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Abstract
We study the stabilization time of a wide class of processes on graphs, in which each node can
only switch its state if it is motivated to do so by at least a 1+λ

2 fraction of its neighbors, for
some 0 < λ < 1. Two examples of such processes are well-studied dynamically changing colorings
in graphs: in majority processes, nodes switch to the most frequent color in their neighborhood,
while in minority processes, nodes switch to the least frequent color in their neighborhood. We
describe a non-elementary function f(λ), and we show that in the sequential model, the worst-case
stabilization time of these processes can completely be characterized by f(λ). More precisely,
we prove that for any ε > 0, O(n1+f(λ)+ε) is an upper bound on the stabilization time of any
proportional majority/minority process, and we also show that there are graph constructions where
stabilization indeed takes Ω(n1+f(λ)−ε) steps.
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1 Introduction

Many natural phenomena can be modeled by graph processes, where each node of the graph
is in a state (represented by a color), and each node can change its state based on the states
of its neighbors. Such processes have been studied since the dawn of computer science, by,
e.g., von Neumann, Ulam, and Conway. Among the numerous applications of these graph
processes, the most eminent ones today are possibly neural networks, both biological and
artificial.

Two fundamental graph processes are majority and minority processes. In a majority
process, each node wants to switch to the most frequent color in its neighborhood. Such
a process is a straightforward model of influence spreading in networks, and as such, it
has various applications in social science, political science, economics, and many more
[29, 9, 12, 18, 23].

In contrast, in aminority process, each node wants to switch to the least frequent color in its
neighborhood. Minority processes are used to model scenarios where the nodes are motivated
to anti-coordinate with each other, like frequency selection in wireless communication, or
differentiating from rival companies in economics [24, 6, 7, 11, 8].
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Majority and minority processes have been studied in several different models, the most
popular being the synchronous model (where in each step, all nodes can switch simultaneously)
and the sequential model (where in each step, exactly one node switches). Since in many
application areas, it is unrealistic to assume that nodes switch at the exact same time, we
focus on the sequential model in this paper. We are interested in the worst-case stabilization
time of such processes, i.e. the maximal number of steps until no node wants to change its
color anymore.

Our main parameter describes how easily nodes will switch their color. Previously, the
processes have mostly been studied under the basic switching rule, when nodes are willing
switch their color for any small improvement. However, it is often more reasonable to assume
a proportional switching rule, i.e. that nodes only switch their color if they are motivated
by at least, say, 70% of their neighbors to do so. In general, we describe such proportional
processes by a parameter λ ∈ (0, 1), and say that a node is switchable if it is in conflict with
a 1+λ

2 portion of its neighborhood. The stabilization time in such proportional processes
(possibly as a function of λ) has so far remained unresolved.

The reason we can analyze proportional majority and minority processes together is
that both can be viewed as a special case of a more general process of propagating conflicts
through a network, where the cost of relaying conflicts through a node is proportional to the
degree of the node. This more general process could also be used to model the propagation of
information, energy, or some other entity through a network. This suggests that our results
might also be useful for gaining insights into different processes in a wide range of other
application areas, e.g. the behavior of neural networks.

In the paper, we provide a tight characterization of the maximal possible stabilization time
of proportional majority and minority processes. We show that for maximal stabilization,
a critical parameter is the portion ϕ of the neighborhood that nodes use as “outputs”, i.e.
neighbors they propagate conflicts to. Based on this, we prove that the stabilization time of
proportional processes follows a transition between quadratic and linear time, described by
the non-elementary function

f(λ) := max
ϕ∈(0, 1−λ

2 ]

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (1)

More specifically, for any ε > 0, we show that on the one hand, O(n1+f(λ)+ε) is an upper
bound on the number of steps of any majority/minority process, and on the other hand,
there indeed exists a graph construction where the processes last for Ω(n1+f(λ)−ε) steps.

2 Related Work

Various aspects of both majority and minority processes on two colors have been studied
extensively. This includes basic properties of the processes [17, 36], sets of critical nodes
that dominate the process [12, 15, 20], complexity and approximability results [21, 3, 10],
threshold behavior in random graphs [14, 26], and the analysis of stable states in the process
[16, 33, 4, 5, 34, 24]. Modified process variants have also been studied [35, 25], with numerous
generalizations aiming to provide a more realistic model for social networks [2, 1].

