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Abstract
The terminal backup problems [Anshelevich and Karagiozova, 2011] form a class of network design
problems: Given an undirected graph with a requirement on terminals, the goal is to find a minimum
cost subgraph satisfying the connectivity requirement. The node-connectivity terminal backup
problem requires a terminal to connect other terminals with a number of node-disjoint paths. This
problem is not known whether is NP-hard or tractable. Fukunaga (2016) gave a 4/3-approximation
algorithm based on LP-rounding scheme using a general LP-solver.

In this paper, we develop a combinatorial algorithm for the relaxed LP to find a half-integral
optimal solution in O(m log(mUA) ·MF(kn, m+k2n)) time, where m is the number of edges, k is the
number of terminals, A is the maximum edge-cost, U is the maximum edge-capacity, and MF(n′, m′)
is the time complexity of a max-flow algorithm in a network with n′ nodes and m′ edges. The
algorithm implies that the 4/3-approximation algorithm for the node-connectivity terminal backup
problem is also efficiently implemented. For the design of algorithm, we explore a connection between
the node-connectivity terminal backup problem and a new type of a multiflow, called a separately-
capacitated multiflow. We show a min-max theorem which extends Lovász–Cherkassky theorem to
the node-capacity setting. Our results build on discrete convex analysis for the node-connectivity
terminal backup problem.
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1 Introduction

Network design problems are central problems in combinatorial optimization. A large number
of basic combinatorial optimization problems are network design problems. Examples are
spanning tree, matching, TSP, and Steiner networks. They admit a typical formulation
of a network design problem: Find a minimum-cost network satisfying given connectivity
requirements. The present paper addresses a relatively new class of network design problems,
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called terminal backup problems. The problem is to find a cheapest subnetwork in which
each terminal can send a specified amount of flows to other terminals, i.e., the data in each
terminal can be backed up, possibly in a distributed manner, in other terminals.

A mathematical formulation of the terminal backup problem is given as follows. Let
((V,E), S, u, c, a, r) be an undirected network, where (V,E) is a simple undirected graph,
S ⊆ V (|S| ≥ 3) is a set of terminals, u : E → Z+ is a nonnegative edge-capacity function,
c : V \ S → Z+ is a nonnegative node-capacity function, a : E → Z+ is a nonnegative
edge-cost function, and r : S → Z+ is a nonnegative requirement function on terminals. The
goal is to find a feasible edge-capacity function x of minimum cost

∑
e∈E a(e)x(e). Here an

edge-capacity function x is said to be feasible if 0 ≤ x ≤ u and each terminal s ∈ S has a flow
from s to S \{s}, an {s}–(S \{s}) flow, of total flow-value r(s) in the network ((V,E), S, x, c)
capacitated by the edge-capacity x and the node-capacity c.

The original formulation, due to Anshelevich and Karagiozova [1], is uncapacitated (i.e.,
u, c are infinity), requires x to be integer-valued, and assumes r(s) = 1 for all s ∈ S. They
showed that an optimal solution can be obtained in polynomial time. Bernáth et al. [2]
extended this polynomial time solvability to an arbitrary integer-valued requirement r. For
the setting of general edge-capacity (and infinite node-capacity), which we call the edge-
connectivity terminal backup problem (ETB), it is unknown whether ETB is NP-hard or
tractable.

Fukunaga [8] considered the above setting including both edge-capacity and node-capacity,
which we call the node-connectivity terminal backup problem (NTB), and explored intriguing
features of its fractional relaxation. The fractional ETB (FETB) and fractional NTB (FNTB)
are LP-relaxations obtained from ETB and NTB, respectively, by relaxing solution x to be
real-valued. Fukunaga showed the half-integrality property of FNTB, that is, there always
exists an optimal solution that is half-integer-valued. Based on this property, he developed
a 4/3-approximation algorithm for NTB by rounding a half-integral (extreme) optimal
solution. Moreover, he noticed a useful relationship between FETB and multicommodity
flow (multiflow). In fact, a solution of FETB is precisely the edge-support of a multiflow
consisting of the r(s) amount of {s}–(S \ {s}) flow for each s ∈ S. This is a consequence of
Lovász–Cherkassky theorem [5, 21] in multiflow theory. In particular, FETB is equivalent to
a minimum-cost multiflow problem, which is a variant of the one studied by Karzanov [19, 20]
and Goldberg and Karzanov [10].

Utilizing this connection, Hirai [12] developed a combinatorial polynomial time algorithm
for FETB and the corresponding multiflow problem. This algorithm uses a max-flow algorithm
as a subroutine, and brings a combinatorial implementation of Fukunaga’s 4/3-approximation
algorithm for ETB, where he used a generic LP-solver (e.g., the ellipsoid method) to obtain
a half-integral extreme optimal solution.

Our first contribution is the extension of this result to the NTB setting, implying that
the 4/3-approximation algorithm for NTB is also efficiently implemented.

I Theorem 1. A half-integral optimal solution of FNTB can be obtained in O(m log(mUA) ·
MF(kn,m+ k2n)) time.

Here n := |V |, m := |E|, k := |S|, U := maxe∈E u(e), and A := maxe∈E a(e), and MF(n′,m′)
is the time complexity of an algorithm for solving the max-flow problem in the network with
n′ nodes and m′ edges.

As in the ETB case, we explore and utilize a new connection between NTB and a
multiflow problem. We introduce a new notion of a free multiflow with separate node-capacity
constraints or simply a separately-capacitated multiflow. Instead of the usual node-capacity
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constraints, this multiflow should satisfy the separate node-capacity constraints: For each
terminal s ∈ S and each node i ∈ V , the total flow-value of flows connecting s to the other
terminals and flowing into i is at most the node capacity c(i).

Our second contribution is a min-max theorem for separately-capacitated multiflows,
which extends Lovász–Cherkassky theorem to the node-capacitated setting and implies that
a solution of FNTB is precisely the edge-support of a separately-capacitated multiflow. This
answers Fukunaga’s comment: how the computation should proceed in the node capacitated
setting remains elusive [8, p. 799].

I Theorem 2. The maximum flow-value of a separately-capacitated multiflow is equal to
(1/2)

∑
s∈S νs, where νs is the minimum capacity of an {s}–(S \ {s}) cut. Moreover, a

half-integral maximum multiflow exists, and it can be found in O(n ·MF(kn,m+ k2n)) time.

Here, a T–T ′ cut is a union of an edge-subset F ⊆ E and a node-subset X ⊆ V \(T ∪T ′) such
that removing those subsets disconnects T and T ′, and its capacity is defined as u(F ) + c(X).

Our algorithm for Theorem 1 builds on the ideas of Discrete Convex Analysis (DCA)
beyond Zn – a theory of discrete convex functions on special graph structures generalizing
Zn (the grid graph), which has been recently differentiated from the original DCA [23] and
has been successfully applied to algorithm design for well-behaved classes of multiflow and
related network design problems [12, 13, 14, 16]. Indeed, the algorithm in [12] for FETB was
designed as: Formulate the dual of FETB as a minimization of an L-convex function on the
(Cartesian) product of trees, apply the framework of the steepest descent algorithm (SDA),
and show that it is implemented by using a max-flow algorithm as a subroutine.

We formulate the dual of FNTB as an optimization problem on the product of the spaces
of all subtrees of a fixed tree (Section 2.1). We develop a simple cut-descent algorithm for
this optimization problem (Sections 2.2 and 2.3). Then we prove that this coincides with
SDA for an L-convex function defined on the graph structure on the space of all subtrees
(Section 3). Then the number of descents is estimated by a general theory of SDA, and the
cost-scaling method is naturally incorporated to derive the time complexity (Section 2.4).
Theorem 2 is obtained as a byproduct of these arguments. Due to the space limitation, we
omit most of technical proofs, which are given in the full version.

