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Abstract
In the k-Steiner Orientation problem, we are given a mixed graph, that is, with both directed and
undirected edges, and a set of k terminal pairs. The goal is to find an orientation of the undirected
edges that maximizes the number of terminal pairs for which there is a path from the source to the sink.
The problem is known to be W[1]-hard when parameterized by k and hard to approximate up to
some constant for FPT algorithms assuming Gap-ETH. On the other hand, no approximation factor
better than O(k) is known.

We show that k-Steiner Orientation is unlikely to admit an approximation algorithm with
any constant factor, even within FPT running time. To obtain this result, we construct a self-
reduction via a hashing-based gap amplification technique, which turns out useful even outside
of the FPT paradigm. Precisely, we rule out any approximation factor of the form (log k)o(1)

for FPT algorithms (assuming FPT 6= W[1]) and (log n)o(1) for purely polynomial-time algorithms
(assuming that the class W[1] does not admit randomized FPT algorithms). This constitutes a novel
inapproximability result for polynomial-time algorithms obtained via tools from the FPT theory.
Moreover, we prove k-Steiner Orientation to belong to W[1], which entails W[1]-completeness
of (log k)o(1)-approximation for k-Steiner Orientation. This provides an example of a natural
approximation task that is complete in a parameterized complexity class.

Finally, we apply our technique to the maximization version of directed multicut – Max (k, p)-
Directed Multicut – where we are given a directed graph, k terminals pairs, and a budget p.
The goal is to maximize the number of separated terminal pairs by removing p edges. We present
a simple proof that the problem admits no FPT approximation with factor O(k 1

2−ε) (assuming FPT
6= W[1]) and no polynomial-time approximation with ratio O(|E(G)| 12−ε) (assuming NP 6⊆ co-RP).
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1 Introduction

In the recent years new research directions emerged in the intersection of the two theories
aimed at tackling NP-hard problem: parameterized complexity and approximation algorithms.
This led to numerous results combining techniques from both toolboxes. The main goal
in this area is to obtain an algorithm running in time f(k) · |I|O(1) for an instance I with
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parameter k, that finds a solution of value not worse than α (the approximation factor)
times the value of the optimal solution. They are particularly interesting for problems
that are both W[1]-hard and at the same time cannot be well approximated in polynomial
time [1, 10, 13, 22, 30]. On the other hand, some problems remain resistant to approximation
even in this paradigm.

Obtaining polynomial-time approximation lower bounds under the assumption of P 6= NP
is challenging, because it usually requires to prove NP-hardness of a gap problem. In a gap
problem one only needs to distinguish instances with the value of optimal solution at least C1
from those with this value at most C2. This provides an argument that one cannot obtain
any approximation factor better than the gap, i.e., C1

C2
, as long as P 6= NP.

A road to such lower bounds has been paved by the celebrated PCP theorem [4], which
gives an alternative characterization of the class NP. The original complicated proof has been
simplified by Dinur [16] via the technique of gap amplification: an iterated reduction from
a gap problem with a small gap to one with a larger gap. When the number of iterations
depends on the input size, this allows us to start the chain of reductions from a problem
with no constant gap. However, this is only possible when we can guarantee that the size
of all created instances does not grow super-polynomially.

The process of showing approximation lower bounds becomes easier with an additional
assumption of the Unique Games Conjecture [28], which states that a particular gap version
of the Unique Games problem is NP-hard. This makes it possible to start a reduction from
a problem with an already relatively large gap. The reductions based on Unique Games
Conjecture provided numerous tight approximation lower bounds [5, 23, 31].

A parameterized counterpart of the hardness assumption P 6= NP is FPT 6= W[1], which
is equivalent to the statement that k-Clique 6∈ FPT, that is, k-Clique1 does not admit
an algorithm with running time of the form f(k) · |I|O(1). Similarly to the classical complexity
theory, proving hardness of an approximate task relying only on FPT 6= W[1] is difficult
but possible. A recent result stating that the gap version of k-Dominating Set is W[1]-
hard (for the gap being any computable function F (k)) required gap amplification through
a distributed PCP theorem [26].

Again, the task becomes easier when working with a stronger hardness assumption: Gap
Exponential Time Hypothesis2 (Gap-ETH) states that there exists ε > 0 so that one requires
exponential time to distinguish satisfiable 3-CNF-SAT formulas from those where only
a fraction of (1−ε) clauses can be satisfied at once [17, 34]. Gap-ETH is a stronger assumption
than FPT 6= W[1], i.e., the first implies the second, and it sometimes turns out more convenient
since it already provides hardness for a problem with a gap. There are many recent examples
of using Gap-ETH for showing hardness of parameterized approximation [6, 9, 10, 11, 13, 30].

Our contribution is a novel gap amplification technique which exploits the fact that in
a parameterized reduction we can afford an exponential blow-up with respect to the parameter.
It circumvents the obstacles related to PCP protocols and, together with a hashing-based
lemma, allows us to construct relatively simple self-reductions for problems on directed
graphs.

1 We attach the parameter to the problem name when we refer to a parameterized problem.
2 Gap-ETH is a stronger version of the Exponential Time Hypothesis (ETH), according to which one

requires exponential time to solve 3-CNF-SAT [25].
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Steiner Orientation

In the k-Steiner Orientation problem we are given a mixed graph, that is, with both
directed and undirected edges, and a set of k terminal pairs. The goal is to find an orientation
of the undirected edges that maximizes the number of terminal pairs for which there is a path
from the source to the sink.

Some of the first studies on the k-Steiner Orientation problem (also referred to
as the Maximum Graph Orientation problem) were motivated by modeling protein-
protein interactions (PPI) [36] and protein-DNA interactions (PDI) [19, 20]. Whereas PPIs
interactions could be represented with undirected graphs, PDIs required introducing mixed
graphs. Arkin and Hassin [3] showed the problem to be NP-hard, but polynomially solvable
for k = 2. This result was generalized by Cygan et al. [15], who presented an nO(k)-time
algorithm, which implies that the problem belongs to the class XP (see Section 3) when
parameterized by k (cf. [18] for different choices of parameterization).

The k-Steiner Orientation problem has been proved to be W[1]-hard by Pilipczuk and
Wahlström [38], which makes it unlikely to be solvable in time f(k)·|I|O(1). The W[1]-hardness
proof has been later strengthened to work on planar graphs and to give a stronger running
time lower bound based on ETH [11], which is essentially tight with respect to the nO(k)-time
algorithm.

