
Lower Bounds for Dynamic Distributed Task
Allocation
Hsin-Hao Su
Boston College, MA, USA

Nicole Wein
Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We study the problem of distributed task allocation in multi-agent systems. Suppose there is a
collection of agents, a collection of tasks, and a demand vector, which specifies the number of agents
required to perform each task. The goal of the agents is to cooperatively allocate themselves to the
tasks to satisfy the demand vector. We study the dynamic version of the problem where the demand
vector changes over time. Here, the goal is to minimize the switching cost, which is the number of
agents that change tasks in response to a change in the demand vector. The switching cost is an
important metric since changing tasks may incur significant overhead.
We study a mathematical formalization of the above problem introduced by Su, Su, Dornhaus, and
Lynch [20], which can be reformulated as a question of finding a low distortion embedding from
symmetric difference to Hamming distance. In this model it is trivial to prove that the switching
cost is at least 2. We present the first non-trivial lower bounds for the switching cost, by giving
lower bounds of 3 and 4 for different ranges of the parameters.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases distributed task allocation, combinatorics, lower bounds, multi-agent systems,
low-distortion embedding, dynamic algorithms, biological distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.99

Category Track A: Algorithms, Complexity and Games

Funding Nicole Wein: supported by an NSF Graduate Fellowship and NSF Grant CCF-1514339.

Acknowledgements We would like to thank Yufei Zhao for a discussion.

1 Introduction

Task allocation in multi-agent systems is a fundamental problem in distributed computing.
Given a collection of tasks, a collection of task-performing agents, and a demand vector which
specifies the number of agents required to perform each task, the agents must collectively
allocate themselves to the tasks to satisfy the demand vector. This problem has been studied
in a wide variety of settings. For example, agents may be identical or have differing abilities,
agents may or may not be permitted to communicate with each other, agents may have
limited memory or computational power, agents may be faulty, and agents may or may not
have full information about the demand vector. See Georgiou and Shvartsman’s book [7] for
a survey of the distributed task allocation literature. See also the more recent line of work by
Dornhaus, Lynch and others on algorithms for task allocation in ant colonies [4, 20, 5, 17].

We consider the setting where the demand vector changes dynamically over time and
agents must redistribute themselves among the tasks accordingly. We aim to minimize the
switching cost, which is the number of agents that change tasks in response to a change
in the demand vector. The switching cost is an important metric since changing tasks
may incur significant overhead. Dynamic task allocation has been extensively studied in
practical, heuristic, and experimental domains. For example, in swarm robotics, there is much

EA
T

C
S

© Hsin-Hao Su and Nicole Wein;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 99; pp. 99:1–99:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.ICALP.2020.99
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

99:2 Lower Bounds for Dynamic Distributed Task Allocation

experimental work on heuristics for dynamic task allocation (see e.g. [10, 19, 13, 14, 11, 12]).
Additionally, in insect biology it has been empirically observed that demands for tasks in
ant colonies change over time based on environmental factors such as climate, season, food
availability, and predation pressure [15]. Accordingly, there is a large body of biological work
on developing hypotheses about how insects collectively perform task allocation in response
to a changing environment (see surveys [1, 18]).

Despite the rich experimental literature, to the best of our knowledge there are only two
works on dynamic distributed task allocation from a theoretical algorithmic perspective. Su,
Su, Dornhaus, and Lynch [20] present and analyze gossip-based algorithms for dynamic task
allocation in ant colonies. Radeva, Dornhaus, Lynch, Nagpal, and Su [17] analyze dynamic
task allocation in ant colonies when the ants behave randomly and have limited information
about the demand vector.

1.1 Problem Statement

We study the formalization of dynamic distributed task allocation introduced by Su, Su,
Dornhaus, and Lynch [20].

Objective. Our goal is to minimize the switching cost, which is the number of agents that
change tasks in response to a change in the demand vector.

Properties of agents.
1. the agents have complete information about the changing demand vector
2. the agents are heterogeneous
3. the agents cannot communicate
4. the agents are memoryless
The first two properties specify capabilities of the agents while the third and fourth properties
specify restrictions on the agents. Although the exclusion of communication and memory
may appear overly restrictive, our setting captures well-studied models of both collective
insect behavior and swarm robotics, as outlined in Section 1.1.3.

From a mathematical perspective, our model captures the combinatorial aspects of
dynamic distributed task allocation. In particular, as we show in Section 2, the problem can
be reformulated as finding a low distortion embedding from symmetric difference to Hamming
distance.

1.1.1 Formal statement

Formally, the problem is defined as follows. There are three positive integer parameters: n
is the number of agents, k is the number of tasks, and D is the target maximum switch-
ing cost, which we define later. The goal is to define a set of n deterministic functions
fn,k

1 , fn,k
2 , . . . , fn,k

n , one for each agent, with the following properties.
Input: For each agent a, the function fn,k

a takes as input a demand vector ~v =
{v1, v2, . . . , vk} where each vi is a non-negative integer and

∑
i vi = n. Each vi is

the number of agents required for task i, and the total number of agents required for
tasks is exactly the total number of agents.
Output: For each agent a, the function fn,k

a outputs some i ∈ [k]. The output of fn,k
a (~v)

is the task that agent a is assigned when the demand vector is ~v.

