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Abstract
We study the incentives of banks in a financial network, where the network consists of debt contracts
and credit default swaps (CDSs) between banks. One of the most important questions in such a
system is the problem of deciding which of the banks are in default, and how much of their liabilities
these banks can pay. We study the payoff and preferences of the banks in the different solutions to
this problem. We also introduce a more refined model which allows assigning priorities to payment
obligations; this provides a more expressive and realistic model of real-life financial systems, while it
always ensures the existence of a solution.

The main focus of the paper is an analysis of the actions that a single bank can execute in
a financial system in order to influence the outcome to its advantage. We show that removing
an incoming debt, or donating funds to another bank can result in a single new solution that is
strictly more favorable to the acting bank. We also show that increasing the bank’s external funds
or modifying the priorities of outgoing payments cannot introduce a more favorable new solution
into the system, but may allow the bank to remove some unfavorable solutions, or to increase its
recovery rate. Finally, we show how the actions of two banks in a simple financial system can result
in classical game theoretic situations like the prisoner’s dilemma or the dollar auction, demonstrating
the wide expressive capability of the financial system model.
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1 Introduction

The world’s financial system is a complex network where financial institutions such as banks
are connected via various kinds of financial contracts. If some financial institutions go
bankrupt, then others might suffer as well; the financial network might experience a ripple
effect. Two of the most common financial contracts are (i) debt contracts (some bank owes a
specific amount of money to another bank) and (ii) Credit Default Swaps (CDSs). A CDS
is a simple financial derivative where the payment obligation depends on the defaulting of
another bank in the system. The combination of debt contracts and CDSs turns out to
provide a simple and yet expressive model, which is able to capture a wide range of interesting
phenomena in real-life financial markets [10, 22, 18, 17].

Given a set of banks and a set of payment obligations between these banks, one of the
most natural questions is to decide which of the banks can fulfill these obligations, and
which of them cannot, and hence are in default. The problem of deciding what portion of
obligations banks can fulfill is known as the clearing problem. One can easily encounter
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a situation when this problem has multiple different solutions in a financial system. It is
natural to study how much the individual banks prefer these solutions, i.e. what is their
payoff in specific solutions of the system.

In this paper we study the problem from the point of view of a single bank v. We analyze
whether some simple actions of v can improve its situation in the network. In a financial
system, the complex interconnection between the banks can easily result in situations where
banks can achieve a better outcome in surprising and somewhat counterintuitive ways. For
example, being on the receiving end of a debt contract is generally considered beneficial,
because the bank obtains payment from this contract. However, in a system with debts and
CDSs, it is also possible that if a bank v nullifies a debt contract as a creditor, then (through
a number of intermediate steps in the network) this results in an even higher total payoff for
v. Such phenomena are crucial to understand, since if banks indeed execute these actions to
obtain a better outcome, then these opportunities will determine how the financial system
changes and evolves in the future.

We begin with a description of the financial system model recently developed by Schulden-
zucker et. al. [22], which serves as the base model for our findings. We then introduce a
more refined version of this model which also assigns priorities to each contract, and assumes
that banks have to fulfill their payment obligations in the order defined by these priorities.
We show that besides being more expressive and realistic, this augmented model still ensures
the existence of a solution.

Our main contribution is an analysis of various different actions that banks in the system
can execute in order to increase their final payoff when the system is cleared. We first show
that by removing an incoming debt (partially or entirely) or by donating extra funds to
another bank, a bank might be able to increase its payoff. We then show that investing more
external assets or reprioritizing its outgoing payments can also allow a bank to influence
the system. However, these actions do not allow a bank to introduce more favorable new
solutions, but they can allow the bank to remove unfavorable solutions from the system, or
increase its own recovery rate.

Finally, we present some simple examples where two banks try to influence the financial
system simultaneously, resulting in situations that are identical to the classical prisoner’s
dilemma or dollar auction game. This suggests that financial systems in this model can
exhibit very rich behavior, and if two or more banks execute these actions simultaneously,
this can easily lead to complex game-theoretic settings.

2 Related Work

Numerous studies on the properties of financial systems are directly or indirectly based
on the financial system model introduced by Eisenberg and Noe in [11]. This model only
assumes simple debt contracts between banks. Different studies have later also extended this
model with default costs [21], cross-ownership relations [25, 12] or so-called covered CDSs
[17]. The related literature has studied the propagation of shocks in many different variants
of these models [2, 8, 5, 4, 1, 13].

One disadvantage of these models is that they can only describe long positions of banks
on each other, meaning that a worse situation for one bank is always worse (or the same) for
any other bank. For example, if a bank is unable to pay its debt, then its creditor receives
less money, and it might not be able to pay its debts either. This already enables the model
to capture many interesting phenomena, e.g. how a small shock causes a ripple effect in the
network. However, long positions imply that there is a solution in these systems which is
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simultaneously the best for all banks. As such, the models cannot represent the opposing
interests of banks in many real-world situations, and thus these models are not so interesting
from a game-theoretic point of view.

On the other hand, a more realistic model was recently introduced by Schuldenzucker,
Seuken and Battiston [22]; we assume this model of financial systems in our paper. Besides
debt contracts, this new model also allows credit default swaps between banks, which are
essentially financial derivatives where banks are betting on the default of another bank. CDSs
are a prominent kind of derivative that played a significant role in the 2008 financial crisis
[14]; as such, they have been studied in various works in the financial literature [9, 18, 10].
While the model still remains relatively simple with these two kind of contracts, it now also
allows us to model short positions, when it is more favorable for a bank if another bank
is worse off. This increases the expressive power of the model dramatically, allowing us to
capture a wide range of properties of practical financial systems.

The work of Schuldenzucker et. al. analyzes their model from a complexity-theoretic
perspective. The authors show that in the base variant of this model, each system has at least
one solution; however, if we also assume so-called default costs, then some systems might not
have a solution at all. In case of default costs, they also describe sufficient conditions for the
existence of a solution. Their follow-up work shows that it is computationally hard to decide
if a solution exists, and also to find or approximate a solution of the system [23].

