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Abstract
Makespan minimization on identical machines is a fundamental problem in online scheduling. The
goal is to assign a sequence of jobs to m identical parallel machines so as to minimize the maximum
completion time of any job. Already in the 1960s, Graham showed that Greedy is (2 − 1/m)-
competitive [18]. The best deterministic online algorithm currently known achieves a competitive
ratio of 1.9201 [14]. No deterministic online strategy can obtain a competitiveness smaller than
1.88 [34].

In this paper, we study online makespan minimization in the popular random-order model, where
the jobs of a given input arrive as a random permutation. It is known that Greedy does not attain a
competitive factor asymptotically smaller than 2 in this setting [32]. We present the first improved
performance guarantees. Specifically, we develop a deterministic online algorithm that achieves
a competitive ratio of 1.8478. The result relies on a new analysis approach. We identify a set of
properties that a random permutation of the input jobs satisfies with high probability. Then we
conduct a worst-case analysis of our algorithm, for the respective class of permutations. The analysis
implies that the stated competitiveness holds not only in expectation but with high probability.
Moreover, it provides mathematical evidence that job sequences leading to higher performance
ratios are extremely rare, pathological inputs. We complement the results by lower bounds for the
random-order model. We show that no deterministic online algorithm can achieve a competitive
ratio smaller than 4/3. Moreover, no deterministic online algorithm can attain a competitiveness
smaller than 3/2 with high probability.
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1 Introduction

We study one of the most basic scheduling problems. Consider a sequence of jobs J =
J1, . . . , Jn that has to be assigned to m identical parallel machines. Each job Jt has an
individual processing time pt, 1 ≤ t ≤ n. Preemption of jobs is not allowed. The goal is to
minimize the makespan, i.e. the maximum completion time of any job in the constructed
schedule. Both the offline and online variants of this problem have been studied extensively,
see e.g. [4, 11, 14, 18, 20, 33] and references therein.

We focus on the online setting, where jobs arrive one by one. Whenever a job Jt is
presented, its processing time pt is revealed. The job has to be scheduled immediately on one
of the machines without knowledge of any future jobs Js, with s > t. Given a job sequence J ,
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68:2 Scheduling in the Random-Order Model

let A(J ) denote the makespan of an online algorithm A on J . Let OPT (J ) be the optimum
makespan. A deterministic online algorithm A is c-competitive if A(J ) ≤ c ·OPT (J ) holds
for all J [38]. The best competitive ratio that can be achieved by deterministic online
algorithms is in the range [1.88, 1.9201]. No randomized online algorithm is known that beats
deterministic ones, for general m.

In this paper we investigate online makespan minimization in the random-order model.
Here an input instance / job sequence is chosen by an adversary. Then a random permutation
of the input elements / jobs arrives. The random-order model was considered by Dynkin [10]
and Lindley [28] for the secretary problem. Over the last years the framework has received
quite some research interest and many further problems have been studied. These include
generalized secretary problems [2, 3, 13, 27, 28], the knapsack problem [2, 27], bin pack-
ing [25], facility location [30], matching problems [16, 21, 29], packing LPs [26] and convex
optimization [19].

We present an in-depth study of online makespan minimization in the random-order
model. As a main contribution we devise a new deterministic online algorithm that achieves a
competitive ratio of 1.8478. After almost 20 years this is the first progress for the pure online
setting, where an algorithm does not resort to extra resources in handling a job sequence.

Previous work. We review the most important results relevant to our work and first address
the standard setting where an online algorithm must schedule an arbitrary, worst-case job
sequence. Graham in 1966 showed that the famous Greedy algorithm, which assigns each job
to a least loaded machine, is (2− 1

m )-competitive. Using new deterministic strategies the
competitiveness was improved in a series of papers. Galambos and Woeginger [15] gave an
algorithm with a competitive ratio of (2− 1

m − εm), where εm tends to 0 as m→∞. Bartal
et al. [4] devised a 1.986-competitive algorithm. The bound was improved to 1.945 [22] and
1.923 [1]. Fleischer and Wahl [14] presented an algorithm that attains a competitive ratio
of 1.9201 as m → ∞. Chen et al. [7] gave an algorithm whose competitiveness is at most
1 + ε times the best possible factor, but no explicit bound was provided. Lower bounds on
the competitive ratio of deterministic online algorithms were shown in [1, 5, 12, 17, 34, 35].
For general m, the bound was raised from 1.707 [12] to 1.837 [5] and 1.854 [17]. Rudin [34]
showed that no deterministic strategy has a competitiveness smaller than 1.88.

For randomized online algorithms, there is a significant gap between the best known
upper and lower bounds. For m = 2 machines, Bartal et al. [4] presented an algorithm
that achieves an optimal competitive ratio of 4/3. To date, there exists no randomized
algorithm whose competitiveness is smaller than the deterministic lower bound, for general
m. The best known lower bound on the performance of randomized online algorithms tends
to e/(e− 1) ≈ 1.581 as m→∞ [6, 37].

Recent research on makespan minimization has examined settings where an online
algorithm is given extra resources when processing a job sequence. Specifically, an algorithm
might have a buffer to reorder the incoming job sequence [11, 24] or is allowed to migrate
jobs [36]. Alternatively, an algorithm has information on the job sequence [8, 9, 23, 24], e.g.
it might know the total processing time of the jobs or even the optimum makespan.

In the random-order model only one result is known for makespan minimization on
identical machines. Osborn und Torng [32] showed that Greedy does not achieve a competitive
ratio smaller than 2 as m→∞. Recently Molinaro [31] studied online load balancing with
the objective to minimize the lp-norm of the machine loads. He considers a general scenario
with machine-dependent job processing times. For makespan minimization he presents an
algorithm that, in the worst case, is O(logm/ε)-competitive and, in the random-order model,
has an expected makespan of (1 + ε)OPT (J ) +O(logm/ε), for any ε ∈ (0, 1].
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Our contribution. We investigate online makespan minimization in the random-order
model, a sensible and widely adopted input model to study algorithms beyond the worst
case. Specifically, we develop a new deterministic algorithm that achieves a competitive ratio
of 1.8478 as m→∞. This is the first improved performance guarantee in the random-order
model. The competitiveness is substantially below the best known ratio of 1.9201 in the
worst-case setting and also below the corresponding lower bound of 1.88 in that framework.

