
Popular Matchings with One-Sided Bias
Telikepalli Kavitha
Tata Institute of Fundamental Research, Mumbai, India
kavitha@tifr.res.in

Abstract
Let G = (A ∪B, E) be a bipartite graph where A consists of agents or main players and B consists
of jobs or secondary players. Every vertex has a strict ranking of its neighbors. A matching M is
popular if for any matching N , the number of vertices that prefer M to N is at least the number
that prefer N to M . Popular matchings always exist in G since every stable matching is popular.

A matching M is A-popular if for any matching N , the number of agents (i.e., vertices in A)
that prefer M to N is at least the number of agents that prefer N to M . Unlike popular matchings,
A-popular matchings need not exist in a given instance G and there is a simple linear time algorithm
to decide if G admits an A-popular matching and compute one, if so.

We consider the problem of deciding if G admits a matching that is both popular and A-popular
and finding one, if so. We call such matchings fully popular. A fully popular matching is useful when
A is the more important side – so along with overall popularity, we would like to maintain “popularity
within the set A”. A fully popular matching is not necessarily a min-size/max-size popular matching
and all known polynomial time algorithms for popular matching problems compute either min-size
or max-size popular matchings. Here we show a linear time algorithm for the fully popular matching
problem, thus our result shows a new tractable subclass of popular matchings.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Bipartite graphs, Stable matchings, Gale-Shapley algorithm, LP-duality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.70

Category Track A: Algorithms, Complexity and Games

Funding Supported by the DAE, Government of India, under project no. 12-R&D-TFR-5.01-0500.

Acknowledgements Work done at MPI for Informatics, Saarland Informatics Campus, Germany.
Thanks to Yuri Faenza for discussions that led to this problem and his helpful comments on the
manuscript. Thanks to the reviewers for their valuable suggestions on improving the presentation.

1 Introduction

Let G = (A∪B,E) be a bipartite graph where vertices in A are called agents and those in B
are called jobs. Every vertex has a strict ranking of its neighbors. Such a graph, also called a
marriage instance, is a very well-studied model in two-sided matching markets. A matching
M in G is stable if there is no blocking pair with respect to M , i.e., no pair (a, b) such that a
and b prefer each other to their respective assignments in M . Gale and Shapley [10] in 1962
showed that stable matchings always exist in G and can be efficiently computed.

Stable matching algorithms have applications in several real-world problems. For instance,
stable matchings have been extensively used to match students to schools and colleges [1, 3]
and one of the oldest applications here is to match medical residents to hospitals [4, 21]. It is
known that all stable matchings in G have the same size [11] and this may only be half the
size of a max-size matching in G. Consider the following instance on 4 vertices a0, a1, b0, b1.

a0 : b1 a1 : b1 � b0 b0 : a1 b1 : a1 � a0.

Here a1 and b1 are each other’s top choices. There is no edge between a0, b0. Note that
Mmax = {(a0, b1), (a1, b0)} has size 2 while the only stable matching S = {(a1, b1)} has size 1.

EA
T

C
S

© Telikepalli Kavitha;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 70; pp. 70:1–70:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:kavitha@tifr.res.in
https://doi.org/10.4230/LIPIcs.ICALP.2020.70
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Popular Matchings with One-Sided Bias

Hence forbidding blocking edges constrains the size of the resulting matching. Rather
than empower every edge with a “veto power” to block matchings (this is the notion of
stability), we would like to relax stability so that only a strict majority vote from the entire
vertex set has the power to block matchings. The motivation is to obtain a larger pool of
feasible matchings so as to allow better matchings with respect to our objective.

The notion of popularity is a natural relaxation of stability that captures the notion
of “majority preference”. Preferences of a vertex over its neighbors extend naturally to
preferences over matchings: consider an election between 2 matchings M and N where
vertices are voters. In this M versus N election, every vertex (say, u) votes for the matching
in {M,N} that it prefers, i.e., where it gets a better assignment (being unmatched is its
worst choice), and u abstains from voting if it has the same assignment in both M and N .
Let φ(M,N) (resp., φ(N,M)) be the number of votes for M (resp., N) in this election.

I Definition 1. A matching M is popular if φ(M,N) ≥ φ(N,M) ∀matchings N in G.

So a popular matching never loses a head-to-head election against any matching, i.e., it
is a weak Condorcet winner [5, 6] in the voting instance where matchings are candidates and
vertices are voters. The notion of popularity was introduced by Gärdenfors [12] who showed
that every stable matching is popular. So popular matchings always exist in any marriage
instance. In fact, every stable matching is a min-size popular matching [14] and there are
efficient algorithms to compute a max-size popular matching [14, 16].

Popular matchings are suitable for applications such as matching students to projects
(where students and project advisers have strict preferences) – by relaxing stability to
popularity, we can obtain better matchings in terms of size or our desired objective. We
consider a natural and relevant objective here: observe that the two sides of G = (A ∪B,E)
are asymmetric in this application - students are doers of the projects, i.e., they are the main
or more active players while project advisers are the secondary or more passive players. So
along with overall popularity, we would like to maintain “popularity within the set A”.

That is, we would like the popular matching that we compute to be popular even when
we only count the votes of vertices in A, i.e., there should be no matching that is preferred
by more vertices in A. Popularity within the set A is the notion of popularity with one-sided
preferences and we will refer to this as A-popularity here. In the M versus N election, let
φA(M,N) (resp., φA(N,M)) be the number of vertices in A that vote for M (resp., N).

I Definition 2. A matching M is A-popular if φA(M,N) ≥ φA(N,M) ∀matchings N in G.

A-popular matchings have been well-studied and are relevant in applications such as
assigning training posts to applicants [2] and housing allocation schemes [19] where vertices
on only one side of the graph have preferences over their neighbors. An A-popular matching
need not necessarily exist in a given instance as shown below.

a1 : b1 � b2 � b3 a2 : b1 � b2 � b3 a3 : b1 � b2 � b3.

There are 3 agents here and they have identical preferences. It is easy to check that none
of the matchings in this instance is A-popular. Let M0 = {(a1, b1), (a2, b2), (a3, b3)} and
M1 = {(a1, b3), (a2, b1), (a3, b2)}, we have φA(M1,M0) = 2 > 1 = φA(M0,M1) since a2, a3
prefer M1 to M0 while a1 prefers M0 to M1. Here we are interested in matchings that are
both popular and A-popular.

I Definition 3. A popular matching M is fully popular if M is also A-popular. So for any
matching N in G, we have: φ(M,N) ≥ φ(N,M) and φA(M,N) ≥ φA(N,M).

T. Kavitha 70:3

There may be exponentially many popular matchings in G = (A∪B,E). So when A is the
more important/active side, say it consists of those doing their projects/internships/jobs, it
is natural to seek a popular matching that is A-popular as well, i.e., a fully popular matching.
Thus we seek a matching M such that (1) a majority of the vertices weakly prefer M to any
matching, i.e., φ(M,N) ≥ φ(N,M) for all matchings N , and moreover, (2) a majority of the
agents (those in A) weakly prefer M to any matching, i.e., φA(M,N) ≥ φA(N,M) for all N .

We show the following result here.

I Theorem 4. There is a linear time algorithm to decide if a marriage instance G = (A∪B,E)
with strict preferences admits a fully popular matching or not. If so, our algorithm returns a
max-size fully popular matching.

Another model for popularity in matchings with main players in A and secondary players
in B is to scale the votes of those in A by a suitable factor c ≥ 1 and count the weighted sum of
votes in favor ofM versus the weighted sum of votes in favor of N in theM versus N election.
That is, M is weighted popular if c · φA(M,N) + φB(M,N) ≥ c · φA(N,M) + φB(N,M) for
every matching N , where c is the scaling factor and φB(·, ·) is analogous to φA(·, ·). No
results are currently known for the weighted popular matching problem with c > 1 in a
marriage instance. Observe that a fully popular matching is a weighted popular matching
for every scaling factor c ≥ 1.