H.-H. Su and N. Wein 99:3

Demand satisfied: For all demand vectors ~v and all tasks i, we require that the number
of agents a for which fn,k

a (~v) = i is exactly vi. That is, the allocation of agents to tasks
defined by the set of functions fn,k

1 , fn,k
2 , . . . , fn,k

n exactly satisfies the demand vector.
Switching cost satisfied: The switching cost of a pair (~v, ~v′) of demand vectors is
defined as the number of agents a for which fn,k

a (~v) 6= fn,k
a (~v′); that is, the number of

agents that switch tasks if the demand vector changes from ~v to ~v′ (or from ~v′ to ~v).
We say that a pair of demand vectors ~v, ~v′ are adjacent if |~v − ~v′|1 = 2; that is, if we
can get from ~v to ~v′ by moving exactly one unit of demand from one task to another.
The maximum switching cost of a set of functions fn,k

1 , fn,k
2 , . . . , fn,k

n is defined as the
maximum switching cost over all pairs of adjacent demand vectors; that is, the maximum
number of agents that switch tasks in response to the movement of a single unit of
demand from one task to another. We require that the maximum switching cost of
fn,k

1 , fn,k
2 , . . . , fn,k

n is at most D.

I Question. Given n and k, what is the minimum possible maximum switching cost D
over all sets of functions fn,k

1 , . . . , fn,k
n ?

1.1.2 Remarks
I Remark 1. The problem statement only considers the switching cost of pairs of adjacent
demand vectors. We observe that this also implies a bound on the switching cost of non-
adjacent vectors: if every pair of adjacent demand vectors has switching cost at most D,
then every pair of demand vectors with `1 distance d has switching cost at most D(d/2).

I Remark 2. The problem statement is consistent with the properties of the agents listed
above. In particular, the agents have complete information about the changing demand
vector because for each agent, the function fn,k

a takes as input the current demand vector.
The agents are heterogeneous because each agent a has a separate function fn,k

a . The agents
have no communication or memory because the only input to each function fn,k

a is the
current demand vector.

I Remark 3. Forbidding communication among agents is crucial in the formulation of the
problem, as otherwise the problem would be trivial. In particular, it would always be possible
to achieve maximum switching cost 1: when the current demand vector changes to an
adjacent demand vector, the agents simply reach consensus about which single agent will
move.

1.1.3 Applications
1.1.3.1 Collective insect behavior

There are a number of hypotheses that attempt to explain the mechanism behind task
allocation in ant colonies (see the survey [1]). One such hypothesis is the response threshold
model, in which ants decide which task to perform based on individual preferences and
environmental factors. Specifically, the model postulates that there is an environmental
stimulus associated with each task, and each individual ant has an internal threshold for each
task, whereby if the stimulus exceeds the threshold, then the ant performs that task. The
response threshold model was introduced in the 70s and has been studied extensively since
(for comprehensive background on this model see the survey [1] and the introduction of [6]).

ICALP 2020

99:4 Lower Bounds for Dynamic Distributed Task Allocation

Our setting captures the essence of the response threshold model since agents are permitted
to behave based on individual preferences (property 2: agents are heterogeneous) and
environmental factors (property 1: agents have complete information about the demand
vector). We study whether models like the response threshold model can achieve low
switching costs.

Inspired by collective insect behavior, researchers have also studied the response threshold
model in the context of swarm robotics [2, 9, 22]. Our setting also relates more generally to
swarm robotics:

1.1.3.2 Swarm robotics

There is a body of work in swarm robotics specifically concerned with property 3 of our setting:
eliminating the need for communication (e.g. [21, 3, 8, 16]). In practice, communication
among agents may be unfeasible or costly. In particular, it may be unfeasible to build a fast
and reliable network infrastructure capable of dealing with delays and failures, especially in
a remote location.

Regarding property 4 of our setting (the agents are memoryless), it may be desirable for
robots in a swarm to not rely on memory. For example, if a robot fails and its memory is
lost, we may wish to be able to introduce a new robot into the system to replace it.

Concretely, dynamic task allocation in swarm robotics may be applicable to disaster
containment [16, 23], agricultural foraging, mining, drone package delivery, and environmental
monitoring [19].

1.2 Past Work
Our problem was previously studied only by Su, Su, Dornhaus, and Lynch [20], who presented
two upper bounds and a lower bound.

The first upper bound is a very simple set of functions fn,k
1 , . . . , fn,k

n with maximum
switching cost k − 1. Each agent has a unique ID in [n] and the tasks are numbered from
1 to k. The functions fn,k

1 , . . . , fn,k
n are defined so that for all demand vectors, the agents

populate the tasks in order from 1 to k in order of increasing agent ID. That is, for each agent
a, fn,k

a is defined as the task j such that
∑j−1

i=0 di < ID(a) and
∑j

i=0 di ≥ ID(a). Starting
with any demand vector, if one unit of demand is moved from task i to task j, the switching
cost is at most |i− j| because at most one agent from each task numbered between i and j
(including i but not including j) shifts to a new task. Thus, the maximum switching cost
is k − 1.

The lower bound of Su et al. is also very simple. It shows that there does not exist a set
of functions fn,k

1 , . . . , fn,k
n with maximum switching cost 1 for n ≥ 2 and k ≥ 3. Suppose

for contradiction that there exists a set of functions fn,k
1 , . . . , fn,k

n with maximum switching
cost 1 for n = 2 and k = 3 (the argument can be easily generalized to higher n and k).

Suppose the current demand vector is [1, 1, 0], that is, one agent is required for each of
tasks 1 and 2 while no agent is required for task 3. Suppose agents a and b are assigned
to tasks 1 and 2, respectively, which we denote [a, b, ∅]. Now suppose the demand vector
changes from [1, 1, 0] to the adjacent demand vector [1, 0, 1]. Since the maximum switching
cost is 1, only one agent moves, so agent b moves to task 3, so we have [a, ∅, b]. Now suppose
the demand vector changes from [1, 0, 1] to the adjacent demand vector [0, 1, 1]. Again, since
the maximum switching cost is 1, agent a moves from task 1 to task 2 resulting in [∅, a, b].
Now suppose the demand vector changes from [0, 1, 1] to the adjacent demand vector [1, 1, 0],
which was the initial demand vector. Since the maximum switching cost is 1, agent b moves
from task 3 to task 1 resulting in [b, a, ∅].