A new feature of our algorithm is that it schedules an incoming job on one of three
candidate machines in order to maintain a certain load profile. The best strategies in the
worst-case setting use two possible machines, and it is not clear how to take advantage of
additional machines in that framework. The choice of our third, extra machine is quite
flexible: An incoming job is placed either on a least loaded, a heavily loaded or – as a new
option – on an intermediate machine. The latter one is the (h+ 1)-st least loaded machine,
where h may be any integer with h ∈ ω(1) and h ∈ o(

√
m).

When assigning a job to a machine different from the least loaded one, an algorithm has
to ensure that the resulting makespan does not exceed c times the optimum makespan, for
the targeted competitive ratio c. All previous strategies in the literature lower bound the
optimum makespan by the current average load on the machines. Our new algorithm works
with a refined lower bound that incorporates the processing times of the largest jobs seen so
far. The lower bound is obvious but has not been employed by previous algorithms.

The analysis of our algorithm proceeds in two steps. First we define a class of stable job
sequences. These are sequences that reveal information on the largest jobs as processing
volume is scheduled. More precisely, once a certain fraction of the total processing volume∑n

t=1 pt has arrived, one has a good estimate on the h-th largest job and has encountered
a certain number of the m+ 1 largest jobs in the input. The exact parameters have to be
chosen carefully.

We prove that with high probability, a random permutation of a given input of jobs is
stable. We then conduct a worst-case analysis of our algorithm on stable sequences. Using
their properties, we show that if the algorithm generates a flat schedule, like Greedy, and can
be hurt by a huge job, then the input must contain many large jobs so that the optimum
makespan is also high. A new ingredient in the worst-case analysis is the processing time of
the h-th largest job in the input. We will relate it to machine load in the schedule and to
the processing time of the (m+ 1)-st largest job; twice the latter value is a lower bound on
the optimum makespan.

The analysis implies that the competitive ratio of 1.8478 holds with high probability.
Input sequences leading to higher performance ratios are extremely rare. We believe that
our analysis approach might be fruitful in the study of other problems in the random-order
model: Identify properties that a random permutation of the input elements satisfies with
high probability. Then perform a worst-case analysis.

Finally in this paper we devise lower bounds for the random-order model. We prove that
no deterministic online algorithm achieves a competitive ratio smaller than 4/3. Moreover, if
a deterministic online algorithm is c-competitive with high probability, then c ≥ 3/2.

2 Strong competitiveness in the random-order model

We define competitiveness in the random-order model and introduce a stronger measure of
competitiveness that implies high-probability bounds. Recall that traditionally a deterministic
online algorithm A is c-competitive if A(J ) ≤ c · OPT (J ) holds for all job sequences
J = J1, . . . , Jn. We will refer to this worst-case model also as the adversarial model.

ICALP 2020



68:4 Scheduling in the Random-Order Model

In the random-order model a job sequence J = J1, . . . , Jn is given, which may be
specified by an adversary. (Alternatively, a set of jobs could be specified.) Then a random
permutation of the jobs arrives. We define the expected cost / makespan of a deterministic
online algorithm. Let Sn be the permutation group of the integers from 1 to n, which
we consider a probability space under the uniform distribution, i.e. each permutation in
Sn is chosen with probability 1/n!. Given σ ∈ Sn, let J σ = Jσ(1), . . . , Jσ(n) be the job
sequence permuted by σ. The expected makespan of A on J in the random-order model
is Arom(J ) = Eσ∼Sn [A(J σ)] = 1

n!
∑
σ∈Sn

A(J σ). The algorithm A is c-competitive in the
random-order model if Arom(J ) ≤ c ·OPT (J ) holds for all job sequences J .

We next define the notion of a deterministic online algorithm A being nearly c-competitive.
The second condition in the following definition requires that the probability of A not meeting
the desired performance ratio must be arbitrarily small asm grows and a random permutation
of a given job sequence arrives. The subsequent Lemma 2 states that a nearly c-competitive
algorithm is c-competitive in the random-order model.

I Definition 1. A deterministic online algorithm A is called nearly c-competitive if the
following two conditions hold.

The algorithm A achieves a constant competitive ratio in the adversarial model.
For every ε > 0, there exists an m(ε) such that for all machine numbers m ≥ m(ε) and
all job sequences J there holds Pσ∼Sn [A(J σ) ≥ (c+ ε)OPT (J )] ≤ ε.

I Lemma 2. If a deterministic online algorithm is nearly c-competitive, then it is c-
competitive in the random-order model as m→∞.

Proof. Let C be the constant such that A is C-competitive in the adversarial model. We
may assume that C > c. Given 0 < δ ≤ C − c, we show that there exists an m(δ) such
that, for all m ≥ m(δ), we have Arom(J ) ≤ (c+ δ)OPT (J ) for every job sequences J . Let
ε = δ/(C − c+ 1). Since A is nearly c-competitive, there exists an m(ε) such that, for all
m ≥ m(ε) and all inputs J , there holds Pε(J ) = Pσ∼Sn [A(J σ) ≥ (c+ ε)OPT (J )] ≤ ε. Set
m(δ) = m(ε). We obtain

Arom(J ) ≤ (1− Pε(J ))(c+ ε)OPT (J ) + Pε(J ) · C ·OPT (J )
≤ ((1− ε)(c+ ε) + εC)OPT (J )
≤ (c+ ε(C − c+ 1))OPT (J )
= (c+ δ)OPT (J ). J

3 Description of the new algorithm

The deficiency of Greedy is that it tends to generate a flat, balanced schedule in which all
the machines have approximately the same load. An incoming large job can then enforce a
high makespan relative to the optimum one. It is thus crucial to try to avoid flat schedules
and maintain steep schedules that exhibit a certain load imbalance among the machines.

However, in general, this is futile. Consider a sequence ofm identical jobs with a processing
time of, say, Pm+1 (refering to the size of the (m+ 1)-st largest job in an input). Any online
algorithm that is better than 2-competitive must schedule these m jobs on separate machines,
obtaining the flattest schedule possible. An incoming even larger job of processing time
pmax will now enforce a makespan of Pm+1 + pmax. Observe that OPT ≥ max{2Pm+1, pmax}
since there must be one machine containing two jobs. In particular Pm+1 + pmax ≤ 1.5OPT.
Hence sensible online algorithms do not perform badly on this sequence.
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This example summarizes the quintessential strategy of online algorithms that are good
on all sequences: Ensure that in order to create a schedule that is very flat, i.e. such that
all machines have high load λ, the adversary must present m jobs that all are large relative
to λ. In order to exploit this very flat schedule and cause a high makespan the adversary
needs to follow up with yet another large job. But with these m + 1 jobs, the optimum
scheduler runs into the same problem as in the example: Of the m+ 1 large jobs, two have
to be scheduled on the same machine. Thus the optimum makespan is high, compensating
to the high makespan of the algorithm.