However, to our knowledge, the model has not been analyzed from a game-theoretic
perspective before. Our paper aims to lay the foundations of such an analysis, by evaluating
a variety of simple (and yet realistic) actions that allow nodes to influence the network due to
the presence of short positions. Since banks often have conflicting interests in these systems,
these actions can easily lead to interesting game-theoretical dilemmas.

The only similar game-theoretic analysis we are aware of is the recent work of Bertschinger
et. al. [6], set in the original model of Eisenberg and Noe. Instead of having institutional
rules for payment obligations in case of default, [6] assumes that banks can freely select
the order of paying their outgoing debts, or even decide to make partial payments in some
contracts. The paper discusses the properties of Nash-Equilibria and Social Optima in this
setting. While this has a connection to our observations in Section 5.3, we analyze the results
of such actions in a significantly more complex model with CDSs.

In general, measuring the sensitivity or complexity of a financial network has also been
exhaustively studied [15, 3, 5, 4]. The topic also has a major importance for financial
authorities in practice, who regularly conduct stress tests to analyze real-world financial
systems. The clearing problem, in particular, also plays an important role in the European
Central Bank’s stress test framework [7], for example.

3 Financial system model

The model introduced by [22] describes a financial network as a set of banks (i.e. nodes),
denoted by V , with different kinds of financial contracts (i.e. directed edges) between specific
pairs of banks. Banks in our examples are usually denoted by u, v or w. Every bank in the
system has a predefined amount of external assets, denoted by ev for bank v.

3.1 Debt and CDS contracts
We assume that each contract in the system is between two specific banks u and v. A
contract obliges u (the debtor) to pay a specific amount of money to bank v (the creditor),
either unconditionally or based on a specific event. The amount of payment obligation in the
contract is the weight (in financial terms: the notional) of the contract.

ICALP 2020
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While these contracts might be connected to earlier transactions between the banks (e.g.
a loan offered by v to u in the past which results in a debt contract from u to v in the
present), we assume that these initial payments are implicitly represented in the external
assets of banks, and thus the external assets and the contracts together provide all the
necessary information to describe the current state of the system.

The outgoing contracts of bank v altogether specify a given amount of total payment
obligations for v. If v is unable to fulfill all these obligations, then we say that v is in default.
In this case, we are interested in the portion of liabilities that v is still able to pay, known
as the recovery rate of v and denoted by rv. The definition implies that we always have
rv ∈ [0, 1], and v is in default exactly if rv < 1. The recovery rates of all banks is represented
together in a recovery rate vector r ∈ [0, 1]V .

The model allows two kinds of contracts between banks in the system. In case of a simple
debt contract, u has to pay a specific amount to v unconditionally, i.e. in any case. On the
other hand, credit default swaps (CDSs) are ternary financial contracts, made in reference to
a third bank w known as the reference entity. A CDS describes a conditional debt which
only requires u to pay a specific amount to v if w is in default. In particular, if the weight of
the CDS is δ and the recovery rate of w is rw, then the CDS incurs a payment obligation of
δ · (1− rw) from u to v.

In practice, CDSs often describe an insurance policy on debt contracts for the creditor
bank. If v is the creditor of a debt coming from w, and v suspects that w might go into
default and thus will be unable to pay some of its debt, then v can enter into a CDS as a
creditor with some other bank u in the system, in reference to w. If w indeed defaults and
cannot pay its liabilities to v, then v instead receives some payment from u. Nonetheless,
there could be other reasons for banks to enter CDS contracts, e.g. speculative bets about
future developments in the market.

3.2 Assets and liabilities
Since payment obligations in CDSs depend on the recovery rate of other banks, the assets
and liabilities of a bank are defined as a function of the vector r. The liability of u towards v
is the sum of payment obligations from all simple debt contracts and CDSs, i.e.

lu,v(r) = cu,v +
∑
w∈V

cwu,v · (1− rw),

where cu,v denotes the weight of the simple debt from u to v, and cwu,v denotes the weight
of the CDS from u to v with reference to w (understood as 0 if the contracts do not exist).
The total liabilities of u is then the sum of liabilities to all other banks, i.e.

lu(r) =
∑
v∈V

lu,v(r).

In contrast to this, the actual payment from u to v can be lower than lu,v(r) if u is in
default. In this case, the model assumes that u makes payments based on the principle of
proportionality, i.e. it uses all of its assets to make payments to creditors, in proportion
to the respective liabilities. In practice, this means that u can pay an ru portion of each
liability, and thus its payment to v is defined as pu,v(r) = ru · lu,v(r).

On the other hand, the assets of v is the sum of its external assets and its incoming
payments, i.e.

av(r) = ev +
∑
u∈V

pu,v(r).
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Figure 1 Example financial system with three banks. External assets are shown in rectangles
besides the nodes, simple debt contracts are shown as blue arrows from debtor to creditor, and CDSs
are shown as brown arrows from debtor to creditor, with a dotted line specifying the reference entity.

Recall that a recovery rate describes the portion of liabilities that a bank can pay. Hence
given the assets and liabilities of each bank v, the recovery rate rv must satisfy rv = 1 if
av(r) ≥ lv(r), and rv = av(r)

lv(r) otherwise. A vector r is called a solution (in financial terms: a
clearing vector) if it describes an equilibrium point for these equalities, i.e. if for each bank
v, rv satisfies this constraint for the assets and liabilities defined by r. Previous work has
expressed this by defining the update function f : [0, 1]V → [0, 1]V as

fv(r) =
{

1, if av(r) ≥ lv(r)
av(r)
lv(r) , if av(r) < lv(r)

,

and defining a solution as a fixed point of the update function.
In order to model the utility function of nodes in the system, we define the payoff (in

financial terms: equity) of a bank v as the amount of remaining assets after payments if a
node is not in default, and 0 otherwise, i.e. qv(r) = max(av(r)− lv(r), 0). We assume that
the aim of each bank is to maximize its own payoff.

Note that assets, liabilities and payoffs are always defined with regard to a certain recovery
rate vector r. However, in order to simplify notation, we do not show r explicitly when it is
clear from the context, and instead we simply write e.g. av or qv.