However, the question of stabilization time in the processes has almost exclusively been
studied for the basic switching rule (defined in Section 3.2). Even for the basic rule, apart
from a straightforward O(n2) upper bound, the question has remained open for a long time
in case of both processes. It has recently been shown in [13] and [27] that both processes can
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exhibit almost-quadratic stabilization time in case of basic switching, both in the sequential
adversarial and in the synchronous model. On the other hand, the maximal stabilization
time under proportional switching has remained open so far.

It has also been shown that if the order of nodes is chosen by a benevolent player, then
the behavior of the two processes differs significantly, with the worst-case stabilization time
being O(n) for majority processes [13] and almost-quadratic for minority processes [27]. In
weighted graphs, where the only available upper bound on stabilization time is exponential, it
has been shown that both majority and minority can indeed last for an exponential number
of steps in various models [22, 28]. The result of [28] is the only one to also study the
proportional switching rule, showing that the exponential lower bound also holds in this case;
however, since the paper studies weighted graphs with arbitrarily high weights, this model
differs significantly from our unweighted setting.

Stabilization time has also been examined in several special cases, mostly assuming the
synchronous model. The stabilization of a slightly different minority process variant (based
on closed neighborhoods) has been studied in special classes of graphs including grids, trees
and cycles [30, 31, 32]. The work of [19] describes slightly modified versions of minority
processes which may take O(n5) or O(n6) steps to stabilize, but provide better local minima
(stable states) upon termination. For majority processes, stabilization has mostly been
studied from a random initial coloring, on special classes of graphs such as grids, tori and
expanders [14, 26].

Various aspects of majority processes have also been studied under the proportional
switching rule, including sets of critical nodes that dominate the process, and sets of nodes
that always preserve a specific color [38, 37]. However, to our knowledge, the stabilization
time of the processes with proportional switching has not been studied before.

3 Model and Notation

3.1 Preliminaries

We define our processes on simple, unweighted, undirected graphs G(V,E), with V denoting
the set of nodes and E the set of edges. We denote the number of nodes by n = |V |. The
neighborhood of v is denoted by N(v), the degree of v by deg(v) = |N(v)|.

We also use simple directed graphs in our proofs. A directed graph is called a DAG if it
contains no directed cycles. A dipartitioning of a DAG is a disjoint partitioning (V1, V2) of
V such that each source node is in V1, and all edges between V1 and V2 all go from V1 to V2.
We refer to the set of edges from V1 to V2 as a dicut.

Given an undirected graph G with edge set E, we also define the directed edge set of G
as Ê = {(u, v), (v, u) | (u, v) ∈ E}, i.e. the set of directed edges obtained by taking each edge
with both possible orientations.

A coloring is a function γ : V → {black, white}. A state is a current coloring of G. Under
a given coloring, we define Ns(v) = {u ∈ N(v)|γ(v) = γ(u)} and No(v) = {u ∈ N(v)|γ(v) 6=
γ(u)} as the same-color and opposite-color neighborhood of v, respectively.

We say that there is a conflict on edge (u, v), or that (u, v) is a conflicting edge, if
u ∈ No(v) in case of a majority process, and if u ∈ Ns(v) in case of a minority process.
In general, we denote the conflict neighborhood by Nc(v), meaning Nc(v) = No(v) and
Nc(v) = Ns(v) in case of majority and minority processes, respectively. We occasionally also
use N¬c(v) = N(v) \Nc(v).

ICALP 2020
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If a node v has more conflicts than a predefined threshold (depending on the so-called
switching rule in the model, discussed later) in the current state, then v is switchable.
Switching v changes its color to the opposite color. If edge (u, v) becomes (ceases to be) a
conflicting edge when node v switches, then we say that v has created this conflict (removed
this conflict, respectively).

A majority/minority process is a sequence of steps (states), where each state is obtained
from the previous state by a set of switchable nodes switching. In this paper, we examine
sequential processes, when in each step, exactly one node switches. Such a process is stable
when there are no more switchable nodes in the graph. By stabilization time, we mean the
number of steps until a stable state is reached.

3.2 Model and switching rule
We study the worst-case stabilization time of majority/minority processes, that is, the
maximal number of steps achievable on any graph, from any initial coloring. In other words,
we assume the sequential adversarial model, when the order of nodes (i.e., the next switchable
node to switch in each time step) is chosen by an adversary who maximizes stabilization
time.

It only remains to specify the condition that allows a node to switch its color. The most
straightforward switching rule is the following:

I Rule I (Basic Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| > 0.

An equivalent form of this rule is |Nc(v)| > 1
2 · deg(v). This rule is shown to allow up

to Θ̃(n2) stabilization time for both majority [13] and minority [27] processes. However, it
is often more realistic to assume a proportional switching rule, based on a real parameter
λ ∈ (0, 1):

I Rule II (Proportional Switching). Node v is switchable if |Nc(v)| − |N¬c(v)| ≥ λ · deg(v).