Effectively realizing the aforementioned strategy is highly non-trivial. In fact it is the
central challenge in previous works on adversarial makespan minimization that improve upon
Greedy [1, 4, 14, 15, 22]. These works gave us clear notions of how to avoid flat schedules,
which form the basis for our approaches. Instead of simply rehashing these ideas, we want to
outline next how we profit from random-order arrival in particular.

3.1 How random-order arrival helps

The first idea to profit from random-order arrival addresses the lower bound on OPT
sophisticated online algorithms need. In the literature only the current average load has
been considered, but under random-order arrival another bound comes to mind: The largest
job seen so far. In order for an algorithm to perform badly, a large job needs to come close
to the end of the sequence. Under random-order arrival, it is equally likely for such a job to
arrive similarly close to the beginning of the sequence. In this case, the algorithm knows
a better lower bound for OPT. The main technical tool will be our Load Lemma, which
allows us to relate what a job sequence should reveal early from an analysis perspective to
the actual fraction of jobs scheduled. This idea does not work for worst-case orders since
they tend to order jobs by increasing processing times.

Recall that the general challenge of our later analysis will be to establish that there had
to be m large jobs once the schedule gets very flat. In classical analyses, which consider
worst-case orders, these jobs appear with increasing density towards the end of the sequence.
In random orders this is unlikely, which can be exploited by the algorithm.

The third idea improves upon the first idea. Suppose, that we were to modify our
algorithm such that it could handle one very large job arriving close to the end of the
sequence. In fact, assume that it could only perform badly when confronted with h very large
jobs. We can then disregard any sequence which contains fewer such jobs. Recall that the
first idea requires one very large job to arrive sufficiently close to the beginning. Now, as h
grows, the probability of the latter event grows as well and approaches 1. This will not only
improve our competitive ratio tremendously, it also allows us to adhere to the stronger notion
of nearly competitiveness introduced in Section 2. Let us discuss how such a modification is
possible: The first step is to design our algorithm in a way that it is reluctant to use the h
least loaded machines. Intuitively, if the algorithm tries to retain machines of small load it
will require very large jobs to fill them. In order to force these filling jobs to actually be large
enough, our algorithm needs to use a very high lower bound for OPT. In fact, here it uses
another lower bound for the optimum makespan, 2P tm+1, twice the (m+ 1)-st largest job
seen so far at time t. Common analysis techniques can only make predictions about P tm+1 at
the very end of the sequence. It requires very subtle use of the random-order model to work
around this.

ICALP 2020
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3.2 Formal definition
Formally our algorithm ALG is nearly c-competitive, where c is the unique real root of the
polynomial Q[x] = 4x3 − 14x2 + 16x− 7, i.e.

c = 7+ 3
√

28−3
√

87+ 3
√

28+3
√

87
6 < 1.8478.

Given J , ALG is presented with a job sequence/permutation J σ = Jσ(1), . . . , Jσ(n) that
must be scheduled in this order. Throughout the scheduling process ALG always maintains
a list of the machines sorted in non-increasing order of current load. At any time the load
of a machine is the sum of the processing times of the jobs already assigned to it. After
ALG has processed the first t jobs Jσ(1), . . . , Jσ(t), let M t

1, . . . ,M
t
m be any ordering of the

m machines according to non-increasing load. More specifically, let ltj denote the load of
machine M t

j . Then lt1 ≥ . . . ≥ ltm and lt1 is the makespan of the current schedule.
ALG places each incoming job Jσ(t), 1 ≤ t ≤ n, on one of three candidate machines. The

choice of one machine, having an intermediate load, is flexible. Let h = h(m) be an integer
with h(m) ∈ ω(1) and h(m) ∈ o(

√
m). We could use e.g. h(m) = b 3

√
mc or h(m) = blogmc.

Let

i = d(2c− 3)me+ h ≈ 0.6956m.

ALG will assign the incoming job to the machine with the smallest load, the (h + 1)-st
smallest load or the i-th largest load.

When scheduling a job on a machine that is different from the least loaded one, an
algorithm has to ensure that the resulting makespan does not exceed c∗ times the optimum
makespan, where c∗ is the desired competitiveness. All previous algorithms lower bound
the optimum makespan by the current average machine load. Algorithm ALG works with a
refined lower bound that incorporates the processing time of the largest job and twice the
processing time of the (m+ 1)-st largest job seen so far. These lower bounds on the optimum
makespan are immediate but have not been used in earlier strategies.

Formally, for j = 1, . . . ,m, let Ltj be the average load of the m − j + 1 least loaded
machines M t

j , . . . ,M
t
m, i.e. Ltj = 1

m−j+1
∑m
r=j l

t
r. We let Lt = Lt1 = 1

m

∑t
s=1 ps be the

average load of all the machines. For any j = 1, . . . , n, let P tj be the processing time of the
j-th largest job among the first t jobs Jσ(1), . . . , Jσ(t) in J σ. If t < j, we set P tj = 0. We let
ptmax = P t1 be the processing time of the largest job among the first t jobs in J σ. Finally, let
L = Ln, Pj = Pnj and pmax = pnmax.

The value Ot = max{Lt, ptmax, 2P tm+1} is a common lower bound on the optimum
makespan for the first t jobs and hence OPT (J ), see Proposition 5 in the next section. Note
that immediately before Jσ(t) is scheduled, ALG can compute Lt and hence Ot because Lt
is 1/m times the total processing time of the jobs that have arrived so far.

We next characterize load imbalance. Let

k = 2i−m ≈ (4c− 7)m ≈ 0.3912m

and

α = 2(c− 1)
2c− 3 ≈ 2.7376.