Related work

ETB is a survivable network design problem (SND) with a special skew-supermodular function,
and NTB is a node connectivity version (NSND) with a special skew-supermodular biset
function. In his influential paper [18], Jain devised the iterative rounding method, and obtains
a 2-approximation algorithm for SND, provided that an extreme optimal solution of the LP-
relaxation of SND (with modified skew-supermodular functions) is available. Fleischer, Jain,
and Williamson [7] and Cheriyan, Vempala, and Vetta [4] extended this iterative rounding
2-approximation algorithm to some classes of NSND. One of important open problems in
the literature is a design of a combinatorial 2-approximation algorithm for (V)SND with the
skew-supermodular (biset) function associated with connectivity requirements. One approach
is to devise a combinatorial polynomial time algorithm to find an extreme optimal solution of
its LP-relaxation; the currently known only polynomial time algorithm is a general LP-solver
(e.g., the ellipsoid method). Our algorithm for FNTB, though it is the LP-relaxation of a very
special NSND, may give an insight on such a research direction. On this direction, Feldmann,
Könemann, Pashkovich, and Sanità [6] gave a (2 + ε)-approximation algorithm for SND with
a proper function by solving the LP-relaxation approximately via the multiplicative weights
method [9].

ICALP 2020
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The notion of a separately-capacitated multiflow, introduced in this paper, is a new
variation of S-paths packing. As seen in [24, Chapter 73], S-paths packing is one of the
well-studied subjects in combinatorial optimization. Recent work [17] developed a fast
algorithm for half-integral nonzero S-paths packing problem on a group-valued graph (with
unit-capacity). Our derivation of Theorem 2 is different with flow-augmenting arguments
such as Cherkassky’s T-operation or those in [17]. It is a future research to develop such
an algorithm for a separately-capacitated multiflow. Also, exploring an integer version of
Theorem 2, an analogue of Mader’s theorem [22], is an interesting future direction.

Notations

Let Z,Z+,R,R+ be the set of integers, nonnegative integers, reals, and nonnegative reals,
respectively. Let Z∗,Z∗+ be the set of half-integers and nonnegative half-integers, respectively,
i.e., Z∗ := Z/2. Let R := R ∪ {+∞} and R := R ∪ {−∞}. Let denote (a)+ := max{a, 0}
for a ∈ R. For a finite set V , we often identify a function on V with a vector in RV . For
i ∈ V , its characteristic function χi : V → R is defined by χi(j) = 1 if j = i and χi(j) = 0
otherwise. For a function f on V and a subset U ⊆ V , we denote f(U) :=

∑
i∈U f(i).

In this paper, all graphs are simple and connected unless otherwise specified. For an
undirected graph on nodes V , the set of edges connecting U1 and U2 (U1, U2 ⊆ V ) is denoted
by δ(U1, U2). If U2 = V \ U1, we simply denote it by δU1. If U1 is a singleton, i.e., U1 = {i},
then we denote δ{i} by δi. An edge connecting i and j is denoted by ij.

2 Node-Connectivity Terminal Backup Problem

Let ((V,E), S, u, c, a, r) be a network. Assume that S = {1, . . . , k} ⊆ V = {1, . . . , n}. By a
perturbation technique, we may assume that a is positive; see Remark 3.

A sufficient and necessity condition for the feasibility of NTB is easily derived from the
Menger’s theorem as follows. A biset is a pair of node subsets X,X+ ⊆ V with X ⊆ X+.
We write X̂ = (X,X+) for a biset. Let Γ(X̂) := X+ \X, and let δ(X̂) := δ(X,V \X+). For
s ∈ S, define a family Cs of bisets by

Cs := {(X,X+) | {s} ⊆ X ⊆ X+ ⊆ V \ (S \ {s})}.

Let C :=
⋃
s∈S Cs. Then an edge-capacity x : E → Z+ is feasible if and only if

x(δ(X̂)) + c(Γ(X̂)) ≥ r(s) (X̂ ∈ Cs, s ∈ S). (1)

We assume that u satisfies (1) throughout the paper (otherwise NTB is infeasible).
Fukunaga [8] developed an approximation algorithm for NTB via the following relaxation

problem FNTB:

(FNTB) Minimize
∑
e∈E

a(e)x(e)

subject to x(δX̂) + c(Γ(X̂)) ≥ r(s) (s ∈ S, X̂ ∈ Cs), (2)
0 ≤ x(e) ≤ u(e) (e ∈ E). (3)

From the assumption, the polytope defined by (2) and (3) is nonempty. Also, it is known [8,
Corollary 3.3] that the polytope is half-integral. Thus FNTB has a half-integral optimal
solution. This can be obtained by a general LP solver [8, Lemma 4.4].
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I Remark 3. If Z := {e ∈ E | a(e) = 0} is nonempty, then we use the following perturbation
technique based on [10, 20]. Recall that U is the maximum edge capacity. Define a positive
edge-cost a′ by a′(e) := 1 for e ∈ Z and a′(e) := (2U |Z| + 1)a(e) for e /∈ Z. Let x∗ be a
half-integral optimal solution of FNTB under the edge-cost a′ (it exists by the half-integrality).
We prove that x∗ is also optimal under the original edge-cost a. It suffices to show that∑

e∈E a(e)x∗(e) ≤
∑
e∈E a(e)x(e) for any feasible half-integral edge-capacity x. It holds

that (2U |Z|+ 1)(
∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e)) =

∑
e∈E a

′(e)x∗(e)−
∑
e∈E a

′(e)x(e)−
x∗(Z) + x(Z) ≤ U |Z| and thus

∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e) ≤ U |Z|/(2U |Z|+ 1) < 1/2.

By the half-integrality, we obtain
∑
e∈E a(e)x∗(e)−

∑
e∈E a(e)x(e) ≤ 0.

2.1 Combinatorial Duality for FNTB
We introduce a combinatorial duality theory for FNTB. For each s ∈ S, consider an infinite
path graph Ps with one endpoint. Glue those k (= |S|) endpoints, and denote the resulting
graph by T. We denote the set of nodes of Ps and T also by Ps and T, respectively. We
give length 1/2 for each edge in T. The glued endpoint is denoted by 0, and the point in Ps
(s ∈ S) having the distance l from 0 is denoted by (l, s). We denote the set of all subtrees
of T by S = S(T). If a subtree T does not contain 0, then it is contained in some Ps. Such
a subtree T is said to be of s-type and is denoted by [l, l′]s, where (l, s) and (l′, s) are the
closest and farthest nodes from 0 in T , respectively. If a subtree T contains 0, then it is said
to be of 0-type and is denoted by [l1, l2, . . . , lk] = [ls]s∈S , where (ls, s) is the node in T ∩ Ps
farthest from 0 for each s ∈ S. We identify a node on T with a subtree consisting of this
node only.

For a 0-type subtree T = [ls]s∈S ∈ S, let sizes(T ) := ls for s ∈ S, and size(T ) :=∑k
s=1 sizes(T ). For an s-type subtree T = [l, l′]s ∈ S, let size(T ) := l′ − l. For two subtrees

T, T ′ ∈ S, we denote the minimum distance between T and T ′ on T by dist(T, T ′), i.e.,
dist(T, T ′) := min{dT(v, v′) | v ∈ T, v′ ∈ T ′}, where dT is the shortest distance on T.

We formulate a dual of FNTB as a problem of assigning a subtree for each node i ∈ V .
That is, subtrees are viewed as node-potentials. So we use pi and p : V → S for denoting
a subtree assigned for node i ∈ V and a potential function, respectively. Formally, let us
consider the following maximization problem DTB.