The approximation of Steiner Orientation has been mostly studied on undirected
graphs, where the problem reduces to optimization over trees by contracting 2-connected
components [15]. Medvedovsky et al. [36] presented an O(logn)-approximation and actually
proved that one can always find an orientation satisfying Ω( k

logn ) terminal pairs. The approx-
imation factor has been improved toO(logn/ log logn) [20] and later toO(log k/ log log k) [15]
by observing that one can compress an undirected instance to a tree of size O(k). A lower
bound of 12

11 − ε (based on P 6= NP) has been obtained via a reduction from Max Directed
Cut [36]. Medvedovsky et al. [36] posed a question of tackling the maximization problem on
mixed graphs, which was partially addressed by Gamzu et al. [20] who provided a polylog-
arithmic approximation in the case where the number of undirected components on each
source-sink path is bounded by a constant.

The decision problem whether all the terminal pairs can be satisfied is polynomially
solvable when restricting input graphs to be undirected [24], which makes the maximiz-
ation version fixed-parameter tractable, by simply enumerating all subsets of terminals.
The maximization version on mixed graphs is far less understood from the FPT perspective.
It is unlikely to be exactly solvable since the decision problem is W[1]-hard, but can we
approximate it within a reasonable factor? The reduction by Chitnis et al. [11] implies that,
assuming Gap-ETH, k-Steiner Orientation cannot be approximated within factor 20

19 − ε
on mixed graphs, in running time f(k) · nO(1). Using new techniques introduced in this
paper, we are able to provide stronger lower bounds based on a weaker assumption.

Related work

Some examples of the new advancements in parameterized approximations are 1.81-approxima-
tion for k-Cut [22] (recently improved to ( 5

3 + ε) [27]), which beats the factor 2 that is
believed to be optimal within polynomial running time [33], or (1 + 2

e + ε)-approximation for
k-Median [13], all running in time f(k) · nO(1). For Capacitated k-Median, a constant
factor FPT approximation has been obtained [1, 14], whereas the best-known polynomial-time
approximation factor is O(log k). Another example is an FPT approximation scheme for the
planar case of Bidirected Steiner Network, which does not admit a polynomial-time
approximation scheme unless P = NP [10].

ICALP 2020
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On the other hand several problems have proven resistant to such improvements. Chalerm-
sook et al. [9] showed that under the assumption of Gap-ETH there can be no parameterized
approximations with ratio o(k) for k-Clique or k-Biclique and none with ratio F (k) for
k-Dominating Set (for any computable function F ). They have also ruled out ko(1)-
approximation for Densest k-Subgraph. The cited FPT approximation for k-Median has
a tight approximation factor assuming Gap-ETH [13].

Subsequently, efforts have been undertaken to weaken the complexity assumptions
on which the lower bounds are based. For the k-Dominating Set problem Gap-ETH
has been replaced with a more established hardness assumption that FPT 6= W[1] [26].
Marx [35] has proven parameterized inapproximability of Monotone k-Circuit SAT
under the even weaker assumption that FPT 6= W[P]. Lokshtanov et al. [30] introduced
the Parameterized Inapproximability Hypothesis (PIH), that is weaker than Gap-ETH and
stronger than FPT 6= W[1], and used it to rule out an FPT approximation scheme for
Directed k-Odd Cycle Transversal. PIH turned out to be a sufficient assumption
to argue there can be no FPT algorithm for k-Even Set [6].

2 Overview of the results

Our main inapproximability result is a W[1]-hardness proof for the gap version of k-Steiner
Orientation with the gap q = (log k)o(1). This means that the problem is unlikely to admit
a (log k)o(1)-approximation algorithm with running time f(k) · |I|O(1).

I Theorem 2.1. Consider a function α(k) = (log k)β(k), where β(k)→ 0 is computable and
non-increasing. It is W[1]-hard to distinguish whether for a given instance of k-Steiner
Orientation:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(k) · k.
The previously known approximation lower bound for FPT algorithms, 20

19−ε, was obtained
via a linear reduction from k-Clique and was based on Gap-ETH [11]. Our reduction not only
raises the inapproximability bar significantly, but also weakens the hardness assumption
(although we are not able to enforce the planarity of the produced instances, as in [11]).
In fact, we begin with the decision version of k-Steiner Orientation and introduce
a gap inside the self-reduction. What is interesting, we rely on totally different properties
of the problem than in the W[1]-hardness proof [38]: that one required gadgets with long
undirected paths and we introduce only new directed edges.

This result is also interesting from the perspective of the classical (non-parameterized)
approximation theory. The best approximation lower bound known so far has been 12

11−ε [36],
valid also for undirected graphs. Therefore we provide a new inapproximability result for
polynomial algorithms, which is based on an assumption from parameterized complexity.
Restricting to a purely polynomial running time allows us to rule out also approximation
factors depending on n (rather than on k) with a slightly stronger assumption, which
is required because the reduction is randomized (see Section 3 for the formal definition
of a false-biased FPT algorithm).

I Theorem 2.2. Consider a function α(n) = (logn)β(n), where β(n) → 0 is computable
and non-increasing. Unless the class W[1] admits false-biased FPT algorithms, there is no
polynomial-time algorithm that, given an instance of Steiner Orientation with n vertices
and k terminal pairs, distinguishes between the following cases:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(n) · k.
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A similar phenomenon, that is, novel polynomial-time hardness based on an assumption
from parameterized complexity, has appeared in the work on Monotone k-Circuit SAT [35].
Another example of this kind is polynomial-time approximation hardness for Densest k-
Subgraph based on ETH [32].

W[1]-completeness

So far, the decision version of k-Steiner Orientation has only been known to be W[1]-
hard [38] and to belong to XP [15]. We establish its exact location in the W-hierarchy.
A crucial new insight is that we can assume the solution to be composed of f(k) pieces, for
which we only need to check if they match each other, and this task reduces to k-Clique.

I Theorem 2.3. k-Steiner Orientation is W[1]-complete.
We hereby solve an open problem posted by Chitnis et al. [11]. What is more, this implies

that (log k)o(1)-Gap k-Steiner Orientation belongs to W[1] (see Section 3 for formal
definitions of problems). Together with Theorem 2.1 this entails W[1]-completeness. Another
gap problem with this property is Maximum k-Subset Intersection3, introduced for
the purpose of proving W[1]-hardness of k-Biclique [29]. We are not aware of any other
natural gap problem being complete in a parameterized complexity class. Note that although
W[1]-hardness of the gap version of k-Dominating Set is known [26], k-Dominating Set
is W[2]-complete.