H.-H. Su and N. Wein 99:5

The problem statement requires that the allocation of agents depends only on the current
demand vector, so the allocation of agents for any given demand vector must be the same
regardless of the history of changes to the demand vector. However, we have shown that the
allocation of agents for [1, 1, 0] was initially [a, b, ∅] and is now [b, a, ∅], a contradiction. Thus,
the maximum switching cost is at least 2.

The second upper bound of Su et al. states that there exists a set of functions fn,k
1 , . . . , fn,k

n

with maximum switching cost 2 if n ≤ 6 and k = 4. They prove this result by exhaustively
listing all 84 demand vectors along with the allocation of agents for each vector.

1.3 Our results
We initiate the study of non-trivial lower bounds for the switching cost. In particular, with
the current results it is completely plausible that the maximum switching cost can always be
upper bounded by 2, regardless of the number of tasks and agents. Our results show that
this is not true and provide further evidence that the maximum switching cost grows with
the number of tasks.

One might expect that the limitations on n and k in the second upper bound of Su et
al. is due to the fact the space of demand vectors grows exponentially with n and k so their
method of proof by exhaustive listing becomes unfeasible. However, our first result is that
the second upper bound of Su et al. is actually tight with respect to k. In particular, we
show that achieving maximum switching cost 2 is impossible even for k = 5 (for any n > 2).

I Theorem 4. For n ≥ 3, k ≥ 5, every set of functions fn,k
1 , . . . , fn,k

n has maximum switching
cost at least 3.

We then consider the next natural question: For what values of n and k is it possible to
achieve maximum switching cost 3? Our second result is that maximum switching cost 3 is
not always possible:

I Theorem 5. There exist n and k such that every set of functions fn,k
1 , . . . , fn,k

n has
maximum switching cost at least 4.

The value of k for Theorem 5 is an extremely large constant derived from hypergraph
Ramsey numbers. Specifically, there exists a constant c so that Theorem 5 holds for n ≥ 5
and k ≥ tn−1(cn) where the tower function tj(x) is defined by t1(x) = x and ti+1(x) = 2ti(x).

We remark that while our focus on small constant values of the switching cost may
appear restrictive, functions with maximum switching cost 3 already have a highly non-trivial
combinatorial structure.

1.4 Our techniques
We introduce two novel techniques, each tailored to a different parameter regime. One
parameter regime is when n� k and the demand for each task is either 0 or 1. This regime
seems to be the most natural for the goal of proving the highest possible lower bounds on
the switching cost.

1.4.1 The n � k regime
We develop a proof framework for the n � k regime and use it to prove Theorem 4 for
n = 3, k = 5, and more importantly, to prove Theorem 5. We begin by supposing for
contradiction that there exists a set of functions fn,k

1 , . . . , fn,k
n with switching cost 2 and 3,

ICALP 2020

99:6 Lower Bounds for Dynamic Distributed Task Allocation

respectively, and then reason about the structure of these functions. The main challenge in
proving Theorem 5 as compared to Theorem 4 is that functions with switching cost 3 can
have a much more involved combinatorial structure than functions with switching cost 2. In
principle, our proof framework could also apply to higher switching costs, but at present it is
unclear how exactly to implement it for this setting.

The first step in our proofs is to reformulate the problem as that of finding a low distortion
embedding from symmetric difference to Hamming distance, which we describe in Section 2.
This provides a cleaner way to reason about the problem in the n � k parameter regime.
Our proofs are written in the language of the problem reformulation, but here we will briefly
describe our proof framework in the language of the original problem statement.

The simple upper bound of k − 1 described in Section 1.2 can be viewed as each agent
having a “preference” for certain tasks. The main idea of our lower bound is to show that
for any set of functions fn,k

1 , . . . , fn,k
n with low switching cost, many agents must have a

“preference” for certain tasks. More formally, we introduce the idea of a task being frozen to
an agent. A task t is frozen to agent a if for every demand vector in a particular large set of
demand vectors, agent a is assigned to task t. Our framework has three steps:

In step 1, we show roughly that in total, many tasks are frozen to some agent.
In step 2, we show roughly that for many agents a, only few tasks are frozen to a.
In step 3, we use a counting argument to derive a contradiction: we count a particular
subset of frozen task/agent pairs in two different ways using steps 1 and 2, respectively.

The proof of Theorem 4 for n = 3 and k = 5 serves as a simple illustrative example of
our proof framework, while the proof of Theorem 5 is more involved. In particular, in step 1
of the proof of Theorem 5, we derive multiple possible structures of frozen task/agent pairs.
Then, we use Ramsey theory to show that there exists a collection of tasks that all obey only
one of the possible structures. This allows us to reason about each of the possible structures
independently in steps 2 and 3.

1.4.2 The remaining parameter regime
In the remaining parameter regime, we complete the proof of Theorem 4. In the previous
parameter regime, we only addressed the n = 3, k = 5 case, and now we need to consider all
larger values of n and k. Extending to larger k is trivial (we prove this formally in Section 4).
However, it is not at all clear how to extend a lower bound to larger values of n. In particular,
our proof framework from the n� k regime immediately breaks down as n grows.

The main challenge of handling large n is that having an abundance of agents can actually
allow more pairs of adjacent demand vectors to have switching cost 2, so it becomes more
difficult to find a pair with switching cost greater than 2. To see this, consider the following
example.