(DTB) Maximize
∑
s∈S

rs dist(0, ps)−
∑
i∈V \S

ci size(pi)−
∑
ij∈E

uij(dist(pi, pj)− aij)+

subject to p : V → S,
ps ∈ Ps (s ∈ S). (4)

It turns out in the proof of Proposition 4 below that this seemingly strange formulation of
DTB is essentially the LP-dual of FTB. If p : V → S satisfies (4), then it is called a potential.
See Figure 1 for an intuition for a subtree-valued potential p. A potential p is said to be
proper if any pi for i ∈ V is contained in the minimal subtree that contains all ps (s ∈ S).

I Proposition 4. The optimum value of FNTB is at least that of DTB. Moreover, there
exists a proper optimal potential for DTB.

Proof. Let p : V → S be any potential (not necessarily proper). For each s ∈ S, suppose
that ps is written as ps = (Ms, s) for Ms ∈ Z∗+. Define a new proper potential p′ : V → S by

p′i :=
{

[min{l,Ms},min{l′,Ms}]s if pi = [l, l′]s,
[min{l1,M1}, . . . ,min{lk,Mk}] if pi = [l1, . . . , lk].

Then the objective function value of p′ does not decrease. This implies the latter part of the
statement.

ICALP 2020
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Figure 1 A subtree-valued potential p.

We next show the former part, i.e., the weak duality. The LP dual of FNTB is written as

Maximize
∑
s∈S

∑
X̂∈Cs

(rs − c(Γ(X̂)))π(X̂)−
∑
e∈E

ue

 ∑
X̂∈C:e∈δX̂

π(X̂)− ae

+

subject to π : C → R+.

We show that for any proper potential p : V → S, we can construct π : C → R+ such that∑
X̂∈Cs

π(X̂) = dist(0, ps) (s ∈ S), (5)

∑
X̂∈C:i∈Γ(X̂)

π(X̂) = size(pi) (i ∈ V \ S), (6)

∑
X̂∈C:e∈δX̂

π(X̂) = dist(pi, pj) (ij ∈ E). (7)

Then by
∑
X̂∈C c(Γ(X̂))π(X̂) =

∑
X̂∈C

∑
i∈Γ(X̂) ciπ(X̂) =

∑
i∈V \S ci

∑
X̂∈C:i∈Γ(X̂) π(X̂), the

weak duality follows.
Let e be an edge in T. We define a biset (Xe, X

+
e ) as follows. When we remove e from T,

there appear two connected components. Let Te be the component which does not contain
0 (∈ T). Define Xe, X

+
e ⊆ V by

Xe := {i ∈ V | pi is contained in Te}, X+
e := Xe ∪ {i ∈ V | pi contains e}.

Observe that if e is an edge in Ps and Xe 6= ∅, then (Xe, X
+
e ) ∈ Cs. Then a potential function

π : C → R+ defined by

π(X̂) := 1
2 |{e | X̂ = (Xe, X

+
e )}| (X̂ ∈ C)

satisfies (5)–(7). J

We remark that the technique used in the above proof is based on a tree representation
of a laminar biset family; see also [11] for the relating argument that maps to each node a
subtree as a potential. We also note that our algorithm below will give an algorithmic proof
of the strong duality.
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We next derive from Proposition 4 the complementary slackness condition. Let p : V → S
be a proper potential. By p, we decompose V into S ∪ V0 ∪

⋃
s∈S Vs, where

V0 := {i ∈ V \ S | pi is of 0-type},
Vs := {i ∈ V \ S | pi is of s-type} (s ∈ S).

In the next lemma, we see that it is sufficient to only consider edges ij ∈ E with dist(pi, pj) ≥
aij . Let denote the set of such edges by

E∗ := {ij ∈ E | dist(pi, pj) ≥ aij}.

For i ∈ V0 and s ∈ S, we denote a set of edges in E∗ connecting i and Vs by

Ei,s := {ij ∈ E∗ | j ∈ Vs} (i ∈ V0, s ∈ S).

By the positivity of a, we see that (Ei,1, Ei,2, . . . , Ei,k) is a partition of E∗ ∩ δi. For
i ∈ Vs (s ∈ S), there appear two connected components when we remove pi from T. Let Ti,0
be the component which includes 0 (∈ T), and let Ti,+ be the other component. Then we
define the sets of edges Ei,0 and Ei,+ by

Ei,0 := {ij ∈ E∗ | pj is contained in Ti,0},
Ei,+ := {ij ∈ E∗ | pj is contained in Ti,+}.

By the positivity of a, we see that (Ei,0, Ei,+) is a partition of E∗ ∩ δi.

I Lemma 5. Let x : E → R+ be an edge-capacity function with 0 ≤ x ≤ u, and let p : V → S
be a proper potential. If x and p satisfy the following conditions (A1–5), then x and p are
optimal solutions for FNTB and DTB, respectively:

(A1) For each ij ∈ E, if dist(pi, pj) > aij, then xij = uij.
(A2) For each ij ∈ E, if dist(pi, pj) < aij, then xij = 0.
(A3) For each i ∈

⋃
s∈S Vs, it holds x(Ei,0) = x(Ei,+) ≤ ci. If size(pi) > 0, then x(Ei,0) =

x(Ei,+) = ci.
(A4) For each i ∈ V0 and s ∈ S, it holds x(Ei,s) ≤ ci and x(Ei,s) ≤

∑
s′ 6=s x(Ei,s′). If

sizes(pi) > 0, then x(Ei,s) = ci.
(A5) For each s ∈ S, it holds x(δs) ≥ rs. If dist(0, ps) > 0, then x(δs) = rs.

Proof. Let x and p satisfy (A1–5). For the feasibility of x, it is sufficient to show that, for
each s ∈ S, there exists a flow satisfying the capacities x and c that connects s and S \ {s}
with flow-value rs. To prove this, we decompose x into a separately-capacitated multiflow.
An S-path is a path connecting distinct terminals. Consider the following algorithm, which
takes x as an input and outputs a function λ : P → R+, where P is a set of S-paths:

0. Let P = ∅.
1. Take s ∈ S and an edge sj satisfying x(sj) > 0. If such a pair does not exist, then stop

the algorithm; output (P, λ). Otherwise, let j0 ← s, j1 ← j, µ← x(sj), t← 1.
2. If jt is a terminal, then add P = (j0, j1, . . . , jt) to P and let λ(P ) := µ > 0. Update

x(e)← x(e)− µ on each edge e in P , and return to Step 1. Otherwise go to Step 3.
3. If jt ∈

⋃
s∈S Vs, then jt−1jt ∈ Ejt,+ or jt−1jt ∈ Ejt,0 by (A2) and x(jt−1jt) > 0. In

the former case, take jtjt+1 ∈ Ejt,0 with x(jtjt+1) > 0. Such an edge exists by the
former part of (A3). In the latter case, take jtjt+1 ∈ Ejt,+ with x(jtjt+1) > 0. Update
µ← min{µ, x(jtjt+1)}, t← t+ 1, and return to Step 2.

ICALP 2020
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If jt ∈ V0, then jt−1jt ∈ Ejt,s (as we will show). Take s′ 6= s with maximum x(Ejt,s
′) (>

0), and take jtjt+1 ∈ Ejt,s
′ with x(jtjt+1) > 0. Such an edge exists by x(jt−1jt) > 0 and

the former part of (A4). Update

µ← min

µ, x(jtjt+1),
min

{∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) | s′′ 6= s, s′

}
2

 ,

and t← t+ 1. Note that µ > 0 by the maximality of x(Ejt,s
′). Return to Step 2.