Directed Multicut

As another application of our technique, we present a simple hardness result for the gap
version of Max (k, p)-Directed Multicut with the gap q = k

1
2−ε. We show that even

if we parameterize the problem with both the number of terminal pairs k and the size
of the cutset p, then we essentially cannot obtain any approximation ratio better than

√
k.

I Theorem 2.4. For any ε > 0 and function α(k) = O
(
k

1
2−ε
)
, it is W[1]-hard to distinguish

whether for a given instance of Max (k, p)-Directed Multicut:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(k) · k terminal pairs.

When restricted to polynomial running time, the lower bound of Ω(k 1
2−ε) can be improved

to Ω(|E(G)| 12−ε), however unlike the case of k-Steiner Orientation, this time the reduction
is polynomial and we need to assume only NP 6⊆ co-RP (recall that a problem is in co-RP if
it admits a polynomial-time false-biased algorithm, i.e., an algorithm which is always correct
for YES-instances and for NO-instances returns the correct answer with probability greater
than some constant).

I Theorem 2.5. Assuming NP 6⊆ co-RP, for any ε > 0 and function α(m) = O
(
m

1
2−ε
)
,

there is no polynomial-time algorithm that, given an instance (G, T , p), |T | = k, |E(G)| = m,
of Max Directed Multicut, distinguishes between the following cases:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(m) · k terminal pairs.

3 To give a concrete example of a W[1]-complete gap problem, consider the task of distinguishing graphs
with Kk,F1(k) from those with no Kk,F2(k). The reduction in [29] implies that this is W[1]-hard for
functions F1, F2 with large gap. On the other hand, the problem of finding Kk,F1(k) belongs to W[1]
via a color-coding reduction to (F1(k) + k)-Clique.

ICALP 2020
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As far as we know, the approximation status of this variant has not been studied yet.
If we want to minimize the number of removed edges to separate all terminal pairs or
minimize the ratio of the cutset size to the number of separated terminal pairs (this problem
is known as Directed Sparsest Multicut), those cases admit a polynomial-time Õ(n 11

23 )-
approximation algorithm [2] and a lower bound of 2Ω(log1−ε n) [12]. Since 11

23 <
1
2 and n ≤ m,

the maximization variant with a hard constraint on the cutset size turns out to be harder.
In the undirected case p-Multicut is FPT, even when parameterized only by the size

of the cutset p and allowing arbitrarily many terminals [7]. This is in contrast with the
directed case, which becomes W[1]-hard already for 4 terminals, when parameterized by p.
It is worth mentioning that k-Steiner Orientation and p-Directed Multicut were
proven to be W[1]-hard with a similar gadgeting machinery [38].

Organization of the paper

We begin with the necessary definitions in Section 3. As our gap amplification technique
is arguably the most innovative ingredient of the paper, we precede the proofs with informal
Section 4, which introduces the ideas gradually. It is followed by the detailed constructions for
k-Steiner Orientation in Section 5 and for Max (k, p)-Directed Multicut in Section 6.
Each contains a self-reduction lemma and applications to polynomial and FPT running time.
The proof of W[1]-completeness of k-Steiner Orientation can be found in the full version
of the article.

3 Preliminaries

Fixed parameter tractability

A parameterized problem instance is created by associating an integer parameter k with
an input instance. Formally, a parameterized language is a subset of Σ∗ × N. We say that
a language (or a problem) is fixed parameter tractable (FPT) if it admits an algorithm solving
an instance (I, k) (i.e., deciding if it belongs to the language) in running time f(k) · |I|O(1),
where f is a computable function. Such a procedure is called an FPT algorithm and we say
concisely that it runs in FPT time. A language belongs to the broader class XP if it admits
an algorithm with running time of the form |I|f(k).

There is no widely recognized class describing problems which admit randomized FPT
algorithms. Instead of defining such a class, we will directly use the notion of a false-biased
algorithm, which is always correct for YES-instances and for NO-instances returns the correct
answer with probability greater than some constant (equivalently, when the algorithm returns
false then it is always correct). Similarly, a true-biased algorithm is always correct for
NO-instances but may be wrong for YES-instances with bounded probability. A false-biased
(resp. true-biased) FPT algorithm satisfies the condition above and runs in FPT time.

To argue that a problem is unlikely to be FPT, we use parameterized reductions analogous
to those employed in the classical complexity theory. Here, the concept of W-hardness replaces
NP-hardness, and we need not only to construct an equivalent instance in FPT time, but
also ensure that the parameter in the new instance depends only on the parameter in the
original instance. If there exists a parameterized reduction from a W[1]-hard problem (e.g.,
k-Clique) to another problem Π, then the problem Π is W[1]-hard as well. This provides
an argument that Π does not admit an algorithm with running time f(k) · |I|O(1) under the
assumption that FPT 6= W[1].
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Approximation algorithms and gap problems

We define an optimization problem (resp. parameterized optimization problem) as a task
of optimizing function L → N, where L ⊆ Σ∗ (resp. L ⊆ Σ∗ × N), representing the value
of the optimal solution. An α-approximation algorithm for a maximization task must return
a solution of value no less than the optimum divided by α (we follow the convention with
α > 1). The approximation factor α can be a constant or it can depend on the input
size. In the most common setting, the running time is required to be polynomial. An FPT
approximation algorithm works with a parameterized optimization problem and is required to
run in FPT time. It is common that its approximation factor can depend on the parameter.

A gap problem (resp. parameterized gap problem) is given by two disjoint languages
L1, L2 ⊆ Σ∗ (resp. L1, L2 ⊆ Σ∗×N). An algorithm should decide whether the input belongs
to L1 or to L2. If neither holds, then the algorithm is allowed to return anything. Usually
L1, L2 are defined respectively as the sets of instances (of an optimization problem) with
a solution of value at least C1 and instances with no solution with value greater than C2.
An α-approximation algorithm with α < C1

C2
can distinguish L1 from L2, therefore hardness

of an approximation task is implied by hardness for the related gap problem.

Problem definitions

We now formally describe the problems we work with. Since we consider parameterized
algorithms it is important to specify how we define the parameter of an instance.

A mixed graph is a triple (V,A,E), where V is the vertex set, A is the set of directed
edges, and E stands for the set of undirected edges. An orientation of a mixed graph is given
by replacing each undirected edge uv ∈ E with one of the directed ones: (u, v) or (v, u). This
creates a directed graph G̃ = (V,A ∪ Ẽ), where Ẽ is the set of newly created directed edges.
We assume that uv /∈ E for each (u, v) ∈ A, so G̃ is always a simple graph.

k-Steiner Orientation
Input: mixed graph G = (V, A, E), list of terminal pairs T =

((s1, t1), . . . , (sk, tk)),
Parameter: k

Task: find an orientation G̃ of G that maximizes the number of pairs
(si, ti), such that ti is reachable from si in G̃

We add „Max” to the name of the following problem in order to distinguish it from
the more common version of Directed Multicut, where one minimizes the number of edges
in the cut.