1.1 Background and Related results

The notion of popularity was proposed by Gärdenfors [12] in 1975. Algorithms in the domain
of popular matchings were first studied in 2005 for one-sided preferences or the A-popular
matching problem. Efficient algorithms were given in [2] to decide if a given instance (with
ties permitted in preference lists) admits an A-popular matching or not; in particular, a
linear time algorithm was given for the case with strict preference lists. An efficient algorithm
for the weighted A-popular matching problem, where each agent’s vote is scaled by its weight
(these weights are a part of the input), was given in [20].

Algorithms for popular matchings in a marriage instance G = (A ∪B,E) or two-sided
preferences have been well-studied in the last decade. The max-size popular matching
algorithms in [14, 16] compute special popular matchings called dominant matchings. A
linear time algorithm for finding a popular matching with a given edge e was given in [7]
(such an edge is called a popular edge). It was shown in [7] that if e is a popular edge
then there is either a stable matching or a dominant matching with e. Popular half-integral
matchings in G = (A∪B,E) were characterized in [17] as stable matchings in a larger graph
related to G. The popular fractional matching polytope was analyzed in [15] where the
half-integrality of this polytope was shown. Other than algorithms for min-size/max-size
popular matchings and for popular edge, no other polynomial time algorithms are currently
known for finding popular matchings with special properties.

To complete the picture, it was shown in [9] that it is NP-hard to decide if G admits a
popular matching that is neither a min-size nor a max-size popular matching. A host of
hardness results in [9] painted a bleak picture for efficient algorithms for popular matching
problems (other than what is already known). For instance, it is NP-hard to find a popular
matching in G with a given pair of edges. Thus finding a max-weight (similarly, min-cost)
popular matching is NP-hard when there are weights (resp., costs) on edges.

ICALP 2020

70:4 Popular Matchings with One-Sided Bias

1.2 Our Result and Techniques
It may be the case that no min-size/max-size popular matching in G is A-popular, however
G admits a fully popular matching: Section 2 has such an example. As there are instances
where it is NP-hard to decide if there is a popular matching that is neither a min-size nor a
max-size popular matching [9], a first guess may be that the fully popular matching problem
is NP-hard.

Though an A-popular matching is constrained to use only some special edges in G (see
Theorem 5), this does not seem very helpful since it is NP-hard to solve the popular matching
problem with forced/forbidden edges [9]. Note that a rival matching (wrt popularity) is
free to use any edge in G. It was not known if there was any tractable subclass of popular
matchings other than the classes of stable matchings [10] and dominant matchings [7, 14, 16].

We show the set of fully popular matchings is a new tractable subclass of popular
matchings: unlike the classes of stable matchings and dominant matchings which are always
non-empty, there need not be a fully popular matching in G. Our algorithm for finding a
fully popular matching is based on the classical Gale-Shapley algorithm and works in a new
graph H; this graph is essentially two copies of G and is a variant of the graph seen in [17]
to study popular half-integral matchings. There is a natural map from stable matchings in
H to popular half-integral matchings in G. Our goal is to compute a stable matching with
sufficient symmetry in H so that we can obtain a popular integral matching in G.

We achieve this symmetry by using properties of both popular and A-popular matchings.
These properties allow us to identify certain edges that have to be excluded from our matching.
If there is no stable matching in H without these edges then we use the lattice structure
on stable matchings [13] to show that G has no fully popular matching. Else we obtain a
matching M in G from this “partially symmetric” stable matching in H. The most technical
part of our analysis is to prove M ’s popularity in G.

2 Preliminaries

Our input is a bipartite graph G = (A ∪B,E) where every vertex has a strict preference list
ranking its neighbors. Let us augment G with self-loops, i.e., each vertex is assumed to be at
the bottom of its own preference list.

We will first present the characterization of A-popular matchings in G – note that
preferences of vertices in B play no role here. For each a ∈ A, define the vertex f(a) to be a’s
top choice neighbor and let s(a) be a’s most preferred neighbor that is nobody’s top choice
neighbor. We assume every a ∈ A has at least one neighbor other than itself, so f(a) ∈ B,
however it may be the case that s(a) = a. Let E′ = E ∪ {(u, u) : u ∈ A ∪B}.

I Theorem 5 ([2]). A matching M in G = (A ∪B,E′) is A-popular if and only if:
1. M ⊆ {(a, f(a)), (a, s(a)) : a ∈ A}.
2. M matches all in A and all in {f(a) : a ∈ A}.

Popular matchings. We will use an LP-based characterization of popular matchings [17, 18]
in a marriage instance G = (A ∪B,E′). Observe that any matching in G can be regarded
as a perfect matching by including self-loops for all vertices left unmatched. Let M be any
perfect matching in G. For any pair of adjacent vertices u, v, let u’s vote for v (vs its partner
M(u)) be 1 if u prefers v to M(u), it is −1 if u prefers M(u) to v, else 0 (i.e., M(u) = v). In
order to check if M is popular or not in G, the following edge weight function wtM will be
useful. Here wtM (a, b) is the sum of votes of a and b for each other.

T. Kavitha 70:5

Let wtM (a, b) =

2 if (a, b) is a blocking edge to M ;
−2 if both a and b prefer their partners in M to each other;
0 otherwise.

Thus wtM (a, b) = 0 for every (a, b) ∈ M . We need to define wtM for self-loops as well.
For any u ∈ A ∪ B, let wtM (u, u) = 0 if (u, u) ∈ M , else wtM (u, u) = −1. For any perfect
matching N in G, observe that wtM (N) =

∑
e∈N wtM (e) = φ(N,M)− φ(M,N). Thus M is

popular if and only if wtM (N) ≤ 0 for every perfect matching N in G.
Consider the max-weight perfect matching LP in G with the edge weight function wtM .

This linear program is (LP1) given below and (LP2) is the dual of (LP1). The variables xe
for e ∈ E′ are primal variables and the variables yu for u ∈ A ∪B are dual variables. Here
δ′(u) = δ(u) ∪ {(u, u)}.

max
∑
e∈E′

wtM (e) · xe (LP1)

s.t.
∑

e∈δ′(u)

xe = 1 ∀u ∈ A ∪B

xe ≥ 0 ∀ e ∈ E′.

min
∑

u∈A∪B
yu (LP2)

s.t. ya + yb ≥ wtM (a, b) ∀ (a, b) ∈ E
yu ≥ wtM (u, u) ∀u ∈ A ∪B.

M is popular if and only if the optimal value of (LP1) is at most 0. In fact, the optimal
value is exactly 0 since M is a perfect matching in G and wtM (M) = 0. Thus M is popular
if and only if the optimal value of (LP2) is 0 (by LP-duality).

I Theorem 6 ([17, 18]). A matching M in G = (A ∪B,E) is popular if and only if there
exists ~α ∈ {0,±1}n (where |A ∪B| = n) such that

∑
u∈A∪B αu = 0 along with

αa + αb ≥ wtM (a, b) ∀(a, b) ∈ E and αu ≥ wtM (u, u) ∀u ∈ A ∪B.

Proof. Since E is the edge set of a bipartite graph, the constraint matrix of (LP2) is totally
unimodular. So (LP2) admits an optimal solution that is integral. The vector ~α is an integral
optimal solution of (LP2). We have αu ≥ wtM (u, u) ≥ −1 for all u.

We now claim αu ∈ {0,±1} for all vertices u. Since M is an optimal solution to (LP1),
complementary slackness implies αu + αv = wtM (u, v) = 0 for each edge (u, v) ∈M . Thus
αu = −αv ≤ 1 for every vertex u matched to a non-trivial neighbor v in M . Regarding any
vertex u such that (u, u) ∈M , we have αu = wtM (u, u) = 0 (by complementary slackness).
Hence ~α ∈ {0,±1}n. J

For any popular matching M , a vector ~α as given in Theorem 6 will be called a witness
of M ’s popularity. Note that a popular matching may have several witnesses. A stable
matching S has 0n as a witness since wtS(e) ≤ 0 for all e ∈ E′.

