and A is finite is considered. In the end of
this section we briefly discuss the necessary adjustments in the general situation. A complete
proof is given in the full version of this paper.

Consider a finite idempotent algebra A with a 4-ary near unanimity term operation
and a (2, 3)-instance I = (V, C) over A. Each pair {x, y} of variables is constrained by a
unique constraint ((x, y), Rxy) or ((y, x), Ryx). For convenience we also define Ryx = R−1

yx

(or Rxy = R−1
yx in the latter case) and Rxx to be the equality relation on A. Our aim is to

show that every pair in every constraint relation extends to a solution. The overall structure
of the proof is by induction on the number of variables of I.

We fix a pair of variables {x1, x2} and a pair (a1, a2) ∈ Rx1x2 that we want to extend.
The strategy is to consider the instance J obtained by removing x1 and x2 from the set of
variables and shrinking the constraint relations Ruv to R′uv so that only the pairs consistent
with the fixed choice remain, that is,

R′uv = {(b, c) ∈ Ruv | (a1, b) ∈ Rx1u, (a2, b) ∈ Rx2u, (a1, c) ∈ Rx1v, (a2, c) ∈ Rx2v}.
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W ′

w11x1

w12x2

w21x1

w22x2

w1 z1

w2 z2

Figure 2 Pattern P in Lemma 35. Figure 3 Path of three bow ties.

We will show that J contains a nonempty (2, 3)-subinstance, that is, an instance whose
constraint relations are nonempty subsets of the original ones. The induction hypothesis
then gives us a solution to J which, in turn, yields a solution to I that extends the fixed
choice.

Having a nonempty (2, 3)-subinstance can be characterized by the solvability of certain
relaxed instances. The following concepts will be useful for working with relaxations of I
and J .

I Definition 33. A pattern is a triple P = (W ;F , l), where (W ;F) is an undirected graph,
and l is a mapping l : W → V . The variable l(i) is referred to as the label of i.

A realization ( strong realization, respectively) of P is a mapping α : W → A, which
satisfies every edge {w1, w2} ∈ F , that is, (α(w1), α(w2)) ∈ Rl(w1),l(w2) ((α(w1), α(w2)) ∈
R′l(w1),l(w2), respectively). (Strong realization only makes sense if l(W ) ⊆ V \ {x1, x2}.)

A pattern is ( strongly) realizable if it has a (strong) realization.

The most important patterns for our purposes are 2-trees, these are patterns obtained
from the empty pattern by gradually adding triangles (patterns whose underlying graph is
the complete graph on 3 vertices) and merging them along a vertex or an edge to the already
constructed pattern. Their significance stems from the following well known fact.

I Lemma 34. An instance (over a finite domain) contains a nonempty (2,3)-subinstance if
and only if every 2-tree is realizable in it.

The “only if” direction of the lemma applied to the instance I implies that every 2-tree
is realizable. The “if” direction applied to the instance J tells us that our aim boils down
to proving that every 2-tree is strongly realizable. This is achieved by an induction on a
suitable measure of complexity of the tree using several constructions. We will not go into
full technical details here, we rather present several lemmata whose proofs contain essentially
all the ideas that are necessary for the complete proof.

I Lemma 35. Every edge (i.e., a pattern whose underlying graph is a single edge) is strongly
realizable.

Proof sketch. Let Q be the pattern formed by an undirected edge with vertices w1 and w2

labeled z1 and z2, respectively. Let P be the pattern obtained from Q by adding a set of
four fresh vertices W ′ = {w11, w12, w21, w22} labeled x1, x2, x1, x2, respectively, and adding
the edges {wi, wi1} and {wi, wi2} for i = 1, 2, see Figure 2. Observe that the restriction of a
realization β of P, such that β(wij) = aj for each i, j ∈ {1, 2}, to the set {w1, w2} is a strong
realization of Q.
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We consider the set T of restrictions of realizations of P to the set W ′. Since constraint
relations are subuniverses of A2, it follows that T is a subuniverse of A4.

T = {(β(w11), β(w12), β(w21), β(w22)) | β realizes P} ≤ A4

We need to prove that the tuple a = (a1, a2, a1, a2) is in T . By the Baker-Pixley theorem,
Theorem 14, it is enough to show that for any 3-element set of coordinates, the relation T
contains a tuple that agrees with a on this set. This is now our aim.