Suppose that we add (j0, j1, . . . , j`) to P in Step 2. Observe that jt+1 is at a side opposite
to jt−1 based on jt for each t = 1, . . . , `− 1. By the positivity of a and (A2), {jt−1, jt, jt+1}
are distinct and

dist(pjt−1 , pjt+1) = dist(pjt−1 , pjt
) + size(pjt

) + dist(pjt
, pjt+1)

if jt ∈
⋃
s∈S Vs, and

dist(pjt−1 , pjt+1) = dist(pjt−1 , pjt) + sizes(pjt) + sizes′(pjt) + dist(pjt , pjt+1)

if jt ∈ V0, where jt−1 ∈ Vs and jt+1 ∈ Vs′ (s 6= s′). Since T is a tree, we can show

dist(pj0 , pj`
) =

`−1∑
t=0

dist(pjt , pjt+1) +
∑

1≤t≤`−1, t 6=t′
size(pjt) + sizej0(pjt′ ) + sizej`

(pjt′ ) (8)

by an induction, where jt′ ∈ V0 (if exists); see also [12, Lemma 3.9]. Hence (j0, j1, . . . , j`) is
a “shortest path on T” from j0 to j`, and j0, . . . , j` are distinct.

Thus after |V | executions of Step 3, the algorithm adds a path P to P in Step 2. Also
the algorithm keeps (A2) and the former parts of (A3–4). To see it for (A4), suppose that
the algorithm adds a path (j0, j1, . . . , jt, . . . , j`) to P in Step 2, where j0 = s ∈ S, jt ∈ V0
and j` = s′ ∈ S. By the above argument, such t is uniquely determined (if exists). Then for
all s′′ 6= s, s′, we have

∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) ≥ 2µ. Thus after the decrease of the

value of x along with P , it satisfies that
∑
s′′′ 6=s′′ x(Ejt,s

′′′)− x(Ejt,s
′′) ≥ 0.

After the decrease of the value of x along with a path, it becomes x(e) = 0 for at least
one edge e ∈ E, or becomes

∑
s′ 6=s x(Ei,s′)− x(Ei,s) = 0 for at least one pair of i ∈ V0 and

s ∈ S. The algorithm keeps those values to be zero in the remaining execution, implying
that it terminates after adding at most O(m+ kn) paths to P . To see it, suppose that after
the decrease of the value of x along with a path, it becomes

∑
s′ 6=s x(Ei,s′) − x(Ei,s) = 0

for i ∈ V0 and s ∈ S. If the algorithm chooses a path (j0, . . . , jt = i, . . . , j`) for adding
to P in the remaining execution, then by the maximality of x(Ei,s), it should satisfy that
jt−1jt ∈ Ei,s or jtjt+1 ∈ Ei,s. Thus

∑
s′ 6=s x(Ei,s′)−x(Ei,s) does not change by the decrease

of the value of x along with (j0, . . . , j`).
We have shown the algorithm always terminates in finite steps. For the output f = (P, λ),

let f(e) :=
∑
P∈P:e∈P λ(P ) for e ∈ E, and let f(i) :=

∑
P∈P:i∈P λ(P ) for i ∈ V . Also let

Ps ⊆ P be the subset of paths connecting s to other terminals, and let fs = (Ps, λs) for
s ∈ S. Clearly, it holds that f(e) ≤ x(e) ≤ u(e) for e ∈ E. For i ∈ Vs (s ∈ S), if a path
P ∈ P goes through i, then P must be contained in Ps. Thus by the former part of (A3),
fs(i) = f(i) ≤ x(Ei,0) (= x(Ei,+)) ≤ c(i). Also, fs′(i) ≤ fs(i) ≤ c(i) for any s′ 6= s. On
the other hand, for i ∈ V0, if a path in Ps (s ∈ S) goes through i, then it must include an
edge contained in Ei,s. Thus by the former part of (A4), we have fs(i) ≤ x(Ei,s) ≤ c(i).
Therefore f is a separately-capacitated multiflow. Moreover, fs satisfies the requirement r
by the former part of (A5). Thus x is a feasible solution of FNTB.
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We next show the optimality of x and p. First observe that when the algorithm terminates,
all edges e ∈ E satisfy x(e) = 0. In fact, if there exists an edge e ∈ E with x(e) > 0, then
we can construct an S-path with edges having positive x-values by repeating to apply the
former parts of (A3–4). Thus f(e) = x(e) (e ∈ E) for the original input x. We see that

∑
ij∈E

aijxij −
∑
s∈S

rs dist(0, ps) +
∑

i∈V \S

ci size(pi) +
∑
ij∈E

uij(dist(pi, pj)− aij)+

=
∑
ij∈E

(dist(pi, pj)− aij)+(uij − xij) +
∑
ij∈E

(aij − dist(pi, pj))+xij +
∑
ij∈E

xij dist(pi, pj)

+
∑

i∈V \S

ci size(pi)−
∑
s∈S

rs dist(0, ps)

=
∑
ij∈E

(dist(pi, pj)− aij)+(uij − xij) +
∑
ij∈E

(aij − dist(pi, pj))+xij

+
∑
s∈S

∑
i∈Vs

(ci − f(i)) size(pi) +
∑
i∈V0

∑
s∈S

(ci − fs(i)) sizes(pi) +
∑
s∈S

(f(s)− rs) dist(0, ps), (9)

where we use a+ (d− a)+ = d+ (a− d)+ for a, d ∈ R and∑
ij∈E

f(ij) dist(pi, pj) +
∑
s∈S

∑
i∈Vs

f(i) size(pi) +
∑
i∈V0

∑
s∈S

fs(i) sizes(pi)

=
∑
ij∈E

∑
P∈P,ij∈E(P )

λ(P ) dist(pi, pj)

+
∑
s∈S

∑
i∈Vs

∑
P∈P,i∈V (P )

λ(P ) size(pi) +
∑
i∈V0

∑
s∈S

∑
P∈Ps,i∈V (P )

λs(P ) sizes(pi)

=
∑
st

∑
P∈P:P connects st

λ(P ) dist(ps, pt) =
∑
s∈S

f(s) dist(0, ps)

by (8). We see f(i) = x(Ei,0) (= x(Ei,+)) for i ∈
⋃
s∈S Vs, and fs(i) = x(Ei,s) for i ∈ V0

and s ∈ S. Also f(s) = x(δs) for s ∈ S. Then (9) is zero by (A1–2) and the latter parts of
(A3–5). By Proposition 4, we conclude that x and p are both optimal. J

I Remark 6. Suppose the input edge-capacity x satisfies x(δi) ∈ Z+ for any i ∈ V . Then µ is
always half-integral, and the integrality of x(δi) is also kept in the execution of the algorithm.
Thus the output multiflow is half-integer-valued. This argument will be used for proving a
min-max theorem (Theorem 2) for a separately-capacitated multiflow later.

The decomposition algorithm is based on [11, Lemma 4.5]; see also [14, Lemma 3.3].
The existence of an edge-capacity x satisfying (A1–5) can be checked by solving the

undirected circulation problem. This fact leads a simple descent algorithm for DTB and
FNTB. Notice that a potential p : V → S can be identified with a vector in Sn. For brevity
we write p ∈ Sn below. Let ha = h : Sn → R be a function defined by

h(p) := −
∑
s∈S

rs dist(0, ps) +
∑
i∈V \S

ci size(pi) +
∑
ij∈E

uij(dist(pi, pj)− aij)+ (10)

if p ∈ Sn is a potential and h(p) :=∞ otherwise. Then DTB is precisely a minimization of h
over Sn. Consider the following algorithm DESCENT:
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Algorithm 1 DESCENT.