Figure 1 shows an example financial system with three banks u, v and w, with a consistent
notation to that of [22, 23]. The system has eu = 2, ev = 1 and ew = 0. There are two
debts of weight 2 in the system: one from u to v, the other from u to w. Finally, the system
contains a CDS from w to v (also of weight 2), which is in reference to bank u.

Regardless of recovery rates, bank u has liabilities lu = 4 and assets au = 2, so ru = 1
2 in

any case. This implies that u can only make payments of ru · 2 = 1 to both v and w. Given
ru = 1

2 , the CDS induces a liability of 2 · (1 − ru) = 1 from w to v. Since w receives an
incoming payment of pu,w = 1 from u, we have aw = lw = 1, so w can still pay its liability
and has a recovery rate of rw = 1. Finally, v has incoming payments pu,v = 1 and pw,v = 1,
external assets ew = 1, and no liabilities. This implies av = 3 and lv = 0, and thus rv = 1.
Hence (ru, rv, rw) = ( 1

2 , 1, 1) is the only solution of the system, providing a payoff of qu = 0,
qw = 0 and qv = 3 to the banks.

We also use two sanity assumptions introduced by previous work to exclude degenerate
cases [22]. First, we assume that no bank enters into a contract with itself or in reference to
itself. Furthermore, since CDSs are regarded as an insurance on debt, we require that if a
bank w is a reference entity of some CDS, then w is the debtor of at least one debt contract
of positive weight.

ICALP 2020
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4 Payments with priorities

While the principle of proportionality is a simple and natural assumption, financial systems
often have more complex payment rules in practice. Thus we also introduce a more general
model of payments with priorities.

That is, we assume that there is a constant number of priority classes P , and each
contract belongs to one of these priority classes. If a node v is in default, then it first spends
all its assets to fulfill its liabilities in the highest priority class. If v does not have enough
assets to fulfill all such obligations, it spends all its assets on the payments for these edges,
proportionally to the amount of liabilities. On the other hand, if v has more assets than
highest-priority liabilities, then v pays for all the liabilities in this highest priority level, and
continues using the rest of its assets for the lower-priority liabilities in a similar fashion.

More formally, in our modified model, each contract in the network receives another
priority parameter (besides its weight), which is an integer in {1, ..., P}. The value 1 denotes
the highest priority (i.e. liabilities that have to be paid first), while class P denotes the
lowermost priority level.

Given a clearing vector r, for each node v, let l(ρ)
v denote the total amount of liabilities

of v due to edges on priority level ρ. Let us also introduce the notation l(≤ρ)
v =

∑ρ
i=1 l

(i)
v .

Assume that v has total assets of av, and a liability of lv,u on priority level ρ towards another
node u. Then the payment of v to u is defined as

pv,u =


0, if av ≤ l(≤ρ−1)

v

av−l(≤ρ−1)
v

l
(ρ)
v

· lv,u, if av ∈
(
l
(≤ρ−1)
v , l

(≤ρ)
v

)
lv,u, if av ≥ l(≤ρ).

v

For an example, consider a modified version of the network in Figure 1. Assume we
now have 2 priority levels: the debt from u to w is on the higher level, while the other two
contracts are on the lower level. For the case of u, this still means lu = 4, au = 2 and ru = 1

2
as before. However, now u uses its 2 units of assets to pay its full liability to w, since this
contract has higher priority than the debt to v. Hence pu,v = 0 and pu,w = 2, resulting in
aw = 2. Since ru = 1

2 still implies lw = 1 for the CDS, the rest of the payments and recovery
rates remain unchanged: we still have pw,v = 1 and rw = rv = 1. However, the payoffs of the
banks in the system are now qu = 0, qw = 1 and qv = 2.

The main motivation for introducing payment priorities is that in many cases, it is very
close to what happens in real-world financial systems. In many countries, economic laws
provide a specific priority list for companies to follow when paying their debts in case of a
default. This might start with salaries and other payments to the employees of the company
first, then specific kind of debt contracts, and so on.

Another advantage of priorities is that we can often use them to replace so-called default
costs. Default costs (also studied in [22, 23]) are an extension of the original model, assuming
that when banks go into default, they immediately lose a specific portion of their assets.
This represents the fact that in practice, once a company goes into default, it has a range
of immediate payment obligations (e.g. employees’ wages) before it can make payments to
other banks. If we instead represent the bank’s employees as a separate node in the network,
and model this payment obligation with a high-priority edge, then this might allow us to
model some of these obligations without the use of default costs.

This observation is crucial because the introduction of default costs comes at a significant
price: intuitively speaking, default costs introduce a point of discontinuity into the update
function, and as a result, some financial systems do not have a solution at all [22]. In contrast
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to this, without default costs, systems always have at least one solution, as shown by a
fixed-point argument in [22]. We point out that the same fixed-point theorem proof also
applies in our model with payment priorities: even though the functions pu,v(r) and av(r)
become significantly more complicated, they are still continuous.

This shows that by introducing priorities, we obtain a model that is significantly more
realistic on one hand, but also ensures the existence of a solution at the same time.

I Theorem 1. Every financial system with payment priorities has at least one solution.

Proof (sketch). The proof of this claim is identical to the same proof in the original financial
system model, described in the results of [22]. The main idea of the proof is to apply the
fixed-point theorem of Kakutani [16], which ensures the existence of a fixed point of the
update function f , and thus a solution. This proof can still be applied after the introduction
of priorities, since both av(r) and lv(r) still remain a continuous function of r, and so does the
update function fv(r) = min(av(r)

lv(r) , 1), at least in the domain where lv(r) > 0. The technical
part of the proof is slightly more complicated, since one has to consider the lv(r) = 0 case
separately. For more details on this proof, we refer the reader to the work of [22]. J

5 Influencing the financial system

We now discuss a wide range of actions that a bank can execute in order to obtain a more
favorable outcome in the system. Note that except for Section 5.3 which explicitly studies
readjusting priorities, all the results also hold in the base model without priorities.