Recall that our problem is to compute a fully popular matching, i.e., a popular matching
that is also A-popular. It is easy to construct instances that admit A-popular matchings
but admit no fully popular matching. It could also be the case that no min-size or max-size
popular matching in G = (A ∪B,E) is A-popular, however G has a fully popular matching.
Consider the instance G given in Fig. 1. Vertex preferences are indicated on edges: 1 denotes
top choice, and so on.

We list the vertices f(u) and s(u) for each u ∈ A in this instance. The vertex b′ is not
s(a) since a prefers q′ to b′ and q′ 6= f(u) for any u ∈ A.

ICALP 2020

70:6 Popular Matchings with One-Sided Bias

����������������������

����������������������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
���������������������������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
����������� ��������������������

1

2

1 11 1

12 2 11

22 22
13

1

1

1b

b′

p′

q

x′ y′

yp

a′

a

x

q′
2

3

4 2

Figure 1 An instance on A = {a, a′, p, p′, x, x′} and B = {b, b′, q, q′, y, y′} where no min-size/max-
size popular matching is A-popular. There is a fully popular matching (on blue edges) here.

We have f(a) = f(a′) = b, f(p) = f(p′) = q, and f(x) = f(x′) = y.
We have s(a) = s(p) = s(p′) = s(x′) = q′, s(x) = y′, and s(a′) = a′.

Since s(u) 6= u for u ∈ {a, p, p′, x, x′}, any A-popular matching M has to match these
5 vertices to neighbors in B (by Theorem 5). So M(a) = f(a) = b which implies M(a′) =
s(a′) = a′, i.e., after pruning self-loops from M , the vertex a′ has to be left unmatched in
M . So M has size 5. It is easy to check that a stable matching (thus any min-size popular
matching) in G has size 4; also any max-size popular matching has size 6. Thus no min-size
or max-size popular matching in G can be fully popular. Interestingly, this instance admits
a fully popular matching: M = {(a, b), (p, q), (p′, q′), (x, y′), (x′, y)} is fully popular.

3 Fully Popular Matchings

The input is a marriage instance G = (A ∪ B,E). Our algorithm will work in a bipartite
graph H which is essentially 2 copies of the graph G as shown in Fig. 2. The vertex set
of H is AL ∪ BL on the left and BR ∪ AR on the right. Here AL = {a` : a ∈ A} and
AR = {ar : a ∈ A}. Similarly, BL = {b` : b ∈ B} and BR = {br : b ∈ B}.

half
Lower

half
Upper

BR

AR

AL

BL

Figure 2 The bipartite graph H consists of 2 copies of the graph G = (A ∪B, E).

The upper half of H consists of the set AL of agents on the left and the set BR of jobs
on the right while the lower half of H consists of the set BL of jobs on the left and the set
AR of agents on the right. Thus every vertex u ∈ A ∪B has two copies in H: one as u` on
the left of H and another as ur on the right of H.

For every edge in E, there will be four edges in H: a pair of parallel edges in the upper
half and a pair of parallel edges in the lower half. In order to distinguish two parallel edges
with the same endpoints, we use superscripts + and − on the endpoints. For (a, b) ∈ E:

in the upper half, we have two parallel edges (a+
` , b
−
r) and (a−` , b+

r) between a` and br;
in the lower half, we have two parallel edges (b+

` , a
−
r) and (b−` , a+

r) between b` and ar.

Corresponding to every vertex u ∈ A ∪B, there will be a single edge (u−` , u+
r) in H: this

edge corresponds to the self-loop (u, u) and it will be convenient to use +/− superscripts on
the endpoints of this edge also. These edges (u−` , u+

r) for all u are the only edges in H that
go across the two halves of H.

T. Kavitha 70:7

Vertices inH have preferences on their incident edges rather than their neighbors. However
it would be more convenient to say u prefers v− to w+ rather than say u prefers (u+, v−) to
(u−, w+). In fact, H is equivalent to a conventional graph H∗ (with preferences on neighbors)
that was used to study popular half-integral matchings in [17]: there were 4 vertices in H∗
for each u ∈ A ∪B. The graph H is a sparser version of H∗ with only 2 vertices u` and ur
for each u ∈ A ∪B and a pair of parallel edges between every pair of adjacent vertices. We
now describe the preferences of vertices in H.

Every vertex prefers superscript − neighbors to superscript + neighbors: among super-
script − neighbors (similarly, superscript + neighbors), it will be its original preference order.
Consider any vertex u ∈ A ∪B. Suppose u’s preference list in G is v � v′ � · · · � v′′, i.e., v
is u’s top choice, next comes v′, and so on. In H, the preference list of u` is as follows:

v−r � v′−r � · · · � v′′−r︸ ︷︷ ︸
superscript − neighbors

� v+
r � v′+r � · · · � v′′+r � u+

r︸ ︷︷ ︸
superscript + neighbors

,

where vr, v′r, . . . correspond to the copies of v, v′, . . . on the right side of H.
The vertex u+

r is the last choice of u`. In H, the preference list of ur is as follows:

v−` � v
′−
` � · · · � v

′′−
` � u−`︸ ︷︷ ︸

superscript − neighbors

� v+
` � v

′+
` � · · · � v

′′+
`︸ ︷︷ ︸

superscript + neighbors

,

where v`, v′`, . . . correspond to the copies of v, v′, . . . on the left side of H. This is analogous
to u`’s preference list: the main difference is in the position of its “twin” - the vertex ur
prefers u−` to all its superscript + neighbors.

Blocking edges. Let u` ∈ AL ∪BL and vr ∈ AR ∪BR. For any matching M in H, we say
an edge (u+

` , v
−
r) blocks M if (i) u` prefers v−r to its assignment in M and (ii) vr prefers u+

`

to its assignment in M . Similarly, we say edge (u−` , v+
r) blocks M if (i) u` prefers v+

r to its
assignment in M and (ii) vr prefers u−` to its assignment in M .

I Definition 7. A matching M in H is stable if no edge in H blocks M .

B Claim 8. Let S be a stable matching in G = (A ∪ B,E). The matching S′ =
{(a−` , b+

r), (b−` , a+
r) : (a, b) ∈ S} ∪ {(u−` , u+

r) : u is unmatched in S} is stable in H.

Proof. We need to show that no edge in H blocks S′. Note that S′ is a perfect matching
in H. Consider any edge (c+

` , d
−
r) in H where c ∈ A and d ∈ B. Since every vertex prefers

superscript − neighbors to superscript + neighbors, the vertex dr prefers its partner in S′ to
c+
` . So consider any edge (c−` , d+

r) in H. If (c, d) ∈ S then (c−` , d+
r) ∈ S′ and so it does not

block S′. If (c, d) /∈ S then it follows from the stability of S in G that either (1) c is matched
to a neighbor b preferred to d or (2) d is matched to a neighbor a preferred to c. In case (1),
c` is matched in S′ to a neighbor b+

r preferred to d+
r ; in case (2), dr is matched in S′ to a

neighbor a−` preferred to c−` . Thus (c−` , d+
r) does not block S′.

It can analogously be shown that neither (d−` , c+
r) nor (d+

` , c
−
r) blocks S′. Also (u−` , u+

r)
for any u ∈ A∪B does not block S′ since u+

r is u`’s least preferred neighbor in H. Hence S′
is a stable matching in H. C

Thus the graph H admits a perfect stable matching. Since all stable matchings in H
have the same size [11], every stable matching in H has to be perfect. We seek to compute a
“special” stable matching in H: one that has no edge that is forbidden. The edges marked
forbidden are those that no fully popular matching uses. The definition of valid edges below is
as given in Theorem 5: any A-popular matching in G can contain only these edges/self-loops.

ICALP 2020

70:8 Popular Matchings with One-Sided Bias

I Definition 9. Edges/self-loops in {(a, f(a)), (a, s(a)) : a ∈ A} are valid. So are self-loops
in {(b, b) : b 6= f(a) for any a ∈ A}.