For simplicity, consider the set of the first three coordinates. We will build a realization
β of P in three steps. After each step, β will satisfy all the edges where it is defined. First,
since (a1, a2) ∈ Rx1x2 and I is a (2,3)-instance, we can find b1 ∈ A such that (a1, b1) ∈ Rx1z1

and (a2, b1) ∈ Rx2z1 , and we set β(w11) = a1, β(w12) = a2, and β(w1) = b1. Second, we find
b2 ∈ A such that (a1, b2) ∈ Rx1z2 and (b1, b2) ∈ Rz1z2 (here we use (a1, b1) ∈ Rx1z1 and that
I is a (2,3)-instance), and set β(w21) = a1, β(w2) = b2. Third, using (a1, b2) ∈ Rx1z2 we find
a′2 such that (b2, a

′
2) ∈ Rz2x2 and set β(w22) = a′2. By construction, β is a realization of P

and (β(w11), β(w12), β(w21)) = (a1, a2, a1), so our aim has been achieved. J

Using Lemma 35, one can go a step further and prove that every pattern built on a graph
which is a triangle is strongly realizable. We are not going to prove this fact here.

I Lemma 36. Every bow tie (a pattern whose underlying graph is formed by two triangles
with a single common vertex) is strongly realizable.

Proof sketch. Let W′1 and W′2 be two triangles (viewed as undirected graphs) with a single
common vertex w. Let Q′ be any pattern over W ′1 ∪W ′2 with labelling l′ sending W ′1 ∪W ′2
to V \ {x1, x2}. Similarly as in the proof of Lemma 35 we form a pattern Q by adding to
Q′ ten additional vertices (five of them labeled x1, the other five x2) and edges so that the
restriction of a realization α of Q to the set W ′1 ∪W ′2 is a strong realization of Q′ whenever
the additional vertices have proper values (that is, value ai for vertices labeled xi).

We will gradually construct a realization α of Q, which sends all the vertices labeled
by x1 to a1, and all the vertices labeled by x2 and adjacent to a vertex in W ′1 to a2. First
use the discussion after Lemma 35 to find a strong realization of Q′ restricted to W ′1. This
defines α on W ′1 and its adjacent vertices labeled by x1 and x2.

Next, we want to use Lemma 35 for assigning values to the two remaining vertices of
W ′2. However, in order to accomplish that, we need to shift the perspective: the role of
x1 is played by x1, but the role of x2 is played by l′(w); and the role of (a1, a2) is played
by (a1, α(w)). In this new context, we use Lemma 35 to find a strong realization of the
edge-pattern formed by the two remaining vertices of W ′2 (with a proper restriction of l′).
This defines α on all the vertices of Q, except for the two vertices adjacent to W ′2 \ {w} and
labeled by x2. Finally, similarly as in the third step in the proof of Lemma 35, we define α
on the remaining two vertices (labeled x2) to get a sought after realization of Q.

Now α assigns proper values (a1 or a2) to all additional vertices, except those two coming
from the non-central vertices of W ′2 and labeled by x2. We apply the 4-ary near unanimity
term operation to the realization α and its 3 variants obtained by exchanging the roles of
W ′1 and W ′2 and x1 and x2. The result of this application is a realization of Q which defines
a strong realization of Q′. J

In the same way it is possible to prove strong realizability of further patterns, such as those
in the following corollary.

I Corollary 37. Every “path of 3 bow ties” (i.e., a pattern whose underlying graph is as in
Figure 3) is strongly realizable.
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The application of the loop lemma is illustrated by the final lemma in this section.

I Lemma 38. Every diamond (i.e., a pattern whose underlying graph is formed by two
triangles with a single common edge) is strongly realizable.

Proof sketch. The idea is to merge two vertices in a bow tie using the loop lemma. Let Q′
be a pattern over a graph which is a bow tie on two triangles W ′1 and W ′2 (just like in the
proof of Lemma 36). Let w1 ∈W ′1 \W ′2 and w2 ∈W ′2 \W ′1 be such that l(w1) = l(w2).

Let Q be obtained from Q′ exactly as in the proof of Lemma 36 and notice that a proper
realization α of Q with α(w1) = α(w2) gives us a strong realization of a diamond. Let Q3 be
the pattern obtained by taking the disjoint union of 3 copies of Q and identifying the vertex
w2 in the i-th copy with the vertex w1 in the (i+ 1)-first copy, for each i ∈ {1, 2} (Figure 3
shows Q3 without the additional vertices).

Denote by T the set of all the realizations β of Q and denote by S ⊆ T the set of those
β ∈ T that are proper. By a straightforward argument, both T and S are subuniverses of∏
w∈Q A. Using the near unanimity term operation of arity 4, S clearly 4-absorbs T .
The plan is to apply Theorem 32 to the binary relation projw1,w2 S ⊆ A×A. As noted

above, a loop in this relation gives us the desired strong realization of a diamond, so it only
remains to verify the assumptions of Theorem 32. By Corollary 37, the patternQ3 has a proper
realization. The images of copies of vertices w1 and w2 in such a realization yield a directed
walk in projw1,w2(S) of length 3. Next, since S 4-absorbs T , then projw1,w2(S) 4-absorbs
projw1,w2(T ), so it is enough to verify that the latter relation contains =A and projw1,w2(S)−1.
We only look at the latter property. Consider any (b1, b2) ∈ projw1,w2(S)−1. By the definition
of S, the pattern Q has a realization α such that α(w1) = b2 and α(w2) = b1. We flip the
values α(w1) and α(w2), restrict α to {w1, w2} together with the middle vertex of the bow tie,
and then extend this assignment to a realization of Q, giving us (b1, b2) ∈ projw1,w2(T ). J

