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Abstract
Goldmann and Russell (2002) initiated the study of the complexity of the equation satisfiability
problem in finite groups by showing that it is in P for nilpotent groups while it is NP-complete
for non-solvable groups. Since then, several results have appeared showing that the problem can
be solved in polynomial time in certain solvable groups of Fitting length two. In this work, we
present the first lower bounds for the equation satisfiability problem in finite solvable groups: under
the assumption of the exponential time hypothesis, we show that it cannot be in P for any group
of Fitting length at least four and for certain groups of Fitting length three. Moreover, the same
hardness result applies to the equation identity problem.
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1 Introduction

The study of equations over algebraic structures has a long history in mathematics. Some of
the first explicit decidability results in group theory are due to Makanin [33], who showed
that equations over free groups are decidable. Subsequently several other decidability and
undecidability results as well as complexity results on equations over infinite groups emerged
(see [11, 14, 32, 37] for a random selection). For a fixed group G, the equation satisfiability
problem EQN-SAT is as follows: given an expression α ∈ (G ∪ X ∪ X−1)∗ where X is some
set of variables, the question is whether there exists some assignment σ : X → G such that
σ(α) = 1 (here σ is extended to expressions in the natural way – X−1 is a disjoint copy of
X representing the inverses of X ). Likewise EQN-ID is the problem, given an expression,
decide whether it evaluates to 1 under all assignments.

Henceforth, all groups we consider are finite. In this case, equation satisfiability and
related questions are clearly decidable by an exhaustive search. Still the complexity is an
interesting topic of research: its study has been initiated by Goldmann and Russell [15], who
showed that satisfiability of systems of equations can be decided in P if and only if the group
is abelian (assuming P 6= NP) – otherwise, the problem is NP-complete. They also obtained
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102:2 Equations over Finite Solvable Groups

some results for single equations: EQN-SAT is NP-complete for non-solvable groups, while
for nilpotent groups it is in P. This left the case of solvable but non-nilpotent groups open.
Indeed, Burris and Lawrence raised the question whether EQN-ID(G) ∈ P for all finite
solvable groups G [9, Problem 1]. Moreover, Horváth [18] conjectured a positive answer.

Contribution. In this work we give a negative answer to this question assuming the expo-
nential time hypothesis by showing the following result:

I Corollary A. Let G be finite solvable group and assume that either
the Fitting length of G is at least four, or
the Fitting length of G is three and there is no Fitting-length-two normal subgroup whose
index is a power of two.

Then EQN-SAT(G) and EQN-ID(G) are not in P under the exponential time hypothesis.

To the best of our knowledge, this constitutes the first hardness results for EQN-SAT(G)
and EQN-ID(G) if G is solvable.1 The Fitting length of a group G is the minimal d such
that there is a sequence 1 = G0 E · · · E Gd = G with all quotients Gi+1/Gi nilpotent.

Moreover, we show that if S is a semigroup with a group divisor (i.e., a group which is a
quotient of a subsemigroup of S) meeting the requirements of Corollary A, EQN-SAT(S)
(here the input consists of two expressions) is also not in P under the exponential time
hypothesis. Finally, using the same ideas as for our main result, we derive an upper bound
of 2O(n1/(d−1)) for the length of the shortest G-program (definition see below) for the n-input
AND function in a finite solvable group of Fitting length d ≥ 2. Notice that a corresponding
2nΩ(1) lower bound would imply that EQN-SAT(G) and EQN-ID(G) can be solved in
quasipolynomial time for finite solvable groups G.

General approach. The complexity of EQN-SAT is closely related to the complexity of
the satisfiability problem for G-programs (denoted by ProgramSAT – for a definition see
Section 3). Indeed, [5] gives a reduction from EQN-SAT to ProgramSAT (be aware that,
while the problems EQN-SAT and ProgramSAT are well-defined for finitely generated
infinite groups, in general, such a reduction exists only in the case of finite groups). Moreover,
also ProgramSAT is in P for nilpotent groups and NP-complete for non-solvable groups [6].

In order to show hardness of these problems, one usually reduces some NP-complete
problem like 3SAT or C-Coloring to them. Typically, this requires to encode big logical
conjunctions into the group G. Therefore, the complexity of these problems is linked to the
length of the shortest G-program for the AND function. Indeed, [5, Theorem 4] shows that,
if the AND function can be computed by a P-uniform family of G-programs of polynomial
length, then ProgramSAT(G o Ck) for k ≥ 4 is NP-complete (here Ck denotes the cyclic
group of order k; P-uniform means that the n-input G-program can be computed in time
polynomial in n). Thus, if there exists a solvable group with efficiently computable polynomial
length G-programs for the AND function, then there is a solvable group with an NP-complete
ProgramSAT problem.

1 Recently (a preprint appeared only days after the submission of this paper), in [24] Idziak, Kawałek, and
Krzaczkowski succeeded to show that EQN-SAT(S4) is not in P under the exponential time hypothesis
(S4 denotes the symmetric group over four elements). Moreover, they proved similar results as in this
work for the case of algebras from congruence modular varieties. This complements our main result
Corollary A. Indeed, a joint paper proving a quasipolynomial lower bound on EQN-SAT and EQN-ID
for all finite groups of Fitting length three is under preparation.
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It is well-known that G-programs describe the circuit complexity class CC0 [34] with
the depth of the circuit relating to the Fitting length of the group. One can make a depth
size trade-off for the AND function using a divide-and-conquer approach: Assume there is
a circuit of depth two and size 2n for the n-input AND (which is the case by [3]). Since
the n-input AND can be decomposed as

√
n-input AND of

√
n many

√
n-input ANDs, we

obtain a CC0 circuit of depth 4 and size roughly 2
√
n.

This observation plays a crucial role for our results: it allows us to reduce an m-edge C-
Coloring instance to an equation of size roughly 2

√
m. We compare this to the exponential

time hypothesis (ETH), which conjectures that n-variable 3SAT cannot be solved in time
2o(n). ETH implies that C-Coloring cannot be solved in time 2o(m), which gives us a
quasipolynomial lower bound on EQN-SAT and EQN-ID. Notice that in the literature there
are several other quasipolynomial lower bounds building on the exponential time hypothesis –
see [1, 7, 8] for some examples.

Outline. In Section 2, we fix our notation and state some basic results on inducible and
atomically universally definable subgroups. Some of these observations are well-known, while
others, to the best of our knowledge, have not been stated explicitly. Section 3 gives a little
excursion to the complexity of the AND-function in terms of G-programs over finite solvable
groups deriving an upper bound 2O(n1/(d−1)) if d ≥ 2 is the Fitting length of G.

Section 4 and Section 5 are the main part of our paper: we reduce the C-Coloring
problem to EQN-SAT and EQN-ID. For the reduction, we need some special requirements
on the group G. In Section 5 we show that actually the requirements of Corollary A are
enough using the concept of inducible and atomically universally definable subgroups. Finally,
in Corollary 22 we examine consequences to EQN-SAT in semigroups.

Related work on equations. Since the work of Goldman and Russell [15] and Barrington
et al. [5], a long list of literature has appeared investigating EQN-ID and EQN-SAT in
groups and other algebraic structures. In [9] it is shown that EQN-ID is in P for nilpotent
groups as well as for dihedral groups Dk where k is odd. Horváth resp. Horváth and Szabó
[19, 22] extended these results by showing the following among other results: EQN-SAT(G)
is in P for G = Cn oB with B abelian, n = pk or n = 2pk for some prime p and EQN-ID is
in P for semidirect products G = Cn1 o (Cn2 o · · · o (Cnk o (A o B))) with A,B abelian
(be aware that such a group is two-step solvable). Furthermore, in [12] it is proved that
EQN-SAT(G) ∈ P for so-called semi-pattern groups. Finally, in [13] Földvári and Horváth
established that EQN-SAT is in P for the semidirect product of a p-group and an abelian
group and that EQN-ID is in P for the semidirect product of a nilpotent group with an
abelian group. Notice that all these groups have in common that their Fitting length is at
most two.