All other edges and self-loops are invalid. Thus every a ∈ A has exactly 2 valid edges
incident to it: one of these may be the self-loop (a, a).

An edge e in G is popular if there exists a popular matching M in G such that e ∈M .
Call a vertex stable if it is matched in some (equivalently, every [11]) stable matching. It
is known that every popular matching in G has to match all stable vertices to non-trivial
neighbors [14]. So the self-loop (u, u) is popular if and only if u is unstable.

I Definition 10. Call an edge e in E ∪ {(u, u) : u ∈ A ∪B} legal if e is valid and popular.

Forbidden edges. A fully popular matching, by definition, has to contain only legal edges.
So if (a, b) is not legal then (a+

` , b
−
r), (a−` , b+

r), (b+
` , a

−
r), and (b−` , a+

r) are forbidden edges in
the stable matching that we seek to compute in H. Similarly, for any u ∈ A ∪B, if (u, u) is
not legal then (u−` , u+

r) is a forbidden edge in our algorithm.

I Definition 11. A matching M in H is legal if M has no forbidden edge.

Call a matching M in H symmetric if for each edge (a, b) in E, we have both (a`, br) and
(b`, ar) in M or neither (for convenience, we are ignoring +/− superscripts on a`, ar, b`, br),
i.e., loosely speaking, M has the same edges in the upper and lower halves of H. A symmetric
matching M in H will be called a realization of M̃ = {(a, b) : (a`, br) and (b`, ar) are in M}.
Note that M̃ is a matching in G.

I Lemma 12. Every fully popular matching in G has a realization as a legal stable matching
in the instance H.

Proof. Let N be a fully popular matching in G and let ~α ∈ {0,±1}n be a witness of N ’s
popularity (see Theorem 6). For i ∈ {0,±1}, let Ai be the set of vertices a ∈ A with αa = i

and let Bi be the set of vertices b ∈ B with αb = i. Thus we have A = A0 ∪ A1 ∪ A−1
and B = B0 ∪ B1 ∪ B−1. Note that αa + αb = wtN (a, b) = 0 for each edge (a, b) ∈ N :
this is by complementary slackness on (LP2) corresponding to N . So the matching N ⊆
(A0 ×B0) ∪ (A−1 ×B1) ∪ (A1 ×B−1) (see Fig. 3).

A1

A−1 B1

B−1

B0A0

Figure 3 The partition A0 ∪A1 ∪A−1 of A and B0 ∪B−1 ∪B1 of B.

We need to show a realization of N in H that is stable. We will use N ’s witness ~α in
G to define the following matching N∗α in H: this is similar to how popular half-integral
matchings were realized as stable matchings in a larger graph H∗ in [17].

For all (a, b) ∈ N ∩ (A−1 ×B1) do: add edges (a−` , b+
r) and (b+

` , a
−
r) to N∗α.

For all (a, b) ∈ N ∩ (A1 ×B−1) do: add edges (a+
` , b
−
r) and (b−` , a+

r) to N∗α.
For all (a, b) ∈ N ∩ (A0 ×B0) do: add edges (a−` , b+

r) and (b−` , a+
r) to N∗α.

T. Kavitha 70:9

For each u such that (u, u) ∈ N , add (u−` , u+
r) to N∗α. Using the constraints that ~α has to

satisfy, it is easy to argue that N∗α is a stable matching in H. Moreover, the fact that N is a
fully popular matching in G implies that N∗α is a legal matching in H: since N is A-popular
(resp., popular) in G, every edge used in N is valid (resp., popular). So N∗α has no forbidden
edge. Thus N∗α is a legal stable matching in H. J

A variant of Gale-Shapley algorithm. A stable matching that avoids all forbidden edges (if
such a matching exists) can be computed in linear time by running a variant of Gale-Shapley
algorithm in H where proposals made along forbidden edges are rejected. Once a proposal
made along a forbidden edge is rejected by a vertex, all further proposals made on worse
edges also have to rejected by this vertex. If some vertex is left unmatched at the end of this
algorithm, then there is no stable matching in H that avoids all forbidden edges; else we have
a desired stable matching in H. We refer to [13] for details on this variant of Gale-Shapley
algorithm.

Thus it can be efficiently checked if H admits a legal stable matching or not. If such a
matching does not exist in H then there is no fully popular matching in G (by Lemma 12).
So we will assume henceforth that there exists a legal stable matching in H. However the
fact that such a stable matching exists in H does not imply that G admits a fully popular
matching. This is because any matching M∗ in H can only be mapped to a half-integral
matching in G.

In order to claim the resulting matching in G is integral, we need M∗ to be symmetric,
i.e., have the same edges in both halves of H. We will not construct such a symmetric stable
matching in H. The matching we compute will have a certain amount of symmetry and
this will be enough to obtain a fully popular matching in G. If H does not admit such a
“partially symmetric” stable matching, then we show that G has no fully popular matching.

3.1 Two partitions of the vertex set
We run Gale-Shapley algorithm that avoids all forbidden edges [13] in H. In this algorithm,
vertices on the left of H propose and vertices on the right of H dispose. When u` ∈ AL ∪BL
proposes to v−r , this proposal is made along (u+

` , v
−
r): so vr sees this as u+

` ’s proposal; when
u` proposes to v+

r , this proposal is made along (u−` , v+
r): so vr sees this as u−` ’s proposal. If

u` proposes to a neighbor vr along (u+
` , v

−
r) or (u−` , v+

r), then vr accepts u`’s proposal only if
the edge (u, v) is legal; otherwise vr rejects u`’s proposal since this is a forbidden edge. Edges
ranked worse than (u+

` , v
−
r)/(u−` , v+

r) (as the case may be) will be deleted from the current
instance on whose edges proposals are made – this ensures that once vr receives a proposal
along a certain edge, whether this proposal is accepted or not, vr cannot accept proposals
made along worse edges. Let S0 be the legal stable matching in H that is obtained.

Let UA ⊆ A be the set of agents a such that (a−` , a+
r) ∈ S0 and let UB ⊆ B be the set of

jobs b such that (b−` , b+
r) ∈ S0.

We know that H is made up of two halves: the upper half and the lower half. Since S0 is
stable and thus perfect (recall that any stable matching in H is perfect), the set of agents
matched to genuine neighbors – not to their twins – in each half of H is A \UA and similarly,
the set of jobs matched to genuine neighbors in each half of H is B \ UB . We now form sets
A+, A−, B+, B−, A

′
+, A

′
−, B

′
+, B

′
− corresponding to S0: initially they are empty.

ICALP 2020

70:10 Popular Matchings with One-Sided Bias

For every (a+
` , b
−
r) ∈ S0 where a ∈ A and b ∈ B: add a to A+ and b to B−.

For every (a−` , b+
r) ∈ S0 where a ∈ A and b ∈ B: add a to A− and b to B+.

For every (b+
` , a

−
r) ∈ S0 where a ∈ A and b ∈ B: add b to B′+ and a to A′−.

For every (b−` , a+
r) ∈ S0 where a ∈ A and b ∈ B: add b to B′− and a to A′+.

Partition of A ∪B \ UB

induced by S0 in the upper half of H

Partition of B ∪ A \ UA

induced by S0 in the lower half of H

UBUA

A− B+ B′− A′+

A+ B− A′−B′+

Figure 4 Two partitions of the set (A ∪B) \ (UA ∪ UB) induced by the matching S0.

We have A \ UA = A+ ∪ A− = A′+ ∪ A′− and B \ UB = B+ ∪ B− = B′+ ∪ B′−. Fig. 4
denotes these partitions of A \ UA and B \ UB induced by the matching S0 in the upper and
lower halves of H. In this figure, the set UA has been included in the upper half and the set
UB in the lower half.