5.1 Removing an incoming debt
One of the most natural actions for a bank v would be to simply cancel a debt contract
in which v is a creditor. Since the creditor is considered the beneficiary of a debt, in some
financial/legal frameworks, the regulations may indeed allow a bank to nullify an incoming
debt contract. However, in case of a financial system with short positions, it is actually
possible that in the end, this indirectly increases the payoff of v.

I Theorem 2. Removing an incoming debt of v can increase the payoff of v.

More precisely, our claim is as follows: there exists a financial system S such that (i) S
has only one solution r, in which v has payoff qv and an incoming debt contract, and (ii)
in the modified financial system S′ obtained by removing this debt, there is again only one
solution r′, in which the payoff q′v satisfies q′v > qv.

Proof. Consider the network in Figure 2. Note that the unlabeled nodes in this system can
always pay all their liabilities, so their recovery rate is always 1. Originally, the system has
au = 1 and lu = 2, thus ru = 1

2 in any case. This implies aw = 2 · (1 − 1
2 ) = 1, and thus

rw = 1. With rw = 1, v obtains no payment from its incoming CDS at all, so the payoff of v
in this only solution is qv = pu,v = ru · 1 = 1

2 .
One the other hand, consider the system obtained by removing the debt contract from u

to v. In this case, au = lu = 1, and thus ru = 1. This means that w receives no incoming
payments at all, and with aw = 0, we have rw = 0. As a result, v obtains a payment of
2 · (1− rw) = 2 from its incoming CDS, so we have qv = 2. J

The proof shows that releasing an outgoing debt increases the recovery rate of u, which
indirectly yields an extra payoff for v. Note that v could also achieve this result by donating
funds to u, i.e. by increasing eu by 1. This is even more realistic in a legal framework: the

ICALP 2020
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Figure 2 A bank v removing one of its
incoming debts.
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Figure 3 A bank v removing a γ0 portion
of an incoming debt.

owner(s) of bank v can simply donate a specific amount to bank u, who would accept it in
hope of avoiding default. Naturally, this is only a favorable step to v if by donating x units
of money, it can increase its own payoff by more than x.

I Theorem 3. Donating external assets to another node u can be a favorable step.

More precisely, there is a system S such that (i) S has only one solution r, in which
node v has payoff qv, and (ii) in the system S′ obtained by replacing external funds of u by
e′u := eu + x, there is again only one solution r′ which satisfies q′v > qv + x.

The proof of the theorem is identical to that of Theorem 2: if v increases eu by x = 1 in
Figure 2, then again ru = 1, which ultimately provides a payoff of qv = 3 (as opposed to the
original 1

2 ). Note that in general, this action may allow banks to improve their position by
affecting a bank that is arbitrarily far in the topology of the network.

While our main focus in the paper is a theoretical analysis of these improvement techniques,
we point out that these operations are not only theoretical anomalies in the model; there
are known examples when some institutions indeed applied similar techniques in real-world
financial networks [19].

We also note that one could prove Theorems 2 and 3 on a smaller example system, where
v only has an incoming debt from u and a larger outgoing CDS in reference to u. We have
chosen this slightly larger example since it allows us to use a similar proof structure for all
our claims in this section.

Finally, if v can increase its payoff by releasing an incoming debt, it is natural to wonder
if it is always optimal for v to erase the entire debt, or whether it could be beneficial to only
reduce the amount in some cases. We show that reducing a debt to a given portion γ0 of its
original weight can also be an optimal strategy.

I Theorem 4. For each constant γ0 ∈ [0, 1], there is a financial system where bank v achieves
its maximal payoff by reducing an incoming debt by a γ0 portion of its original weight.

Proof. Consider a modified version of our previous systems, as shown in Figure 3. We show
that for any γ0 parameter, the optimal action of v in this system is to let go of γ0 portion of
the incoming debt from u, i.e. to reduce its weight to 1− γ0.

Assume that v reduces the incoming debt by a γ portion for some γ ∈ [0, 1], and let us
analyze the final payoff of v as a function of γ. Note that a choice of γ = γ0 implies that
au = lu exactly, and thus ru = 1, rw = 0 and qv = (1− γ0) + 2 = 3− γ0 as a result. Hence
we have to show that qv < 3− γ0 in any other case.
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First consider the case when γ < γ0. Since u has lu = 1 + (1− γ) = 2− γ > 2− γ0, u is
in default. Then ru = 2−γ0

2−γ , and thus w receives an incoming payment of

aw = 2
γ0
·
(

1− 2− γ0

2− γ

)
= 2 · (γ0 − γ)
γ0 · (2− γ) .

This is a decreasing function in γ, and it equals 1 exactly for γ = 0, so aw < 1 for any γ > 0,
and thus w is in default with rw = aw. Then the amount v receives from the CDS is

2 · (1− rw) = 2 ·
(

1− 2 · (γ0 − γ)
γ0 · (2− γ)

)
= 2 · γ · (2− γ0)

γ0 · (2− γ) .

Since qv = (1− γ) · ru + 2 · (1− rw), we need to show that

3− γ0 > (1− γ) · 2− γ0

2− γ + 2 · γ · (2− γ0)
γ0 · (2− γ) .

After multiplying this by γ0 · (2− γ), expanding the brackets and removing terms that cancel
out, we are left with γ0 · (4− γ0) > γ · (4− γ0), which naturally holds since γ < γ0.

On the other hand, if γ > γ0, then au > lu, and thus ru = 1. This means rw = 0, so v
receives an amount of 2 from the CDS, and has a total payoff of (1− γ) + 2 = 3− γ, which
is again less than 3− γ0. Thus selecting γ = γ0 is indeed the best option for v. J

5.2 Investing more external assets
In light of Theorem 3, it is natural to ask if v can also increase its payoff by increasing its
own external assets. In practice, this could easily happen in multiple ways, e.g. by creating
more shares to raise capital for the bank, or by the owners of the bank investing further
funds into the bank. If increasing ev by x would allow v to increase its payoff by more than
x in the only solution, then the owners of v would indeed be motivated to invest these extra
funds into the bank.