Since we have |Nc(v)|+ |N¬c(v)| = deg(v), this is equivalent to saying that v is switchable
exactly if |Nc(v)| ≥ 1+λ

2 · deg(v). In the limit when λ is infinitely small (or, equivalently, as
1+λ

2 approaches 1
2 from above), we obtain Rule I as a special case of Rule II.

In case of Rule I, whenever a node v switches, it is possible that the total number of
conflicts in the graph decreases by 1 only. On the other hand, Rule II implies that the
switching of v decreases the total number of conflicts at least by λ · deg(v) (we say that
v wastes these conflicts), so in case of Rule II, the total number of conflicts can decrease
more rapidly, allowing only a smaller stabilization time. Our findings show that the maximal
number of steps is different for every distinct λ.

3.3 On the f(λ) function
While the processes have a symmetric definition on each edge by default, it turns out that in
order to maximize stabilization time, each edge has to be used in an asymmetric way. The
most important parameter at each node v is the ratio of neighbors v uses as “inputs” and as
“outputs”. That is, the optimal behavior for each node v is to select ϕ ·deg(v) of its neighbors
as outputs (for some ϕ ∈ (0, 1)), and create all new conflicts on the edges leading to these
output nodes, and similarly, mark the remaining (1− ϕ) · deg(v) neighbors as inputs, and
only remove conflicts from the edges coming from these input nodes. Note that with Rule
II, whenever a node switches, it can create at most

(
1− 1+λ

2
)
· deg(v) = 1−λ

2 · deg(v) new
conflicts, so it is reasonable to assume ϕ ∈

(
0, 1−λ

2
]
.



P.A. Papp and R. Wattenhofer 90:5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1 Plot of f(λ) and ϕ∗(λ) for λ ∈ (0, 1).

Our results show that if all nodes select ϕ as their output rate, then the maximal
achievable stabilization time is a function of

log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) . (2)

As such, the largest stabilization time can be achieved by maximizing this expression by
selecting the optimal ϕ value, as shown in the definition of f in Equation 1. We denote
the optimal value of ϕ (i.e., the argmax of Equation 2) by ϕ∗. The function f has no
straightforward closed form, as such a form would require solving

(λ+ 1) · ϕ · log
(

1− ϕ
ϕ

)
= (λ+ ϕ) log

(
1− ϕ
λ+ ϕ

)
,

for ϕ, with λ as a parameter. We discuss f in more detail in the full version of the paper.
Figure 1 shows the values of f and ϕ∗ as a function of λ. The figure shows that both

f(λ) and ϕ∗(λ) are continuous, monotonically decreasing and convex.
It is visible that limλ→0 f(λ) = 1 and limλ→1 f(λ) = 0. This is in line with what we

would expect: the simple switching rule allows a stabilization time up to Θ̃(n2) [13, 27], while
even for any large λ < 1, it is still straightforward to present a graph with Ω(n) stabilization
time. Our main result is showing that f(λ) describes the continuous transition between these
two extremes.

4 General intuition behind the proofs

Note that initially, each node v can have at most deg(v) conflicts on its incident edges, and
each time when v switches, it wastes λ ·deg(v) conflicts. Therefore, if each node were to “use”
its own initial conflicts only, then each node could switch at most 1

λ times, and stabilization
time could never go above O(n).

Instead, the idea is to take the high number of conflicts initially available at high-degree
nodes, and use these conflicts to switch the less wasteful low-degree nodes many times.
Specifically, we could have a set of Θ(n)-degree nodes that initially have Ω(n2) conflicts

ICALP 2020



90:6 A General Stabilization Bound for Influence Propagation in Graphs

altogether on their incident edges, and somehow relay these conflicts to another set of O(1)-
degree nodes, which only waste O(1) conflicts at each switching. However, due to the large
difference both in degree and in the number of switches, it is not possible to connect these
two sets directly; instead, we need to do this through a range of intermediate levels, which
exhibit decreasing degree and increasingly more switches. In order to maximize stabilization
time, our main task is to move conflicts through these levels as efficiently (i.e., wasting as
few conflicts in the process) as possible.

The formula of f(λ) describes the efficiency of this process. The rate of inputs to outputs
1−ϕ
ϕ determines the factor by which the degree decreases at every new level. If ϕ is chosen

small, then 1−ϕ
ϕ is high, so we only have a few levels until we reach constant degree, and

hence the number of switches is increased only a few times. On the other hand, the increase
in the number of switches per level is expressed by 1−ϕ

λ+ϕ , which is a decreasing function of ϕ.
If ϕ is too large, then although we execute this increase more times, each of these increases
is significantly smaller.