The schedule at time t is the one immediately before Jσ(t) has to be assigned. The schedule
is flat if lt−1

k < αLt−1
i+1. Otherwise it is steep. Job Jσ(t) is scheduled flatly (steeply) if the

schedule at time t is flat (steep).
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ALG handles each incoming job Jσ(t), with processing time pσ(t), as follows. If the
schedule at time t is steep, the job is placed on the least loaded machine M t−1

m . On the
other hand, if the schedule is flat, the machines M t−1

i , M t−1
m−h and M t−1

m are probed in this
order. If lt−1

i +pσ(t) ≤ c ·Ot, then the new machine load on M t−1
i will not violate the desired

competitiveness. The job is placed on this machine M t−1
i . Otherwise, if the latter inequality

is violated, ALG checks if a placement on M t−1
m−h is safe, i.e. if lt−1

m−h + pσ(t) ≤ c ·Ot. If this
is the case, the job is put on M t−1

m−h. Otherwise, Jσ(t) is finally scheduled on the least loaded
machine M t−1

m . A pseudo-code description of ALG is given below. The job assignment rules
are also illustrated in Figures 1 and 2.

Algorithm 1 The scheduling algorithm ALG.

1: Let Jσ(t) be the next job to be scheduled.
2: if the schedule at time t is steep then
3: Assign Jσ(t) to the least loaded machine M t−1

m ;
4: else // the schedule is flat
5: if lt−1

i + pσ(t) ≤ c ·Ot then Assign Jσ(t) to M t−1
i ;

6: else if lt−1
m−h + pσ(t) ≤ c ·Ot then Assign Jσ(t) to M t−1

m−h;
7: else Assign Jσ(t) to M t−1

m ;

k i

Figure 1 A steep schedule. ALG only considers the least loaded machine.
k i

Figure 2 A flat schedule. The three machines considered by ALG are marked for h = 2.

In the next section we will prove the following theorem, Theorem 3, which uses the notion
from Section 2. Lemma 2 then immediately gives the main result, Corollary 4.

I Theorem 3. ALG is nearly c-competitive, with c < 1.8478 defined as above.

I Corollary 4. ALG is c-competitive in the random-order model as m→∞.

From our analysis it can be verified that the number of machines required to be (c+ ε)-
competitive is bounded by a small polynomial of degree 4 in 1/ε. For ease of presentation,
we made no optimizations in that regard.

4 Analysis of the algorithm

4.1 Analysis basics
We present some results for the adversarial model so that we can focus on the true random-
order analysis of ALG in the next sections. First, recall the three common lower bounds
used for online makespan minimization.

ICALP 2020



68:8 Scheduling in the Random-Order Model

I Proposition 5. For any J , there holds OPT (J ) ≥ max{L, pmax, 2Pm+1}. Moreover, for
any permutation Jσ, there holds O1 ≤ O2 ≤ . . . ≤ On ≤ OPT (J ).

Proof. The optimum makespan OPT (J ) cannot be smaller than the average machine load
L for the input, even if all the jobs are distributed evenly among the m machines. Moreover,
the job with the largest processing time pmax must be scheduled non-preemptively on one
of the machines in an optimal schedule. Thus OPT (J ) ≥ pmax. Finally, among the m+ 1
largest jobs of the input, two must be placed on the same machine in an optimal solution.
Hence OPT (J ) ≥ 2Pm+1. For any permutation Jσ, the value Ot cannot decrease as jobs Jt
arrive. J

For any job sequence J = J1, . . . , Jn, let R(J ) = min{ L
pmax

, pmax
L }. Intuitively, this

measures the complexity of J .

I Proposition 6. For any J = J1, . . . , Jn, there holds ALG(J ) ≤ max{1+R(J ), c}OPT (J ).

Proof. Let J = J1, . . . , Jn be an arbitrary job sequence and let Jt be the job that defines
ALG’s makespan. If the makespan exceeds c · OPT (J ), then it exceeds c · Ot. Thus
ALG placed Jt on machine M t−1

m , cf. lines 4 and 5 of the algorithm. This machine was
a least loaded one, having a load of at most L. Hence ALG(J ) ≤ L + pt ≤ L + pmax ≤

L+pmax
max{L,pmax} ·OPT (J ) = (1 +R(J )) ·OPT (J ). J

Since R(J ) ≤ 1 we immediately obtain the following result, which ensures that ALG satisfies
the first condition of a nearly c-competitive algorithm, see Definition 1.

I Corollary 7. ALG is 2-competitive in the adversarial model.

We next identify a class of plain job sequences that we do not need to consider in the
random-order analysis because ALG’s makespan is upper bounded by c times the optimum
on these inputs.

I Definition 8. A job sequence J = J1, . . . , Jn is called plain if n ≤ m or if R(J ) ≤ c− 1.
Otherwise it is called proper.

Let J = J1, . . . , Jn be any job sequence that is processed/scheduled in this order. Observe
that if it contains at most m jobs, i.e. n ≤ m, and ALG cannot place a job Jt on machines
M t−1
i or M t−1

m−h because the resulting load would exceed c ·Ot, then the job is placed on an
empty machine. Using Proposition 6 we derive the following fact.

I Lemma 9. For any plain job sequence J = J1, . . . , Jn, there holds ALG(J ) ≤ c ·OPT (J ).

If a job sequence J is plain (proper), then every permutation of it is. Hence, given Lemma 9,
we may concentrate on proper job sequences in the remainder of the analysis. We finally
state a fact that relates to the second condition of a nearly c-competitive algorithm, see
again Definition 1. The proof is given in the full version.

I Lemma 10. Let J = J1, . . . , Jn be any job sequence that is scheduled in this order and let
Jt be a job that causes ALG’s makespan to exceed (c+ ε)OPT (J ), for some ε ≥ 0. Then
both the load of ALG’s least loaded machine at the time of the assignment as well as pt exceed
(c− 1 + ε)OPT (J ).

Proof. ALG places Jt on machineM t−1
m , which is a least loaded machine when the assignment

is done. If lt−1
m or pt were upper bounded by (c − 1 + ε)OPT (J ), then the resulting load

would be lt−1
m + pt ≤ (c− 1 + ε)OPT (J ) + max{L, pt} ≤ (c− 1 + ε)OPT (J ) +OPT (J ) =

(c+ ε)OPT (J ). J
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4.2 Stable job sequences
We define the class of stable job sequences. These sequences are robust in that they will
admit an adversarial analysis of ALG. Intuitively, the sequences reveal information on the
largest jobs when a significant fraction of the total processing volume

∑n
t=1 pt has been

scheduled. More precisely, one gets an estimate on the processing time of the h-th largest
job in the entire sequence and encounters a relevant number of the m+ 1 largest jobs. If
a job sequence is unstable, large jobs occur towards the very end of the sequence and can
cause a high makespan relative to the optimum one.