However, somewhat surprisingly, it turns out that this is not possible in the same way as
in previous cases: we cannot increase the payoff of v by more than x in the only solution of
the system. More specifically, if a vector r′ is a solution to the new system and provides a
payoff of q′v, then r′ was already a solution of the original system with a payoff of q′v − x.

I Theorem 5. Assume that every solution of system S provides a payoff of at most qv for v.
Then setting e′v = ev + x cannot introduce a new solution r′ with q′v > qv + x.

Proof. Assume that such a new solution r′ is introduced. Since payoff is always nonnegative,
qv ≥ 0, and thus q′v > x in r′. This means that we have a′v > x+ l′v in r′. Hence, even if e′v
was reduced by x (back to its original value ev), then v could still pay all of its liabilities;
thus the same recovery vector r′ and the same payments on each edge also provide a solution
in the original system S. The payoff of v in this solution is q′v − x, which is larger than qv by
assumption. This contradicts the fact that qv was the maximal payoff for v in S. J

Naturally, if v is in default, the recovery rate of v can indeed be increased in the only
solution by injecting extra funds. However, an increase of rv does not translate to an increase
in payoff, so it is a waste for the owners of v to invest resources for this.

On the other hand, while it is not possible to produce a new, more favorable solution
for v, it is possible to invalidate solutions that are unfavorable to v. That is, if the original
financial system had multiple solutions with different payoffs for v, and v is unsure which
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Figure 5 A bank v readjusting the priority
of its outgoing contracts.

of these solutions will be implemented by a financial authority, then it is possible that v
can inject extra funds to remove a solution where its payoff is much smaller than in other
solutions. This may allow v to increase its worst-case payoff, or its payoff in expectation (in
case of a randomized choice of solution).

I Theorem 6. Given a financial system S with two solutions, it is possible that setting
e′v = ev + x removes a solution which is unfavorable to v.

More precisely, there is a system S such that (i) S has two solutions r1 and r2, with
solution r2 satisfying qv = 0, and (ii) in the system S′ obtained by setting e′v := ev + x, the
only solution is r′ = r1, satisfying q′v > x.

Proof. Consider the system in Figure 4, which has two solutions. The design of the system
ensures ru = rv and rw = 1− ru. If rv = 1, then this implies ru = 1 and rw = 0, in which
case v has av = 100, giving a solution with qv = 99. On the other hand, if rv < 1, then it
has to satisfy

rv = 100 · (1− rw)
1 = 100 · ru = 100 · rv.

This is only satisfied if rv = 0, so this is the only other solution, providing qv = 0.
Now assume that v invests x = 1 extra funds to have ev = 1. In this case, the system

always has rv = 1, hence ru = 1 and rw = 0. This implies that v obtains a payment of
100 in the CDS, resulting in a payoff of qv = 100. Even if we subtract the extra x = 1
investment, v has an extra payoff of 99, and thus it has indeed increased its worst-case payoff
significantly. J

5.3 Readjusting priorities
Assuming payments with priorities as discussed in Section 4, it is also interesting to know if
a node can improve its situation by readjusting the priorities of its outgoing edges. That is,
in a more flexible regulation framework, banks may be allowed to choose to some extent the
order in which they fulfill their payment obligations. However, we show that similarly to the
previous case, readjusting the priorities of outgoing edges cannot introduce a better solution.

I Theorem 7. Assume that every solution of system S provides a payoff of at most qv for v.
Then redefining v’s outgoing priorities cannot introduce a new solution r′ with q′v > qv.
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Proof. Assume that such a new solution r′ is introduced. Payoff is nonnegative, so qv ≥ 0,
and thus q′v > 0. This implies that a′v > l′v in r′, i.e. v is able to pay all of its liabilities in
every outgoing contract. However, in this case, the priorities on the outgoing edges do not
matter; hence r′ is a solution of S′ regardless of how the priorities of outgoing contracts are
chosen. In particular, r′ is already a solution of the initial system S before the priorities
were reorganized, giving the same payoff q′v in S. This contradicts the fact that qv was the
maximal payoff for v in S. J

However, it is again possible that v can increase its recovery rate by readjusting priorities.
Recall that in the previous case of increasing the bank’s own external assets, we did not
explore this possibility, since it required the bank v to invest extra funds while not yielding
(the same amount of) extra payoff. However, readjusting priorities is an action that v might
be able to execute free of charge. Thus if we define the recovery rate as the secondary
objective function of a bank (i.e. even if v is in default and thus has 0 payoff, it is not
oblivious to the outcome, and prefers a higher recovery rate), then redefining priorities may
allow v to achieve a more preferred outcome without having to invest any extra funds.

I Theorem 8. Redefining v’s outgoing priorities can increase the recovery rate of v.

Proof. Consider the system in Figure 5 with a choice of δ = 1
2 . Originally, each contract

is in the same (lower) priority class. Bank v never has enough assets to pay its liabilities,
hence u is also in default. In this case, we have ru = rv and rw = 2− 2 · ru, so v receives
δ · (1− rw) = δ · (2 · rv − 1) funds from the CDS. This means that

rv = δ · (2 · rv − 1) + 1
2 ,

which, after reorganization, gives δ − 1 = 2 · (δ − 1) · rv, and thus rv = 1
2 . This is the only

solution of the system if δ 6= 1.
Now assume that v is able to raise the debt towards u to the higher priority level. In

this new system, v first fulfills its payment obligation to u, which is always possible from its
external assets. Hence ru = 1 in this case, implying rw = 0 and thus a payment of 1

2 to v in
the CDS. This implies rv = 3

4 in the only solution of the new system. J

We again point out that the previous work of Bertschinger et. al. [6] discusses a similar
phenomenon in debt-only networks, i.e. how redefining the priorities of v’s outgoing payments
can result in an increased recovery rate for v.

Finally, we show that redefining priorities can allow v to remove an unfavorable solution,
and thus increase its worst-case or expected payoff as in the previous subsection.

I Theorem 9. Given a financial system S with two solutions, redefining v’s outgoing
priorities can remove a solution which is unfavorable to v.