With a degree decrease rate of 1−ϕ
ϕ , we can altogether have about log 1−ϕ

ϕ
(n) levels until

the degree decreases from Θ(n) to Θ(1). If we increase the number of switches by a factor of
1−ϕ
λ+ϕ each time, then the O(1)-degree nodes will exhibit

(
1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) ≤ nf(λ) (3)

switches, with an equation only if ϕ = ϕ∗(λ). Having Θ̃(n) nodes in the last level, this sums
up to about n1+f(λ) switches altogether.

4.1 Conflict propagation systems
The upper bound on stabilization time is easiest to present in a general form that only focuses
on this flow of conflicts in the graph. We define a simpler representation of the processes
which only keeps a few necessary concepts to describe the flow of conflicts, and ignores e.g.
the color of nodes or the timing of the switches at each node. In fact, we only require the
number of times s(v) each v ∈ V switches, and the number c(u, v) of conflicts that were
created by node u and then removed by node v, for each (u, v) ∈ Ê.

For simplicity, given a function c : Ê → N, let us introduce the notation cin(v) :=∑
u∈N(v) c(u, v) and cout(v) :=

∑
u∈N(v) c(v, u).

I Definition 1 (Conflict Propagation System, CPS). Given an undirected graph G, a conflict
propagation system is an assignment s : V → N and c : Ê → N such that
1. for each v ∈ V , we have cin(v) + deg(v) ≥ λ · deg(v) · s(v) + cout(v),
2. for each v ∈ V , we have cout(v) ≤ 1−λ

2 · deg(v) · s(v), and
3. for each (u, v) ∈ Ê, we have c(u, v) ≤ s(u).

With the choice of s(v) and c(u, v) described above, any proportional majority or minority
process indeed satisfies these properties, and thus provides a CPS. Hence if we upper bound
the stabilization time (i.e. the total number of switches

∑
v∈V s(v)) of any CPS, this

establishes the same bound on the stabilization time of any majority/minority process.
Condition 1 is the most complex of the three; it expresses the amount of “input conflicts”

cin(v) required to switch v an s(v) times altogether. Every time after v switches, it has
at most 1−λ

2 · deg(v) conflicts on the incident edges, so it needs to acquire λ · deg(v) new
conflicts to reach the threshold of 1+λ

2 · deg(v) and be switchable again; this results in the
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λ · deg(v) · s(v) term. Moreover, if in the meantime, the neighboring nodes remove some
of the conflicts from the incident edges (expressed by cout(v)), then this also has to be
compensated for by extra input conflicts. Finally, the extra deg(v) term comes from the (at
most) deg(v) conflicts that are already on the incident edges in the initial coloring. For a
detailed discussion of this condition, see the full version of the paper.

Condition 2 also holds, since each time when v switches, it creates at most 1−λ
2 · deg(v)

conflicts on the incident edges. Each time u switches, it can only create one conflict on
a specific edge, so condition 3 also follows. Hence any majority/minority process indeed
provides a CPS.

Finally, we need a technical step to get rid of the extra deg(v) term in condition 1. Note
that this term becomes asymptotically irrelevant as s(v) grows; hence, our approach is to
handle fewer-switching nodes separately, and require condition 1 only for nodes with large
s(v). More formally, we select a constant s0, and we refer to nodes v with s(v) < s0 as base
nodes. We then consider Relaxed CPSs, where, given this extra parameter s0, condition 1 is
replaced by:

1R. for each v ∈ V with s(v) ≥ s0, we have cin(v) ≥ λ · deg(v) · s(v) + cout(v),

This relaxation comes at the cost of an extra ε additive term in the exponent of our upper
bound.

5 Upper bound proof

We now outline the proof of the upper bound on the number of switches. A more detailed
discussion of this proof is available in the full version of the paper.

5.1 Properties of an optimal construction
We start by noting that since moving a conflict through a node is wasteful, it is suboptimal
to have two neighboring nodes that both transfer a conflict to each other, or more generally,
to move a conflict along any directed cycle. Therefore, in a CPS with maximal stabilization
time, the conflicts are essentially moved along the edges of a DAG. To formalize this, given a
CPS, let us say that a directed edge (u, v) ∈ Ê is a real edge if c(u, v) > 0.

I Lemma 2. There exists a CPS with maximal stabilization time where the real edges form
a DAG.