We will use (a−` , ∗) to denote any edge in the set {(a−` , b+
r) : b ∈ B}∪{(a−` , a+

r)}. Similarly
(∗, a+

r) denotes any edge in the set {(b−` , a+
r) : b ∈ B} ∪ {(a−` , a+

r)}. Similarly for (b−` , ∗) and
(∗, b+

r). Recall that every popular matching has a witness ~α ∈ {0,±1}n (see Theorem 6).

I Lemma 13. Let N be a fully popular matching in G and let ~α be any witness of N . If
a ∈ A− ∩A′+ then αa = 0.

Proof. We have vertex a ∈ A− ∩A′+, where the sets A− and A′+ are defined above. Let D0
be the set of legal stable matchings in H. The set D0 forms a sublattice of the lattice1 of
stable matchings in H and the matching S0 is the (AL ∪BL)-optimal matching in D0 [13].
Since a ∈ A−, we have (a−` , c+

r) ∈ S0 for some neighbor c+
r of a`. Thus c+

r is the most
preferred partner for a` ∈ AL in all matchings in D0. Recall that every vertex prefers
superscript − neighbors to superscript + neighbors. Hence no matching in D0 matches a` to
a superscript − neighbor, i.e., every legal stable matching in H has to contain (a−` , ∗).

S0 is also the (AR ∪BR)-pessimal matching in D0 [13]. Since a ∈ A′+, we have (d−` , a+
r) ∈

S0 for some neighbor d−` of ar. So every matching in D0 has to match ar ∈ AR to a neighbor
at least as good as d−` , i.e., every legal stable matching in H has to contain (∗, a+

r).
Suppose N is a fully popular matching with a witness ~α such that αa ∈ {±1}. If

αa = 1, i.e., if a ∈ A1 (see Fig. 3), then there is a legal stable matching N∗α in H such that
(a+
` , ∗) ∈ N∗α (see the proof of Lemma 12). This contradicts our claim above that every legal

stable matching in H has to contain (a−` , ∗). So αa = −1, i.e., a ∈ A−1. Then there is a legal
stable matching N∗α in H such that (∗, a−r) ∈ N∗α (by the proof of Lemma 12). This again
contradicts our claim above that every legal stable matching in H has to contain (∗, a+

r).
Thus αa /∈ {±1}, hence αa = 0. J

1 The meet of 2 stable matchings M and M ′ is the stable matching where every u in AL ∪ BL (resp.,
AR ∪BR) is matched to its more (resp., less) preferred partner in {M(u), M ′(u)}. The join of M and
M ′ is the stable matching where every u in AL ∪ BL (resp., AR ∪ BR) is matched to its less (resp.,
more) preferred partner in {M(u), M ′(u)}.

T. Kavitha 70:11

The proof of Lemma 14 is analogous to the proof of Lemma 13.

I Lemma 14. Let N be a fully popular matching in G and let ~α be any witness of N . If
b ∈ B+ ∩B′− then αb = 0.

We will use G0 = (A ∪ B,E0) to denote the popular subgraph of G. The edge set E0
of G0 is the set of popular edges, i.e., those present in some popular matching in G. The
subgraph G0 need not be connected and Lemma 15 will be useful to us.

I Lemma 15 ([8]). Let C be any connected component in the popular subgraph G0. For any
popular matching N in G and any witness ~α of N : if αv = 0 for some v ∈ C then αu = 0
for all u ∈ C.

Proof. Consider any popular edge (a, b). So there is some popular matching M with the
edge (a, b). The matching M is an optimal solution to the max-weight perfect matching
LP with edge weight function wtN since wtN (M) = φ(M,N) − φ(N,M) = 0: recall that
M and N are popular matchings in G. We know that ~α is an optimal solution to the dual
LP. So it follows from complementary slackness conditions that αa + αb = wtN (a, b). Since
wtN (a, b) ∈ {±2, 0} (an even number), the integers αa and αb have the same parity.

Let u and v be any 2 vertices in the same connected component in the popular subgraph
G0. So there is a u-v path ρ in G such that every edge in ρ is a popular edge. We have just
seen that the endpoints of each popular edge have the same parity in ~α. Hence αu and αv
have the same parity. Thus αv = 0 implies αu = 0. J

3.2 Our algorithm

Lemmas 13-15 motivate our algorithm which is described as Algorithm 1. The main step of
the algorithm is the while loop that takes any unmarked vertex v in (A− ∩A′+)∪ (B+ ∩B′−).
Initially all vertices are unmarked. Consider the first iteration of the algorithm: let v ∈ A.

Lemma 13 tells us that for any fully popular matching N and any witness ~α of N , we
have αv = 0. Lemma 15 tells us that αu = 0 for every vertex u in the component C, where
C is v’s connected component in G0. The proof of Lemma 12 shows N has a realization N∗α
in H such that N∗α contains (a−` , ∗) and (∗, a+

r) for every agent a ∈ C.
Thus we are interested in those legal stable matchings in H that contain (a−` , ∗) and

(∗, a+
r) for every agent a ∈ C. Hence our algorithm forbids all edges (a+

` , ∗) and (∗, a−r) for
every agent a ∈ C in the stable matching that we compute here. This step is implemented
by making every neighbor reject offers from a+

` (this may induce other rejections) and
symmetrically, ar rejects all offers from superscript + neighbors. Note that the resulting
matching may contain (a−` , a+

r) for some of the agents a in C. All vertices in C get marked
in this iteration.

Let D1 ⊆ D0 be the set of all legal stable matchings in H that contain (a−` , ∗) and (∗, a+
r)

for every agent a ∈ C. Thus D1 is a sublattice of D0. We know from the proof of Lemma 12
that N∗α ∈ D1 where N is a fully popular matching in G and ~α any witness of N . So if D1 is
empty then we can conclude that G has no fully popular matching.

ICALP 2020

70:12 Popular Matchings with One-Sided Bias

Algorithm 1 Input: G = (A ∪B, E) with strict preferences.

1: Compute a legal stable matching S0 in H by running Gale-Shapley algorithm with
forbidden edges.
{Vertices in AL ∪BL propose and those in BR ∪AR dispose.}

2: Let A−, A′+ and B+, B
′
− be as defined earlier (see the start of Section 3.1).

3: Initially all vertices are unmarked and i = 0.
4: while there exists an unmarked vertex v ∈ (A− ∩A′+) ∪ (B+ ∩B′−) do
5: i = i+ 1.
6: Modify Si−1 to Si so as to forbid all edges (a+

` , ∗) and (∗, a−r) for every agent a in v’s
component in the popular subgraph G0.
(Si is the (AL ∪BL)-optimal legal stable matching in H that avoids all forbidden edges
identified in the first i iterations of the while-loop.)

7: if there is no such legal stable matching Si in H then
8: Return “No fully popular matching in G”.
9: end if

10: Update the sets A−, A′+ and B+, B
′
−: these correspond to Si now.

11: Mark all vertices in v’s component in the popular subgraph G0.
12: end while
13: Return M = {(a, b) ∈ E : (a+

` , b
−
r) or (a−` , b+

r) is in Si}.

Let us assume we are now in the i-th iteration and let Di be the set of legal stable
matchings in H that avoid all edges forbidden by our algorithm in the first i iterations. In
other words, Di is the set of those matchings in Di−1 where no edge forbidden in the i-th
iteration is present. We have D0 ⊇ D1 ⊇ · · · ⊇ Di−1 ⊇ Di. For all 0 ≤ j ≤ i, the set Dj
forms a sublattice of the lattice of all stable matchings in H [13].

I Lemma 16. For every fully popular matching N in G and every witness ~α of N , the
realization N∗α is an element of Di.

Proof. We will prove the lemma by induction. We know from Lemma 12 that the base
case is true, i.e., N∗α ∈ D0. By induction hypothesis, let us assume that for every fully
popular matching N and every witness ~α, the realization N∗α is an element of Di−1. Since
the algorithm entered the i-th iteration of the while loop, there was an unmarked vertex x in
(A− ∩A′+) ∪ (B+ ∩B′−) at the start of this iteration.

B Claim 17. For any fully popular matching N and any witness ~α of N , we have αx = 0.