Proof. Consider the system in Figure 5 with a choice of δ = 100. As discussed in the proof
of Theorem 8, if rv < 1, then the only solution is rv = 1

2 . However, the large δ value now
allows another solution in the original system: if rv = 1, then ru = 1 and rw = 0, ensuring
that v indeed has enough funds to pay its liabilities. The two solutions come with payoffs of
qv = 0 and qv = 98, respectively.

Now if v raises its debt towards u to the higher priority level, then ru = 1 is always
guaranteed, so rw = 0 and thus v indeed has a payoff of 98 in the only solution. J
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6 Game-theoretic dilemmas in financial systems

Finally, we briefly show that the attempts of banks to influence the system can also easily
lead to situations that can be described by classical game-theoretic settings.

We first show an example where if two nodes simultaneously try to influence the system
to their advantage, then the resulting situation is essentially identical to the well-known
prisoner’s dilemma [20]. We then show that with some modifications to this network, we can
also obtain financial systems that represent other well-known two-player-two-strategy games,
e.g. the chicken or stag hunt game [20]. Finally, we show a different network design that
allows us to model the multiple-round setting of a dollar auction [24].

6.1 Prisoner’s dilemma

For an example of the prisoner’s dilemma, consider the financial system in Figure 6, where
banks v1 and v2 want to influence the system to achieve a better outcome. Assume that in
the current legal framework, the only step available to these banks is to completely remove
their incoming debt contract from u (as in Theorem 2); both banks can decide whether
to execute this step or not. Note that canceling a debt increases the recovery rate of u,
which indirectly implies a larger payment on the CDS for both v1 and v2, and thus can be
beneficial for both banks. Applying prisoner’s dilemma terminology, we also refer to the step
of canceling the debt as cooperation, and the step of not canceling the debt as defection.

Now let us analyze the payoff of v1 and v2 in each strategy profile. Note that rw = 1− ru,
so the payment on the CDSs for both v1 and v2 is 3 · (1− rw) = 3 · ru in any case.

If both of the nodes cooperate (i.e. both debts are removed), then u can pay its remaining
liabilities, thus ru = 1. This implies a payment of 3 on the CDS, which is the only asset of
the acting nodes in this case; hence qv1 = qv2 = 3.

If both of the nodes defect (no debt is removed), then we only have ru = 1
3 , resulting in a

payment of 1 from the CDS. However, in this case, both v1 and v2 also get a direct payment
of 5 · ru = 5

3 from the defaulting u, which adds up to a total payoff of 8
3 = 2.6̇.

Finally, assume that only one of the nodes cooperate (say, v1). With only one of the
outgoing debts removed, u will have a recovery rate of ru = 1

2 . This results in a payment of
3
2 on the CDS for both nodes. However, note that v2 still has an incoming debt contract
from u, and receives a payment of 5 · ru = 5

2 on this contract. This implies qv1 = 3
2 = 1.5,

while qv2 = 4 for the strategy profile. The symmetric case yields qv1 = 4 and qv2 = 1.5.
Since the payoffs are ordered exactly as in a prisoner’s dilemma, we obtain an essentially

equivalent situation if the two banks are not allowed to coordinate. For both players, defection
is always a dominant strategy. E.g. for v2, defection yields a payoff of 4 (instead of only 3)
if v1 cooperates, and it yields a payoff of 2.6̇ (instead of only 1.5) if v1 defects. Thus the
Nash-Equilibrium is obtained when both players defect, with qv1 = qv2 = 2.6̇. However, both
players would be better off with mutual cooperation, which gives qv1 = qv2 = 3.

Note that we only assumed for convenience that banks can only remove their entire debt;
the behavior is similar if v1 and v2 can freely select the portions γ1 and γ2 of incoming debt
that they keep. In particular, by differentiating the payoff qv1 = 3+5·γ1

1+γ1+γ2
, one can show that

defection is indeed the best response of v1 for any choice of γ2, and vice versa.
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Figure 6 Representation of a prisoner’s
dilemma in a financial system.
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Figure 7 Representation of a stag hunt
game in a financial system.

6.2 Stag Hunt

Next, we analyze the financial system in Figure 7, which represents the coordination game
known as stag hunt [20]. We again assume that the two acting nodes v1 and v2 can only
execute the action of completely removing their incoming debt contract from u1 and u2,
respectively. As before, we refer to the decisions of removing and not removing the debt as
cooperation and defection, respectively.

Recall that canceling an incoming debt and donating funds to another bank are very
similar operations in some sense. With a slight modification to our system, we could also
present the same example game in a setting where the acting banks must decide to donate
or not donate a specific amount of funds to a bank. For our example systems, we select the
action that allows a simpler presentation.

Let us analyze the payoffs in the different strategy profiles. If both players cooperate,
then both u1 and u2 will only have a liability of 2, which implies ru1 = ru2 = 1. In this case,
w receives no payment from either of the CDSs, resulting in rw = 0. This means that both
v1 and v2 get a payment of 3 from their incoming CDSs. With their debt contracts canceled,
we get qv1 = qv2 = 3.

If both players defect and keep their debt contract, then both u1 and u2 will have a
recovery rate of only 1

2 . This implies a payment of 1 to w on both CDSs, so w avoids default
with rw = 1. This means that the acting nodes will not receive any payment on the CDS.
On their debt contracts, they both receive 1

2 · 2, i.e. qv1 = qv2 = 1.
Finally, assume that v1 cooperates but v2 defects. In this case, we end up with recovery

rates of ru1 = 1 and ru2 = 1
2 . Thus w only receives payment on the CDS that is in reference

to u2. However, this payment of 1
2 · 2 is already enough for w to fulfill its liabilities, and

hence rw = 1. Again, v1 and v2 do not receive any payment on the CDS. However, v2 still
has an incoming debt contract that ensures a payment of 1

2 · 2 = 1, while v1 has no assets at
all. Thus the solution provides qv1 = 0 and qv2 = 1. In a symmetric manner, the case when
v2 cooperates and v1 defects incurs qv1 = 1, qv2 = 0.