Proof. Among the CPSs on n nodes with maximal stabilization time, let us take the CPS P
where the sum

∑
e∈Ê c(e) is minimal. Assume that there is a directed cycle along the real

edges of this CPS, and let c(e0) denote the minimal value of function c along this cycle.
Now consider the CPS P ′ where the value of c on each edge of this directed cycle is

decreased by c(e0). Since in each affected node, the inputs and outputs have been decreased
by the same value, P ′ still satisfies all three conditions, and thus it is also a valid CPS.
Moreover, P ′ has the same amount of total switches as P . However, since c(e0) > 0, the sum
of c(e) values in P ′ is less than in P , which contradicts the minimality of P . J

Hence for the upper bound proof, we can assume that the real edges of the CPS form a
DAG. In the rest of the section, we focus on this DAG composed of the real edges of the
CPS. We first show that for convenience, we can also assume that each base node is a source
in this DAG.

I Lemma 3. There exists a CPS with maximal stabilization time where each base node is a
source node of the DAG.

ICALP 2020



90:8 A General Stabilization Bound for Influence Propagation in Graphs

Proof. Note that by removing an input edge (u, v) of a base node v (that is, setting c(u, v)
to 0), the remaining CPS is still valid, since node v does not have to satisfy condition 1R,
and in node u, only the sum of outputs was decreased. Therefore, we can remove all the
input edges of each base node, and hence base nodes will all become source nodes of the
DAG. J

I Lemma 4. For each directed edge (u, v) in the DAG where u is a source node, c(u, v) = O(1).
More specifically, c(u, v) ≤ s0.

Proof. If u is a base node, then s(u) ≤ s0, so c(u, v) ≤ s0 due to condition 3. Otherwise,
condition 1R must hold, and since u has no input nodes, we get 0 ≥ cout(u) +λ ·deg(u) · s(u),
hence cout(u) = 0, so c(u, v) = 0 for every v. Thus c(u, v) ≤ s0. J

5.2 Edge potential
As a main ingredient of the proof, we define a way to measure how close we are to propagating
conflicts optimally.

I Definition 5 (Potential). Given a real edge e ∈ Ê, the potential of e is defined as P (e) =
c(e)1/f(λ).

For simplicity of notation, we also use P to denote the function x→ x1/f(λ) on real numbers
instead of edges.

Intuitively speaking, the potential function describes the cost of sending a specific number
of conflicts through a single edge, in terms of the number of initial conflicts used up for this.
Note that since f(λ) < 1, the function P is always convex. This shows that sending a high
number of conflicts through a single edge is more costly than sending the same amount of
conflicts through multiple edges.

As the following lemma shows, the potential is defined in such a way that the total
potential can never increase when passing through a node in the DAG; the best that a node
can do is to preserve the input potential if it relays conflicts optimally.

I Lemma 6. For any non-source node v of the DAG, with input edges from Nin(v) and
output edges to Nout(v), we have∑

u∈Nin(v)

P (u, v) ≥
∑

u∈Nout(v)

P (v, u).

Proof. If v is not a source, then by Lemma 3 it is not a base node, and thus has to satisfy con-
dition 1R. In our DAG, cin and cout correspond to

∑
u∈Nin(v) c(u, v) and

∑
u∈Nout(v) c(v, u),

respectively. Assume that we fix the value of cin and cout. Since the potential function P
is convex, the incoming potential (left side) is minimized if cin is split as equally among
the input neighbors as possible. On the other hand, the outgoing potential (right side) is
maximized if cout is split as unequally among outputs as possible, so all output edges present
in the DAG have the maximal possible number of switches, meaning c(v, u) = s(v) for every
u ∈ Nout(v).

Assume that a fraction ϕ of v’s incident edges are outgoing, i.e. |Nout(v)| = ϕ · deg(v)
and |Nin(v)| = (1− ϕ) · deg(v). By condition 1R, we have cin ≥ λ · deg(v) · s(v) + cout; with
cout = ϕ · deg(v) · s(v), this gives cin ≥ (λ + ϕ) · deg(v) · s(v). If split evenly among the
(1− ϕ) · deg(v) inputs, this means

cin
|Nin(v)| ≥

(λ+ ϕ) · deg(v) · s(v)
(1− ϕ) · deg(v) =

(
λ+ ϕ

1− ϕ

)
· s(v)
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switches for each input node. The inequality on the potential then comes down to

∑
u∈Nin(v)

P (u, v) ≥ (1− ϕ) · deg(v) ·
(
λ+ ϕ

1− ϕ · s(v)
)1/f(λ)

≥

≥ ϕ · deg(v) · s(v)1/f(λ) ≥
∑

u∈Nout(v)

P (v, u).