0. Initialize p ≡ 0 (i.e., p(i) = 0 for any i ∈ V ).
1. Check the sufficiency of the optimality of p by searching x satisfying (A1–5).
2. If x is found, then x and p are optimal; stop.
3. Otherwise find q ∈ Sn with h(q) < h(p); update p by q and go to Step 1.

We give more details of DESCENT in Section 2.3. As for Step 1, we can also do Step 3
by the undirected circulation problem; q is computed by the certificate of the nonexistence of
x. In the following subsections, we introduce the undirected circulation problem and discuss
how to find x or q in each case.

2.2 Checking the Optimality
Let (U,F ) be an undirected graph, and let b : F → R and b : F → R be lower and upper
capacity functions satisfying b(e) ≤ b(e) for each e ∈ F . The graph (U,F ) may contain
self-loops but no multiedges. The circulation problem on ((U,F ), b, b) is the problem of finding
an edge-weight y : F → R satisfying b(e) ≤ y(e) ≤ b(e) for each e ∈ F and

∑
ij∈F y(ij) = 0

for each i ∈ U . Such a y is called a circulation.
Let 3U denote the set of pairs (Y,Z) of two subsets Y,Z ⊆ U with Y ∩ Z = ∅. For

(Y,Z) ∈ 3U , let χY,Z :=
∑
i∈Y χi −

∑
i∈Z χi ∈ RU . Define the cut function κ : 3U → R by

κ(Y,Z) :=
∑
ij∈F
{(χY,Z({i, j}))+b(ij)− (χZ,Y ({i, j}))+b(ij)} ((Y,Z) ∈ 3U ).

It is well-known that the feasibility of the circulation problem is characterized via the cut
function. We can show it by reducing to Hoffman’s circulation theorem. A cut (Y,Z) ∈ 3U
with κ(Y,Z) > 0 is called violating, and is called maximum violating if it attains the maximum
κ(Y,Z) among all violating cuts.

I Lemma 7 (see, e.g., [16, Theorems 2.4, 2.7]). Let ((U,F ), b, b) be an undirected network.
(1) The circulation problem is feasible if and only if κ(Y,Z) ≤ 0 for any (Y, Z) ∈ 3U .
(2) If b and b are integer-valued, then there exists a feasible half-integer-valued circulation

y : E → Z∗+.
(3) Under the same assumption, we can obtain a feasible half-integer-valued circulation or a

maximum violating cut in O(MF(|U |, |F |)) time.

Let us return to our problem. For a given proper potential p ∈ Sn, the existence of
x : E → R+ satisfying (A1–5) reduces to the undirected circulation problem on the following
network Np := ((U,F ), c, c). See Figure 2 for the following construction.

For each i ∈
⋃
s∈S Vs, divide i into two nodes Ui := {i0, i+}, and connect nodes by an

edge i0i+. For representing (A3), let c(i0i+) := −ci, and let c(i0i+) := 0 if size(pi) = 0 and
c(i0i+) := −ci if size(pi) > 0. For each i ∈ V0, divide i into 2k nodes Ui := U0

i ∪ U
+
i , where

U0
i := {i1,0, i2,0, . . . , ik,0} and U+

i := {i1,+, i2,+, . . . , ik,+}, and connect them by edges is,0is,+
for s ∈ S and is,0is

′,0 for distinct s, s′ ∈ S. For representing (A4), let c(is,0is,+) := −ci,
and let c(is,0is,+) := 0 if sizes(pi) = 0 and c(is,0is,+) := −ci if sizes(pi) > 0. Also let
c(is,0is′,0) := 0 and c(is,0is′,0) :=∞. For each s ∈ S, let s0 := s and Us := {s0}, and add a
self-loop s0s0. For representing (A5), let c(s0s0) := −∞ if dist(0, ps) = 0 and c(s0s0) := −rs
if dist(0, ps) > 0, and let c(s0s0) := −rs.
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Figure 2 The undirected network Np.

For each edge ij ∈ E, if dist(pi, pj) < aij , then xij = 0 by (A2). Thus we remove those
edges. Let E> be the set of edges ij ∈ E with dist(pi, pj) > aij , and let E= be the set of
edges ij ∈ E with dist(pi, pj) = aij . We replace endpoints of each edge ij ∈ E> ∪ E=. If
i ∈ V0 and j ∈ Vs, then replace ij with is,+j0. If i ∈ Vs and j ∈ Vs′ (s 6= s′), then replace ij
with i0j0. If i, j ∈ Vs and pi is closer to 0 than pj , i.e., dist(0, pi) < dist(0, pj), then replace
ij with i+j0. We identify those replaced edges with the original edges. Let c(ij) := 0 if
ij ∈ E= and c(ij) := uij if ij ∈ E>, and let c(ij) := uij . U and F are defined as the union
of all nodes and edges in the above, respectively.

I Theorem 8. Let Np = ((U,F ), c, c) be the undirected network constructed from a proper
potential p ∈ Sn. If it has a (half-integer-valued) circulation y : F → R, then an edge-capacity
function x : E → R+ defined by

x(e) :=
{
y(e) if e ∈ E> ∪ E=,

0 otherwise (e = ij with dist(pi, pj) < aij)

satisfies (A1–5).

Proof. We can obtain (A1–5) from definitions immediately. For example, the former part of
(A4) follows from x(Ei,s) = −y(is,0is,+) ≤ −c(is,0is,+) = ci and

x(Ei,s) = −y(is,0is,+) =
∑
s′ 6=s

y(is,0is
′,0) ≤

∑
s′ 6=s
−y(is

′,0is
′,+) =

∑
s′ 6=s

x(Ei,s
′
),

and the latter part of (A4) follows from −y(is,0is,+) ≥ −c(is,0is,+) = ci for i ∈ V0 and s ∈ S
with sizes(pi) > 0. J

2.3 Finding a Descent Direction
If the algorithm in Lemma 7 outputs a circulation in Np, then an optimal edge-capacity is
computed from the circulation, and p is optimal by Lemma 5 and Theorem 8. Otherwise
the algorithm outputs a maximum violating cut. We show that we can find q ∈ Sn with
h(q) < h(p) using the maximum violating cut. A basic idea is to modify each subtree pi,
according to the intersection pattern of the maximum violating cut with Ui, so that the
objective function h decreases. This implies the necessity of Lemma 5 and the strong duality
of Proposition 4.

ICALP 2020



65:12 Terminal Backup, Multiflow, and Discrete Convexity

We begin with introducing the notion of basic moves for a subtree. For an s-type subtree
T = [l, l′]s, we denote its endpoints by v0(T ) := (l, s) ∈ T and v+(T ) := (l′, s) ∈ T. When
we remove T from T, there appear two connected components. Let T ′0 be the component
containing 0 (∈ T), and T ′+ be the other. We can expand the subtree T by adding a node
next to T . There are two nodes next to T , one is contained in T ′0 and the other is contained
in T ′+. The 0-expansion is the operation to add that node contained in Ti,0 to T , and
the +-expansion is the operation to add that node contained in Ti,+ to T . If T satisfies
size(T ) > 0, then we can shrink T by removing v0(T ) or v+(T ) from T . The 0-shrinkage
is the operation to remove v0(T ) from T , and the +-shrinkage is the operation to remove
v+(T ) from T .

For a 0-type subtree T = [ls]s∈S , we denote its endpoints by vs(T ) := (ls, s) ∈ T for
s ∈ S. When we remove T from T, there appear k (= |S|) connected components. For s ∈ S,
let T ′s be the component which is contained in Ps. As above, we can expand the subtree T by
adding a node next to T . There are k nodes next to T , and each T ′s (s ∈ S) contains exactly
one such a node. The (s,+)-expansion for s ∈ S is the operation to add that node contained
in T ′s to T . If T satisfies sizes(T ) > 0 for s ∈ S, then we can shrink T by removing vs(T )
from T . The (s,+)-shrinkage for s ∈ S with sizes(T ) > 0 is the operation to remove vs(T )
from T . For s ∈ S, if sizes′(T ) = 0 for any other s′ ∈ S, then we can shrink T by removing
0 (∈ T) from T . The (s, 0)-shrinkage for such s ∈ S is the operation to remove 0 from T . We
call these expansion and shrinkages basic moves.