We will show that ALG is adversarially (c + ε)-competitive on stable sequences, for a
given ε > 0. Therefore, the definition of stable sequences is formulated for a fixed ε > 0.
Given J , let J σ = Jσ(1), . . . , Jσ(n) be any permutation of the jobs. Furthermore, for every
j ≤ n and in particular j ∈ {h,m+ 1}, the set of the j largest jobs is a fixed set of cardinality
j such that no job outside this set has a strictly larger processing time than any job inside
the set.

I Definition 11. A job sequence J σ = Jσ(1), . . . , Jσ(n) is stable if the following conditions
hold.

There holds n > m.
Once Lt ≥ (c− 1) imL, there holds ptmax ≥ Ph.
For every j ≥ i, the sequence ending once we have Lt ≥ ( jm + ε

2 )L contains at least
j + h+ 2 many of the m+ 1 largest jobs in J .
The sequence ending right before either (a) Lt ≥ i

m (c− 1)εL holds or (b) the h-th largest
job of J is scheduled contains at least h+ 1 many of the m+ 1 largest jobs in J .

Otherwise the job sequence is unstable.

Given ε > 0 and m, let Pε(m) be the infimum, over all proper job sequences J , that a
random permutation of J is stable, i.e.

Pε(m) = inf
J proper

Pσ∼Sn
[J σ is stable].

As the main result of this section we will prove that this probability tends to 1 as m→∞.

I Main Lemma 1. For every ε > 0, there holds lim
m→∞

Pε(m) = 1.

The above lemma implies that for any ε > 0 there exists an m(ε) such that, for all m ≥ m(ε)
and all J , there holds Pσ∼Sn [J σ is stable] ≥ 1 − ε. In Section 4.3 we will show that
ALG is (c + ε)-competitive on stable job sequences. This implies Pσ∼Sn

[ALG(J σ) ≥
(c+ ε)OPT (J )] ≤ ε. Given Lemma 7, we obtain the following corollary.

I Corollary 12. If ALG is adversarially (c+ ε)-competitive on stable sequences, for every
ε > 0 and m ≥ m(ε) sufficiently large, then it is nearly c-competitive.

In the remainder of this section we describe how to establish Main Lemma 1. Full proofs
of all the lemmas of this section are given in the full version. We need some notation. In
Section 3 the value Ltj was defined with respect to a fixed job sequence that was clear from
the context. We adopt the notation Ltj [J σ] to make this dependence visible. We adopt a
similar notation for the variables L, P tj , Pj , ptmax and pmax. For an input J and σ ∈ Sn, we
will use the notation Ltj [σ] = Ltj [J σ]. Again, we use a similar notation for the variables P tj
and ptmax.
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At the heart of the proof of Main Lemma 1 is the Load Lemma. Observe that after t
time steps in a random permutation of an input J , each job has arrived with probability t/n.
Thus the expected total processing time of the jobs seen so far is t/n ·

∑n
s=1 ps. Equivalently,

in expectation Lt equals t/n · L. The Load Lemma proves that this relation holds with high
probability. We set t = ϕn.

I Load Lemma. Given any ε > 0 and ϕ ∈ (0, 1], there exists an m(ε, ϕ) such that for all
m ≥ m(ε, ϕ) and all proper sequences J , there holds

Pσ∼Sn

[∣∣∣∣Lbϕnc[J σ]
ϕL[J σ] − 1

∣∣∣∣ ≥ ε] ≤ ε.
Proof sketch. By scaling all job processing times by a common factor we may assume that
pmax = 1. Then L = Θ(m) because J is proper. The main idea of the proof is to show that
the variance of the random variable Lbϕnc[J σ] lies in O(m) = O(L). Using Chebyshev’s
inequality we show that the probability of Lbϕnc[J σ] deviating by its expected value ϕL by
more than some term in Θ(m−1/4) is in O(m−1/2). The lemma then follows by choosing m
sufficiently large. J

We note that the Load Lemma does not hold for general sequences. A counterexample is a
job sequence in which one job carries all the load, while all the other jobs have a negligible
processing time. The proof of the Load Lemma relies on a lower bound of R(J ), which is
c− 1 for proper sequences.

We present two consequences of the Load Lemma that will allow us to prove that stable
sequences reveal information on the largest jobs when a certain processing volume has been
scheduled. Consider a proper J . Given J σ = Jσ(1), . . . , Jσ(n) and ϕ > 0, let N(ϕ)[J σ] be
the number of jobs Jσ(t) that are among the m+ 1 largest jobs in J and such that Lt ≤ ϕL.

I Lemma 13. Let ε > 0 and ϕ ∈ (0, 1]. Then there holds

lim
m→∞

inf
J proper

Pσ∼Sn
[N(ϕ+ ε)[J σ] ≥ bϕmc+ h+ 2] = 1.

Proof sketch. The Load Lemma basically matches load ratios Lt/L with ratios t/n on
the time line of job arrivals, up to some margin of error. We can then infer that at least
bϕmc+ h+ 1 of the m+ 1 largest jobs are among the first (ϕ+ ε)n jobs in a job sequence
J σ, with a probability that tends to 1 as m → ∞. In expectation (ϕ + ε)(m + 1) of the
m+ 1 largest jobs occur in this prefix, which is strictly more than bϕmc+ h+ 1, for m large
enough. Formally, we show that (a slight variant of) the random variable N(ϕ+ ε)[J σ] is
hypergeometrically distributed and has variance at most m+1. Using Chebyshev’s inequality
we derive Lemma 13. J

I Lemma 14. Let ε > 0 and ϕ ∈ (0, 1]. Then there holds

lim
m→∞

inf
J proper

Pσ∼Sn
[∀ϕ̃≥ϕ N(ϕ̃+ ε)[J σ] ≥ bϕ̃mc+ h+ 2] = 1.

Proof sketch. By rounding the values ϕ̃ we may restrict ourselves to finitely many ϕ̃. Using
the Union Bound and Lemma 13 we can prove Lemma 14. J

Proof sketch for Main Lemma 1. We consider the properties in the definition of stable job
sequences. Since J is proper, there holds n > m. By the Load Lemma the second property
translates to one of the h largest jobs being among the first (c− 1) imn jobs in the permuted
sequence J σ. The corresponding probability is roughly 1− (1− (c− 1) im )h and (quickly)
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approaches 1 as m and thus h tends to infinity. The third property is a consequence of
Lemma 14. For the fourth property we use Lemma 13, considering the sequence ending once
Lt ≥ ( jm + ε

2 )L holds. Finally, the probability of the h-th largest job being preceded by at
least h + 1 of the m + 1 largest jobs approaches 1 since h ∈ o(

√
m). Again a full proof is

given in the full version. J

4.3 An adversarial analysis
In this section we prove the following main result.

I Main Lemma 2. For every ε > 0 and m ≥ m(ε) sufficiently large, ALG is adversarially
(c+ ε)-competitive on stable job sequences.