Max (k, p)-Directed Multicut

Input: directed graph G = (V, A), list of terminal pairs T = ((s1, t1), . . . ,

(sk, tk)), integer p

Parameter: k + p

Task: find a subset of edges A′ ⊆ A, |A′| ≤ p, in order to maximize the
number of pairs (si, ti), such that ti is unreachable from si in
G \A′

If a solution to either problem satisfies the reachability (resp. unreachability) condition
for a particular terminal pair, we say that this pair is satisfied by this solution. The decision
versions of both problems ask whether there is a solution of value k, that is, satisfying

ICALP 2020
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all the terminal pairs. We call such an instance fully satisfiable, or a YES-instance, and
a NO-instance otherwise. For the sake of proving approximation hardness we introduce the
gap versions: q-Gap k-Steiner Orientation and q-Gap Max (k, p)-Directed Multicut,
where we are promised that the value of the optimal solution is either k or at most k

q , and
we have to distinguish between these cases.

When referring to non-parameterized problems, we drop the parameters in the problem
name. We use notation [n] = {1, 2, . . . , n}. All logarithms are 2-based.

4 The gap amplification technique

We begin with an informal thought experiment that helps to understand the main ideas behind
the reduction. For an instance (G, T = ((s1, t1), . . . , (sk, tk))) of k-Steiner Orientation
we refer to the vertices si, ti ∈ V (G) as G{s, i} and G{t, i}. We want to construct a larger
instance (H, TH) so that if (G, T ) is fully satisfiable then (H, TH) is as well, but otherwise the
maximal fraction of satisfiable pairs in (H, TH) is strictly less than k−1

k . Consider k vertex-
disjoint copies of the original instance: (G1, T1), (G2, T2), . . . , (Gk, Tk), that will be treated
as the first layer. Assume that (G, T ) is a NO-instance (i.e., one cannot satisfy all pairs
at once), so for any orientation of the copies G̃1, G̃2, . . . , G̃k, there is a tuple (j1, j2, . . . , jk)
such that G̃i{t, ji} is unreachable from G̃i{s, ji} in G̃i. Suppose for now that we have fixed
the values of (ji), even before we have finished building our instance.

Let R = (r1, r2, . . . , rk) be a tuple sampled randomly from [k]k. We connect the sinks
in the first layer to the sources in another copy of the same instance – let us refer to it
as (GR, TR). We add a directed edge from Gi{t, ri} to GR{s, i} for each i ∈ [k], thus
connecting a random sink of Gi to the source GR{s, i}, as shown in Figure 1. We refer
to the union of all k + 1 copies of G with k added connecting edges as the graph H.
We define TH = ((G1{s, r1}, GR{t, 1}), . . . , (Gk{s, rk}, GR{t, k})), so we want to satisfy
those k terminal pairs that got connected randomly. Let X be a random variable equal to
the value of the optimal solution for (H, TH) under the restriction that the solution orients
G1, G2 . . . , Gk as G̃1, G̃2, . . . , G̃k. What would be the expected value of X?

Let Y denote another random variable being the number of indices i for which ri 6= ji.
By linearity of expectation we have EY = k − 1. It holds that X ≤ Y and so far we still
have only the bound EX ≤ k− 1. However, with probability (k−1

k )k we have ri 6= ji for all i,
therefore Y = k, but we cannot connect all pairs within GR (because it is a copy of a NO-
instance), so X ≤ k − 1. This means that E(Y −X) ≥ (k−1

k )k and so EX ≤ k − 1− (k−1
k )k:

the gap has been slightly amplified.
Of course in the proper reduction we cannot fix the orientation before adding the

connecting edges. However, we can afford an exponential blow-up with respect to k. We
can include in the second layer the whole probabilistic space, that is, kk copies of (G, T ) (rather
than a single (GR, TR)), each connected to the first layer with respect to a different tuple
(r1, r2, . . . , rk), thus creating a large instance (H, TH) with kk ·k terminal pairs (see Figure 1).
For any orientation of H the fraction of satisfied terminal pairs equals the average over
the fractions for all kk groups of terminal pairs, so we can emulate the construction above
without fixing (j1, j2, . . . , jk). The maximal fraction of satisfiable terminal pairs in such
(no longer random) (H, TH) would be the same as before, that is, EX

k < k − 1. However,
the smaller instance we create the better lower bounds we get, so we will try to be more
economical while constructing (H, TH).

An important observation is that we do not have to include all kk choices of R in the
construction. We just need a sufficient combination of them, so that the gap amplification
occurs for any choice of (j1, j2, . . . , jk). This can be ensured by picking just kO(1) choices of R
and using an argument based on the Chernoff bound (see Section 5 for a detailed construction).
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(G1, T1) (G2, T2) (G3, T3) (G4, T4)

(GR, TR)

r1 r2 r3 r4

Figure 1 The construction of (H, TH) for k = 4. The black copy (GR, TR) is connected according
to the choice of R = (r1, r2, r3, r4) = (2, 2, 1, 2) and the terminals (sources and sinks) are marked
with black dots. The dotted lines indicate which pairs of terminals are unreachable in each G̃i

and we can set (j1, j2, j3, j4) = (4, 3, 4, 3) (another valid choice is (4, 3, 4, 1)). We have ri 6= ji for
each i, so Y = 4 but X ≤ 3. The grey copy illustrates another random choice of connection: R′ =
(r1, r2, r3, r4) = (4, 4, 1, 3) and X ≤ Y = 2. If we wanted to construct (H, TH) emulating the whole
probabilistic space, we would include all 44 copies of (GR, TR) for all choices of R = (r1, r2, r3, r4) in
the same way as the black and the grey copy.

We can iterate this construction by treating (H, TH) as a new input and amplifying the
gap further in each step. In further steps we need to add an exponential number of copies
to the new layer, even when compressing the probabilistic space as above. This is why we
get an exponential blow-up with respect to k and we need to work with a parameterized
hardness assumption, even for ruling out polynomial-time approximations.

The construction for Max (k, p)-Directed Multicut is simpler because the layer
stacking does not have to be iterated. Therefore to achieve polynomial-time hardness it
suffices to assume that NP 6⊆ co-RP. The phenomenon that both problems admit such
strong self-reduction properties can be explained by the fact that when dealing with directed
reachability one can compose instances sequentially, which is the first step in both reductions.