In [20, 21] the EQN-SAT and EQN-ID problems for generalized terms are introduced.
Here a generalized term means an expression which may also use commutators or even
more complicated terms inside the input expression. Using commutators is a more succinct
representation, which allows for showing that EQN-SAT is NP-complete and EQN-ID is
coNP-complete in the alternating group A4 [21]. In [31] this result is extended by showing that,
with commutators and the generalized term w(x, y1, y2, y3) = x8[x, y1, y2, y3], EQN-SAT is
NP-complete and EQN-ID is coNP-complete for all non-nilpotent groups.

There is also extensive literature on equations in other algebraic structures – for instance,
[2, 5, 26, 27, 28, 29, 38, 39, 40] in semigroups. We only mention two of them explicitly: [27]
showed that identity checking (EQN-ID without constants in the input) in semigroups is
coNP complete. Moreover, among other results, [2] reduces the identity checking problem in
the direct product of maximal subgroups to identity checking in some semigroup.

ICALP 2020



102:4 Equations over Finite Solvable Groups

2 Preliminaries

The set of words over some alphabet Σ is denoted by Σ∗. The length of a word w ∈ Σ∗ is
denoted by |w|. We denote the interval of integers { i, . . . , j } by [i .. j].

Complexity. We use standard notation from complexity theory. In several cases we use the
notion of AC0 many-one reductions (denoted by ≤AC0

m ) meaning that the reducing function can
be computed in AC0 (i.e., by a polynomial-size, constant-depth Boolean circuit). The reader
unfamiliar with this terminology may think about logspace or polynomial time reductions.
Also be aware that in order to obtain AC0 many-one reductions in most cases we need the
presence of a letter representing the group identity for padding reasons.

Exponential time hypothesis. The exponential time hypothesis (ETH) is the conjecture
that there is some δ > 0 such that every algorithm for 3SAT needs time Ω(2δn) in the worst
case where n is the number of variables of the given 3SAT instance. By the sparsification
lemma [25, Thm. 1] this is equivalent to the existence of some ε > 0 such that every algorithm
for 3SAT needs time Ω(2ε(m+n)) in the worst case where m is the number of clauses of
the given 3SAT instance (see also [10, Thm. 14.4]). In particular, under ETH there is no
algorithm for 3SAT running in time 2o(n+m).

C-Coloring. A C-coloring for C ∈ N of a graph Γ = (V,E) is a map χ : V → [1 .. C]. A
coloring χ is called valid if χ(u) 6= χ(v) whenever {u, v } ∈ E. The problem C-Coloring is
as follows: given an undirected graph Γ = (V,E), the question is whether there is a valid
C-coloring of Γ. The C-Coloring problem is one of the classical NP-complete problems
for C ≥ 3. Moreover, by [10, Thm. 14.6], 3-Coloring cannot be solved in time 2o(|V |+|E|)
unless ETH fails. Since 3-Coloring can be reduced to C-Coloring for fixed C ≥ 3 by
introducing only a linear number of additional edges and a constant number of vertices, it
follows for every C ≥ 3 that also C-Coloring cannot be solved in time 2o(|V |+|E|) unless
ETH fails.

Commutators and Fitting series. Throughout, we only consider finite groups G. We use
notation similar to [36]. We write [x, y] = x−1y−1xy for the commutator and xy = y−1xy

for the conjugation. Moreover, we write [x1, . . . , xn] = [[x1, . . . , xn−1], xn] for n ≥ 3.
As usual for subsets X,Y ⊆ G, we write 〈X〉 for the subgroup generated by X

and we define [X,Y ] = 〈 [x, y] | x ∈ X, y ∈ Y 〉 and [X1, . . . , Xk] = [[X1, . . . , Xk−1], Xk]
for X1, . . . , Xk ⊆ G. In contrast, we write [X,Y ]set = { [x, y] | x ∈ X, y ∈ Y } (thus,
[X,Y ] = 〈[X,Y ]set〉) and [X1, . . . , Xk]set = [[X1, . . . , Xk−1]set, Xk]set.

Finally, we denote the set { gx | x ∈ X } with gX (be aware that here we differ from [36])
and define XY = {xy | x ∈ X, y ∈ Y }.

I Lemma 1. If XG
i = Xi ⊆ G for i = 1, . . . , k, then

[〈X1〉 , . . . , 〈Xk〉] = 〈[X1, . . . , Xk]set〉 .

Proof. By [36, 5.1.7], we have [〈X〉 , 〈Y 〉] = [X,Y ]〈X〉〈Y 〉 for arbitrary X,Y ⊆ G. Thus, if
X = XG and Y = Y G, we have [〈X〉 , 〈Y 〉] = [X,Y ]. We use this to show the lemma by
induction:

[〈X1〉 , . . . , 〈Xk〉] =
[
[〈X1〉 , . . . , 〈Xk−1〉], 〈Xk〉

]
=
[
〈[X1, . . . , Xk−1]set〉 , 〈Xk〉

]
(by induction)

=
[
[X1, . . . , Xk−1]set, Xk

]
(by [36, 5.1.7])

= 〈[X1, . . . , Xk]set〉 J
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For x, y ∈ G, we write [x, k y] = [x, y, . . . , y︸ ︷︷ ︸
k times

] and likewise for X,Y ⊆ G, we write

[X, k Y ] = [X,Y, . . . , Y︸ ︷︷ ︸
k times

] and [k Y ] = [Y, . . . , Y︸ ︷︷ ︸
k times

] and analogously [X, k Y ]set and [k Y ]set.

Since G is finite, there is some M = M(G) ∈ N such that [X, M Y ] = [X, i Y ] for all
i ≥ M and all X,Y ⊆ G with XG = X and Y G = Y (notice that [X, i Y ] ≤ [X, j Y ] for
j ≤ i due to the normality of [X,Y ]). It is clear that M = |G| is large enough, but typically
much smaller values suffice.

I Lemma 2. For all X,Y ⊆ G with XG = X we have [X, M Y ] = [[X,G], M Y ].

Proof. We have [X,G] ≤ 〈X〉 because [x, g] = x−1xg ∈ X. Thus, the inclusion right
to left follows. The other inclusion is because [X, M Y ] = [X, M+1 Y ] ≤ [X,G, M Y ] =
[[X,G], M Y ]. J

The k-th term of the lower central series is γkG = [G, k G]. The nilpotent residual of G
is defined as γ∞G = γMG where M is as above (i.e., γ∞G = γiG for every i ≥M). Recall
that a finite group G is nilpotent if and only if γ∞G = 1.