Consider the subset Si of demand vectors in which a particular task i has an unconstrained
amount of demand and each remaining task has demand at most n/(k − 1). We claim that
there exists a set of functions fn,k

1 , . . . , fn,k
n so that every pair of adjacent demand vectors

from Si has switching cost 2. Divide the agents into k − 1 groups of n/(k − 1) agents
each, and associate each task except i to such a group of agents. We define the functions
fn,k

1 , . . . , fn,k
n so that given any demand vector in Si, the set of agents assigned to each task

except i is simply a subset of the group of agents associated with that task (say, the subset
of such agents with smallest ID). This is a valid assignment since the demand of each task
except i is at most the size of the group of agents associated with that task. The remaining
agents are assigned to task i. Then, given a pair (~v, ~v′) of adjacent demand vectors in Si,

H.-H. Su and N. Wein 99:7

whose demands differ only for tasks s and t, their switching cost is 2 because the only agents
assigned to different tasks between ~v and ~v′ are: one agent from each of the groups associated
with tasks s and t, respectively.

Because it is possible for many pairs of adjacent demand vectors to have switching cost 2,
finding a pair of adjacent demand vectors with larger switching cost requires reasoning about
a very precise set of demand vectors. To do this, we use roughly the following strategy. We
identifying a task that serves the role of i in the above example and then successively move
demand out of task i until task i is empty and can thus no longer fill this role. At this point,
we argue that we have reached a pair of adjacent demand vectors with switching cost more
than 2.

2 Problem reformulation

2.1 Notation
Let A and B be multisets. The intersection of A and B denoted A∩B is the maximal multiset
of elements that appear in both A and B. For example, {a, a, b, b} ∩ {a, b, b, c} = {a, b, b}.
The symmetric difference between A and B, denoted A⊕B, is the multiset of elements in
either A or B but not in their intersection. For example, {a, a, b, b} ⊕ {a, b, b, c} = {a, c}
since we are left with a after removing {a, b, b} from {a, a, b, b} and we are left with c after
removing {a, b, b} from a, b, b, c.

A permutation of a multiset A is simply a permutation of the elements of the multiset. For
example, one permutation of {a, a, b} is aba. We treat permutation as strings and perform
string operations on them. For strings X and Y (which may be permutations), let d(X,Y)
denote the Hamming distance between X and Y . For example, d(aba, bca) = 2.

2.2 Problem statement
Given positive integers n, k, and D, the goal is to find a function πn,k with the following
properties.

Let Sn,k be the set of all size n multisets of [k]. The function πn,k takes as input a set
S ∈ Sn,k and outputs a permutation of S.
We say that a pair S, S′ ∈ Sn,k has distortion D′ with respect to πn,k if |S ⊕ S′| = 2 and
d(πn,k(S), πn,k(S′)) = D′. In other words, a pair of multisets has distortion D′ if they
have the smallest possible symmetric distance but large Hamming distance (at least D′).
We say that πn,k has maximum distortion D′ if the maximum distortion over all pairs
S, S′ ∈ Sn,k with |S ⊕ S′| = 2 is D′. We require that the function πn,k has maximum
distortion at most D.

We are interested in the question of for which values of the parameters n, k, and D, there
exists πn,k that satisfies the above properties. In particular, we aim to minimize the maximum
distortion:

I Question. Given n and k, what is the minimum possible maximum distortion over
all functions πn,k?

In other words, the question is whether there exists a function πn,k such that every pair
S, S′ ∈ Sn,k has distortion at least D. Our theorems are lower bounds, so we show that for
every function πn,k there exists a pair S, S′ ∈ Sn,k with distortion at least D.

ICALP 2020

99:8 Lower Bounds for Dynamic Distributed Task Allocation

2.3 Equivalence to original problem statement
We claim that the new problem statement from Section 2.2 is equivalent to the original
problem statement from Section 1.1.

B Claim 6. Given parameters n and k (the same for both problem statements) there exists
a function πn,k with maximum distortion D if and only if there exists a set of functions
fn,k

1 , . . . , fn,k
n with maximum switching cost D.

We describe the correspondence between the two problem statements:
Demand vector. Sn,k is the set of all possible demand vectors since a demand vector
is simply a size n multiset of the k tasks. For example, the multiset S = {1, 1, 3} is
equivalent to the demand vector ~v = [2, 0, 1]; both notations indicate that task 1 requires
two units of demand, task 2 requires no demand, and task 3 requires one unit of demand.
Allocation of agents to tasks. If ~v is the demand vector representing the multiset
S ∈ Sn,k, a permutation πn,k(S) is an allocation fn,k

1 (~v), . . . , fn,k
n (~v) of agents to tasks

so that πn,k(S)[i] = fn,k
i (~v); that is, agent i performs the task that is the ith element in

the permutation πn,k(S). For example, π3,3({1, 1, 3}) = 131 is equivalent to the following:
f3,3

1 ([2, 0, 1]) = 1, f3,3
2 ([2, 0, 1]) = 3, and f3,3

3 ([2, 0, 1]) = 1; both notations indicate that
agents 1 and 3 both performs task 1, while agent 2 performs task 2.
Switching cost. If ~v, ~v′ are the demand vectors representing the multisets S, S′ ∈ Sn,k

respectively, the value d(πn,k(S), πn,k(S′)) is the switching cost because from the previous
bullet point, πn,k(S)[i] 6= πn,k(S′)[i] if and only if fn,k

a (~v) 6= fn,k
a (~v′).