5 Inapproximability of Steiner Orientation

We are going to present a formal construction of the argument sketched in Section 4. We first
formulate and discuss the properties of the construction. Then we introduce a probabilistic
tool, called a δ-biased sampler family, describe the reduction step, and prove the gap
amplifying property. At the end of this section we present the proof of the following lemma.
Let S(G, T ) denote the maximal number of pairs that can be satisfied by some orientation
in an instance (G, T ).

I Lemma 5.1. There is a procedure that, for an instance (G, TG), k = |TG|, of Steiner
Orientation, and a parameter q, constructs a new instance (H, TH), k0 = |TH |, such that:
1. k0 = 2qO(k) ,
2. |V (H)| ≤ |V (G)| · k2

0,
3. if S(G, TG) = k, then S(H, TH) = k0 always (Completeness),
4. if S(G, TG) < k, then S(H, TH) ≤ 1

q · k0 with probability at least 1
k0

(Soundness).
The randomized construction runs in time proportional to |H|. It can be derandomized within
running time f(k, q) · |G|.
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It easily follows from these properties that the gap can get amplified to any constant q.
It is more complicated though to rule out a superconstant approximation factor, e.g.,
α(k) = log log k, because we need to keep track of the growth of α(k0) when increasing q.
We address this issue after proving Lemma 5.1.

Sampler families

As sketched in Section 4, given fixed orientations of the k copies of G, we are able to randomly
sample k sinks and insert additional edges so that the expected optimum of the new instance
is sufficiently upper bounded. We want to reverse this idea, so we could randomly sample
a moderate number of additional connections once to ensure the upper bound works for any
orientation. To this end, we need some kind of a hashing technique to mimic the behaviour
of the probabilistic space with a structure of moderate size. Examples of such constructions
are (generalized) universal hash families [8, 39, 40] or expander random walk sampling [21].
Even though the construction presented below is relatively simple, we are not aware of any
occurrences of it in the literature.

For a set X1 and a multiset X2, we write X2 ⊆ X1 if every element from X2 appears
in X1. Let U(X) denote the uniform distribution over a finite multiset X. In particular,
each distinct copy of the same element in X has the same probability of being chosen: 1

|X| .

I Definition 5.2. For a family F of functions X → [0, 1], a δ-biased sampler family is
a multiset XH ⊆ X, such that for every f ∈ F it holds∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)

∣∣ ≤ δ.
I Lemma 5.3. For a given X, F , and δ > 0, a sample of O(δ−2 log(|F|)) elements from X

(sampled independently with repetitions) forms a δ-biased sampler family with probability
at least 1

2 .

Proof. We sample independently M = 10 · δ−2 log(|F|) elements from X with repetitions.
For the sake of analysis, note that this is a single sample from the space ΩX,M being the family
of all M -tuples of elements from X, equipped with a uniform distribution. Let XH denote
the random multiset of all elements in this M -tuple. For each f ∈ F we define Af ⊆ ΩX,M
as the family of tuples for which

∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)
∣∣ > δ. For a fixed f we apply

the Hoeffding’s inequality.

P(Af ) = P
(∣∣∣∣Ex∼U(XH)f(x)− Ex∼U(X)f(x)

∣∣∣∣ > δ

)
≤ 2 exp(−2δ2M).

For our choice of M this bound gets less than 1
2|F| . By union bound, the probability that XF

is not a δ-biased sampler family is P
(⋃

f∈F Af

)
≤
∑
f∈F P(Af ) ≤ 1

2 . The claim follows. J

We keep the concise notation from Section 4: for an instance (G, T ), T = ((s1, t1), . . . ,
(sk, tk)) of k-Steiner Orientation we refer to the vertices si, ti ∈ V (G) as G{s, i} and
G{t, i}.

Building the layers

Given an instance (G, TG), our aim is to build a larger instance, so that if S(G, T ) = k then
the new one is also fully satisfiable, but otherwise the maximal fraction of terminal pairs
being simultaneously satisfiable in the new instance is at most 1

q .
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(GR, TR)

(H i
1, T i

1 )

r1 r2 r3 r4

. . .

(Hi−1
1 , T i−1

1 ) (H i
2, T i

2 )

. . .
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4 )

pi+1

Figure 2 The construction of (Hi+1, T i+1) for k = 4. The first copy of (Hi, T i) is shown
in greater detail to highlight the recursive construction, with circles representing its terminal pairs.
The new layer consists of pi+1 copies of (G, T ). The vector R = (r1, r2, r3, r4) ∈ [pi]4 indicates which
sinks are connected to the sources in (GR, TR). The black dots show 4 terminal pairs associated with
this copy. For the sake of legibility only the edges incident to GR (the black ones) and neighboring
copies (the grey ones) are sketched.

We inductively construct a family of instances (Hi, T i)Bi=1 with (H1, T 1) = (G, TG). Let
ki = |T i| and pi indicate the number of copies of (G, TG) in the last layer (to be explained
below) of (Hi, T i). We will have that p1 = 1 and ki = |T i| = k ·pi. We construct (Hi+1, T i+1)
by taking k vertex-disjoint copies of the i-th instance, denoted (Hi

1, T i1 ), . . . , (Hi
k, T ik ) and

forming a new layer of copies of (G, TG) which will be randomly connected to the i-th layer
through directed edges. Therefore graph Hi+1 will have i+ 1 layers of copies of G.

Let R = [ki]k be the family of k-tuples (r1, r2, . . . rk) with elements from the set [ki].
We sample a random tuple R = (r1, r2, . . . rk) from R and create a new copy of the original
instance – let us refer to it as (GR, TR). We add a directed edge from Hi

j{t, rj} to GR{s, j}
for each j ∈ [k], thus connecting a random sink of Hi

j to the source GR{s, i}. We insert
k pairs to T i+1: (Hi

1{s, r1}, GR{t, 1}), . . . , (Hi
k{s, rk}, GR{t, k}). We iterate this subroutine

pi+1 = O(k4q2kpi) times (a derivation of this quantity is postponed to Lemma 5.4), as shown
in Figure 2.

I Lemma 5.4. Let yi = S(Hi, T i) / ki be the maximal fraction of terminal pairs that can be
simultaneously satisfied in (Hi, T i). Suppose that S(G, TG) < k and yi ≥ 1

q . Then with
probability at least 1

2 it holds yi+1 ≤ yi − 1
2k · q

−k.