Consider a fixed ε > 0. Given Lemma 7, we may assume that 0 < ε < 2− c. Suppose that
there was a stable job sequence J σ such that ALG(J σ) > (c+ε)OPT (J σ). We will derive a
contradiction, given thatm is large. In order to simplify notation, in the following let J = J σ
be the stable job sequence violating the performance ratio of c+ ε. Let J = J1, . . . , Jn and
OPT = OPT (J ).

Let Jn′ be the first job that causes ALG to have a makespan greater than (c+ ε)OPT
and let b0 = ln

′−1
m be the load of the least loaded machine Mn′−1

m right before Jn′ is
scheduled on it. The makespan after Jn′ is scheduled, called the critical makespan, is at most
b0 + pn′ ≤ b0 +OPT . In particular b0 > (c− 1 + ε)OPT as well as pn′ > (c− 1 + ε)OPT ,
see Lemma 10. Let

λstart = c−1
1+2c(2−c) ≈ 0.5426 and λend = 1

2(c−1+ε) ≈ 0.5898.

There holds λstart < λend. The critical makespan of ALG is bounded by b0 + OPT <

(1 + 1
c−1+ε )b0 = (c+ ε) b0

c−1+ε = (c+ ε)2λendb0. Since ALG does not achieve a performance
ratio of c+ ε on J we have

Pm+1 ≤ OPT/2 < λendb0. (1)

Our main goal is to derive a contradiction to this inequality.

The impact of the variable Ph

A new, crucial aspect in the analysis of ALG is Ph, the processing time of the h-th largest
job in the sequence J . Initially, when the processing of J starts, we have no information
on Ph and can only infer Pm+1 ≥ λstartb0. The second property in the definition of stable
job sequences ensures that ptmax ≥ Ph once the load ratio Lt/L is sufficiently large. Note
that ALG then also works with this estimate because Ph ≤ ptmax ≤ Ot. This will allow us
to evaluate the processing time of flatly scheduled jobs. In order prove that Pm+1 is large,
we will relate Pm+1 and Ph, i.e. we will lower bound Pm+1 in terms of Ph and vice versa.
Using the relation we can then conclude Pm+1 ≥ λendb0. In the analysis we repeatedly use
the properties of stable job sequences and will explicitly point to it when this is the case.
The omitted proofs of propositions and lemmas are given in the full version of the paper.

We next make the relationship between Ph and Pm+1 precise. Given 0 < λ, let f(λ) =
2cλ − 1 and given w > 0, let g(w) = (c(2c − 3) − 1)w + 4 − 2c ≈ 0.2854 · w + 0.3044. We
set gb(λ) = g

(
λ
b

)
b and fb(w) = f

(
w
b

)
b, for any b > 0. Then we will lower bound Pm+1 by

gb0(Ph) and Ph by fb0(Pm+1). We state two technical propositions.

I Proposition 15. For λ > λstart, we have g(f(λ)) > λ.
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I Proposition 16. For 0 < ε ≤ 1, we have g(1− ε) > λend.

We leave the proof of Proposition 15 to the full version of the paper. Proposition 16
determines the choice of our competitive ratio c. Recall that c is chosen minimal such that
Q[c] = 4c3 − 14c2 + 16c− 7 ≥ 0.

Proof of Proposition 16. We calculate that

g(1− ε)− λend = (c(2c− 3)− 1)(1− ε) + 4− 2c− 1
2(c− 1 + ε)

= 2(c− 1 + ε)(2c2 − 5c+ 3− (2c2 − 3c− 1)ε)− 1
2(c− 1 + ε)

= 4c3 − 14c2 + 16c− 7 + (4− 2c)ε− 2(2c2 − 3c− 1)ε2

2(c− 1 + ε) .

Recall that Q[c] = 4c3 − 14c2 + 16c− 7 = 0. For 0 < ε ≤ 1 we have

(4− 2c)ε− (2c2 − 3c− 1)ε2 ≈ 0.3044 · ε− 0.2854 · ε2 > 0.

Thus we see that g(1− ε)− λend > 0 and can conclude the lemma. J

4.3.1 Analyzing large jobs towards lower bounding Ph and Pm+1

Let b > (c− 1 + ε)OPT be a value such that immediately before Jn′ is scheduled at least
m− h machines have a load of at least b. Note that b = b0 satisfies this condition but we
will be interested in larger values of b as well. We call a machine b-full once its load is at
least b; we call a job J a b-filling job if it causes the machine it is scheduled on to become
b-full. We number the b-filling jobs according to their order of arrival J (1), J (2), . . . and let
t(j) denote the time of arrival of the j-th filling job J (j).

Recall that our main goal is to show that Pm+1 ≥ λendb0 holds. To this end we will prove
that the b0-filling jobs have a processing time of at least λendb0. As there are m such jobs,
the bound on Pm+1 follows by observing that Jn′ arrives after all b0-filling jobs are scheduled
and that its processing time exceeds λendb0 as well. In fact, since OPT ≥ b0, we have

pn′ > (c− 1)OPT > 0.847 ·OPT > λendb0 ≈ 0.5898 · b0. (2)

We remark that different to previous analyses in the literature we do not solely rely on
lower bounding the processing time of filling jobs. By using the third property of stable job
sequences, we can relate load and the size of the (m+ 1)-st largest job at specific points in
the time horizon, cf. Lemma 22.

In the following we regard b as fixed and omit it from the terms filling job and full.
Let λ = max{λstartb,min{gb (Ph) , λendb}}. We call a job large if it has a processing time
of at least λ. Let t̃ = t(m − h) be the time when the (m − h)-th filling job arrived. The
remainder of this section is devoted to showing the following important Lemma 17. Some of
the underlying lemmas, but not all of them, hold if m ≥ m(ε) is sufficiently large. We will
make the dependence clear.

I Lemma 17. At least one of the following statements holds:
All filling jobs are large.
If m ≥ m(ε), there holds P t̃m+1 ≥ λ = max{λstartb,min{gb (Ph) , λendb}}, i.e. there are
at least m+ 1 large jobs once the (m− h)-th filling job is scheduled.