Thus the system represents a game where the players are incentivized to coordinate their
strategies. Both the case when both banks cooperate and when both banks defect is a pure
Nash-Equilibrium, with mutual cooperation being the social optimum. However, if a bank is
unsure whether the other bank will cooperate, it might be motivated to defect in order to
avoid the risk of getting no payoff at all.
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in a financial system.

1

1

1

1

δ

δ

v

u

u′

v′

2+2δ

0

0
0

0

0

Figure 9 Representation of a dollar auc-
tion in a financial system.

6.3 Chicken game

We also provide an example of the chicken game (also known as the hawk-dove game [20]),
when the pure Nash-Equilibria are obtained in the asymmetric strategy profiles.

Consider the financial system in Figure 8, and assume the acting banks v1 and v2 now
have the options to either donate 1 unit or money to another bank, or do not donate money
at all. Due to the structure of the network, the nodes are motivated to donate this 1 unit of
money to u, since this results in a payment on their incoming CDS contract. We again refer
to donating a unit of money to u as cooperation, and not donating as defection.

If both nodes defect, then u still has no assets at all, implying ru = 0. This results in
rw = 1, and hence the acting nodes receive no incoming payment, so qv1 = qv2 = 0.

If both nodes cooperate, then u has more than enough assets to pay its liabilities, resulting
in ru = 1 and rw = 0. This means that both nodes get a payment of 3 in the CDS. After
subtracting the amount they have donated, we get qv1 = qv2 = 2.

However, to ensure that u does not go into default, it is enough if only one of the two
nodes make a donation. I.e. if v1 cooperates but v2 defects, then u still has 1 asset, which
already implies ru = 1, rw = 0 and a payment of 3 to both v1 and v2 on their incoming
CDS. After subtracting the donated funds, this gives qv1 = 2 and qv2 = 3. Similarly, if v2
cooperates and v1 defects, we obtain qv1 = 3, qv2 = 2.

The payoffs show that there is no dominant strategy in the game: if v1 cooperates, then
the best response of v2 is to defect, while if v1 defects, then the best response of v2 is to
cooperate. This implies that the two pure Nash-Equilibria are obtained in the strategy
profiles when the banks choose the opposite strategies.

Note that we can easily generalize this setting to the case of more than 2 acting nodes,
resulting in the so-called volunteer’s dilemma. For any k, we can add distinct banks
v1, v2, ..., vk that are all connected to the financial network in the same way (through an
incoming CDS of weight 3 in reference to w), and all have the same two options of either
donating 1 unit of money to u or not acting at all. Note that we also have to ensure that
the (currently unlabeled) debtor of the CDSs to these acting nodes has enough resources to
make payments on these CDSs in any case, i.e. it must have external assets of at least 3 · k.

In this case, we obtain a game where again only one volunteer bank vi is required to
make a donation to u, and this already ensures a payoff of 3 for every other bank (and a
payoff of 2 for vi). In this game, the pure Nash-Equilibria are the strategy profiles where
exactly one bank cooperates, and the remaining banks all defect.
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6.4 Dollar auction
Finally, we show a representation of the dollar auction game [24] in financial systems. We
find this example network even more interesting because it builds on a threshold behavior in
the financial system model, i.e. that a minor difference in assets can lead to a completely
different outcome.

Consider the system in Figure 9, and assume that banks u′ and v′ want to influence this
system by donating extra funds to banks u or v (as in Theorem 3). Note that the payoff
of u′ and v′ depends on the recovery rates of u and v, respectively, which in turn have a
recovery rate depending on each other. Due to the design of the system, u′ prefers bank u to
be in default, and thus it wants to increase ev; similarly, v′ prefers bank v to be in default,
so it wants to increase eu. We assume that 1 unit of money is a very high amount in our
context, and thus u′ and v′ cannot donate enough to ensure that u or v pays its debt entirely
from external assets; i.e. we assume that eu, ev < 1 even after the donation of extra funds.

For a convenient analysis, we assume that there is a small minimum amount ε of funds
that u′ or v′ can donate in one step. In our example, we choose a δ value in the magnitude
of this ε, e.g. δ = 6ε.

Let us now analyze the recovery rates of u and v in the solutions of the system.

The vector ru = rv = 1 cannot be a solution, since it would imply no payment on the
incoming CDSs, and thus these recovery rates would only be possible if eu, ev ≥ 1.
If a vector ru = 1, rv < 1 is a solution, then since v receives no incoming payments, we
must have rv = ev

1 = ev. Thus bank u has assets of eu + 1− ev, which has to be at least
1 for ru = 1 to hold. Hence this is only a solution if eu + 1− ev ≥ 1, i.e. eu ≥ ev. In a
symmetric manner, rv = 1, ru = eu is only a solution if ev ≥ eu.
If ru < 1, rv < 1 in a solution, then ru = eu + 1 − rv and rv = ev + 1 − ru must hold.
This implies eu = ev, and ru + rv = 1 + eu. Hence if eu = ev, then any ru, rv with
ru + rv = 1 + eu provides a solution.

Thus as long as eu, ev < 1, the behavior of the system is as follows:
If eu < ev, then the only solution is ru = eu, rv = 1. This means qu′ = δ · (1− eu) and
qv′ = 0.
If eu > ev, then the only solution is ru = 1, rv = ev. This implies qu′ = 0 and
qv′ = δ · (1− ev).
If eu = ev, then any ru, rv ≤ 1 with ru + rv = 1 + eu is a solution of the system. In the
general case, qu′ = δ · (1− ru) and qv′ = δ · (1− rv).

This describes a setting that is very similar to a dollar auction. In the beginning, with
eu = ev = 0, we have a range of different solutions, and a choice among these depends on a
financial authority. One of the banks (say, bank u′) decides to donate a small ε amount of
funds to v; then with ev = ε > eu = 0, bank u′ receives a payment of δ · (1− 0) in the only
resulting solution. At this point, the payoff of v′ is 0; however, at the cost of donating 2 · ε
funds to u, it could achieve eu = 2ε > ev = ε, thus resulting in a single solution with a payoff
of qv′ = δ · (1− ε). Since this increases the payoff of v′ by δ · (1− ε) at the cost of only 2ε,
this is indeed a rational step for the appropriate δ and ε values. However, then u′ is again
motivated to donate 2ε more funds to increase ev over eu again, and so on.