To show that the inequality in the middle holds, we only require(
λ+ ϕ

1− ϕ

)1/f(λ)
≥ ϕ

1− ϕ,

or, put otherwise,

1
f(λ) log

(
λ+ ϕ

1− ϕ

)
≥ log

(
ϕ

1− ϕ

)
.

Since ϕ
1−ϕ < 1 (thus its logarithm is negative), we get

log
(
λ+ϕ
1−ϕ

)
log
(

ϕ
1−ϕ

) =
log
(

1−ϕ
λ+ϕ

)
log
(

1−ϕ
ϕ

) ≤ f(λ).

This holds by the definition of f(λ). Note that this also shows that equality can only be
achieved if the output rate ϕ is indeed chosen as the argmax value ϕ∗(λ). J

Lemma 6 provides the key insight to the main idea of our proof: if we process the nodes
of a DAG according to a topological ordering, always maintaining a dicut of outgoing edges
from the already processed part of the DAG, then this potential cannot ever increase when
adding a new node.

I Lemma 7. Given a dicut S of a dipartitioning in the DAG, we have∑
e∈S

P (e) = O(n2).

Proof (Sketch). Each dipartitioning can be obtained by starting from the trivial diparti-
tioning where V1 only contains the source nodes of the DAG, and then iteratively adding
nodes one by one to this initial V1. The number of outgoing edges from this initial V1 (the
set of source nodes) is upper bounded by |E| = O(n2). According to Lemma 4, the number
of switches (and hence the potential) on each edge of the dicut is at most constant, so the
sum of potential in this initial dicut is also O(n2).

Now consider the process of iteratively adding nodes to this initial V1 to obtain a specific
dipartitioning. Whenever we add a new node v to V1, the incoming edges of v are removed
from the dicut, and the outgoing edges of v are added to the dicut. According to Lemma 6,
the potential on the outgoing edges of v is at most as much as the potential on the incoming
edges, so the sum of potential can not increase in any of these steps. Therefore, when arriving
at the final V1, the sum of potential on the cut edges is still at most O(n2). J

5.3 Upper bounding switches
Finally, we present our main lemma that uses the previous upper bound on potential in order
to upper bound the number of switches in the CPS.
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I Lemma 8. Given a CPS and an integer a ∈ {1, ..., n}, let A = {v ∈ V |a ≤ deg(v) < 2a }.
For the total number of switches s(A) =

∑
v∈A s(v), we have

s(A) = O
(
n1+f(λ) · a−f(λ)

)
.

Proof (Sketch). If the input edges of the nodes in A would form the dicut of a dipartitioning,
then we could directly use Lemma 7 to upper bound the number of switches in A through
the potential of the input edges. However, the nodes of A might be scattered arbitrarily in
the DAG, and if there is a directed path from one node in A to another, then the “same”
potential might be used to switch more than one node in A. Thus we cannot apply Lemma 7
directly. Instead, our proof consists of two parts.

1. First, we define so-called responsibilities for the nodes in A. Given a node v0 ∈ A,
the idea is to devise two different functions: (i) a function ∆c(e), defined on each edge e
which is contained in any directed path starting from v0, and (ii) a function ∆s(v), which
is defined on any node v that is reachable from v0 on a directed path. Intuitively, we will
consider the conflicts ∆c(e) and the switches ∆s(v) to be those that are indirectly “the
effects of the switches of v0”. More specifically, ∆c and ∆s are chosen such that if they are
removed (subtracted from the CPS), then v0 has no output edges in the DAG anymore, and
the resulting assignment s′(v) = s(v)−∆s(v) and c′(e) = c(e)−∆c(e) still remains a valid
CPS. Hence the subtraction results in a CPS where v0 has no directed path to other nodes
in A anymore. This shows that we can keep on executing this step for each v0 ∈ A until no
two nodes in A are connected by a directed path, at which point we can apply Lemma 7 to
the resulting graph.

Whenever we process such a node v0 ∈ A, we define the responsibility of v0 as R(v0) :=
s(v0) +

∑
∆s(v), where the sum is understood over all the nodes v ∈ A that are reachable

from v0. The main idea is that we “reassign” these switches to v0 from other nodes
in A. This method is essentially a redistribution of switches in the CPS, so we have∑
v∈A s(v) =

∑
v∈AR(v) altogether.