Before we prove the lemma we derive two important implications towards a lower bound of
Pm+1.
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I Lemma 18. We have Pm+1 ≥ λ = max{λstartb0,min{gb0 (Ph) , λendb0}}.

Proof. Apply the last lemma, taking into account that b ≥ b0, and use that there are m
many b0-filling jobs followed by Jn′ . The latter has size at least λ by inequality (2). J

We also want to lower bound the processing time of the (m + 1)-st largest job at time t̃.
However, at that time only m− h filling jobs have arrived. The next lemma ensures that, if
additionally Ph is not too large, this is not a problem.

I Lemma 19. If Ph ≤ (1 − ε)b and m ≥ m(ε), the second statement in Lemma 17 holds,
i.e. P t̃m+1 ≥ λ = max{λstartb,min{gb (Ph) , λendb}}.

The proof of the lemma makes use of the fourth property of stable job sequences.
We introduce late and early filling jobs. We need a certain condition to hold, see Lemma 22,

in order to show that the early filling jobs are large. We show that if this condition is not
met, the fact that the given job sequence is stable ensures that P t̃m ≥ λ.

Let s be chosen maximal such that the s-th filling job is scheduled steeply. If s ≤ i, then
set s = i + 1 instead. We call all filling jobs J (j) with j > i that are scheduled flatly late
filling jobs. All other filling jobs are called early filling jobs. In particular the job J (s+1) and
the filling jobs afterwards are late filling jobs. The following proposition implies that the
fillings jobs after J (m−h), if they exist, are all late, i.e. scheduled flatly.

I Proposition 20. We have s ≤ m− h if m ≥ m(ε).

We need a technical lemma. For any time t, let Lts = 1
m−h−s+1

∑m−h
j=s ltj be the average

load on the machines numbered s to m− h.

I Lemma 21. If Lt(s)−1
s ≥ α−1b holds and m ≥ m(ε), we have Lt(s)−1 >

(
s
m + ε

2
)
· L.

I Lemma 22. If the late filling jobs are large, Lt(s)−1
s ≥ α−1b and m ≥ m(ε), we have

P t̃m+1 ≥ λ.

Proof. Assume that the conditions of the lemma hold. By Lemma 21 we have Lt(s)−1 >(
s
m + ε

2
)
·L. By the third property of stable sequences, at mostm+1−(s+h+2) = m−s−h−1

of the largest m+ 1 jobs appear in the sequence starting after time t(s)− 1. However, this
sequence contains m− h− s late filling jobs. Thus there exists a late filling job that is not
among the m+ 1 largest jobs. As it has a processing time of at least λ, by the assumption of
the lemma, Pm+1 ≥ λ holds.

Now consider the m+ 1 largest jobs of the entire sequence that arrive before J (s) as well
as the jobs J (s+1), . . . , J (m−h). There are at least s + h + 2 of the former and m − h − s
of the latter. Thus we have found a set of at least m+ 1 jobs arriving before (or at) time
t̃ = t(m− h). Moreover, we argued that all these jobs have a processing time of at least λ.
Hence P t̃m+1 ≥ λ holds true. J

We are ready to evaluate the processing time of filling jobs to prove Lemma 17.

I Lemma 23. The processing time of late filling jobs strictly exceeds max{λstartb, gb(Ph)}.

I Lemma 24. If Lt(s)−1
s < α−1b holds, the early filling jobs have a processing time of at

least λendb.

Before proving Lemma 24 let us observe the following, strengthening its condition.
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I Lemma 25. We have

L
t(i+1)−1
i+1 ≤ Lt(i+2)−1

i+2 ≤ . . . Lt(s)−1
s .

Proof. Let i+ 1 ≤ j < s. It suffices to verify that

L
t(j)−1
j ≤ Lt(j)j+1 ≤ L

t(j+1)−1
j+1 .

The second inequality is obvious because for every r the loads ltr can only increase as t
increases. For the first inequality we note that by definition the job J (j) was scheduled
steeply and hence on a least loaded machine. This machine became full. Thus it is not
among the m− j least loaded machines at time t(j). In particular Lt(j)j+1, the average over
the m − j smallest loads at time t(j), is also the average of the m − j + 1 smallest loads
excluding the smallest load at time t(j)− 1. Therefore it cannot be less than Lt(j)−1

j . J

Proof of Lemma 24. Let i < j ≤ s such that J (j) was an early filling job. By Lemma 25 we
have Lt(j)−1

j ≤ L
t(s)−1
s < α−1b = b − b

2(c−1) < b − λendb. By definition J (j) was scheduled
on a least loaded machine M t(j)−1

m which had load less than Lt(j)−1
j < b− λendb before and

at least b afterwards because it became full. In particular J (j) had size λendb.
For k < j ≤ i the job J (j) is scheduled steeply because we have by Lemma 25

l
t(j)−1
k ≥ b > αLt(s)−1

s ≥ αLt(i+1)−1
i+1 ≥ αLt(j)−1

i+1 .

Thus for k < j ≤ i the job J (j) is scheduled on the least loaded machine M t(j)−1
m , whose load

l
t(j)−1
m is bounded by

lt(j)−1
m ≤ Lt(j)−1

i+1 ≤ Lt(s)−1
s < α−1b = b− b

2(c− 1) < b− λendb.

Hence the job J (j) had a size of at least λendb. We also observe that we have

l
t(k)−1
i ≤ lt(k+1)−1

i+1 ≤ . . . ≤ lt(k+(m−i))−1
i+(m−i) = lt(i)−1

m < b− λendb.

In particular for 1 ≤ j ≤ k any filling job J (j) filled a machine with a load of at most
max{lt(k)

m , l
t(k)
i } = l

t(k)
i < b− λendb. Hence it had a size of at least λendb. J

We now conclude the main lemma of this subsection, Lemma 17.

Proof of Lemma 17. By Lemma 23, all late filling jobs are large. We distinguish two cases
depending on whether or not Lt(s)−1

s < α−1b holds. If it does, all filling jobs are large by
Lemma 24 and the first statement in Lemma 17 holds. Otherwise, the second statement in
Lemma 17 holds by Lemma 22. J

4.3.2 Lower bounding Ph and Pm+1

In this section we establish the following relations on Ph and Pm+1.

I Lemma 26. There holds Ph > (1− ε)b0 or Pm+1 ≥ λendb0 if m ≥ m(ε).