Let (Y, Z) ∈ 3U be a cut. From (Y,Z), the modification pY,Z of p is defined as follows.
For s ∈ S, do:

If s0 ∈ Y , then 0-expand and +-shrink ps.
If s0 ∈ Z, then +-expand and 0-shrink ps.

For i ∈
⋃
s∈S Vs, do:

If i0 ∈ Y , then 0-expand pi. If i0 ∈ Z, then 0-shrink pi.
If i+ ∈ Y , then +-expand pi. If i+ ∈ Z, then +-shrink pi.

For i ∈ V0, do:
If U0

i ∩ (Y ∪ Z) = ∅, then we do the following for each s ∈ S:
If is,+ ∈ Y , then (s,+)-expand pi. If is,+ ∈ Z, then (s,+)-shrink pi.

If is,0 ∈ Z for some s ∈ S, then (s, 0)-shrink pi. Also do the following:
If is,+ ∈ Y , then (s,+)-expand pi. If is,+ ∈ Z, then (s,+)-shrink pi.

There may exists i ∈ V that such a move cannot be defined, e.g., i ∈
⋃
s∈S Vs with

size(pi) ≤ 1/2 and {i0, i+} ⊆ Z, or j ∈ V0 with {js,0, js′,0} ⊆ Z. If the moves can be defined
for all i ∈ V , then the cut (Y,Z) is called movable. For a movable cut (Y,Z) ∈ 3U , we denote
the modified potential by pY,Z .

We cal a node (l, s) ∈ T even if the number of edges between (l, s) and 0 is even, and odd
otherwise. A basic move is said to be upward if the added node is even or the removed node
is odd. A basic move is said to be downward if the added node is odd or the removed node
is even. A movable cut (Y, Z) ∈ 3U is upward-movable (resp. downward-movable) if all basic
moves occurring in the modification from p to pY,Z are basic upward moves (resp. basic
downward moves). Let denote the sets of all upward-movable cuts and downward-movable
cuts byM↑ andM↓, respectively.

I Lemma 9. For (Y, Z) ∈M↑ ∪M↓, it holds h(pY,Z)− h(p) = −κ(Y,Z)/2.

Thus we are motivated to obtain an upward- or downward-movable cut (Y, Z) with a
positive κ(Y, Z) value. The following lemma says that we can do this efficiently given a
maximum violating cut.
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I Lemma 10. Given a maximum violating cut, we can obtain an upward-movable cut
(Y,Z) ∈M↑ and a downward-movable cut (Y ′, Z ′) ∈M↓ satisfying

κ(Y,Z) = max
(Y ′′,Z′′)∈M↑

κ(Y ′′, Z ′′), κ(Y ′, Z ′) = max
(Y ′′,Z′′)∈M↓

κ(Y ′′, Z ′′) (11)

in O(kn) time. Moreover, at least one of κ(Y, Z) and κ(Y ′, Z ′) is positive.

I Theorem 11. Let Np := ((U,F ), c, c) be the undirected network constructed from a proper
potential p ∈ Sn. Suppose that the instance is infeasible. Given a maximum violating cut, we
can obtain a proper potential q ∈ Sn with h(q) < h(p) in O(kn) time.

Proof. By Lemma 10, we can obtain an upward-movable cut (Y,Z) ∈M↑ and a downward-
movable cut (Y ′, Z ′) ∈ M↓ satisfying (11) in O(kn) time. Let (Y ′′, Z ′′) be the cut that
attains maximum κ-value among {(Y,Z), (Y ′, Z ′)}, and let q := pY

′′,Z′′ . Then h(q) < h(p)
by Lemmas 9 and 10. We can make q proper by the procedure given in the first part of the
proof of Proposition 4. J

Now we are ready to present the details of DESCENT. First construct Np from the current
proper potential p ∈ Sn, and run the algorithm given in Lemma 7 to solve the circulation
problem; this corresponds to Step 1 given in the procedure at the end of Section 2.1. If a
feasible half-integer-valued circulation is obtained, then a half-integral optimal edge-capacity
x is computed by Theorem 8; this corresponds to Step 2. Otherwise a maximum violating
cut is obtained, and then a proper potential q ∈ Sn with h(q) < h(p) is computed by
Theorem 11; this corresponds to Step 3. One iteration of this algorithm can be done in
O(MF(kn,m+ k2n)) time.

The value −h(p) is at most mUA (by Proposition 4) and −h(p) ∈ Z∗+. Thus the number
of iterations is at most O(mUA). Actually, this analysis of the time complexity is not tight.
In fact, the number of iterations can be evaluated as O(nA).

If a potential q ∈ Sn is obtained from a potential p by a modification defined by a movable
cut on Np, then we say that q is a neighbor of p, that is, there exists a movable cut (Y ′, Z ′) ∈
3U such that q = pY

′,Z′ . For p, q ∈ Sn, define a distance d̃Sn(p, q) by the minimum length of
a sequence (p = p0, p1, . . . , p` = q) such that pt is a neighbor of pt−1 for all t = 1, . . . , `. Let
opt(h) denote the set of minimizers of h, and let d̃Sn(p, opt(h)) := minq∈opt(h) d̃Sn(p, q).

I Lemma 12. Starting with an initial potential p0 ∈ Sn, DESCENT finds an optimal
potential at most d̃Sn(p0, opt(h)) + 2 iterations.

Lemma 12 can be shown by using DCA beyond Zn. We will discuss it in Section 3.

I Lemma 13. There exists an optimal potential p ∈ opt(h) satisfying that for any i ∈ V , pi
is contained in (2nA, 2nA, . . . , 2nA) ∈ S.

I Theorem 14. DESCENT solves FNTB in O(nA ·MF(kn,m+ k2n)) time.

Proof. We can only consider the potentials satisfying the condition in Lemma 13. Any pair
of such potentials p, q ∈ S satisfies d̃Sn(p, q) = O(nA). Then the statement follows from
Lemma 12. J

We note that Theorem 14 is shown under the positivity assumption of the edge-cost a.
We prove Theorem 2 using Theorem 14.
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Proof of Theorem 2. Let f = (P, λ) be a separately-capacitated multiflow. Recall that
fs = (Ps, λ|Ps

), where Ps ⊆ P is a subset of paths connecting s to other terminals. Let
val f :=

∑
P∈P λ(P ) and val fs :=

∑
P∈Ps

λ(P ) for s ∈ S. Then val fs is at most the capacity
of any {s}–(S \ {s}) cut. Thus val f = (1/2)

∑
s∈S val fs ≤ (1/2)

∑
s∈S νs.