Proof. The matching Si−1 computed in Step 6 of the (i− 1)-th iteration is the (AL ∪BL)-
optimal matching in the lattice Di−1. Hence if (x−` , ∗) ∈ Si−1 for some x` ∈ AL ∪BL then
(x−` , ∗) belongs to every matching in Di−1. The matching Si−1 is also the (AR∪BR)-pessimal
matching in the set Di−1. Hence if (∗, x+

r) ∈ Si−1 for some xr ∈ AR ∪ BR then (∗, x+
r)

belongs to every matching in Di−1.
If the above claim is false then there is a fully popular matching N and a witness ~α

of N with αx ∈ {±1}. If αx = 1 then there is a legal stable matching N∗α in H such
that (x+

` , ∗) ∈ N∗α. If αx = −1 then there is a legal stable matching N∗α in H such that
(∗, x−r) ∈ N∗α. Since N∗α ∈ Di−1, both cases contradict our earlier observation that every
matching in Di−1 has to contain (x−` , ∗) and (∗, x+

r). Thus for any fully popular matching N
and any witness ~α of N , we have αx = 0. C

T. Kavitha 70:13

Claim 17 along with Lemma 15 tells us that for all vertices u in x’s component C ′ in G0,
we have αu = 0. The proof of Lemma 12 shows us that N∗α contains (a−` , ∗) and (∗, a+

r) for
every agent a ∈ C ′. Since N∗α ∈ Di−1, it follows that N∗α is an element in Di. This finishes
the proof of this lemma. J

Hence if Di = ∅, i.e., if the algorithm says “no” in Step 8, then there is indeed no fully
popular matching in G. This finishes one part of our proof of correctness. We now need to
show that if our algorithm returns a matching M , then M is a fully popular matching in G.

4 Correctness of our algorithm

In this section we show that the matching returned by Algorithm 1 is a fully popular matching
in G. Let Si be the matching in H computed in the final iteration of Algorithm 1. Let M
be the matching (in G) induced by Si in the upper half of H: this is as defined in Step 13 of
Algorithm 1.

Note that M ⊆ (A+ ×B−) ∪ (A− ×B+), where the sets A+, B−, A−, B+ are defined at
the beginning of Section 3.1: the matching Si replaces S0 in these definitions now. Similarly,
let L be the matching (in G) induced by Si in the lower half of H. So

L = {(a, b) ∈ E : (b+
` , a

−
r) or (b−` , a

+
r) is in Si}.

Thus L ⊆ (A′+ × B′−) ∪ (A′− × B′+). Let UA (resp., UB) be the set of vertices u in A

(resp., B) such that (u−` , u+
r) ∈ Si. The vertices in UA ∪UB are unmatched in both M and L.

Since Si is a legal stable matching in H, it matches all vertices in H using valid edges. Thus
by Theorem 5, M is A-popular.2 We need to show that M is popular in G. Theorem 18 will
be our starting point.

I Theorem 18. The matching M is popular in the subgraph G \ UB. Also, the matching L
is popular in the subgraph G \ UA.

Proof. The popularity of L in G \ UA will be shown using the witness ~β defined below and
the popularity of M in G \ UB will be shown using the witness ~γ defined below.

1. βu = 1 for u ∈ A′+ ∪B′+, βu = −1 for u ∈ A′− ∪B′−, and βu = 0 for u ∈ UB .
2. γu = 1 for u ∈ A+ ∪B+, γu = −1 for u ∈ A− ∪B−, and γu = 0 for u ∈ UA.

Since L ⊆ (A′+×B′−)∪(A′−×B′+), we have
∑
u∈(A∪B)\UA

βu = 0. Note that wtL(u, u) = 0
for u ∈ UB and wtL(u, u) = −1 for all other u. Thus βu ≥ wtL(u, u) for all u ∈ (A∪B) \UA.

Similarly,
∑
u∈(A∪B)\UB

γu = 0. Also, γu ≥ wtM (u, u) for all u ∈ (A ∪B) \ UB .

B Claim 19. βa + βb ≥ wtL(a, b) for all edges (a, b) where a ∈ A \ UA and b ∈ B.

B Claim 20. γa + γb ≥ wtM (a, b) for all edges (a, b) where a ∈ A and b ∈ B \ UB .

We will prove Claim 20 below. The proof of Claim 19 is analogous.
Consider a ∈ UA. We set γa = 0 and we know that (a−` , a+

r) ∈ Si. Recall that a+
r is

a`’s least preferred neighbor, thus a` must have been rejected by all its more preferred
neighbors in our variant of the Gale-Shapley algorithm in H. That is, every neighbor b+

r of
a` received a proposal from a−` . Since br prefers superscript − neighbors to superscript +

2 In order to apply Theorem 5, we ought to say M ∪ {(u, u) : u ∈ UA ∪ UB} is A-popular.

ICALP 2020

70:14 Popular Matchings with One-Sided Bias

neighbors, this means (d−` , b+
r) ∈ Si for some neighbor d−` that br prefers to a−` , i.e., b

prefers d to a. Thus b ∈ B1 (so γb = 1) and moreover, wtM (a, b) = 0. Hence we have
γa + γb = 1 > wtM (a, b).
We will next show this constraint holds for all edges (a, b) incident to a ∈ A−. There are
2 cases: (1) b ∈ B− and (2) b ∈ B+. In case (1), we have (a−` , c+

r) and (d+
` , b
−
r) in Si.

Since every vertex prefers superscript − neighbors to superscript + neighbors, it means
a` proposed to b−r and got rejected, i.e., br prefers its partner d+

` to a+
` . We also claim a`

prefers its partner c+
r to b+

r . This is because br prefers a−` to d+
` (superscript − neighbors

over superscript + neighbors): so if a−` had proposed to br, then br would have rejected
its partner d+

` . This means both a and b prefers their partners in M to each other. Thus
wtM (a, b) = −2 = γa + γb.
In case (2) above, either (i) (a−` , b+

r) ∈ Si or (ii) (a−` , c+
r) and (d−` , b+

r) are in Si: since Si
is stable, a` prefers c+

r to b+
r or br prefers d−` to a−` . Thus wtM (a, b) ≤ 0 = γa + γb.

Finally, we will show this constraint holds for all edges (a, b) incident to a ∈ A+. There
are 2 cases: b ∈ B+ and b ∈ B−. In the first case, we have γa + γb = 2 and since
wtM (a, b) ≤ 2, the constraint wtM (a, b) ≤ γa + γb obviously holds.
In the second case, either (i) (a+

` , b
−
r) ∈ Si or (ii) (a+

` , c
−
r) and (d+

` , b
−
r) are in Si: since

Si is stable, a` prefers c−r to b−r or br prefers d+
` to a+

` . Thus wtM (a, b) ≤ 0 = γa + γb.
This finishes the proof of M ’s popularity in G \ UB (by Theorem 6). J

Thus the matching M is popular in the subgraph G \ UB. However we need to prove
the popularity of M in the entire graph G, i.e., we need to include vertices in UB as well.
Setting γb = 0 for b ∈ UB will not cover edges in A−×UB . Now we will use the fact that L is
popular in G \UA and that M and L have several edges in common (as shown in Lemma 22).

Let Z be the set of all vertices outside UA ∪ UB that got marked in our algorithm. So
these are the marked vertices that are matched in Si to genuine neighbors (not to their twins).
Since we marked entire connected components in the popular subgraph G0 in Algorithm 1,
both M and L match vertices in Z to each other.

Lemma 22 shows that the matching Si has “partial symmetry” across the upper and
lower halves of the graph H; more precisely, M and L are identical on the set Z. This will
be key to showing M ’s popularity. The following lemma will be useful in proving Lemma 22.

I Lemma 21. M and L are stable matchings when restricted to vertices in Z ∪ UA ∪ UB.

Proof. Let ZA = Z∩A and let ZB = Z∩B. It follows from our algorithm that ZA ⊆ A−∩A′+
and ZB ⊆ B+ ∩B′− (see Fig. 5).