The Fitting subgroup Fit(G) is the union of all nilpotent normal subgroups. Let G be a
finite solvable group. It is well-known that Fit(G) itself is a nilpotent normal subgroup (see
e.g. [23, Satz 4.2]). The upper Fitting series

1 = U0G C U1G C · · · C UkG = G

is defined by Ui+1G/UiG = Fit(G/UiG). The lower Fitting series

1 = LdG C · · · C L1G C L0G = G

is defined by Li+1G = γ∞(LiG). We have d = k (see e.g. [23, Satz 4.6]) and this number
is called the Fitting length FitLen(G) (sometimes also referred to as nilpotent length). The
following fact can be derived by a straightforward induction from the characterization of
Fit(G) as largest nilpotent normal subgroup (for a proof see e.g. [41]):

I Lemma 3. Let H E G be a normal subgroup. Then for all i, we have UiH = UiG∩H. In
particular,
(i) if FitLen(H) = i, then H ≤ UiG,
(ii) if g ∈ UiG Ui−1G, then FitLen(

〈
gG
〉
) = i.

Equations in groups. An expression (also called a polynomial in [39, 22, 31]) over a group G
is a word α over the alphabet G∪X ∪X−1 where X is a set of variables. Here X−1 denotes a
formal set of inverses of the variables. Since we are dealing with finite groups only, a variable
X−1 ∈ X−1 for X ∈ X can be considered as an abbreviation for X |G|−1. Sometimes we write
α(X1, . . . , Xn) for an expression α to indicate that the variables occurring in α are from the
set {X1, . . . , Xn }. Moreover, if β1, . . . , βn are other expressions, we write α(β1, . . . , βn) for
the expression obtained by substituting each occurrence of a variable Xi by the expression βi.

An assignment for an expression α is a mapping σ : X → G – here σ is canonically
extended by σ(X−1) = σ(X)−1 and σ(g) = g for g ∈ G. An assignment σ is satisfying if
σ(α) = 1 in G. The problems EQN-SAT(G) and EQN-ID(G) are as follows: for both of
them the input is an expression α. For EQN-SAT(G) the question is whether there exists a
satisfying assignment, for EQN-ID(G) the question is whether all assignments are satisfying.

Notice that in the literature EQN-SAT is also denoted by POL-SAT [39, 22] or Eq [31],
while EQN-ID is also referred to as POL-EQ (e.g. in [39, 22, 28]) or Id [31].

ICALP 2020



102:6 Equations over Finite Solvable Groups

If X = Y ∪Z with Y ∩Z = ∅ and we are given assignments σ1 : Y → G and σ2 : Z → G,
we obtain a new assignment σ1 ∪ σ2 defined by (σ1 ∪ σ2)(X) = σ1(X) if X ∈ Y and
(σ1 ∪ σ2)(X) = σ2(X) if X ∈ Z. We write [X 7→ g] for the assignment {X } → G mapping
X to g.

Inducible subgroups. According to [15], we call a subset S ⊆ G inducible if there is some
expression α ∈ (G∪X ∪X−1)∗ such that S = {σ(α) | σ : X → G }. In this case we say that
α induces S. Notice that in a finite group every verbal subgroup is inducible. (A subgroup
is called verbal if it is generated by a set of the form {σ(α) | σ : X → G,α ∈ A } where
A ⊆ (X ∪ X−1)∗ is a finite set of expressions without constants.) This shows the first three
points of the following lemma (for γ1G, see also [15, Lemma 5]):

I Lemma 4. Let G be a finite group. Then
(i) for every k ∈ N, the subgroup generated by all k-th powers is inducible,
(ii) every element γkG of the lower central series is inducible,
(iii) every element LkG of the lower Fitting series is inducible,
(iv) if K ≤ H ≤ G and K is inducible in H and H inducible in G, then K is also inducible

in G,
(v) if H ≤ G with H = [G,H], then H is inducible.

The fourth point follows simply by “plugging in” an expression for H inside an expression
for K. The last point follows from the proof of [31, Lemma 9 ].

The notion of inducible subgroup turns out to be very useful for proving lower bounds on
the complexity. Indeed, the following facts are straightforward:

I Lemma 5 ([15, Lemma 8], [20, Lemma 9, 10]). Let H ≤ G be an inducible subgroup. Then
EQN-SAT(H) ≤AC0

m EQN-SAT(G), and
EQN-ID(H) ≤AC0

m EQN-ID(G).
If, moreover, H is normal in G, then EQN-SAT(G/H) ≤AC0

m EQN-SAT(G).

Let us briefly sketch the ideas to see this lemma: Fix an expression β inducing H. For
first and second reduction, replace every occurring variable of a given equation by a copy of
β with disjoint variables. The third reduction simply appends β to an input equation.

Atomically universally definable subgroups. The situation for reducing EQN-ID(G/H)
to EQN-ID(G) is slightly more complicated. For this we need a new definition: We call a
subset S ⊆ G atomically universally definable if there is some expression α ∈ (G∪X ∪X−1)∗
where X = {X } ∪ {Y1, Y2, . . . } such that

S = { g ∈ G | (σ ∪ [X 7→ g])(α) = 1 for all σ : {Y1, Y2, . . . } → G } .

In this case we say that α atomically universally defines S. (Notice that universally definable
usually is defined analogously but instead of a single equation α one allows a Boolean formula
of equations.) It is clear that the center of a group is atomically universally definable by the
expression [X,Y ]. This generalizes as follows:

I Lemma 6. Let G be a finite group.
The Fitting group Fit(G) is atomically universally definable.
If N ≤ H ≤ G and N is normal in G and H/N is atomically universally definable in
G/N and N is atomically universally definable in G, then H is atomically universally
definable in G.
All terms UiG of the upper Fitting series are atomically universally definable.
If H ≤ G is inducible, then the centralizer CG(H) = { g ∈ G | gh = hg for all h ∈ H }
is atomically universally definable.
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Proof. By Lemma 3, the normal subgroup
〈
gG
〉
generated by g ∈ G is nilpotent if and only

if g ∈ Fit(G). Therefore, g ∈ Fit(G) if and only if
[
M

〈
gG
〉]

= 1 (M as in Section 2 large
enough), which, by Lemma 1, is the case if and only if

[
M gG

]
set = 1. Hence, the expression

[XY1 , . . . , XYM ] atomically universally defines Fit(G).
Now, suppose that β ∈ (G∪Xβ∪X−1

β )∗ with Xβ = {X,Y1, . . . , Yk } atomically universally
defines H/N in G/N and that α ∈ (G∪Xα∪X−1

α )∗ with Xα = {Z, Yk+1, . . . , Ym } atomically
universally defines N in G. Thus, g ∈ H if and only if β(g, Y1, . . . , Yk) ∈ N for all Y1, . . . , Yk ∈
G and h ∈ N if and only if α(h, Yk+1, . . . , Ym) = 1 for all Yk+1, . . . , Ym ∈ G. Hence,
α(β(g, Y1, . . . , Yk), Yk+1, . . . , Ym) = 1 for all Y1, . . . , Ym ∈ G if and only if g ∈ H and so H is
atomically universally definable.

The third point follows by induction from the first and second point. The fourth point is
essentially due to [20, Lemma 10]: if β is an expression inducing H, then [X,β] atomically
universally defines CG(H). J

I Lemma 7. Let H E G be an atomically universally definable normal subgroup. Then

EQN-ID(G/H) ≤AC0

m EQN-ID(G).