Assuming that both u′ and v′ has at most 1
2 funds to donate, we always have eu, ev ∈ [0, 1

2 ].
This shows that e.g. if we have eu > ev, then the payoff of bank v′ is always within

qv′ = δ · (1− ev) ∈ [δ/2 , δ] = [3ε , 6ε].
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Hence in every step, it is indeed rational for v′ to donate another 2ε funds, since it increases
its payoff from 0 to at least 3ε. After a couple of rounds, u′ and v′ will have both donated
significantly more money than their payoff of at most 6ε. However, the banks are still always
tempted to execute the next donation step to mitigate their losses.

References
1 Daron Acemoglu, Vasco M Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. The

network origins of aggregate fluctuations. Econometrica, 80(5):1977–2016, 2012.
2 Daron Acemoglu, Asuman Ozdaglar, and Alireza Tahbaz-Salehi. Systemic risk and stability in

financial networks. American Economic Review, 105(2):564–608, 2015.
3 Nimalan Arinaminpathy, Sujit Kapadia, and Robert M May. Size and complexity in model

financial systems. Proceedings of the National Academy of Sciences, 109(45):18338–18343,
2012.

4 Marco Bardoscia, Stefano Battiston, Fabio Caccioli, and Guido Caldarelli. Pathways towards
instability in financial networks. Nature Communications, 8:14416, 2017.

5 Stefano Battiston, Guido Caldarelli, Robert M May, Tarik Roukny, and Joseph E Stiglitz. The
price of complexity in financial networks. Proceedings of the National Academy of Sciences,
113(36):10031–10036, 2016.

6 Nils Bertschinger, Martin Hoefer, and Daniel Schmand. Strategic Payments in Financial
Networks. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020),
volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:16,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

7 Stéphane Dees, Jérôme Henry, and Reiner Martin. StampAC: stress-test analytics for macro-
prudential purposes in the euro area. Frankfurt am Main: ECB, 2017.

8 Gabrielle Demange. Contagion in financial networks: a threat index. Management Science,
64(2):955–970, 2016.

9 Darrell Duffie and Haoxiang Zhu. Does a central clearing counterparty reduce counterparty
risk? The Review of Asset Pricing Studies, 1(1):74–95, 2011.

10 Marco D’Errico, Stefano Battiston, Tuomas Peltonen, and Martin Scheicher. How does risk
flow in the credit default swap market? Journal of Financial Stability, 35:53–74, 2018.

11 Larry Eisenberg and Thomas H Noe. Systemic risk in financial systems. Management Science,
47(2):236–249, 2001.

12 Matthew Elliott, Benjamin Golub, and Matthew O Jackson. Financial networks and contagion.
American Economic Review, 104(10):3115–53, 2014.

13 Helmut Elsinger, Alfred Lehar, and Martin Summer. Risk assessment for banking systems.
Management science, 52(9):1301–1314, 2006.

14 Ingo Fender and Jacob Gyntelberg. Overview: global financial crisis spurs unprecedented
policy actions. BIS Quarterly Review, 13(4):1–24, 2008.

15 Prasanna Gai, Andrew Haldane, and Sujit Kapadia. Complexity, concentration and contagion.
Journal of Monetary Economics, 58(5):453–470, 2011.

16 Shizuo Kakutani et al. A generalization of brouwer’s fixed point theorem. Duke mathematical
journal, 8(3):457–459, 1941.

17 Matt V Leduc, Sebastian Poledna, and Stefan Thurner. Systemic risk management in financial
networks with credit default swaps. Available at SSRN 2713200, 2017.

18 Yee Cheng Loon and Zhaodong Ken Zhong. The impact of central clearing on counterparty
risk, liquidity, and trading: Evidence from the credit default swap market. Journal of Financial
Economics, 112(1):91–115, 2014.

19 Matthew O’Brien. How to make money for nothing like wall street. The Atlantic (Business),
October 2013. Accessed: 22. Apr, 2020. URL: https://www.theatlantic.com/business/
archive/2013/10/how-to-make-money-for-nothing-like-wall-street/280825/.

https://www.theatlantic.com/business/archive/2013/10/how-to-make-money-for-nothing-like-wall-street/280825/
https://www.theatlantic.com/business/archive/2013/10/how-to-make-money-for-nothing-like-wall-street/280825/


P.A. Papp and R. Wattenhofer 91:17

20 Martin J Osborne et al. An introduction to game theory, volume 3. Oxford university press
New York, 2004.

21 Leonard CG Rogers and Luitgard AM Veraart. Failure and rescue in an interbank network.
Management Science, 59(4):882–898, 2013.

22 Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Clearing payments in financial
networks with credit default swaps. In Proceedings of the 2016 ACM Conference on Economics
and Computation, EC ’16, pages 759–759, New York, NY, USA, 2016. ACM.

23 Steffen Schuldenzucker, Sven Seuken, and Stefano Battiston. Finding Clearing Payments
in Financial Networks with Credit Default Swaps is PPAD-complete. In 8th Innovations in
Theoretical Computer Science Conference (ITCS 2017), volume 67 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 32:1–32:20, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

24 Martin Shubik. The dollar auction game: A paradox in noncooperative behavior and escalation.
Journal of conflict Resolution, 15(1):109–111, 1971.

25 Stefania Vitali, James B Glattfelder, and Stefano Battiston. The network of global corporate
control. PloS one, 6(10):e25995, 2011.

ICALP 2020


	Introduction
	Related Work
	Financial system model
	Debt and CDS contracts
	Assets and liabilities

	Payments with priorities
	Influencing the financial system
	Removing an incoming debt
	Investing more external assets
	Readjusting priorities

	Game-theoretic dilemmas in financial systems
	Prisoner's dilemma
	Stag Hunt
	Chicken game
	Dollar auction