For the proof we need a way to lower bound the processing time of a job Jt depending on
P tm+1:

I Lemma 27. Let Jt be any job scheduled flatly on the least loaded machine and let b = lt−1
m−h

be the load of the (h+ 1)-th least loaded machine. Then Jt has a processing time of at least
fb(P tm+1).
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Proof. From the fact that Jt was not scheduled on the (h + 1)-th least loaded machine
M t
m−h we derive that pt > c ·Ot − b ≥ c · P tm+1 − b = fb(P tm+1) holds. J

Proof of Lemma 26. Assume for a contradiction that we had Ph ≤ (1− ε)b0. Let J = Jt
be the smallest among the h last b0-filling jobs. Then J has a processing time p ≤ Ph.
We want to derive a contradiction to that. Let b1 = lt−1

m−h be the load of the (m − h)-
th machine right before J was scheduled. Because this machine was b0-full at that time
we know that b1 ≥ b0 > (c − 1 + ε)OPT holds and it makes sense to consider b1-filling
jobs. Let t̃ be the time the (m − h)-th b1-filling job arrived. By Lemma 17 we have
P t̃m+1 ≥ λ = max{λstartb1,min{gb1 (Ph) , λendb1}}.

If we have λ = λendb1 ≥ λendb0 we have already proven Pm+1 ≥ λendb0 and the lemma
follows. So we are left to treat the case that we have P t̃m+1 ≥ λ = max{λstartb1, gb1 (Ph)}.

Now we can derive the following contradiction:

P t̃m+1 ≥ gb1 (Ph) ≥ gb1 (p) ≥ gb1

(
fb1

(
P t̃m+1

))
= g

(
f

(
P t̃m+1
b1

))
b1 > P t̃m+1.

For the second inequality, we use the monotonicity of gb1(−). The third inequality follows
from Lemma 27 and the last one from Proposition 15. J

4.3.3 Establishing Main Lemma 2
Let m ≥ m(ε) be sufficiently large. The machine number m(ε) is determined by the
proofs of Proposition 20 and Lemma 21, and then carries over to the subsequent lemmas.
Let us assume for a contradiction sake that there was a stable sequence J such that
ALG(J ) > (c+ ε)OPT (J ). As argued in the beginning of Section 4.3, see (1), it suffices
to show that Pm+1 ≥ λendb0. If this was not the case, we would have Ph ≥ (1 − ε)b0 by
Lemma 26. In particular by Proposition 16 we had gb0 (Ph) = g(1− ε)b0 > λendb0. But now
Lemma 18 shows that Pm+1 ≥ max{λstartb0,min{gb0 (Ph) , λendb0}} = λendb0.

We conclude, by Corollary 12, that ALG is nearly c-competitive.

5 Lower bounds

We present lower bounds on the competitive ratio of any deterministic online algorithm in
the random-order model. Theorem 29 implies that if a deterministic online algorithm is
c-competitive with high probability as m→∞, then c ≥ 3/2.

I Theorem 28. Let A be a deterministic online algorithm that is c-competitive in the
random-order model. Then c ≥ 4/3 if m ≥ 8.

I Theorem 29. Let A be a deterministic online algorithm that is nearly c-competitive. Then
c ≥ 3/2.

A basic family of inputs are job sequences that consist of jobs having an identical
processing time of, say, 1. We first analyze them and then use the insight to derive our lower
bounds. Let m ≥ 2 be arbitrary. For any deterministic online algorithm A, let r(A,m) be
the maximum number in N ∪ {∞} such that A handles a sequence consisting of r(A,m) ·m
jobs with an identical processing time of 1 by scheduling each job on a least loaded machine.

I Lemma 30. Let m ≥ 2 be arbitrary. For every deterministic online algorithm A, there
exists a job sequence J such that Arom(J ) ≥ (1 + 1

r(A,m)+1 )OPT (J ). We use the convention
that 1

∞+1 = 0.
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Proof. For r(A,m) =∞ there is nothing to show. For r(A) <∞, consider the sequence J
consisting of (r(A,m) + 1) ·m identical jobs, each having a processing time of 1. It suffices
to analyze the algorithm adversarially as all permutations of the job sequence are identical.
After having handled the first r(A,m) ·m jobs, the algorithm A has a schedule in which every
machine has load of r(A,m). By the maximality of r(A,m), the algorithm A schedules one
of the following m jobs on a machine that is not a least loaded one. The resulting makespan
is r(A,m) + 2. The lemma follows since the optimal makespan is r(A,m) + 1. J

Proof of Theorem 28. Let m ≥ 8 be arbitrary. Consider any deterministic online al-
gorithm A. If r(A,m) ≤ 2, then, by Lemma 30, there exists a sequence J such that
Arom(J ) ≥ 4

3 ·OPT (J ). Therefore, we may assume that r(A,m) ≥ 3. Consider the input
sequence J consisting of 4m− 4 identical small jobs of processing time 1 and one large job
of processing time 4. Obviously OPT(J ) = 4.

Let i be the number of small jobs preceding the large job in J σ. The random variable i
takes any (integer) value between 0 and 4m− 4 with probability 1

4m−3 . Since r(A,m) ≥ 3
the least loaded machine has load of at least l =

⌊
i
m

⌋
when the large job arrives. Thus

A(J σ) ≥ l+ 4. The load l takes the values 0, 1 and 2 with probability m
4m−3 and the value 3

with probability m−3
4m−3 . Hence the expected makespan of algorithm A is at least

Arom(J ) ≥ m

4m− 3 · (0 + 1 + 2) + m− 3
4m− 3 · 3 + 4 = 6m− 9

4m− 3 + 4 > 16
3 = 4

3OPT(J ).

For the last inequality we use that m ≥ 8. J

Proof of Theorem 29. Let m ≥ 2 be arbitrary and let A be any deterministic online
algorithm. If r(A,m) = 0, then consider the sequence J consisting of m jobs with a
processing time of 1 each. On every permutation of J algorithm A has a makespan of 2,
while the optimum makespan is 1. If r(A,m) ≥ 1, then consider the sequence J consisting
of 2m − 2 small jobs having a processing time of 1 and one large job with a processing
time of 2. Obviously OPT (J ) = 2. If the permuted sequence starts with m small jobs,
the least loaded machine has load 1 once the large job arrives. Under such permutations
A(J σ) ≥ 3 = 3

2 · OPT(J ) holds true. The probability of this happening is m−1
2m−1 . The

probability approaches 1
2 and in particular does not vanish, for m→∞. Thus, if A is nearly

c-competitive, then c ≥ 3/2. J
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