Proof. Denote Q = G/H. Let β ∈ (G ∪ Xβ ∪ X−1
β )∗ with Xβ = {Z, Y1, . . . , Yk } atomically

universally define H and let α ∈ (Q ∪ X ∪ X−1)∗ be an instance for EQN-ID(Q) (with
X ∩ Xβ = ∅). Let α̃ denote the expression obtained from α by replacing every constant of Q
by an arbitrary preimage in G. Then σ(α) = 1 in Q for all assignments σ : X → Q if and
only if σ̃(α̃) ∈ H for all assignments σ̃ : X → G. By the choice of β, the latter is the case if
and only if σ̂(β(α̃, Y1, . . . , Yk)) = 1 for all assignments σ̂ : X ∪ {Y1, . . . , Yk } → G. J

3 G-programs and AND-weakness

Let G be a finite group. An n-input G-program of length ` with variables (input bits) from
{B1, . . . , Bn } is a sequence

P = 〈Bi1 , a1, b1〉〈Bi2 , a2, b2〉 · · · 〈Bi` , a`, b`〉 ∈ ({B1, . . . , Bn } ×G×G)∗.

For a mapping σ : {B1, . . . , Bn } → {0, 1} (called an assignment) we define σ(P ) ∈ G as the
group element c1c2 · · · c`, where cj = aj if Bij = 0 and cj = bj if Bij = 1 for all 1 ≤ j ≤ `.
We say that an n-input G-program P computes a function f : {0, 1}n → {0, 1} if P is over
the variables B1, . . . , Bn and there is some S ⊆ G such that σ(P ) ∈ S if and only if f(σ) = 1.

ProgramSAT is the following problem: given a G-program P with variables B1, . . . , Bn,
decide whether there is an assignment σ : {B1, . . . , Bn } → G such that σ(P ) = 1.

The AND-weakness conjecture. In [6], Barrington, Straubing and Thérien conjectured
that, if G is finite and solvable, every G-program computing the n-input AND requires length
exponential in n. This is called the AND-weakness conjecture.

Unfortunately, the term “exponential” seems to be a source of a possible misunderstanding:
while often it means 2Ω(n), in other occasions it is used for 2nΩ(1) . Indeed, in [15, 5], the
conjecture is restated as its strong version: “every G-program over a solvable group G for the
n-input AND requires length 2Ω(n).” However, already in the earlier paper [4], it is remarked
that the n-input AND can be computed by depth-k CC0 circuits of size 2O(n1/(k−1)) for every
k ≥ 2 (a CC0 circuit is a circuit consisting only of MODm gates for some m ∈ N) – thus,
disproving the strong version of the AND-weakness conjecture. For a recent discussion about
the topic also referencing the cases where the conjecture actually is proved, we refer to [30].
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In this section we provide a more detailed upper bound on the length of G-programs for
the AND function in terms of the Fitting length of G. We can view our upper bound as a
refined version of the 2O(n1/(k−1)) upper bound for depth-k CC0 circuits. This is because, by
[34, Theorem 2.8], for every depth-k CC0 circuit family there is a fixed group G of Fitting
length k (indeed, of derived length k) such that the n-input circuit can be transformed into
a G-program of length polynomial in n.

I Proposition 8. Let G be a finite solvable group and consider a strictly ascending series
1 = H0 C H1 C · · · C Hm = G of normal subgroups where Hi = γki(Hi+1) with ki ∈
N ∪ {∞} for i ∈ [1 ..m− 1] and k0 = ∞. Denote c = |{ i ∈ [1 ..m− 1] | ki =∞ }| and
C =

∏
ki<∞(ki + 1).

Then the n-input AND function can be computed by a G-program of length O(2Dn1/c)
where D = c

C1/c . More precisely, for every n ∈ N there is some 1 6= g ∈ G and a G-program
Qn of length O(2Dn1/c) such that

σ(Qn) =
{
g if σ(B1) = · · · = σ(Bn) = 1,
1 otherwise.

Clearly we have c ≤ d − 1 if d is the Fitting length of G. The lower Fitting series is the
special example of such a series where Hi = Ld−iG and ki =∞ for all i ∈ { 0, . . . , d }. Thus,
we get the following corollary:

I Corollary 9. Let G be a finite solvable group of Fitting length d ≥ 2. Then the n-input
AND function can be computed by a G-program of length 2O(n1/(d−1)).

I Example 10. The symmetric group on four elements S4 has Fitting length 3 with S4 ≥
A4 ≥ C2 × C2 ≥ 1 being both the upper and lower Fitting series. Therefore, we obtain a
length-O(22

√
n)) program for the n-input AND by Proposition 8. In particular, the strong

version of the AND-weakness conjecture does not hold for the group S4. Note that according
to [6], S4 is the smallest group for which the 2Ω(n) lower bound from [6] does not apply.

On the other hand, consider the group G = (C3×C3)oD4 where D4 (the dihedral group
of order eight) acts faithfully on C3 × C3

2. It has Fitting length two. Moreover, its derived
subgroup G′ = (C3 × C3) o C2 still has Fitting length two. Hence, we have a series H3 = G,
H2 = G′ = γ1G, H1 = γ∞G

′ = C3 × C3, and H0 = 1. Therefore, we get an upper bound of
O(2n/2) for the length of a program for the n-input AND.

Proof of Proposition 8. We choose K = (n/C)1/c. For simplicity, let us first assume that
K is an integer. Moreover, we assume that K is large enough such that Hi = [K Hi+1] holds
whenever ki =∞ and that K ≥ ki + 1 for all ki <∞.

We define sets Ai ⊆ G inductively by Am = G and Ai = [K Ai+1]set if ki = ∞ and
Ai = [ki+1 Ai+1]set if ki <∞. By Lemma 1 and induction it follows that Hi = 〈Ai〉 for all
i ∈ 0, . . . ,m. Since H1 6= 1, we find a non-trivial element g ∈ A1. We can decompose g
recursively. For this, we need some more notation: for ` ∈ [1 ..m] consider the set of words

V` =
{
v = v1 · · · v`−1 ∈ [1 ..K]`−1 ∣∣ vi ≤ ki + 1 for all i ∈ [1 .. `− 1]

}
.

We have |Vm| = C ·Kc = n, so we can fix a bijection κ : Vm → [1 .. n].
Now, we can describe the recursive decomposition of g = gε:

2 This group can be found in the GAP small group library under the index [72, 40]. It has been suggested
as an example by Barrington (private communication).



A. Weiß 102:9

gv for v ∈ Vm are arbitrary element from G, and
gv = [gv1, . . . , gvK ] for v ∈ V` with k` =∞, and
gv = [gv1, . . . , gv(k`+1)] for v ∈ V` with k` <∞.

For v ∈ V` we have |gv| ≤
∑K
i=1 2K+1−i |gvi| ≤ 2K+1 maxi |gvi| whenever k` = ∞ and

|gv| ≤ 2k`+2 maxi |gvi| if k` <∞. Therefore, setting D = c
C1/c we obtain by induction

|gε| ≤ 2
∑

k`<∞
(k`+2)(2K+1)c ∈ O(2Dn

1/c
).

In order to obtain a G-program for the n-input AND, we define G-programs Pv for
v ∈

⋃
`≤m V`. In the commutators we need also programs for inverses: for a G-program

P = 〈Bi1 , a1, b1〉〈Bi2 , a2, b2〉 · · · 〈Bi` , a`, b`〉 we set P−1 = 〈Bi` , a−1
` , b−1

` 〉 · · · 〈Bi1 , a
−1
1 , b−1

1 〉.
Clearly (σ(P ))−1 = σ(P−1) for all assignments σ.

for v ∈ Vm we set Pv = 〈Bκ(v), 1, gv〉,
for v ∈ V` with 1 ≤ ` < m we set Pv = [Pv1, . . . , PvK ] if k` =∞, and
for v ∈ V` with 1 ≤ ` < m we set Pv = [Pv1, . . . , Pv(k`+1)] if k` <∞.