Proof. First observe that for each (sj , tj) ∈ T i, any (sj , tj)-path in (Hi, T i) runs through
i unique copies of (G, TG). Therefore an (sj , tj)-pair is satisfied only if the corresponding
i terminal pairs in those copies are satisfied. Recall that we have connected each copy
of (G, TG) in the i-th layer to the terminals from the previous layer according to a random
tuple R = (r1, r2, . . . rk) ∈ R.

We will now analyze how the possible orientations H̃i
1, . . . , H̃

i
k influence the status of the

terminal pairs in T i+1. Let Cj ⊆ [ki] encode which of the terminal pairs are reachable in
H̃i
j , that is, Cj = {` ∈ [ki] : H̃i

j{t, `} is reachable from H̃i
j{s, `}}. A tuple C = (C1, . . . Ck) is

called a configuration and we denote the family of all feasible configurations as C. We have
|C| ≤ (2ki)k = 2pik2 . For a configuration C ∈ C let fC : R → [0, 1] be a function describing
the maximal fraction of satisfiable terminal pairs from those with sinks in GR connected
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through a tuple R ∈ R. Note that fC(R) depends on C,R and the best possible orientation
of GR, whereas it is oblivious to the rest of the structure of (H̃i

j)kj=1. We can thus think of C
as an interface between the first i layers and GR.

For fixed orientations H̃i
1, . . . , H̃

i
k, and therefore fixed configuration C ∈ C, we estimate

the expected value of fC . Let Yj be a random Boolean variable indicating that H̃i
j [t, rj ]

is reachable from H̃i
j [s, rj ] for a random (r1, r2, . . . rk) ∈ R, i.e., that rj ∈ Cj . Let Y =∑k

j=1 Yj/k, so that we always have fC(R) ≤ Y .
Let cj = |Cj |/ki. By linearity of expectation EY =

∑k
j=1 cj/k and by the assumption

cj ≤ yi for all j ∈ [k]. However, with probability
∏k
j=1 cj we have rj ∈ Cj for all j, so

Y = 1, but we cannot connect all pairs within (GR, TR) (since we assumed S(G, TG) < k),
so fC(R) ≤ 1− 1

k . This means that

E (Y − fC(R)) ≥ 1
k
·
k∏
j=1

cj , and so EfC(R) ≤ 1
k
·

 k∑
j=1

cj −
k∏
j=1

cj

 .

The quantity
∑k
j=1 cj −

∏k
j=1 cj can only increase when we increase some c`, because the

`-th partial derivative is 1−
∏
j∈[k], j 6=` cj ≥ 0. By the assumption cj ≤ yi and yi ≥ 1

q , hence

EfC(R) ≤ 1
k
·

 k∑
j=1

yi −
k∏
j=1

yi

 ≤ yi − 1
k
· q−k.

Now we apply Lemma 5.3 for F = {fC : C ∈ C} and δ = 1
2k · q

−k to argue that for
our choice of pi+1 – the number of copies in the last layer – the estimation works for all
C ∈ C at once. The quantity M = O(δ−2 log(|F|)) in Lemma 5.3 becomes O(k4q2kpi), which
is exactly as we defined pi+1. We have sampled pi+1 tuples from R (let us denote this
multiset as RH ⊆ R) and added a copy (GR, TR) for each R ∈ RH . For a fixed C ∈ C, the
maximal fraction of satisfiable terminal pairs in (Hi+1, T i+1) equals the average of fC(R)
over R ∈ RH . By Lemma 5.3 we know that, regardless of the choice of C, this quantity is
at most

ER∼U(RH)fC(R) ≤ ER∼U(R)fC(R) + 1
2k · q

−k ≤ yi −
1
2k · q

−k,

with probability at least 1
2 (that is, if we have chosen RH correctly). Since the upper bound

works for all C ∈ C simultaneously, the claim follows. J

Proof of Lemma 5.1. We define (H, TH) = (HB , T B) for B = 2kqk. The completeness is
straightforward: if S(G, TG) = k, then we can orient all copies of G so that G{t, j} is always
reachable from G{s, j} and each requested path in S(Hi, T i) is given as a concatenation
of respective paths in B copies of G.

To see the soundness, suppose that S(G, TG) < k. The sequence (yi)Bi=0 is non-increasing
and the value of yi is being decreased by at least i

2k · q
−k in each iteration, as long as yi ≥ 1

q ,
due to Lemma 5.4. Therefore after B = 2kqk iterations we are sure to have yB ≤ 1

q .
To estimate the size of the instance, recall that we have ki = pik and pi+1 = O(k4q2kpi).

We can assume q ≥ 2 and so k ≤ qk. For B = 2kqk, the value of pB becomes
(
k4q2k)O(kqk) =

2qO(k)O(log q) = 2qO(k) . The size of V (H) is at most kB · |V (G)| times the number of layers,
which is B. We trivially bound B ≤ 2B ≤ kB to obtain |V (H)| ≤ |V (G)| · k2

B .
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The presented construction is randomized because we randomly choose a biased sampler
family in each of the B steps. If we start with a YES-instance, then we produce a YES instance
regardless of these choices, and otherwise we produce a NO instance with probability at least
2−B ≥ 1

kB
. The construction can be derandomized within running time f(k, q) · |V (G)|

as follows. In each application of Lemma 5.3 the sizes of X and F are (ki)k and 2pik2 ,
respectively, and δ = 1

2k · q
−k, which are all bounded by a function of k and q. Therefore

instead of sampling a biased sampler family, we can enumerate all O(δ−2 log(|F|))-tuples
of elements from X and find one giving a biased sampler family. J

Adjusting the parameters

The construction above implies that we can amplify the gap to any constant q by multiplying
the size of an instance by a factor depending on k and q. However, when we want to rule
out a superconstant approximation factor, e.g., α(k) = log log k, we would like to apply the
hypothetical approximation algorithm to the instance (H, TH) with parameter k0 depending
on k and q, so we additionally need to adjust q so that α(k0(k, q)) ≤ q.

I Theorem 2.1. Consider a function α(k) = (log k)β(k), where β(k)→ 0 is computable and
non-increasing. It is W[1]-hard to distinguish whether for a given instance of k-Steiner
Orientation:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(k) · k.

Proof. We are going to reduce the exact version of k-Steiner Orientation, which is
W[1]-hard, to the version with a sufficiently large gap, with Lemma 5.1. For a fixed k

we can bound k0 by a function of q: k0(q) ≤ 2qc·k for some constant c. On the other
hand, k0(q) → ∞. Given an instance (G, TG) we use Lemma 5.1 with q large enough, so
that β(k0(q)) · c · k ≤ 1. The dependency q(k) is also a computable function. We get
α(k0) = (log k0)β(k0) ≤ qc·k·β(k0) ≤ q.