Adjacent demand vectors. The set of all pairs S, S′ ∈ Sn,k such that |S ⊕ S′| = 2
is the set of all pairs of adjacent demand vectors. This is because |S ⊕ S′| = 2 means
that starting from S, one can reach S′ by changing exactly one element in S from some
i ∈ [k] to some j ∈ [k]. Equivalently, starting from the demand vector represented by
S and moving one unit of demand from task i to task j results in the demand vector
represented by S′.
Maximum switching cost. If fn,k

1 , . . . , fn,k
n is the set of functions representing πn,k,

then πn,k has maximum distortion D if and only if fn,k
1 , . . . , fn,k

n has maximum switching
cost D. This is because S, S′ ∈ Sn,k has distortion D if and only if |S ⊕ S′| = 2 and
d(πn,k(S), πn,k(S′)) = D which is equivalent to saying that the demand vectors ~v and ~v′

that represent S and S′ are adjacent and have switching cost D.

2.4 Restatement of results
We restate Theorems 4 and 5 in the language of the problem restatement.

I Theorem 7 (Restatement of Theorem 4). Let n ≥ 3 and k ≥ 5. Every function πn,k has
maximum distortion at least 3.

I Theorem 8 (Restatement of Theorem 5). There exist n and k so that every function πn,k

has maximum distortion at least 4.

2.5 Example instance
To build intuition about the problem restatement, we provide a concrete example of a small
instance of the problem. Suppose n = 3 and k = 2. For notational clarity, instead of denoting
[k] = {0, 1} we denote [k] = {a, b}. Then S3,2 is the set of all size 3 multisets of {a, b}; that
is, S3,2 = {{a, a, a}, {a, a, b}, {a, b, b}, {b, b, b}}. π3,2 is a function that maps each element of
S3,2 to a permutation of itself. For example, π3,2 could be defined as follows:

H.-H. Su and N. Wein 99:9

π3,2({a, a, a}) = aaa, π3,2({a, a, b}) = aba π3,2({a, b, b}) = bab, π3,2({b, b, b}) = bbb.

We are concerned with all pairs S, S′ ∈ S3,2 such that |S ⊕ S′| = 2 (since the maximum
distortion of π3,2 is defined in terms of only these pairs). In this example, the only such pairs
are as follows:

{a, a, a} ⊕ {a, a, b} = 2, {a, a, b} ⊕ {a, b, b} = 2, {a, b, b} ⊕ {b, b, b} = 2.

For each such pair, we consider d(π3,2(S), π3,2(S′)):

d(aaa, aba) = 1, d(aba, bab) = 3, d(bab, bbb) = 1.

This particular choice of π3,2 has maximum distortion 3 (since the largest value in the above
row is 3), however we could have chosen π3,2 with maximum distortion 1 (for example if
π3,2({a, b, b}) = bba instead of bab).

3 The n � k regime

In this section we will prove Theorem 7 for n = 3, k = 5, and Theorem 8. The proofs are
written in the language of the problem reformulation from Section 2. For these proofs it will
suffice to consider only the elements of Sn,k that are subsets of [k], rather than multisets.
This corresponds to the set of demand vectors where each task has demand either 0 or 1.
For the rest of this section we consider only subsets of [k], rather than multisets.

We call each element of [k] a character (e.g. in the above example instance, a and b are
characters).

3.1 Proof framework
As described in Section 1.4, we develop a three-step proof framework for the n� k regime.
Suppose we are trying to prove that every function πn,k has maximum distortion at least
D for a particular n and k. We begin by supposing for contradiction that there exists πn,k

with maximum distortion less than D. That is, we suppose that every pair S, S′ ∈ Sn,k with
|S ⊕ S′| = 2 has d(πn,k(S), πn,k(S′)) < D. Under the assumption that such a πn,k exists,
steps 1 and 2 of the framework show that πn,k must obey a particular structure. For the
remainder of this section, we drop the subscript of π since n and k are fixed.

I Notation. For any set R ⊆ [k], let UR be the set of all sets S ⊆ [k] such that R ⊂ S and
|S| = |R|+ 1.

Step 1: Structure of size n − 1 sets

We begin by fixing a size n− 1 set R ⊆ [k]. Now, consider UR (defined above). We note that
all pairs S, S′ ∈ UR are by definition such that |S ⊕ S′| = 2. Because we initially supposed
that π has maximum distortion less than D, we know that for all pairs S, S′ ∈ UR, we have
d(π(S), π(S′)) < D.

Then we prove a structural lemma which roughly says that many characters r ∈ R have a
“preference” to be in a particular position in the permutations π(S) for S ∈ UR. We say that
R i-freezes the character r if π(S)[i] = r for many S ∈ UR. Our structural lemma roughly
says that for many characters r ∈ R, there exists an index i ∈ [n] such that R i-freezes r. In
other words, for many S ∈ UR, the π(S)s agree on the position of many characters in the
permutation.

ICALP 2020

99:10 Lower Bounds for Dynamic Distributed Task Allocation

Step 2: Structure of size n − 2 sets

We begin by fixing a size n− 2 set Q ⊆ [k]. Now, consider UQ. We note that each R ∈ UQ

obeys the structural lemma from step 1; that is, for many characters r ∈ R, there exists an
index i ∈ [n] such that R i-freezes r.

We prove a structural lemma which roughly says that the sets P ∈ UQ are for the most
part consistent about which characters they freeze to which index of the permutation. More
specifically, for many characters q ∈ Q, for all pairs P, P ′ ∈ UQ, if R i-freezes r and R′

j-freezes r, then i = j.

Step 3: Counting argument

In step 3, we use a counting argument to derive a contradiction. For the proof of Theorem 7,
a simple argument suffices. The idea is that step 1 shows that many characters are frozen
overall while step 2 shows that each character can only be frozen to a single index. Then, the
pigeonhole principle implies that more than one character is frozen to a single index, which
helps to derive a contradiction.

For the proof of Theorem 8, it no longer suffices to just show that more than one character
is frozen to a single index. Instead, we require a more sophisticated counting argument and
a careful choice of what quantity to count. We end up counting the number of pairs (Q, a)
such that R ∈ UQ, where Q ⊂ [k] is a size n− 2 set and a ∈ [n] \Q. To reach a contradiction,
we count this quantity in two different ways, using steps 1 and 2 respectively.