We need to show that M (similarly, L) has no blocking edge in (ZA ∪ UA)× (ZB ∪ UB).
Consider any edge (a, b) ∈ ZA × ZB . We know from Claim 20 (in the proof of Theorem 18)
that wtM (a, b) ≤ γa + γb = −1 + 1 = 0. Similarly, wtL(a, b) ≤ βa + βb = 1 − 1 = 0. Thus
(a, b) is not a blocking edge to either M or L.

Thus neither M nor L has a blocking edge in ZA × ZB. Moreover, G has no edge
in UA × UB. This is because each vertex u ∈ UA ∪ UB is unstable – otherwise (u−` , u+

r)
is an unpopular edge and thus forbidden. Consider any edge (a, b) ∈ UA × ZB. We have
wtM (a, b) ≤ γa+γb = 0+1 = 1. Since wtM (a, b) is an even number, this means wtM (a, b) ≤ 0.
Thus (a, b) is not a blocking edge to M .

We will now show that (a, b) is not a blocking edge to L. Since a ∈ UA and b ∈ ZB ⊆ B′−,
we have (a−` , a+

r) and (b−` , c+
r) in Si, where c is some neighbor of b. Note that a−` is a+

r ’s
least preferred superscript − neighbor in H. Thus a+

r did not receive any offer from b−` in
Algorithm 1. Because Si is stable, it has to be the case that b` prefers c+

r to a+
r . Since

(c, b) ∈ L, we have wtL(a, b) = 0. Thus (a, b) is not a blocking edge to L.
It can similarly be shown that no edge in ZA ×UB blocks either M or L. Thus M and L

are stable matchings when restricted to vertices in Z ∪ UA ∪ UB . J

T. Kavitha 70:15

UA

ZA ZB

The upper half of H The lower half of H

A− \ ZA B+ \ ZB

A+

B′− \ ZB

B′+

A′+ \ ZA

A′−B−

UB

ZB ZA

Figure 5 The final picture of the partitions created by M and L in the upper and lower halves of
H, resp. The while-loop termination condition implies (A− \ZA) ⊆ A′− and (A′+ \ZA) ⊆ A+, so on.

I Lemma 22. The matching M restricted to vertices in Z is the same as the matching L
restricted to vertices in Z.

Proof. Consider any connected component C in the popular subgraph G0. The component
C splits into sub-components C ′1, . . . , C ′t when we restrict edges to only those marked “valid”.
We claim there is exactly one stable matching TC′

j
in each such sub-component C ′j . Assume

C ′j contains a job b that is a top choice neighbor for some agent.3 Then b has to be matched
in TC′

j
to its most preferred neighbor a in C ′j , otherwise (a, b) would be a blocking edge to

TC′
j
. Recall that every agent has exactly 2 valid edges incident to it. So fixing one edge (a, b)

in the matching fixes TC′
j
.

In more detail, every agent a′ 6= a in C ′j such that f(a′) = b has to be matched in TC′
j

to s(a′) (call it b′). Given that a′ is matched to b′, every agent a′′ 6= a′ in C ′j such that
s(a′′) = b′ has to be matched in TC′

j
to f(a′′) and so on. Thus the matching TC′

j
gets fixed.

The same happens with every sub-component in C and so the only stable matching in C is
TC = ∪tj=1TC′

j
.

Let C1, . . . , Cr be the connected components of G0 that contain vertices in Z. So all
vertices in ∪ri=1Ci are marked, thus ∪ri=1Ci ⊆ Z ∪ UA ∪ UB. We know from Lemma 21
that both M and L are stable matchings in each Ci, where 1 ≤ i ≤ r. So M (similarly, L)
restricted to ∪ri=1Ci is ∪ri=1TCi

. Thus M and L have the same edges on Z. J

Lemma 22 helps us in defining an appropriate witness ~α to show M ’s popularity in G.
Recall ~γ from Theorem 18: we will set αu = 0 for all u ∈ Z ∪ UB and αu = γu otherwise.
Before we prove the popularity of M in Theorem 25, we need the following two lemmas.

I Lemma 23. For every a ∈ A− \ ZA, a likes M(a) at least as much as L(a).

Proof. Suppose not. Then M(a) = s(a) while L(a) = f(a). We claim f(a) ∈ B+. Otherwise
f(a) ∈ B−, however for every edge (x, y) ∈ A− × B−, we have wtM (x, y) ≤ γx + γy = −2.
But a prefers f(a) to its partner in M , thus wtM (a, f(a)) ≥ 0. Hence f(a) ∈ B+. Since
wtM (x, y) ≤ 0 for every edge (x, y) ∈ A− ×B+, we can conclude that wtM (a, f(a)) = 0, i.e.,
f(a) is matched in M to a neighbor a′ ∈ A− that it prefers to a. Since Si uses only valid
edges, this means f(a) = f(a′), i.e., f(a) is the top choice neighbor of a′.

3 Otherwise C′j consists of a single edge (a, s(a)) for some a ∈ A; if there was another agent u in C′j then
s(u) = s(a) and so one of a, u would be left unmatched in Si, a contradiction to Si’s stability in H.

ICALP 2020

70:16 Popular Matchings with One-Sided Bias

We now move to the lower half of H: observe that both a and a′ are in A′−. This
is because there is no unmarked vertex in A− ∩ A′+ by the termination condition of our
while-loop. Note that a is unmarked since a /∈ ZA. Thus a′ is also unmarked since (a, f(a))
and (a′, f(a)) are popular edges – hence a and a′ are in the same connected component in
G0. Since a ∈ A′−, L(a) = f(a) is in B′+. Consider the edge (a′, f(a)) ∈ A′− ×B′+: both a′
and f(a) prefer each other to their respective partners in L. This means wtL(a′, f(a)) = 2.
However for each edge (x, y) ∈ A′− ×B′+, we have wtL(x, y) ≤ βx + βy = 0, a contradiction.
So any a ∈ A− \ ZA likes M(a) at least as much as L(a). J

I Lemma 24. For every a ∈ A+ ∩A′+, a likes M(a) at least as much as L(a).

Proof. Suppose not. ThenM(a) = s(a) while L(a) = f(a). Since a ∈ A′+, L(a) = f(a) ∈ B′−.
This implies f(a) ∈ B− since there is no unmarked vertex in B+ ∩B′− by the termination
condition of our while-loop. We know f(a) is unmarked since a (its partner in L) is unmarked
and this is because a ∈ A+. Since a ∈ A+ and f(a) ∈ B−, we have wtM (a, f(a)) ≤ γa+γb = 0
and so f(a) has to be matched in M to a more preferred neighbor a′ ∈ A+. As argued in
the proof of Lemma 23, it follows from the legality of Si that f(a) is the top choice neighbor
of a′.

Consider the matching L in the lower half of H. Since L(a) = f(a), wtL(a′, f(a)) = 2.
That is, (a′, f(a)) is a blocking edge to L. We need βa′ = βf(a) = 1 to ensure βa′ + βf(a) ≥
wtL(a′, f(a)) = 2. However f(a) ∈ B′− since a ∈ A′+. This means βf(a) = −1, a contradiction.
Thus any a ∈ A+ ∩A′+ likes M(a) at least as much as L(a). J

I Theorem 25. The matching M is popular in G.

Proof. The popularity ofM in G will be shown using ~α defined below: (recall that ZA = Z∩A
and ZB = Z ∩B)

set αu = 0 ∀u ∈ Z ∪ UA ∪ UB .
set αu = 1 ∀u ∈ A+ ∪ (B+ \ ZB) and αu = −1 ∀u ∈ B− ∪ (A− \ ZA).

Since M ⊆ (A+ × B−) ∪ (ZA × ZB) ∪ ((A− \ ZA) × (B+ \ ZB)) (see Fig. 5), we have∑
u∈A∪B αu = 0. Also αu ≥ wtM (u, u) for all vertices u ∈ A ∪B since αu = 0 = wtM (u, u)

for u ∈ UA ∪ UB and αu ≥ −1 = wtM (u, u) for all other u. To use Theorem 6, we need to
show αa + αb ≥ wtM (a, b) for all edges (a, b).