For v ∈ V` let V (v) denote the set of those words w ∈ Vm having v as a prefix. By
induction we see that

σ(Pv) =
{
gv if σ(Bκ(w)) = 1 for all w ∈ V (v),
1 otherwise.

This shows the correctness of our construction.
It remains to consider the case that (n/C)1/c is not an integer. Then we set K =⌈

(n/C)1/c⌉. It follows that |Vm−1| = C ·Kc ≥ n, so we can fix a bijection κ : U → [1 .. n] for

some subset U ⊆ Vm−1. We still have |gε| ≤ 2
∑

ki<∞
(ki+1)(2K+1)c ∈ O(2cK) = O(2Dn1/c)

with D as above. This concludes the proof of Proposition 8. J

I Remark 11. In the light of Proposition 8 it is natural to ask for a refined version of the
AND-weakness conjecture. A natural candidate would be to conjecture that every G-program
for the n-input AND has length 2Ω(n1/(d−1)) where d is the Fitting length of G.

However, this also weaker version of the AND-weakness conjecture is wrong! Indeed, in
[4, Section 2.4] Barrington, Beigel and Rudich show that the n-input AND can be computed
by circuits using only MODm gates of depth 3 and size 2O(n1/r logn) where r is the number
of different prime factors of m. Translating the circuit into a G-program yields a group G of
Fitting length 3. Since there is no bound on r, we see that there is no lower bound on the
exponent δ such that there are G-programs of length 2O(nδ) for the n-input AND in groups
of Fitting length 3.

In [17] it is shown that the AND function can be computed by probabilistic CC0 circuits
using only a logarithmic number of random bits, which “may be viewed as evidence contrary
to the conjecture” [17]. In the light of this, we do not feel confident to judge which form of
the AND-weakness conjecture might be true. The following version seems possible.

I Conjecture 1 (AND-weakness [6]). Let G be finite solvable. Then every G-program for
the n-input AND has length 2nΩ(1) .

Notice that [5, Theorem 2] (if G is AND-weak, ProgramSAT over G can be decided in
quasi-polynomial time) still holds with this version of the AND-weakness conjecture.
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4 Reducing C-Coloring to equations

In this section we describe the reduction of C-Coloring to EQN-SAT(G) and EQN-ID(G)
in the spirit of [15, 31]. For this, we rely on the fact that G has some normal subgroups
meeting some special requirements. In Section 5, we show that all sufficiently complicated
finite solvable groups meet the requirements of Theorem 14.

For a normal subgroup H E G and g ∈ G, we define ηg(H) =
[
H, M gG

]
. Recall that M

is chosen large enough such that [X, M Y ] = [X, i Y ] for all i ≥M and all X,Y ⊆ G with
XG = X and Y G = Y . Since H is normal, we have ηg(H) ≤ H and ηg(H) is normal in G.

I Lemma 12. Let H E G be a normal subgroup and g, h ∈ G. Then
(i) ηg(ηg(H)) = ηg(H), and
(ii) ηgh(H) ≤ ηg(H)ηh(H), and
(iii) FitLen(ηgh(H)) ≤ max {FitLen(ηg(H)),FitLen(ηh(H)) }.

Proof. We use the fact that M is chosen such that [X, M Y ] = [X, i Y ] for all i ≥ M and
all X,Y ⊆ G with XG = G and Y G = Y :

ηg(H) =
[
H, M gG

]
=
[
H, 2M gG

]
=
[[
H, M gG

]
, M gG

]
= ηg(ηg(H)).

The second point follows with the same kind of argument:

ηgh(H) = [H, 2M (gh)G] ≤ [H, 2M
〈
gG ∪ hG

〉
]

=
〈
[H, 2Mg

G ∪ hG]set
〉

(by Lemma 1)
≤ ηg(H)ηh(H).

The last step is because each of the commutators in [H, 2Mg
G ∪ hG]set either contains at

least M terms from gG and, thus, is in ηg(H) or it contains at least M terms from hG.
The third point is an immediate consequence of the second point and Lemma 3. J

I Lemma 13. Suppose that K E G is a normal subgroup satisfying ηg(K) = K for some
g ∈ G. Then K is inducible.

Proof. Because ηg(K) = K for some g ∈ G implies that K = [K,G], it follows from Lemma 4
that K is inducible. J

I Theorem 14. Let G be a finite solvable group of Fitting length three and assume there
are normal subgroups K E H E G such that FitLen(K) = 2, U2G ≤ H, and |G/H| ≥ 3.
Moreover, assume that

(I) for all g ∈ G H we have ηg(K) = K,
(II) for all h ∈ H we have FitLen(ηh(K)) ≤ 1.

Then EQN-SAT(G) and EQN-ID(G) cannot be decided in deterministic time 2o(log2 N)

under ETH where N is the length of the input expression. In particular, EQN-SAT(G) and
EQN-ID(G) are not in P under ETH.

Proof outline. The crucial observation for this theorem is the same as for Proposition 8:
that, roughly speaking, the n-input AND can be decomposed into the conjunction of

√
n

many
√
n-input ANDs. We use this observation in order to reduce the C-Coloring problem

to EQN-SAT. More precisely, given a graph Γ with n vertices and m edges, we construct an
expression δ and an element h̃ ∈ G such that
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(A) the length of δ is in 2O(
√
m+n),

(B) δ can be computed in time polynomial in its length,
(C) δ = h̃ is satisfiable if and only if Γ has a valid C-coloring, and
(D) σ(δ) = 1 holds for all assignments σ if and only if Γ does not have a valid C-coloring.
For the number of colors we use C = |G/H|. Let N denote the input length for EQN-SAT
(resp. EQN-ID). A 2o(log2 N)-time algorithm for EQN-SAT (resp. EQN-ID), thus, would
imply a 2o(n+m)-time algorithm for C-Coloring contradicting ETH. Hence, it is enough to
show points (A)–(D).

In order to construct the expression δ, we assign a variable Xi to every vertex vi of Γ.
Every assignment σ to the variables Xi will give us a coloring χσ of Γ (to be defined later).
During the proof, we also introduce some auxiliary variables. The aim is to construct δ in a
way that an assignment σ to the variables Xi can be extended to a satisfying assignment for
δ = h̃ if and only if χσ is a valid coloring of Γ (see Lemma 17).

We start by grouping the edges into roughly
√
m batches of

√
m edges each. For each

batch of edges, we construct an expression γr (where r is the number of the batch) such that
for every assignment σ to the variables Xi we have

if χσ assigns the same color to two endpoints of an edge in the r-th batch, then for every
assignment to the auxiliary variables, γr evaluates to something in U1K,
otherwise, for every element h ∈ K, there is an assignment to the auxiliary variables such
that γr evaluates to h.

A more formal statement of this can be found in Lemma 15. The expression δ combines all
the γr as an iterated commutator such that if one of the γr evaluates to something in U1K,
then δ evaluates to 1, and, otherwise, there is some assignment to the auxiliary variables
such that δ evaluates to the fixed element h̃.

Proof. Let C = |G/H|. Let us describe how the C-Coloring problem for a given graph Γ =
(V,E) is reduced to an instance of EQN-SAT (resp. EQN-ID). We denote V = { v1, . . . , vn }.
For every vertex vi we introduce a variable Xi and we set X = {X1, . . . , Xn }. By fixing a
bijection |G/H| → [1 .. C], we obtain a correspondence between assignments X → G and
colorings V → [1 .. C] (be aware that it is not one-to-one). During the construction we
will also introduce a set Y of auxiliary variables. As outlined above, the idea is that an
assignment X → G represents a valid coloring if and only if there is an assignment to the
auxiliary variables under which the equation evaluates to a non-identity element.