There are two major adjustments needed for the general case. First, the “if” direction of
Lemma 34 (and its analogue for a general k) is no longer true over infinite domains. This
is resolved by working directly with the realizability of k-trees and proving a more general
claim by induction: instead of “a (k, k + 1)-instance is sensitive” we prove, roughly, that
any evaluation, which extends to a sufficiently deep k-tree, extends to a solution. Second,
for higher values of k than 2 we do not prove strong realizability in one step as in, e.g.,
Lemma 35, but rather go through a sequence of intermediate steps between realizability and
strong realizability.

6 Conclusion

We have characterized varieties that have sensitive (k, k + 1)-instances of the CSP as those
that possess a near unanimity term of arity k + 2. From the computational perspective, the
following corollary is perhaps the most interesting consequence of our results.

I Corollary 39. Let A be a finite CSP template whose relations all have arity at most k and
which has a near unanimity polymorphism of arity k + 2. Then every instance of the CSP
over A, after enforcing (k, k + 1)-consistency, is sensitive.

Therefore not only is the (k, k + 1)-consistency algorithm sufficient to detect global
inconsistency, we also additionally get the sensitivity property. Let us compare this result to
some previous results as follows. Consider a template A that, for simplicity, has only unary
and binary relations and that has a near unanimity polymorphism of arity k + 2 ≥ 4. Then
any instance of the CSP over A satisfies the following.
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1. After enforcing (2, 3)-consistency, if no contradiction is detected, then the instance has a
solution [4] (this is the bounded width property).

2. After enforcing (k, k + 1)-consistency, every partial solution on k variables extends to a
solution (this is the sensitivity property).

3. After enforcing (k + 1, k + 2)-consistency, every partial solution extends to a solution [13]
(this is the bounded strict width property).

For k + 2 > 4 there is a gap between the first and the second item. Are there natural
conditions that can be placed there?

The properties of a template A from the first and the third item (holding for every
instance) can be characterized by the existence of certain polymorphisms: a near unanimity
polymorphism of arity k + 2 for the third item [13] and weak near unanimity polymorphisms
of all arities greater than 2 for the first item [5, 11, 17]. This paper does not give such a
direct characterization for the second item (essentially, since Theorem 21 involves a square).
Is there any? Moreover, there are characterizations for natural extensions of the first and
the third to relational structures with higher arity relations [13, 3]. This remains open for
the second item as well.

In parallel with the flurry of activity around the CSP over finite templates, there has been
much work done on the CSP over infinite ω-categorical templates [9, 19]. These templates
cover a much larger class of computational problems but, on the other hand, share some
pleasant properties with the finite ones. In particular, the (k, k+1)-consistency of an instance
can still be enforced in polynomial time. Corollary 39 can be extended to this setting as
follows.

I Corollary 40. Let A be an ω-categorical CSP template whose relations all have arity at
most k and which has local idempotent near unanimity polymorphisms of arity k + 2. Then
every instance of the CSP over A, after enforcing the (k, k + 1)-consistency, is sensitive.

Bounded strict width k of an ω-categorical template was characterized in [10] by the
existence of a quasi-near unanimity polymorphism n of arity k + 1, i.e.,

n(y, x, . . . , x) ≈ n(x, y, . . . , x) ≈ · · · ≈ n(x, x, . . . , y) ≈ n(x, x, . . . , x),

which is, additionally, oligopotent, i.e., the unary operation x 7→ n(x, x, . . . , x) is equal to
an automorphism on every finite set. This result extends the characterization of Feder and
Vardi since an oligopotent quasi-near unanimity polymorphism generates a near unanimity
polymorphism as soon as the domain is finite. On an infinite domain, however, oligopotent
quasi-near unanimity polymorphisms generate local near unanimity polymorphisms which,
unfortunately, do not need to be idempotent on the whole domain. Our results thus fall
short of proving the following natural generalization of Corollary 39 to the infinite.

I Conjecture 41. Let A be an ω-categorical CSP template whose relations all have arity
at most k and which has an oligopotent quasi-near unanimity polymorphism of arity k + 2.
Then every instance of the CSP over A, after enforcing (k, k + 1)-consistency, is sensitive.

To confirm the conjecture, a new approach, that does not use a loop lemma, will be
needed since there are examples of ω-categorical structures having oligopotent quasi-near
unanimity polymorphisms for which the counterpart to Theorem 30 does not hold. Indeed,
one such an example is the infinite clique.
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