Consider an instance ((V,E), S, u, c, a, r) of FNTB, where a ≡ 1 and rs := νs for each
s ∈ S. Since u clearly satisfies (1), this instance is feasible. Then DESCENT outputs a
half-integral optimal edge-capacity x and an optimal potential p. Since x and p satisfy the
conditions (A1–5), we can apply the decomposition algorithm in the proof of Lemma 5
for x, and obtain a separately-capacitated multiflow f . Then val f = (1/2)

∑
s∈S f(s) ≥

(1/2)
∑
s∈S rs = (1/2)

∑
s∈S νs. Moreover, since x comes from a half-integral circulation

(Theorem 8), x satisfies x(δi) ∈ Z+ for any i ∈ V \ S. In fact, for i ∈
⋃
s∈S Vs, it is observed

from x(δi) = −2y(i0i+), and for i ∈ V0, it is observed from x(δi) =
∑
s∈S −y(is,0is,+) =

2
∑
s<s′ y(is,0, is′,0). Then by Remark 6, the decomposition algorithm outputs a half-integer-

valued multiflow.
The time complexity result follows from that FNTB can be solved in O(n·MF(kn,m+k2n))

time by Theorem 14, and the decomposition algorithm runs in O((m+ kn)n) time. J

2.4 Scaling Algorithm
The time complexity of DESCENT is pseudo-polynomial. We improve it by combining with
a (cost-)scaling method.

Let γ ∈ Z+ be an integer such that 2γ ≥ A. The scaling algorithm consists of γ+1 phases.
In t-th phase, solve DTB with an edge-cost at : E → Z+ defined by at(e) := da(e)/2te (e ∈ E),
i.e., minimize hat

. (Recall ha is defined by (10).) Here d·e is the round-up operator. Note that
all at(e) are positive. Begin with t = µ, and decrease t one-by-one. Then, when t = 0, the
problem coincides with the original DTB. In each t-phase, we use DESCENT to minimize hat

.
At the initial phase t = µ, we run DESCENT with the starting point p0 ∈ Sn, where (p0)i = 0
for all i ∈ V . For t-phase with t ≤ µ− 1, the starting point is determined from the obtained
optimal potential in the previous phase. Let 2[l, l′]s := [2l, 2l′]s and 2[ls]s∈S := [2ls]s∈S . For
a potential p ∈ Sn, define a new potential 2p ∈ Sn by (2p)i := 2pi for i ∈ V .

I Lemma 15. Let p ∈ Sn be an optimal potential for t-phase (t = 1, . . . , µ). Then the
potential 2p ∈ Sn is optimal for DTB with an edge-cost 2at.

Proof. By the strong duality of Proposition 4, there exists a solution x : E → R for FNTB,
such that

∑
e∈E at(e)x(e) = −hat

(p). Then
∑
e∈E 2at(e)x(e) = −h2at

(2p) holds, which
implies the optimality of 2p by (the weak duality of) Proposition 4. J

Observe that at−1 = 2at −
∑
e∈F χe, where F := {e ∈ E | at−1(e) is odd}. The key

property is the following sensitivity result.

I Lemma 16. Let a : E → Z+ be a positive edge-cost. Let e ∈ E be an edge satisfying
a(e) ≥ 2, and a′ := a− χe. Let p ∈ opt(ha). Then d̃Sn(p, opt(ha′)) ≤ 2.

We prove Lemma 16 in Section 3.3 using the notion of discrete convexity.

Proof of Theorem 1. For the initial phase t = µ, an optimal potential can be obtained in
O(n) iterations of DESCENT by Lemmas 12 and 13. For each remaining phase, an optimal
potential can be obtained in O(m) iterations of DESCENT by Lemmas 12, 15 and 16. Thus
O(n+m logA) = O(m logA) iterations of DESCENT are sufficient. Recall that we assume
the positivity of the edge-cost a. When a is not positive, the perturbation (Remark 3) is
needed. Thus the maximum of edge-costs is O(mUA). Then the theorem follows. J
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3 Discrete Convex Analysis for Node-Connectivity Terminal Backup

The theory of DCA beyond Zn gives an algorithm, called the steepest descent algorithm
(SDA), for minimizing L-convex functions on certain graph structures. We first introduce
the L-convexity and SDA, and next show that DESCENT is precisely SDA for an L-convex
function. Then Lemma 12 immediately follows. Finally, we discuss a sensitivity argument,
which shows Lemma 16.

3.1 A General Theory
In this subsection, we briefly introduce a theory of discrete convexity on graph structures
specialized to median graphs. See [15] for further details.

We use basic terminologies of poset and lattice. Let L be a poset (partially ordered set)
with a partial order �. The principal filter Fx and the principal ideal Ix of x ∈ L are defined
as {y ∈ L | y � x} and {y ∈ L | y � x}, respectively. For x, y ∈ L with x � y, the interval
[x, y] is defined as the set of z ∈ L satisfying x � z � y. We consider a (meet-)semilattice
having the minimum element. A median semilattice L is a semilattice that every principal
ideal is a distributive lattice and for any x, y, z ∈ L, the join x ∨ y ∨ z exists if x ∨ y, y ∨ z,
and z ∨ x exist. A Boolean semilattice is a median semilattice that every principal ideal is a
Boolean lattice.

Let G be a (possibly infinite) undirected graph. We denote the set of nodes also by G.
Let d = dG be the shortest path metric on G. The (metric) interval I(u, v) of u, v ∈ G is
the set of w ∈ G satisfying d(u, v) = d(u,w) + d(w, v). A median graph G is a graph that
for any u, v, w ∈ G, I(u, v) ∩ I(v, w) ∩ I(w, u) is a singleton.

We consider an orientation on edges of a median graph G, that takes u↘ v or u↙ v on
each edge uv. An orientation is admissible if for any 4-cycle (u1, u2, u3, u4), u1 ↘ u2 implies
u4 ↘ u3. It is known [13, Lemma 2.4] that an admissible orientation on a median graph is
acyclic. Thus we can define a poset on G by the admissible orientation, i.e., if an edge uv is
oriented as u↙ v, then u � v. G with an admissible orientation is well-oriented if [u, v] is a
Boolean lattice for any u, v with u � v. In a well-oriented median graph G, it is known [15,
Proposition 2] that every principal filter of G is a Boolean semilattice, and every principal
ideal of G is a Boolean semilattice with the reversed order.

We can define an L-convex function on a well-oriented median graph G. For a function
f : G → R, define the effective domain of f as {u ∈ G | f(u) < ∞} and denote by dom f .
If a sequence of nodes (u = u0, u1, . . . , u` = v) satisfies that for any i = 1, . . . , `, there exist
u′, v′ ∈ G with u′ � v′ such that {ui−1, ui} ⊆ [u′, v′], then the sequence is said to be a
∆-path connecting u and v. A subset X ⊆ G is ∆-connected if for any u, v ∈ X, there exists
a ∆-path in X connecting u and v. A function f : G → R is called L-convex if dom f is
∆-connected and the restrictions of f to every principal filter and ideal are submodular. Here
the submodularity on a median semilattice is a rather complicated notion; we give a formal
definition in the full version.

The global optimality of an L-convex function f can be characterized by a local condition;
u ∈ dom f is a minimizer of f if and only if u is a minimizer of f restricted to Fu ∪ Iu. This
induces a natural minimization algorithm, called the steepest descent algorithm (SDA):

Algorithm 2 SDA.

0. Initialize u ∈ G with f(u) <∞.
1. Find a local minimizer v ∈ Fu ∪ Iu of f .
2. If f(v) = f(u), then stop; output u. Otherwise update u by v and go to Step 1.
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The number of iterations of SDA is bounded by the ∆-distance from the initial point
u and minimizers of f . Here the ∆-distance d∆(u, v) of u, v ∈ G is the minimum length
of a ∆-path connecting u to v. Let opt(f) denote the set of minimizers of f , and let
d∆(u, opt(f)) := minv∈opt(f) d

∆(u, v).

I Theorem 17 ([15, Theorem 4.3]). The number of iterations of SDA with the initial point
u ∈ G is at most d∆(u, opt(f)) + 2.