Having reached a contradiction, we conclude that π has maximum distortion at least D.

3.2 Proof of Theorem 7 for n = 3, k = 5
In this section, we prove Theorem 7 for n = 3, k = 5, which serves as a simple illustrative
example of our proof framework from Section 3.1.

I Theorem 9 (Special case of Theorem 7). Every function π3,5 has maximum distortion at
least 3.

Proof. Suppose by way of contradiction that there is a function π3,5 with maximum distortion
at most 2. For the remainder of this section we omit the subscript of π since n = 3, k = 5
are fixed. For clarity of notation, we let {a, b, c, d, e} be the characters in [k] for k = 5. Thus,
we are considering the set of all

(5
3
)

= 10 size 3 subsets of {a, b, c, d, e}. (Recall that we are
only concerned with subsets, not multisets.)

Step 1: Structure of size n − 1 sets. We begin by fixing a set {x, y} ⊆ {a, b, c, d, e} of size
n−1 = 2. Recall that U{x,y} is the set of all size 3 sets S such that {x, y} ⊆ S ⊆ {a, b, c, d, e}.
For example, U{a,b} = {{a, b, c}, {a, b, d}, {a, b, e}}. We note that by definition all pairs
S, S′ ∈ U{x,y} have |S ⊕ S′| = 2. Thus, to find a pair with distortion 3 and thereby
obtain a contradiction, it suffices to find a pair S, S′ ∈ U{x,y} with Hamming distance
d(π(S), π(S′)) = 3. Since n = 3, this means we are looking for permutations π(S), π(S′) that
disagree about the position of all elements.

The following lemma says that π places one of x or y at the same position for all π(S)
with S ∈ U{x,y}. For ease of notation, we give this phenomenon a name:

I Definition 10 (freeze). We say that a pair {x, y} ⊆ {a, b, c, d, e} i-freezes a character
p ∈ {x, y} if for all S ∈ U{x,y}, we have π(S)[i] = p. We simply say that {x, y} freezes p if i
is unspecified. Equivalently, we say that a character p is i-frozen (or just frozen) by a pair.

H.-H. Su and N. Wein 99:11

I Lemma 11. For every {x, y} ⊆ {a, b, c, d, e}, there exists i so that {x, y} i-freezes either x
or y.

For example, one way that the pair {a, b} could satisfy Lemma 11 is if the permutations
π({a, b, c}), π({a, b, d}), and π({a, b, e}) all place the character a in the 0th position. In this
case, we would say that the pair {a, b} 0-freezes a.

Proof of Lemma 11. Without loss of generality, consider {x, y} = {a, b}. In this case,
U{x,y} = U{a,b} = {{a, b, c}, {a, b, d}, {a, b, e}}. Thus, we are trying to show that {a, b, c},
{a, b, d}, and {a, b, e} all agree on the position of either a or b.

Suppose without loss of generality that π({a, b, c}) = abc. We first note that π({a, b, c})
and π({a, b, d}) must agree on the position of either a or b because otherwise we would have
d(π({a, b, c}), π({a, b, d})) = 3 which would mean that π({a, b, c}) and π({a, b, d}) would
have distortion 3, and we would have proved Theorem 9. Without loss of generality, suppose
π({a, b, c}) and π({a, b, d}) agree on the position of a; that is, π({a, b, d}) is either abd or
adb.

By the same reasoning, π({a, b, c}) and π({a, b, e}) agree on the position of either a
or b, and π({a, b, d}) and π({a, b, e}) agree on the position of either a or b. If π({a, b, e})
agrees with either π({a, b, c}) or π({a, b, d}) on the position of a, then it agrees with both (in
which case we are done) since π({a, b, c}) and π({a, b, d}) agree on the position of a, by the
previous paragraph. Thus, the only option is that π({a, b, e}) agrees with both π({a, b, c})
and π({a, b, d}) on the position of b. This completes the proof. J

Step 2: Structure of size n − 2 sets. Since n− 2 = 1, we begin by fixing a single element
x ∈ {a, b, c, d, e}. In the following lemma we prove that x cannot be frozen to two different
indices.

I Lemma 12. If a pair {x, y} ⊆ {a, b, c, d, e} i-freezes x and a pair {x, z} ⊆ {a, b, c, d, e}
j-freezes x then i = j.

Proof. Since {x, y} i-freezes x, then in particular, π({x, y, z})[i] = x. Since {x, z} j-freezes
x, then in particular, π({x, y, z})[j] = x. A single character cannot be in multiple positions
of the permutation π({x, y, z}) so i = j. J

Step 3: Counting argument. Lemma 11 implies that for each character x ∈ {a, b, c, d, e}
except for at most one, some pair {x, y} freezes x. That is, at least 4 characters are frozen by
some pair. However n = 3 so by the pigeonhole principle, two characters x, y ∈ {a, b, c, d, e}
are frozen to the same index i.

Fix x, y, and i, and suppose x and y are each i-frozen. By Lemma 11, the pair {x, y}
freezes either x or y. Without loss of generality, say {x, y} freezes x. By Lemma 12, since
x is i-frozen by some pair, all pairs that freeze x must i-freeze x. Thus, the pair {x, y}
i-freezes x.

Let {y, z} ⊆ {a, b, c, d, e} be a pair that i-freezes y. Thus we have π({x, y, z})[i] = y.
However, since {x, y} i-freezes x, we also have π({x, y, z})[i] = x. This is a contradiction
since π({x, y, z})[i] cannot take on two different values. J

We defer the proof of Theorem 8, which is the remainder of Section 3, to the full version.