For each edge { vi, vj } ∈ E, we introduce one edge gadget XiX
−1
j (it does not matter

which one is the positive variable). Now, we group these gadgets into R batches of R elements
each (if the number of gadgets is not a square, we duplicate some gadgets) – i.e., we choose
R = d

√
me. How the gadgets exactly are grouped together does not matter.

For r ∈ [1 .. R] and k ∈ [1 .. |K|] let αr,k be an expression which induces K (i.e., all
αr,k are the same expressions but with disjoint sets of variables). Such expressions exist
by Lemma 13. Let the variables of αr,k be Yr,k,t for t ∈ [1 .. T ] for some T ∈ N. Moreover,
we introduce more auxiliary variables Zr,k,s,ν for r ∈ [1 .. R], k ∈ [1 .. |K|], s ∈ [1 .. R], and
ν ∈ [1 ..M ] (recall that M is chosen such that, in particular, [H1, M H2] = [H1, M+1 H2] for
arbitrary normal subgroups H1, H2 of G) and we set

Y ′r =
{
Zr,k,s,ν , Yr,k,t

∣∣ k ∈ [1 .. |K|], s ∈ [1 .. R], ν ∈ [1 ..M ], t ∈ [1 .. T ]
}
.

Let βr,1, . . . , βr,R be the gadgets of the r-th batch for some r ∈ [1 .. R]. We define

γr =
|K|∏
k=1

[
αr,k, β

Zr,k,1,1
r,1 , . . . , β

Zr,k,1,M
r,1 , . . . , β

Zr,k,R,1
r,R , . . . , β

Zr,k,R,M
r,R

]
. (1)
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We do this for every batch of gadgets. The following observation is crucial:

I Lemma 15. Let σ : X → G be an assignment and let r ∈ [1 .. R].
If σ(βr,s) ∈ G H for all s, then

{
(σ ∪ σ′)(γr)

∣∣ σ′ : Y ′r → G
}

= K,

Otherwise,
{

(σ ∪ σ′)(γr)
∣∣ σ′ : Y ′r → G

}
≤ U1K.

Proof. By construction, we have (σ ∪ σ′)(αr,k) ∈ K for all r and k and all assignments σ
and σ′. Since K is normal, it follows that (σ ∪ σ′)(γr) ∈ K for all assignments σ and σ′.

Consider the case that gs := σ(βr,s) ∈ G H for all s ∈ [1 .. R]. By assumption (I),
we have K = ηg1(K) = ηg2(ηg1(K)) = · · · = ηgR . . . ηg2(ηg1(K)) · · · ). By Lemma 1, it
follows that K =

〈
[K, M gG1 , . . . , M gGR ]set

〉
. Since 1 ∈ [K, M gG1 , . . . , M gGR ]set and every

element in K can be written as a product of length at most |K| over any generating set,
we conclude K =

(
[K, M gG1 , . . . , M gGR ]set

)|K|. This is exactly the form how γr was defined
in Equation (1) (recall that αr,s can evaluate to every element of K). Therefore, for each
h ∈ K, there is an assignment σ′ : Y ′r → G such that (σ ∪ σ′)(γr) = h.

On the other hand, let gs := σ(βr,s) ∈ H for some s. Then, by assumption (II) we
have FitLen(ηgs(K)) ≤ 1. Since (σ ∪ σ′)(γr) ∈ ηgs(K), we obtain (σ ∪ σ′)(γr) ∈ U1K by
Lemma 3. J

Now, for every set of auxiliary variables Y ′r we introduce M disjoint copies, which we
call Y(µ)

r for µ ∈ [1 ..M ]. We write γ(µ)
r for the copy of γr where the variables of Y ′r are

substituted by the corresponding ones in Y(µ)
r (the variables X are shared over all γ(µ)

r ). We
set

δ =
[
γ

(1)
1 , . . . , γ

(M)
1 , . . . , γ

(1)
R , . . . , γ

(M)
R

]
.

Finally, fix some h̃ ∈ K 1 with h̃ ∈ [M·R K]set and set Y =
⋃
r,µ Y

(µ)
r .

I Lemma 16. Let σ : X → G be an assignment. If σ(βr,s) ∈ G H for all r and s, then
there is some assignment σ′ : Y → G such that (σ ∪ σ′)(δ) = h̃. Otherwise (σ ∪ σ′)(δ) = 1
for all σ′ : Y → G.

Proof. If σ(βr,s) ∈ G H for all r and s, then by Lemma 15,
{

(σ ∪ σ′)(γ(µ)
r )

∣∣ σ′ : Y(µ)
r →

G
}

= K for all r ∈ [1 .. R] and µ ∈ [1 ..M ]. Hence, since we chose the auxiliary variables
Y(µ)
r to be all disjoint, we obtain

h̃ ∈ [M·R K]set ⊆
{

(σ ∪ σ′)(δ)
∣∣∣ σ′ : Y(µ)

r → G
}
.

On the other hand, if σ(βr,s) ∈ H, then, by Lemma 15, for all σ′ : Y → G and all
µ ∈ [1 ..M ] we have (σ ∪ σ′)(γ(µ)

r ) ∈ U1K. Hence, (σ ∪ σ′)(δ) ∈ [M U1K] = 1. J

Now we are ready to define our equation as δh̃−1 for the reduction of C-Coloring to
EQN-SAT(G) and δ for the reduction to EQN-ID(G).

The final step is to show points (A)–(D) from above.
For (A) observe that the length of γr is O(2M ·R) for all r. Thus, the length of δ is

O(2M ·R) · O(2M ·R) ⊆ 2O(R) = 2O(
√
m) as desired. Point (B) is straightforward from the

construction of δ.
In order to see (C) and (D), we use Lemma 16 to prove another lemma. We fix a bijection

ξ : G/H → [1 .. C]. For an assignment σ : X → G, we define a corresponding coloring
χσ : V → [1 .. C] by χσ(vi) = ξ(σ(Xi)H).
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I Lemma 17. Let σ : X → G be an assignment. Then
if χσ is valid, then there is an assignment σ′ : Y → G such that (σ ∪ σ′)(δ) = h̃ 6= 1,
if χσ is not valid, then for all assignments σ′ : Y → G we have (σ ∪ σ′)(δ) = 1.

Proof. Let χσ be a valid coloring. First, observe that the gadgets all evaluate to some
element outside of H under σ. This is because, if there is a gadget XiX

−1
j that means that

{ vi, vj } ∈ E and so χσ(vi) 6= χσ(vj); hence, σ(Xi) 6= σ(Xj) in G/H (since ξ is a bijection).
Therefore, by Lemma 16, it follows that δ evaluates to h̃ under some proper assignment for
Y.

On the other hand, if χσ is not a valid coloring, then there is an edge { vi, vj } ∈ E with
χσ(vi) = χσ(vj). Then we have σ(Xi)H = σ(Xj)H. Hence, by Lemma 16, we obtain that
(σχ ∪ σ′)(δ) = 1 in G for every σ′ : Y → G. J

This concludes the proof of Theorem 14. J

5 Consequences

In this section we derive our main result Corollary A. We start again with a lemma.

I Lemma 18. For every finite solvable, non-nilpotent group G of Fitting length d, there are
proper normal subgroups K E H C G with FitLen(K) = d− 1 and Ud−1G ≤ H such that

for all g ∈ G H we have ηg(K) = K,
for all h ∈ H we have FitLen(ηh(K)) < FitLen(K).