We will first show this constraint holds for edges incident to vertices in UB . It is easy to
show that the neighborhood of UB is in A′+ and also that each a ∈ A′+ prefers its partner
in L to b ∈ UB. This is because (b−` , b+

r) ∈ Si and b+
r is b`’s least preferred neighbor, thus

b` must have been rejected by all its more preferred neighbors in our algorithm, i.e., every
neighbor a+

r of b` received a proposal from b−` . Since ar prefers superscript − neighbors to
superscript + neighbors, this means (c−` , a+

r) ∈ Si for some neighbor c−` that ar prefers to
b−` , i.e., a prefers c to b. Thus a ∈ A′+.

We have A′+ = ZA ∪ (A′+ \ ZA) and A′+ \ ZA ⊆ A+ (by the while-loop termination
condition). Lemma 22 and Lemma 24 showed that for a ∈ ZA ∪ (A+ ∩ A′+), we have
M(a) �a L(a), i.e., a likes M(a) at least as much as L(a), and we showed above that each
a ∈ A′+ prefers L(a) to b. Thus wtM (a, b) = 0. Since we set αa = 0 for a ∈ ZA and αa = 1
for a ∈ A+, we have αa + αb ≥ 0 = wtM (a, b).

We now need to show αa +αb ≥ wtM (a, b) holds for all edges (a, b) in G \UB . Recall the
witness ~γ defined in the proof of Theorem 18 to show the popularity of M in the subgraph
G \UB . Observe that it is only for vertices u in Z that we have αu 6= γu. Moreover, αa > γa
for a ∈ ZA. Thus we only have to worry about edges (a, b) in G \ UB where b ∈ ZB and
check that wtM (a, b) ≤ αa + αb. All other edges in G \ UB are covered by ~α (since ~γ covers
these edges). Let b ∈ ZB ⊆ B+ ∩B′−.

T. Kavitha 70:17

1. Suppose a ∈ UA∪ZA. For any (a, b) ∈ (UA∪A−)×B+, we have wtM (a, b) ≤ γa+γb ≤ 0+1.
Since wtM (a, b) is an even number, this means wtM (a, b) ≤ 0 = αa + αb.

2. Suppose a ∈ A− \ZA. Then a ∈ A′− by the termination condition of the while-loop in our
algorithm. Since wtL(x, y) ≤ βx + βy = −2 for every edge (x, y) ∈ A′− ×B′−, it follows
that b ∈ ZB ⊆ B′− prefers L(b) to a and similarly, a ∈ A′− prefers L(a) to b.
We know from Lemma 22 that M(b) = L(b), so b prefers M(b) to a. We know from
Lemma 23 that M(a) �a L(a) (i.e., a likes M(a) at least as much as L(a)), so a prefers
M(a) to b. Thus wtM (a, b) = −2 < αa + αb since αa = −1 and αb = 0.

3. Suppose a ∈ A+. There are two sub-cases here: (i) a ∈ A′− and (ii) a ∈ A′+. In sub-
case (i), wtL(a, b) ≤ βa + βb = −2. Since M(b) = L(b) (by Lemma 22), it means that b
prefers M(b) to a. Hence wtM (a, b) ≤ 0 < αa + αb since αa = 1 and αb = 0 here.
Consider sub-case (ii). We have wtL(a, b) ≤ βa + βb = 0. So either (1) b prefers L(b) to
a or (2) a prefers L(a) to b. In case (1), we have wtM (a, b) ≤ 0 since M(b) = L(b) (by
Lemma 22). In case (2) also, we have wtM (a, b) ≤ 0 since M(a) �a L(a) (by Lemma 24).
So in both cases we have: wtM (a, b) ≤ 0 < αa + αb since αa = 1 and αb = 0 here.

Thus ~α is a witness of M ’s popularity (by Theorem 6). So M is popular in G. J

Since M is A-popular, Theorem 25 immediately implies that M is fully popular in G.
Moreover, M is a max-size fully popular matching in G, as shown below.

I Lemma 26. The matching M is a max-size fully popular matching in G.

Proof. Observe that UA ∪ UB is the set of vertices left unmatched in the matching M . We
claim the vertices in UA ∪ UB are left unmatched in any fully popular matching N . This
claim holds because the matching Si is the (AL ∪BL)-optimal matching in the lattice Di.
Thus if (a−` , a+

r) ∈ Si, i.e., if a` is matched to its least preferred neighbor a+
r in Si then a`

has to be matched to a+
r in the realization N∗α of N as well (for any witness ~α of N), i.e.,

(a−` , a+
r) ∈ N∗α; equivalently, a is left unmatched in N (after removing self-loops from N).

Similarly, if (b−` , b+
r) ∈ Si then b` has to be matched to its least preferred neighbor b+

r in N∗α
as well, i.e., (b−` , b+

r) ∈ N∗α; equivalently, b is left unmatched in N . J

Running time of the algorithm. The set of popular edges can be computed in linear time [7].
Similarly, the set of valid edges can be computed in linear time [2]. Gale-Shapley algorithm
and in particular, the variant of Gale-Shapley algorithm used here – to compute a stable
matching that avoids all forbidden edges – can be implemented to run in linear time [13].
Hence it can be shown that Algorithm 1 runs in linear time. Thus Theorem 4 stated in
Section 1 follows.

References
1 A. Abdulkadiroğlu and T. Sönmez. School choice: A mechanism design approach. American

Economic Review, 93(3):729–747, 2003.
2 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular matchings. SIAM

Journal on Computing, 37(4):1030–1045, 2007.
3 S. Baswana, P. P. Chakrabarti, S. Chandran, Y. Kanoria, and U. Patange. Centralized

admissions for engineering colleges in india. INFORMS Journal on Applied Analytics, 49(5):338–
354, 2019.

4 Canadian Resident Matching Service. How the matching algorithm works. http://carms.ca/
algorithm.htm.

5 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

ICALP 2020

http://carms.ca/algorithm.htm
http://carms.ca/algorithm.htm

70:18 Popular Matchings with One-Sided Bias

6 Condorcet method. https://en.wikipedia.org/wiki/Condorcet_method.
7 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Programming,

172(1):209–229, 2018.
8 Y. Faenza and T. Kavitha. Quasi-popular matchings, optimality, and extended formulations.

In Proceedings of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 325–344, 2020.

9 Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular matchings and limits to tractability.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2790–2809, 2019.

10 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

11 D. Gale and M. Sotomayor. Some remarks on the stable matching problem. Discrete Applied
Mathematics, 11:223–232, 1985.

12 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,
20:166–173, 1975.

13 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, 1989.

14 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information
and Computation, 222:180–194, 2013.

15 C.-C. Huang and T. Kavitha. Popularity, mixed matchings, and self-duality. In Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2294–2310,
2017.

16 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43:52–71, 2014.

17 T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 22:1–22:13, 2016.

18 T. Kavitha, J. Mestre, and M. Nasre. Popular mixed matchings. Theoretical Computer Science,
412:2679–2690, 2011.

19 D. F. Manlove and C. Sng. Popular matchings in the capacitated house allocation problem.
In Proceedings of the 14th Annual European Symposium on Algorithms (ESA), pages 492–503,
2006.

20 J. Mestre. Weighted popular matchings. ACM Transactions on Algorithms, 10(1):2:1–2:16,
2014.

21 National Resident Matching Program. Why the match? http://www.nrmp.org/whythematch.
pdf.

https://en.wikipedia.org/wiki/Condorcet_method
http://www.nrmp.org/whythematch.pdf
http://www.nrmp.org/whythematch.pdf

	Introduction
	Background and Related results
	Our Result and Techniques

	Preliminaries
	Fully Popular Matchings
	Two partitions of the vertex set
	Our algorithm

	Correctness of our algorithm