ICALP 2020

99:12 Lower Bounds for Dynamic Distributed Task Allocation

4 The remaining parameter regime

I Theorem 13 (restatement of Theorem 4). For n ≥ 3, k ≥ 5, every set of functions
fn,k

1 , . . . , fn,k
n has maximum switching cost at least 3.

I Remark. We note that the proof framework from Section 3 immediately breaks down if
we try to apply it to Theorem 13 for all n, k. For example, when n > k, there are no size
n subsets of [k] so we must instead consider size n multisets of [k]. Even if we have the
same setting of parameters as Theorem 7 but we are considering multisets, in step 1 of
the proof framework Lemma 11 is no longer true. That is, it is not true that for all size 2
multisets {x, y} of [k], we have that {x, y} i-freezes either x or y for some i. In particular,
suppose {x, y} = {a, a}. Then if is possible that π({a, a, b}) = aab, π({a, a, c}) = aca, and
π({a, a, d}) = daa, in which case a is not frozen to any index. Since the proof framework
from Section 3 no longer applies, we develop entirely new techniques in this section. (However
we do use this proof framework to prove Theorem 8.)

For the rest of this section we will use the language of the original problem statement
rather than that of the problem reformulation.

4.1 Preliminaries
To prove the Theorem 13, we need to show that Theorem 9 extends to larger k and n. As
noted in Section 1.4.2, extending to larger n is challenging, while extending to larger k is
trivial, as shown in the following lemma.

I Lemma 14. Fix n and k. If there exists a set of functions fn,k
1 , . . . , fn,k

n with maximum
switching cost D, then for all k′ < k, there exists a set of functions gn,k′

1 , . . . , gn,k′

n with
maximum switching cost D.

Proof. For each demand vector ~v with n agents and k tasks such that only the first k′ entries
of ~v are non-zero, let ~v′ be the length k′ vector consisting of only the first k′ entries of ~v.
We note that the set of all such vectors ~v′ is the set of all demand vectors for n agents
and k′ tasks. Set each gn,k′

i (~v′) = fn,k
i (~v). Then the switching cost for any adjacent pair

(~v′1, ~v′2) with respect to gn,k′

1 , . . . , gn,k′

n is equal to the switching cost of the corresponding
adjacent pair (~v1, ~v2) with respect to fn,k

1 , . . . , fn,k
n . Thus, the maximum switching cost of

gn,k′

1 , . . . , gn,k′

n is equal to the maximum switching cost of fn,k
1 , . . . , fn,k

n . J

I Notation. We say that an ordered pair of adjacent demand vectors (~v1, ~v2) is (s, t)-adjacent
if starting with ~v1 and moving exactly one unit of demand from task s to task t results in ~v2.
We say that an agent a is (i, j)-mobile with respect to an ordered pair of adjacent demand
vectors (~v1, ~v2) if fn,k

a (~v1) = i, fn,k
a (~v2) = j, and i 6= j.

We note that if (~v1, ~v2) is (s, t)-adjacent and has switching cost 2, then for some task i,
some agent a must be (s, i)-mobile and another agent b must be (i, t)-mobile. We say that i
is the intermediate task with respect to (~v1, ~v2).

4.2 Proof overview
We begin by supposing for contradiction that there exists a set of functions fn,k

1 , . . . , fn,k
n

with maximum switching cost 2, and then we prove a series of structural lemmas about such
functions.

H.-H. Su and N. Wein 99:13

As previously mentioned, the main challenge of proving Lemma 13 is handling large n.
To illustrate this challenge, we repeat the example from Section 1.4.2. This example shows
that having large n can allow more pairs of adjacent demand vectors to have switching cost 2,
making it more difficult to find a pair with switching cost greater than 2.

Consider the subset Si of demand vectors in which a particular task i has an unconstrained
amount of demand and each remaining task has demand at most n/(k − 1). We claim that
there exists a set of functions fn,k

1 , . . . , fn,k
n so that every pair of adjacent demand vectors

from Si has switching cost 2. Divide the agents into k − 1 groups of n/(k − 1) agents
each, and associate each task except i to such a group of agents. We define the functions
fn,k

1 , . . . , fn,k
n so that given any demand vector in Si, the set of agents assigned to each task

except i is simply a subset of the group of agents associated with that task (say, the subset
of such agents with smallest ID). This is a valid assignment since the demand of each task
except i is at most the size of the group of agents associated with that task. The remaining
agents are assigned to task i. Then, given a pair (~v, ~v′) of adjacent demand vectors in Si,
whose demands differ only for tasks s and t, their switching cost is 2 because the only agents
assigned to different tasks between ~v and ~v′ are: one agent from each of the groups associated
with tasks s and t, respectively.

To overcome the challenge illustrated by the above example, our general method is to
identify a task that serves the role of task i and then successively move demand out of task
i until task i is empty, and thus can no longer serve its original role. We note that in the
above example, the task i serves as the intermediate task for all pairs of adjacent demand
vectors from Si. Thus, we will choose i to be an intermediate task.

In particular, we show that there is a demand vector ~v so that we can identify tasks i
and t with the following important property: if we start with ~v and move a unit of demand
to task t from any other task except i, the switching cost is 2 and the intermediate task is i.

Furthermore, we prove that if we start with demand vector ~v and move a unit of demand
from task i to task t resulting in demand vector ~v1, then t and i have the important property
from the previous paragraph with respect to ~v1. Applying this argument inductively, we
show that no matter how many units of demand we successively move from i to t, i and t
still satisfy the important property with respect to the current demand vector.

We move demand from i to t until task i is empty. Then, the final contradiction comes
from the fact that if we now move a unit of demand from any non-i task to t, then the
important property implies that the switching cost is 2 and the intermediate task is i; however,
i is empty and an empty task cannot serve as an intermediate task.