The construction for Lemma 18 resembles the ones in Lemmas 5 and 6 of [31]. However,
while in [31] a minimal normal subgroup N of a quotient G/K is constructed such that
rg with rg(x) = [x, g] is an automorphism of N (and N is abelian), in our case this is not
enough since we need to apply commutator constructions to our analog of N in the spirit of
the divide-and-conquer approach of Proposition 8.

Proof. Let g1 ∈ G Ud−1G where d is the Fitting length of G. We construct a sequence
of normal subgroups K1,K2, . . . of G as follows: we set K1 = ηg1(G). By Lemma 2,
K1 = γ∞

〈
gG1
〉
, so it has Fitting length d− 1.

Now, while there is some gi ∈ G such that ηgi(Ki−1) < Ki−1 and FitLen(ηgi(Ki−1)) =
FitLen(Ki−1), we set Ki = ηgi(Ki−1) and continue. Since Ki is a proper subgroup of Ki−1,
this process eventually terminates. We call the last term K. We claim that K satisfies the
statement of Lemma 18. By construction for every g ∈ G one of the two cases

ηg(K) = K or
FitLen(ηg(K)) < FitLen(K)

applies. Moreover, since K = ηg(K ′) for some K ′ ≤ G and some g ∈ G, we have
K = ηg(K ′) = ηg(ηg(K ′)) = ηg(K) by Lemma 12 (i). By Lemma 12 (iii), the elements
{h ∈ G | FitLen(ηh(K)) < FitLen(K) } form a subgroup H of G. Clearly H is normal (by
the definition of ηh) and Ud−1G ≤ H because FitLen([K, M Ud−1G]) = FitLen(K)−1. Since
there is some g ∈ G with K = ηg(K), we have H 6= G. J

Be aware that K depends on the order the gi were chosen. Indeed, if G is a direct product
of two groups G1 and G2 of equal Fitting length, then K will either be contained in G1 or in
G2 – in which factor depends on the choice of the gi.
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I Theorem 19 (Corollary A). Let G be a finite solvable group such that either FitLen(G) = 3
and |G/U2G| has a prime divisor 3 or greater (i.e., G/U2G is not a 2-group) or FitLen(G) ≥ 4.
Then EQN-SAT(G) and EQN-ID(G) cannot be decided in deterministic time 2o(log2 N) under
ETH. In particular, EQN-SAT(G) and EQN-ID(G) are not in P under ETH.

Proof. Consider the case that G has Fitting length 3 and |G/U2G| has a prime divisor 3
or greater. Let 2ν for some ν ∈ N be the greatest power of two dividing |G/U2G|. Then,
the subgroup G̃ generated by all 2ν-th powers is normal and it is not contained in U2G.
Therefore, by Lemma 3 it has Fitting length 3 as well. Also, by Lemma 3, we know that
U2G̃ = G̃ ∩ U2G. Hence, G̃/U2G̃ is a subgroup of G/U2G. Moreover, since G̃ is generated by
2ν-th powers, the generators of G̃ have odd order in G̃/U2G̃. Since G̃/U2G̃ is nilpotent, it
follows that |G̃/U2G̃| is odd (recall that a nilpotent group is a direct product of p-groups).

Since G̃ is inducible in G, by Lemma 5, it suffices to show that G̃ satisfies the requirements
of Theorem 14. For this, we use Lemma 18, which gives us normal subgroups K E H C G̃

with U2G̃ ≤ H, FitLen(K) = 2 and such that for all g ∈ G̃ H we have ηg(K) = K, and for
all h ∈ H we have FitLen(ηh(K)) ≤ 1.

It only remains to show that |G̃/H| ≥ 3. Since H 6= G̃ and |G̃/H| is odd, this holds
trivially. Thus, both EQN-SAT(G) and EQN-ID(G) are not in P under ETH if G has
Fitting length 3 and |G/U2G| a prime divisor 3 or greater.

The second case can be reduced to the first case as follows: Assume that G has Fitting
length d ≥ 4. If |G/Ud−1G| has a prime factor 3 or greater, we can apply the Fitting length
3 case to G/L3G for EQN-SAT and to G/Ud−3G for EQN-ID. By Lemma 4 and Lemma 5
this implies the corollary for EQN-SAT. For EQN-ID, the statement follows form Lemma 6
and Lemma 7.

On the other hand, if |G/Ud−1G| = 2ν for some ν ≥ 1, as in the first case, we consider
the subgroup G̃ generated by all 2ν-th powers. Then the index of G̃ in G is again a power of
two (since the order of every element in G/G̃ is a power of two). Moreover, G̃ ≤ Ud−1G and,
by Lemma 3, we have

G̃/Ud−2G̃ = G̃/(Ud−2G ∩ G̃) ∼= (G̃ · Ud−2G)/Ud−2G ≤ Ud−1G/Ud−2G.

Now, |Ud−1G/Ud−2G| cannot be a power of two because, otherwise, G/Ud−2G would be a
2-group and, thus, nilpotent – contradicting the fact that the upper Fitting series is a shortest
Fitting series. Since the index of G̃ in Ud−1G is a power of two, we see that G̃ 6⊆ Ud−2G and
that the index of Ud−2G̃ in G̃ has a prime factor other than 2. Therefore, we can apply the
Fitting length 3 case to G̃/L3G̃ (resp. G̃/Ud−3G̃). J

The case that G/U2G is a 2-group. As mentioned above, in the recent paper [24] Idziak,
Kawałek, and Krzaczkowski proved a 2O(log2(n))-lower bound under ETH for EQN-SAT(S4).
They apply a reduction of 3SAT to EQN-SAT(S4). Instead of using commutators to
simulate conjunctions in the group, the more complicated logical function (X,Y1, Y2, Y3) 7→
X∧ (Y1∨Y2∨Y3) is encoded into the group. Indeed, under suitable assumptions on the group
and the range of the variables, both the expressions w(X,Y1, Y2, Y3) = X8[X,Y1, Y2, Y3] (see
[31]) and s(X,Y1, Y2, Y3) = X [X,Y1, Y2, Y3]−1 (see [16] – referred to by [24]) simulate this
logical function. A new paper unifying our approaches and proving Theorem 19 for all groups
of Fitting length 3 is under preparation.

Consequences for ProgramSAT. We have EQN-SAT(G) ≤AC0

m ProgramSAT(G) for
every finite group G by [5, Lem. 1] (while not explicitly stated, it is clear that this reduction
is an AC0-reduction). Thus, by Theorem 14, ProgramSAT(G) is not in P under ETH if G
is of Fitting length at least 4 or G is of Fitting length 3 and G/U2G is not a 2-group.
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Table 1 Groups up to order 767 for which Theorem 19 gives lower bounds.