3.2 Discrete Convexity in Node-Connectivity Terminal Backup
We show that the dual objective function h defined in (10) is actually an L-convex function,
and the algorithm DESCENT is precisely SDA. Define a graph on S by connecting two nodes
(subtrees) T, T ′ ∈ S such that T and T ′ can transform to each other by a basic move. If we
can move T to T ′ by a basic downward-move (equivalently, we can move T ′ to T by a basic
upward-move), we give an orientation T ↘ T ′. The graph S is a median graph, but not well-
oriented. To make the graph well-oriented, we add a virtual subtree connecting to nodes (l, s)
and (l + 1/2, s) for each l ∈ Z∗+ and s ∈ S. We denote such a virtual subtree by [l + 1/2, l]s.
Give a natural orientation to each added edge. Let S := S ∪ {[l + 1/2, l]s | l ∈ Z∗+, s ∈ S}.
Extend h to be a function on Sn by h(p) :=∞ if there exists i ∈ V such that pi ∈ S \ S.

I Proposition 18.
(1) S is a well-oriented median graph, and so is Sn.
(2) h is an L-convex function on Sn.
(3) For p, q ∈ Sn, d̃Sn(p, q) = d∆(p, q).
(4) The map (Y, Z) 7→ pY,Z is a bijection between M↑ and Fp ∩ dom h, and M↓ and
Ip ∩ dom h.

Proof of Lemma 12. By Lemma 9 and Proposition 18 (4), the cuts (Y, Z) and (Y ′, Z ′) in
Lemma 10 are minimizers of h on Fp and Ip, respectively. Therefore DESCENT is precisely
SDA for h. Thus the number of iterations can be evaluated by Theorem 17, and the statement
follows from Proposition 18 (3). J

3.3 Sensitivity
To prove Lemma 16, we transform the instance ((V,E), S, u, c, a, r) of FNTB to an edge-
uncapacitated one by a standard technique: Divide each edge e ∈ E into two edges e1, e2,
and add a new node ve into the middle of these two edges. Let the edge-costs of e1 and e2
be the same as the original edge-cost of e, and let the edge-capacities of e1 and e2 be ∞. Let
the node-capacity of the added node be u(e). The number of vertices in the new instance is
|V |+ |E| = n+m, and the number of edges is 2|E| = 2m. We denote the new instance by
((V̄ , Ē), S, ū, c̄, ā, r).

We consider the dual problem DTB for the edge-uncapacitated instance. In this case, we
say that p̄ ∈ Sn+m is a potential for an edge-cost ā if it satisfies (4) and dist(p̄i, p̄j) ≤ āij for
any ij ∈ Ē. Then DTB is a minimization of a function ha : Sn → R defined by

h̄ā(p̄) := −
∑
s∈S

rs dist(0, p̄s) +
∑
i∈V̄ \S

c̄i size(p̄i) (12)

if p̄ is a potential for ā and h̄ā(p̄) :=∞ otherwise.
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Let p ∈ Sn be a potential for the original instance. We can extend p to a potential p̄ for the
edge-uncapacitated instance as follows: For v = i ∈ V , let p̄v := 2pi. For v = vij (ij ∈ E), we
have two cases dist(pi, pj) ≤ aij and dist(pi, pj) > aij . For the former case, let p̄v be any point
in T (i.e., size(p̄v) = 0) satisfying dist(p̄i, p̄v) ≤ aij and dist(p̄v, p̄j) ≤ aij . For the latter case,
let p̄v satisfy dist(p̄i, p̄v) = aij , dist(p̄v, p̄j) = aij and size(p̄v) = 2(dist(p̄v, p̄j)− aij) > 0.

I Proposition 19. Let p ∈ Sn be an optimal potential for the original instance. Then the
extended potential p̄ ∈ Sn+m defined above is optimal for the edge-uncapacitated instance.

We first show Lemma 16 for an edge-uncapacitated instance. For brevity, we assume
that the original instance ((V,E), S, u, c, a, r) is already an edge-capacitated instance. By
Proposition 18 (3), the following is equivalent to Lemma 16.

I Lemma 20. Let a : E → Z+ be a positive edge-cost. Let ij ∈ E be an edge satisfying
a(ij) ≥ 2, and a′ := a− χij. Then for any p ∈ opt(ha), it holds d∆(p, opt(ha′)) ≤ 2.

We prove Lemma 20 via the notion of normal ∆-paths. Let G be an oriented median
graph. For nodes u, v ∈ G with d∆(u, v) = 1, let 〈〈u, v〉〉 be the minimum interval [u′, v′]
such that {u, v} ⊆ [u′, v′]. A ∆-path (u = u0, u1, . . . , u` = v) is the normal ∆-path from
u to v if for any t = 1, . . . , ` − 1 and any interval [u′, v′] with {ut−1, ut} ⊆ [u′, v′] it holds
[u′, v′] ∩ 〈〈ut, ut+1〉〉 = {ut}. The normal ∆-path from u to v is uniquely determined, and
the length ` equals to dG∆(u, v) [3, Theorem 6.24]. Let u → v denote u1, and let u � v

denote u`−1. Also Let u→t v denote ut for t = 0, . . . , `.

I Lemma 21. Let p, q ∈ dom ha. Then

ha(p) + ha(q) ≥ ha(p→ q) + ha(q → p), (13)
ha(p) + ha(q) ≥ ha(p� q) + ha(q � p). (14)

I Lemma 22. Let p, q ∈ Sn and i, j ∈ V . Suppose that dist(qi, qj) < dist((q → p)i, (q → p)j)
and dist(qi, qj) < dist((p � q)i, (p � q)j). Then for any t = 1, . . . , d∆(p, q), it holds
dist((p→t q)i, (p→t q)j) + 1/2 ≤ dist((p→t−1 q)i, (p→t−1 q)j).

Proof of Lemma 20. If p is a potential for a′, then p ∈ opt(ha′). Suppose that p is not a
potential for a′. Take q ∈ opt(ha′) having the minimum ∆-distance from p. Then q ∈ dom ha.
Thus by (13) and p ∈ opt(ha), we have ha(q) ≥ ha(q → p). If (q → p) ∈ dom ha′ , then
ha′(q → p) = ha(q → p) ≤ ha(q) = ha′(q) and thus (q → p) ∈ opt(ha′); a contradiction to
the minimality of q. Hence (q → p) /∈ dom ha′ , and dist((q → p)i, (q → p)j) ≥ a′ij + 1/2 >
a′ij ≥ dist(qi, qj) (by the half-integrality of dist(·, ·)). Similarly we have dist((p� q)i, (p�
q)j) > dist(qi, qj). Then we can apply Lemma 22 and obtain

dist(pi, pj) ≥ dist((p→ q)i, (p→ q)j) + 1/2
≥ dist((p→2 q)i, (p→2 q)j) + 2/2
≥ · · · ≥ dist((p� q)i, (p� q)j) + (d∆(p, q)− 1)/2.

By dist(pi, pj) ≤ aij and dist((p� q)i, (p� q)j) ≥ a′ij + 1/2 = aij − 1/2, we have

d∆(p, q) ≤ 1 + 2(dist(pi, pj)− dist((p� q)i, (p� q)j)) ≤ 2. J

We give a sketch of a proof of Lemma 16 for an edge-capacitated instance. First construct
the edge-uncapacitated instance ((V̄ , Ē), S, ū, c̄, ā, r) as above. Then an optimal potential
p̄ ∈ Sn+m is obtained from p by Proposition 19, and e ∈ E is divided into two edges
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e1, e2 ∈ Ē. By Lemma 20 for e1 and e2, there exists an optimal potential p̄′ for the edge-
uncapacitated instance with d∆(p̄, p̄′) ≤ 4. By halving p̄′, a “quarter-integral” optimal
potential p′ ∈ opt(ha′) is obtained. Lemma 16 is then shown by rounding quarter-integral
components to half-integral.
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