We defer the proof of Theorem 13, which is the remainder of Section 4 to the full version.

References
1 Samuel N Beshers and Jennifer H Fewell. Models of division of labor in social insects. Annual

review of entomology, 46(1):413–440, 2001.
2 Eduardo Castello, Tomoyuki Yamamoto, Yutaka Nakamura, and Hiroshi Ishiguro. Task

allocation for a robotic swarm based on an adaptive response threshold model. In 2013 13th
International Conference on Control, Automation and Systems (ICCAS 2013), pages 259–266.
IEEE, 2013.

3 Jianing Chen. Cooperation in Swarms of Robots without Communication. PhD thesis, University
of Sheffield, 2015.

4 Alejandro Cornejo, Anna Dornhaus, Nancy Lynch, and Radhika Nagpal. Task allocation in
ant colonies. In International Symposium on Distributed Computing, pages 46–60. Springer,
2014.

ICALP 2020

99:14 Lower Bounds for Dynamic Distributed Task Allocation

5 Anna Dornhaus, Nancy Lynch, Frederik Mallmann-Trenn, Dominik Pajak, and Tsvetomira
Radeva. Self-stabilizing task allocation in spite of noise. arXiv preprint, 2018. arXiv:
1805.03691.

6 Ana Duarte, Ido Pen, Laurent Keller, and Franz J Weissing. Evolution of self-organized division
of labor in a response threshold model. Behavioral ecology and sociobiology, 66(6):947–957,
2012.

7 Chryssis Georgiou and Alexander A Shvartsman. Cooperative task-oriented computing:
Algorithms and complexity. Synthesis Lectures on Distributed Computing Theory, 2(2):1–167,
2011.

8 Serge Kernbach, Dagmar Häbe, Olga Kernbach, Ronald Thenius, Gerald Radspieler, Toshifumi
Kimura, and Thomas Schmickl. Adaptive collective decision-making in limited robot swarms
without communication. The International Journal of Robotics Research, 32(1):35–55, 2013.

9 Min-Hyuk Kim, Hyeoncheol Baik, and Seokcheon Lee. Response threshold model based uav
search planning and task allocation. Journal of Intelligent & Robotic Systems, 75(3-4):625–640,
2014.

10 Michael JB Krieger, Jean-Bernard Billeter, and Laurent Keller. Ant-like task allocation and
recruitment in cooperative robots. Nature, 406(6799):992, 2000.

11 Kristina Lerman, Chris Jones, Aram Galstyan, and Maja J Matarić. Analysis of dynamic
task allocation in multi-robot systems. The International Journal of Robotics Research,
25(3):225–241, 2006.

12 Kathryn Sarah Macarthur, Ruben Stranders, Sarvapali D Ramchurn, and Nicholas R Jennings.
A distributed anytime algorithm for dynamic task allocation in multi-agent systems. In AAAI,
pages 701–706, 2011.

13 James McLurkin and Daniel Yamins. Dynamic task assignment in robot swarms. In Robotics:
Science and Systems, volume 8. Citeseer, 2005.

14 James Dwight McLurkin. Stupid robot tricks: A behavior-based distributed algorithm library
for programming swarms of robots. PhD thesis, Massachusetts Institute of Technology, 2004.

15 George F Oster and Edward O Wilson. Caste and ecology in the social insects. Princeton
University Press, 1979.

16 Jacques Penders, Lyuba Alboul, Ulf Witkowski, Amir Naghsh, Joan Saez-Pons, Stefan
Herbrechtsmeier, and Mohamed El-Habbal. A robot swarm assisting a human fire-fighter.
Advanced Robotics, 25(1-2):93–117, 2011.

17 Tsvetomira Radeva, Anna Dornhaus, Nancy Lynch, Radhika Nagpal, and Hsin-Hao Su. Costs
of task allocation with local feedback: Effects of colony size and extra workers in social insects
and other multi-agent systems. PLoS computational biology, 13(12):e1005904, 2017.

18 Gene E Robinson. Regulation of division of labor in insect societies. Annual review of
entomology, 37(1):637–665, 1992.

19 Erol Şahin. Swarm robotics: From sources of inspiration to domains of application. In
International workshop on swarm robotics, pages 10–20. Springer, 2004.

20 Hsin-Hao Su, Lili Su, Anna Dornhaus, and Nancy Lynch. Ant-inspired dynamic task allocation
via gossiping. In International Symposium on Stabilization, Safety, and Security of Distributed
Systems, pages 157–171. Springer, 2017.

21 Zijian Wang and Mac Schwager. Multi-robot manipulation with no communication using only
local measurements. In CDC, pages 380–385, 2015.

22 Yongming Yang, Changjiu Zhou, and Yantao Tian. Swarm robots task allocation based on
response threshold model. In 2009 4th International Conference on Autonomous Robots and
Agents, pages 171–176. IEEE, 2009.

23 Emaad Mohamed H Zahugi, Mohamed M Shanta, and TV Prasad. Oil spill cleaning up using
swarm of robots. In Advances in Computing and Information Technology, pages 215–224.
Springer, 2013.

http://arxiv.org/abs/1805.03691
http://arxiv.org/abs/1805.03691

	Introduction
	Problem Statement
	Formal statement
	Remarks
	Applications

	Past Work
	Our results
	Our techniques
	The n<< k regime
	The remaining parameter regime

	Problem reformulation
	Notation
	Problem statement
	Equivalence to original problem statement
	Restatement of results
	Example instance

	The n<< k regime
	Proof framework
	Proof of Theorem 7 for n=3, k=5

	The remaining parameter regime
	Preliminaries
	Proof overview