Index in Small
Groups Library

Fitting
length GAP Structure description

[ 168, 43 ] 3 (C2 x C2 x C2) : (C7 : C3)
[ 216, 153 ] 3 ((C3 x C3) : Q8) : C3
[ 324, 160 ] 3 ((C3 x C3 x C3) : (C2 x C2)) : C3
[ 336, 210 ] 3 C2 x ((C2 x C2 x C2) : (C7 : C3))
[ 432, 734 ] 4 (((C3 x C3) : Q8) : C3) : C2
[ 432, 735 ] 3 C2 x (((C3 x C3) : Q8) : C3)
[ 504, 52 ] 3 (C2 x C2 x C2) : (C7 : C9)
[ 504, 158 ] 3 C3 x ((C2 x C2 x C2) : (C7 : C3))
[ 600, 150 ] 3 (C5 x C5) : SL(2,3)
[ 648, 531 ] 3 C3 . (((C3 x C3) : Q8) : C3) = (((C3 x C3) : C3) : Q8) . C3
[ 648, 532 ] 3 (((C3 x C3) : C3) : Q8) : C3
[ 648, 533 ] 3 (((C3 x C3) : C3) : Q8) : C3
[ 648, 534 ] 3 ((C3 x C3) : Q8) : C9
[ 648, 641 ] 3 ((C3 x C3 x C3) : Q8) : C3
[ 648, 702 ] 3 C3 x (((C3 x C3) : Q8) : C3)
[ 648, 703 ] 4 (((C3 x C3 x C3) : (C2 x C2)) : C3) : C2
[ 648, 704 ] 4 (((C3 x C3 x C3) : (C2 x C2)) : C3) : C2
[ 648, 705 ] 3 (S3 x S3 x S3) : C3
[ 648, 706 ] 3 C2 x (((C3 x C3 x C3) : (C2 x C2)) : C3)
[ 672, 1049 ] 3 C4 x ((C2 x C2 x C2) : (C7 : C3))
[ 672, 1256 ] 3 C2 x C2 x ((C2 x C2 x C2) : (C7 : C3))
[ 672, 1257 ] 3 (C2 x C2 x C2 x C2 x C2) : (C7 : C3)

Small groups for which Theorem 19 gives a lower bound. In [19] lists of groups are
given where the complexity of EQN-SAT and EQN-ID is unknown. The paper refers
to a more comprehensive list available on the author’s website http://math.unideb.hu/
horvath-gabor/research.html. We downloaded the lists of groups and ran tests in GAP
for which of these groups Theorem 19 provides lower bounds. In the list with unknown
complexity for EQN-ID there are 2331 groups of order less than 768 out of which 1559 are
of Fitting length three or greater. Theorem 19 applies to 22 of them: 3 groups of Fitting
length 4 and 19 groups G of Fitting length 2 where G/U2G is not a 2-group. A list of the
groups for which we could prove lower bounds can be found in Table 1.

5.1 Equations in finite semigroups
For a semigroup S, the problems EQN-SAT(S) and EQN-ID(S) both receive two expressions
as input. The questions is whether the two expressions evaluate to the same element under
some (resp. all) assignments. For semigroups R,S we say that R divides S if R is a quotient
of a subsemigroup of S. The following lemmas are straightforward to prove using basic
semigroup theory.

For the proofs, we need Green’s relations H and J . For a definition, we refer to [35,
Appendix A]. For a semigroup S we write S1 for S with an identity adjoined if there is none.

I Lemma 20. If G is a maximal subgroup of a finite semigroup S, then EQN-SAT(G) ≤AC0

m
EQN-SAT(S).

Proof. Let e ∈ G denote the identity of G. Clearly, G = eGe ≤ eSe and eSe is a submonoid
of S with identity e. The reduction simply replaces every variable X by eXe (and likewise
for constants). Let α̃ denote the equation we obtain from an input equation α this way. Now
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the question is whether α̃ = e in S. Clearly, if α has a solution in G, the resulting equation
α̃ has a solution in S. On the other hand, if α̃ has a solution in S, we obtain a solution of
α = e in S where every variable takes values in eSe.

Assume we have σ(X) = x 6∈ G for a satisfying assignment σ and some variable X of α.
Since σ(α) = e, we have that e is in the two-sided ideal S1xS1 generated by x = exe. By
point 2. of [35, Exercise A.2.2] it follows that x ∈ He = G where He denotes the H-class of e
under Green’s relations (for a definition, we refer to [35]) and G agrees with He because G is
a maximal subgroup. J

I Lemma 21. If a group G divides a semigroup S, then G divides already one of the maximal
subgroups (i.e., regular H-classes) of S.

Proof. Let U ≤ S a subsemigroup and ϕ : U → G a surjective semigroup homomorphism.
Pick some arbitrary element s ∈ U and let e = sω be the idempotent generated by s.
Clearly, we have ϕ(e) = 1. Now, the subsemigroup eUe ≤ U still maps surjectively onto
G under ϕ: by assumption for every g ∈ G there is some ug ∈ U with ϕ(ug) = g; hence,
g = 1g1 = ϕ(e)ϕ(ug)ϕ(e) ∈ ϕ(eUe).

If eUe is not contained in a maximal subgroup, then by point 2. of [35, Exercise A.2.2],
there is some t ∈ eUe which is not J -equivalent to e. Now, we can repeat the above process
starting with t. This will decrease the size of U , so it eventually terminates. J

I Corollary 22. Let S be a finite semigroup and G a group dividing S. If FitLen(G) ≥ 4 or
FitLen(G) = 3 and G/U2G is not a 2-group, then EQN-SAT(S) is not in P under ETH.

Proof. If G with FitLen(G) ≥ 4 or FitLen(G) = 3 and G/U2G divides S, then it follows
from Lemma 21 that there is a group G̃ with the same properties and which is a maximal
subgroup of S. Hence, the statement follows from Lemma 20. J

[2, Theorem 1] states that identity checking over G̃ reduces to identity checking over
S where G̃ is the direct product of all maximal subgroups of S. However, be aware that
in this context the identity checking problem does not allow constants. Since the proof of
Theorem 14 essentially relies on the fact that the subgroup K is inducible and this can be
only shown using constants, this does not allow us to show hardness of EQN-ID(S).

6 Conclusion

We have shown that assuming the exponential time hypothesis there are solvable groups
with equation satisfiability problem not decidable in polynomial time. Thus, under standard
assumptions from complexity theory this means a negative answer to [9, Problem 1] (also
conjectured in [18]). Theorem 19 yields a quasipolynomial time lower bound under ETH.
Thus, a natural weakening of [9, Problem 1] is as follows:

I Conjecture 2. If G is a finite solvable group, then EQN-SAT(G) and EQN-ID(G) are
decidable in quasipolynomial time.

In [5, Theorem 2] it is proved that ProgramSAT(G) and, hence, also EQN-SAT(G)
can be decided in quasipolynomial time given that G is AND-weak. As remarked in Section 3
this theorem remains valid with our slightly less restrictive definition of AND-weakness in
Conjecture 1. Thus, Conjecture 1 implies Conjecture 2. In particular, under the assumption
of both ETH and the AND-weakness conjecture (Conjecture 1), for every finite solvable
group G meeting the requirements of Theorem 19 there are quasipolynomial upper and lower
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bounds for EQN-SAT(G) and EQN-ID(G) – so under these assumptions both problems are
neither in P nor NP-complete. This contrasts the situation for solving systems of equations:
there is a clear P versus NP-complete dichotomy [15].

Theorem 19 proves lower bounds on EQN-SAT and EQN-ID for all sufficiently com-
plicated finite solvable groups. As outlined above, together with the authors of [24] the
extension to all groups of Fitting length three is under preparation. As a refinement we
plan to show that under ETH there is no 2o(n1/(d−1))-time algorithm for EQN-SAT(G) and
EQN-ID(G) where d is the Fitting length of G. Possible further research might address
the complexity of EQN-SAT and EQN-ID in groups of Fitting length two. The results
presented in the introduction suggest that these cases can be solved in polynomial time.

I Conjecture 3. If G is a finite solvable group of Fitting length two, then EQN-SAT(G)
and EQN-ID(G) are decidable in polynomial time.

Another direction for future work is the complexity of EQN-ID for expressions without
constants.
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