We have obtained a new instance (H, TH) of k0-Steiner Orientation of size f(k)·|V (G)|
and k0 being a function of k. If the original instance is fully satisfiable then the same holds
for (H, TH) and otherwise S(H, TH) ≤ 1

q · k0 ≤ 1
α(k0) · k0, which finishes the reduction. J

If we restrict the running time to be purely polynomial, we can slightly strengthen the
lower bound, i.e., replace k with n in the approximation factor, while working with a similar
hardness assumption. To make this connection, we observe that in order to show that
a problem is in FPT, it suffices to solve it in polynomial time for some superconstant bound
on the parameter.

I Proposition 5.5. Consider a parameterized problem Π ∈ XP that admits a polynomial-time
algorithm (resp. false-biased polynomial-time algorithm) for the case f(k) ≤ |I|, where f
is some computable function. Then Π admits an FPT algorithm (resp. false-biased FPT
algorithm).

Proof. Since Π ∈ XP, it admits a deterministic algorithm with running time |I|g(k). Whenever
f(k) ≤ |I|, we execute the polynomial-time algorithm. Otherwise we can solve it in time
f(k)g(k). J

The hardness assumption below is slightly stronger than in Theorem 2.1, because the
quantity 2k0 can be super-polynomial and we cannot afford the time-expensive derandomiza-
tion.
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I Theorem 2.2. Consider a function α(n) = (logn)β(n), where β(n) → 0 is computable
and non-increasing. Unless the class W[1] admits false-biased FPT algorithms, there is no
polynomial-time algorithm that, given an instance of Steiner Orientation with n vertices
and k terminal pairs, distinguishes between the following cases:
1. there exists an orientation satisfying all k terminal pairs, or
2. for all orientations the number of satisfied pairs is at most 1

α(n) · k.

Proof. Suppose there is such an algorithm with approximation factor α(n) = (logn)β(n).
Let β∗(`) be the smallest integer L, for which β(L) ≤ 1

` . The function β∗ is well defined
and computable, because β is computable. Again, for fixed k and some constant c we have
dependency k0(q) ≤ 2qc·k .

We are going to use the polynomial-time algorithm to solve k-Steiner Orientation
in randomized f(k) · nO(1) time, which would imply the claim. Since the problem is in
XP [15], by Fact 5.5 it suffices to solve instances satisfying β∗((ck)2) ≤ n in polynomial time.
We can thus assume (ck)2 · β(n) ≤ 1, or equivalently ck · β(n) ≤

√
β(n).

Given an instance of k-Steiner Orientation, we apply Lemma 5.1 with q = (2 logn)β(n).

k0 ≤ 2q
ck

= 2(2 logn)ck·β(n)
≤ 2(2 logn)

√
β(n)

= no(1),

α(|V (H)|) ≤ α(n · k2
0) = α(n1+o(1)) = ((1 + o(1)) · logn)β(n).

For large n we obtain α(|V (H)|) ≤ q. Since |V (H)| ≤ n · k2
0 = n1+o(1), the size of

the new instance of polynomially bounded and thus the randomized construction takes
polynomial time. If we started with a YES instance, we always produce a YES instance,
and otherwise S(H, TH) ≤ 1

q · k0 ≤ 1
α(|V (H)|) · k0 with probability at least 1

k0
, so we need to

repeat the procedure k0 = no(1) times to get a constant probability of creating an instance
with a small optimum. A hypothetical algorithm distinguishing these cases would therefore
entail a false-biased polynomial-time algorithm for Steiner Orientation for the case
β∗((ck)2) ≤ n. The claim follows from Proposition 5.5. J

6 Inapproximability of Directed Multicut

We switch our attention to the Max (k, p)-Directed Multicut problem, for which we
provide a slightly simpler reduction. We keep the same convention as before: within graph G
we refer to sources and sinks (si, ti) ∈ T shortly as G{s, i}, G{t, i}, and denote the maximal
number of terminal pairs separable in (G, T ) by deleting p edges by S(G, T , p).

I Lemma 6.1. There is a procedure that, for an instance (G, TG, p), |TG| = 4 of Directed
Multicut and parameter q, constructs a new instance (H, TH , p0), k0 = |TH |, such that:
1. k0 = Θ(p · q2 log q),
2. p0 = Θ(p2 log q),
3. |E(H)| = |E(G)| · p0 +O(k0 · p0),
4. if S(G, TG, p) = 4, then S(H, TH , p0) = k0 always (Completeness),
5. if S(G, TG, p) < 4, then S(H, TH , p0) ≤ 1

q · k0 with probability at least 1
2 (Soundness).

The randomized construction takes time proportional to |H|. It can be derandomized in time
f(p, q) · |G|.

Proof. Consider M = 3(p + 1) · log q copies of (G, TG), denoted (G1, T1), . . . , (GM , TM ).
Let R = [4]M be the family of all M-tuples with values in [4]. For a random sequence
R = (r1, r2, . . . rM ) ∈ R, we add a terminal pair sR, tR and for each i ∈ [M ] we add directed
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Figure 3 Building a new instance from M parallel copies of G. The tuple R = (r1, r2, . . . rM )
encodes through which nodes the (sR, tR) pair is connected. For the sake of legibility only the edges
incident to sR, tR (the black ones) and neighboring terminals (the grey ones) are sketched.

edges (sR, Gi{s, ri}) and (Gi{t, ri}, tR). We repeat this subroutine k0 = Θ(p · q2 log q)
times and create that many terminals pairs as depicted in Figure 3. We set the budget
p0 = 3p(p+ 1) · log q.

If S(G, TG, p) = 4, then the budget suffices to separate all terminal pairs in all copies
of (G, TG) (completeness). Otherwise, one needs to remove at least p+ 1 edges from each
copy of (G, TG) to separate all 4 pairs so we can afford that in at most 3p · log q copies.
Therefore for any solution there are at least 3 log q copies, where there is at least one terminal
pair that is not separated.

Let Ci ⊆ [4] represent information about the status of solution within (Gi, Ti): there
is path from Gi{s, j} to Gi{t, j} only if j ∈ Ci. A tuple C = (C1, . . . , CM ) is called
a configuration and we refer to the family of configurations induced by possible solutions
as C. Clearly, |C| ≤ 16M .