Furthermore, our definition of ∆s(v) will ensure that R(v0) = O(1) ·s(v0). Intuitively, this
can be explained as follows. Recall that with Rule II, the ratio of output to input conflicts
is always upper bounded by a constant factor (below 1) at every node, since switching
always wastes a specific proportion of conflicts. Hence, over any path starting from v0, the
number of outputs that can be attributed to v0 forms a geometric series. As the ratio of the
geometric series is below 1, the total amount of conflicts caused by v0 this way is still within
the magnitude of the input conflicts of v0. Since each node in A has similar degree (and thus
requires similar number of input conflicts for one switching), these conflicts can only switch
nodes in A approximately the same number of times as v0 can be switched by its own inputs.
A detailed discussion of this responsibility technique is available in the full version of the
paper.

2. For the second part of the proof, we show the claim in this modified CPS with no
directed path between nodes in A. This implies that there exists a dipartitioning where the
nodes of A are in V2, but all their input nodes are in V1. This means that all the input edges
of each node in A are included in the dicut S of the partitioning.

Consider a node v ∈ A. Due to condition 1R, v has at least λ ·deg(v) · s(v) input conflicts.
Even if these are distributed equally on all incident edges of v (this is the case that amounts
to the lowest total potential, since P is convex), this requires a total input potential of

deg(v) · P (λ · s(v)) = deg(v) · s(v)1/f(λ) · λ1/f(λ)
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at least. Recall that Lemma 7 shows that the total potential on all edges in S is O(n2). Our
task is hence to find an upper bound on

∑
v∈A s(v), subject to∑

v∈A
deg(v) · s(v)1/f(λ) · λ1/f(λ) = O(n2).

Since the last factor on the left side is a constant, we can simply remove it and include it
in the O(n2) term. Furthermore, the degree of each node in A is at least a, so by lower
bounding each degree by a, we get∑

v∈A
s(v)1/f(λ) = O(n2) · 1

a
.

Given this upper bound on
∑
v∈A P (s(v)), since the function P is convex, the sum of switches∑

v∈A s(v) is maximal when each node in A switches the same amount of times (i.e. there is
an s such that s(v) = s for every v ∈ A), giving

|A| · s1/f(λ) = O(n2) · 1
a
.

With this upper bound, |A| · s is maximal if |A| is as large as possible and s as small as
possible (again because P grows faster than linearly). Clearly |A| ≤ n, so assuming |A| = n,
we get

s1/f(λ) = O(n) · 1
a
,

which means that

s = O(nf(λ)) · a−f(λ),

and thus for the total number of switches in A, we get

|A| · s = O(n1+f(λ)) · a−f(λ). J

It only remains to sum up this bound for the appropriate intervals to obtain our final
bound. Let us consider the intervals [1, 2), [2, 4), [4, 8), ..., i.e. a = 2k for each factor of 2
up to n, which is a disjoint partitioning of the possible degrees. Note that for these specific
values of a, the sum

∑∞
k=0(2k)−f(λ) converges to a constant according to the ratio test.

In other words, the sum is dominated by the number of switches of the lowest (constant)
degree nodes, and hence, the total number of switches in the graph can be upper bounded
by O(1) · n1+f(λ).

Recall that since we work with Relaxed CPSs, we lose an ε in the exponent of this upper
bound when we carry the result over to an original CPS.

I Theorem 9. In any CPS with parameter λ, we have
∑
v∈V s(v) = O(n1+f(λ)+ε) for any

ε > 0.

Since we have established that every majority/minority process provides a CPS, the upper
bound on their stabilization time also follows.

I Corollary 10. Under Rule II with any λ ∈ (0, 1), every majority/minority process stabilizes
in time O(n1+f(λ)+ε) for any ε > 0.
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log 1−ϕ
ϕ

(n)
levels

Θ
(

n
logn

)
nodes

s switches

1−ϕ
λ+ϕ · s switches

d-regular bipartite

ϕ
1−ϕ · d-regular bipartite

Figure 2 Consecutive levels of the lower bound construction.

6 Lower bound construction

Having established the most efficient way to relay conflicts, the high-level design of the
matching lower bound construction is rather straightforward, following the level-based idea
described in Section 4.

Given λ, we first determine the optimal output rate ϕ = ϕ∗(λ). We then create a
construction consisting of distinct levels, where each level has the same size, and each consists
of a set of nodes that have the same degree. Since the degree should decrease by a factor
of ϕ

1−ϕ in each new level from top to bottom, we can add L = log 1−ϕ
ϕ

(n) such levels to the
graph. If each of these level has Θ( n

logn ) nodes, then with the appropriate choice of constants,
the total number of nodes is below n.