Recall that each terminal pair can be represented by a tuple R = (r1, r2, . . . rM ) ∈ R
encoding through which terminal pair in Gi a path from sR to tR can go. For a fixed
configuration C ∈ C, function fC : R → {0, 1} is set to 1 if the pair sR, tR is separated,
or equivalently: if for each i ∈ [M ] we have ri 6∈ Ci. For S(G, TG, p) < 4 there are at least
3 log q copies of Gi with Ci 6= ∅, therefore ER∼U(R)fC(R) ≤ ( 3

4 )3 log q ≤ 2− log(2q) = 1
2q .

The size of C is at most 16M = 2O(p log q). We apply Lemma 5.3 for F = {fC : C ∈ C}
and δ = 1

2q . It follows that O(δ−2 log(|F|)) = O(p · q2 log q) random samples from R
suffice to obtain a rounding error of at most 1

2q for all C ∈ C at once. Therefore with
probability at least 1

2 we have constructed an instance in which for any cutset of size p0
(and thus for any configuration C) the fraction of separated terminal pairs is at most
ER∼U(R)fC(R) + 1

2q ≤
1
q . J

Remark on derandomization

As before, if we allow exponential running time with respect to p and q, we can find a correct
sampler family by enumeration and derandomize the reduction. However, we cannot afford
that in a polynomial-time reduction. To circumvent this, observe that we upper bound
the expected value of fC using independence of 3 log q variables. We could alternatively
take advantage of δ-biased `-wise independent hashing [37] (cf. [8, 39, 40]) to construct

ICALP 2020



104:16 Parameterized Inapproximability for Steiner Orientation by Gap Amplification

biased `-wise independent binary random variables with few random bits, instead of relying
on Lemma 5.3. This technique provides an analogous bound on additive estimation error
as in Lemma 5.3 for events that depend on at most ` variables. A family of N such variables
can be constructed using O(`+ log logN + log( 1

δ )) random bits [37, Lemma 4.2].
Since we are interested in having N = O(p · log q) variables, δ = 1

2q , and (3 log q)-
wise independency, the size of the whole probabilistic space becomes 2O(log q+log log p) =
qO(1)(log p)O(1). The problem is that we need to optimize the exponent at q in order to
obtain better lower bounds. Unfortunately, we are not aware of any construction of a δ-biased
`-wise independent hash family, that would optimize this constant.

I Theorem 2.4. For any ε > 0 and function α(k) = O
(
k

1
2−ε
)
, it is W[1]-hard to distinguish

whether for a given instance of Max (k, p)-Directed Multicut:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(k) · k terminal pairs.

Proof. Let us fix ε > 0. We are going to reduce the exact version of p-Directed Multicut
with 4 terminals, which is W[1]-hard, to the version with a sufficiently large gap, parameterized
by both p and k = |T |. Let L be an integer larger than 2

ε .
For an instance (G, T , p) of p-Directed Multicut we apply Lemma 6.1 with q = pL.

If the original instance is fully solvable, the new one is as well. Otherwise the maximal
fraction of separated terminal pairs is k0

q = O(p · q log q) = O(pL+2). On the other hand,
k0

α(k0) = Ω
(
k

( 1
2 +ε)

0

)
≥ Ω

(
p2L·( 1

2 +ε)
)
. The exponent at p in the latter formula is L+ 2εL >

L + 2, so for large p it holds k0
α(k0) ≥

k0
q , therefore the reduction maps NO-instances into

those where all cuts of size p0 separate at most k0
α(k0) terminal pairs. Both k0 and p0 are

functions of p, therefore we have obtained a parameterized reduction. J

I Theorem 2.5. Assuming NP 6⊆ co-RP, for any ε > 0 and function α(m) = O
(
m

1
2−ε
)
,

there is no polynomial-time algorithm that, given an instance (G, T , p), |T | = k, |E(G)| = m,
of Max Directed Multicut, distinguishes between the following cases:
1. there is a cut of size p that separates all k terminal pairs, or
2. all cuts of size p separate at most 1

α(m) · k terminal pairs.

Proof. Suppose there is such an algorithm for some ε > 0 and proceed as in the proof
of Theorem 2.4 with L sufficiently large, so that 2εL ≥ 5 and q = mL. The reduction
is polynomial because L is constant for fixed ε. We have m0 = |E(H)| = m ·p0 +O(k0 ·p0) =
mp2 log q + O(p3q2 log2 q) = O(m2L+5) because p ≤ m. If the initial instance is fully
satisfiable, then always S(H, TH , p0) = k0. For a NO-instance, we have S(H, TH , p0) ≤ k0

q =
O(mL+2) with probability at least 1

2 . On the other hand, k0 = Ω(m2L) and

k0

α(m0) = Ω
(

1

m
1
2−ε
0

)
· k0 = Ω

(
m2L−(2L+5)·( 1

2−ε)
)

= Ω(mL− 5
2 +2εL).

We have adjusted L to have L − 5
2 + 2εL > L + 2, so for large m we get k0

α(m0) ≥
k0
q .

Therefore the reduction maps NO-instances into those where all cuts of size p0 separate at
most k0

α(m0) terminal pairs. When the reduction from Lemma 6.1 is correct (with probability
at least 1

2 ), we are able to detect the NO-instances. This implies that Directed Multicut
∈ co-RP. J
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7 Final remarks and open problems

I would like to thank Pasin Manurangsi for helpful discussions and, in particular, for suggesting
the argument based on Chernoff bound in Lemma 5.1, which is surprisingly simple and
powerful. A question arises whether one can derandomize this argument efficiently and
construct a δ-biased sampler family in an explicit way. This would allow us to replace the
assumption NP 6⊆ co-RP with P 6= NP for Directed Multicut. This technique may also
find use in other reductions in parameterized inapproximability.

An obvious question is if any of the studied problems admits an o(k)-approximation,
or if the lower bounds can be strengthened. Note that for the maximization version of Dir-
ected Multicut we do not know anything better than k

2 -approximation as we cannot
solve the exact problem for k > 2. For Steiner Orientation, the reason why the value
of the parameter in the self-reduction becomes so large, is that in each step we can add only
an exponentially small term to the gap. Getting around this obstacle should lead to better
lower bounds. Also, the approximation status for k-Steiner Orientation on planar graphs
remains unclear [11]. Here we still cannot rule out a constant approximation and there are
no upper bounds known.

Finally, it is an open quest to establish relations between other hard parameterized
problems and their gap versions. Is F (k)-Gap k-Clique W[1]-hard for F (k) = o(k) and
is F (k)-Gap k-Dominating Set W[2]-hard for any function F (open questions in [26])?
Or can it be possible that F (k)-Gap k-Dominating Set is in W[1] for some function F?
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