Each node in the construction is only connected to other nodes on the levels immediately
above or below its own. All conflicts are propagated down in the graph, from upper to lower
levels, so the upper neighbors of a node are always used as inputs, while the lower neighbors
are always used as outputs. For the optimal propagation of conflicts, each node v must have
the optimal input-output rate, i.e. an up-degree of (1 − ϕ) · deg(v) and a down-degree of
ϕ · deg(v). Thus each consecutive level pair forms a regular bipartite graph, with ϕ

1−ϕ of the
degree of the level pair above. The construction is illustrated in Figure 2.

Our parameters λ and ϕ also determine that the number of switches should increase by a
factor 1−ϕ

λ+ϕ on each new level. If we can always increase the switches at this rate, then each
node on the lowermost level will switch(

1− ϕ
λ+ ϕ

)log 1−ϕ
ϕ

(n)
= n

log( 1−ϕ
λ+ϕ )

log( 1−ϕ
ϕ ) = nf(λ),

times, where the last equation holds because we are using ϕ = ϕ∗(λ). Since there are
Θ̃(n) nodes on the lowermost level, the switches in this level already amount to a total of
Θ̃(n1+f(λ)), matching the upper bound.

However, note that when ϕ∗(λ) or 1−ϕ
λ+ϕ is irrational, we can only use close enough rational

approximations of these values. This comes at the cost of losing a small ε in the exponent.

I Theorem 11. Under Rule II with a wide range of λ values, there is a graph construction
and initial coloring where majority/minority processes stabilize in time Ω(n1+f(λ)−ε) for any
ε > 0.

This level-based structure describes the general idea behind our lower bound construction.
However, the main challenge of the construction is in fact designing the connection between
subsequent levels. In particular, this connection has to make sure that conflicts are indeed
always relayed optimally, i.e. no potential is wasted between any two levels.
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Recall from the proof of Lemma 6 that this is only possible if between any two consecutive
switches of a node v, it is exactly a λ+ϕ

1−ϕ fraction of v’s upper neighbors that switch. Moreover,
these switching λ+ϕ

1−ϕ · deg(v) upper neighbors always have to be of the right color, i.e. they
need to switch to the opposite of v’s current color in case of majority processes, and to the
same color in case of minority processes. Since the upper neighbors of v are in the same level,
we also have to ensure that throughout the entire process, each upper neighbor switches the
same number of times altogether.

These conditions impose heavy restrictions on the possible ways to connect two subsequent
levels. If the conditions hold for a node v (i.e. the sequence of switches of v’s upper neighbors
can be split into λ+ϕ

1−ϕ · deg(v)-size consecutive appropriate-colored subsets, in an altogether
balanced way), then we say that v’s upper neighbors follow a valid control sequence.

On the other hand, in order to argue about levels in general, we want each level to behave
in a similar way. The easiest way to achieve this is to have a one-to-one correspondence
between the nodes of different levels, and ensure that each level repeats the same sequence
of steps periodically, but in a different pace. That is, we want to connect the levels in such a
way that when a level exhibits a specific pattern of switches, then this allows the nodes of
the next level to replicate the exact same pattern of switches, but more times.

Thus the key task in our lower bound constructions is to develop a so-called control
gadget, which is essentially a bipartite graph that fulfills these two requirements: it admits a
scheduling of switches such that (i) the upper neighborhood of each lower node follows a
valid control sequence, and (ii) while the upper level executes a sequence s times, the lower
level executes the same sequence 1−ϕ

λ+ϕ · s times. Given such a control gadget, we can connect
the subsequent level pairs of our construction using this gadgets. This allows us to indeed
increase the number of switches by a 1−ϕ

λ+ϕ factor in each new level, resulting in a total of
Θ̃(n1+f(λ)) switches as described above.

However, developing a control gadget is a difficult combinatorial task in general: it
depends on many factors including divisibility questions, and whether our parameters can
be expressed as a fraction of small integers. A detailed discussion of control gadget design
and the λ values covered by Theorem 11 is available in the full version of the paper. In
particular, we present a method which allows us to develop a control gadget for every small λ
value below a threshold of approximately 0.476 (more specifically, as long as λ+ϕ

1−ϕ ≤
3
5 ). The

same technique also provides a control gadget for some larger λ values above the threshold,
but only when the corresponding switch increase ratio 1−ϕ

λ+ϕ can be expressed as a fraction
of relatively small integers. Furthermore, the full version also describes a simpler solution
technique to the control gadget problem; this leaves a slightly larger gap to the upper bound,
but it works for any λ without much difficulty.
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