
Sparse Recovery for Orthogonal Polynomial
Transforms
Anna Gilbert
Department of Mathematics, Yale University, New Haven, CT, USA
anna.gilbert@yale.edu

Albert Gu
Department of Computer Science, Stanford University, CA, USA
albertgu@stanford.edu

Christopher Ré
Department of Computer Science, Stanford University, CA, USA
chrismre@cs.stanford.edu

Atri Rudra
Department of Computer Science and Engineering, University at Buffalo, NY, USA
atri@buffalo.edu

Mary Wootters
Departments of Computer Science and Electrical Engineering, Stanford University, CA, USA
marykw@stanford.edu

Abstract
In this paper we consider the following sparse recovery problem. We have query access to a vector
x ∈ RN such that x̂ = Fx is k-sparse (or nearly k-sparse) for some orthogonal transform F. The
goal is to output an approximation (in an `2 sense) to x̂ in sublinear time. This problem has been
well-studied in the special case that F is the Discrete Fourier Transform (DFT), and a long line of
work has resulted in sparse Fast Fourier Transforms that run in time O(k · polylogN). However, for
transforms F other than the DFT (or closely related transforms like the Discrete Cosine Transform),
the question is much less settled.

In this paper we give sublinear-time algorithms – running in time poly(k log(N)) – for solving the
sparse recovery problem for orthogonal transforms F that arise from orthogonal polynomials. More
precisely, our algorithm works for any F that is an orthogonal polynomial transform derived from
Jacobi polynomials. The Jacobi polynomials are a large class of classical orthogonal polynomials
(and include Chebyshev and Legendre polynomials as special cases), and show up extensively in
applications like numerical analysis and signal processing. One caveat of our work is that we require
an assumption on the sparsity structure of the sparse vector, although we note that vectors with
random support have this property with high probability.

Our approach is to give a very general reduction from the k-sparse sparse recovery problem
to the 1-sparse sparse recovery problem that holds for any flat orthogonal polynomial transform;
then we solve this one-sparse recovery problem for transforms derived from Jacobi polynomials.
Frequently, sparse FFT algorithms are described as implementing such a reduction; however, the
technical details of such works are quite specific to the Fourier transform and moreover the actual
implementations of these algorithms do not use the 1-sparse algorithm as a black box. In this work
we give a reduction that works for a broad class of orthogonal polynomial families, and which uses
any 1-sparse recovery algorithm as a black box.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Algorithm design techniques

Keywords and phrases Orthogonal polynomials, Jacobi polynomials, sublinear algorithms, sparse
recovery

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.58

Category Track A: Algorithms, Complexity and Games

EA
T

C
S

© Anna Gilbert, Albert Gu, Christopher Ré, Atri Rudra, and Mary Wootters;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:anna.gilbert@yale.edu
mailto:albertgu@stanford.edu
mailto:chrismre@cs.stanford.edu
mailto:atri@buffalo.edu
mailto:marykw@stanford.edu
https://doi.org/10.4230/LIPIcs.ICALP.2020.58
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Sparse Recovery for Orthogonal Polynomial Transforms

Related Version https://arxiv.org/abs/1907.08362

Funding Anna Gilbert: ACG is partially funded by a Simons Foundation Fellowship.
Albert Gu: AG and CR gratefully acknowledge the support of DARPA under Nos. FA87501720095
(D3M) and FA86501827865 (SDH), NIH under No. U54EB020405 (Mobilize), NSF under Nos.
CCF1763315 (Beyond Sparsity) and CCF1563078 (Volume to Velocity), ONR under No. N000141712266
(Unifying Weak Supervision), the Moore Foundation, NXP, Xilinx, LETI-CEA, Intel, Google, NEC,
Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices, the Okawa
Foundation, and American Family Insurance, Google Cloud, Swiss Re, Stanford Bio-X SIG Fellow-
ship, and members of the Stanford DAWN project: Intel, Microsoft, Teradata, Facebook, Google,
Ant Financial, NEC, SAP, VMWare, and Infosys. The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views, policies, or endorsements, either expressed or
implied, of DARPA, NIH, ONR, or the U.S. Government.
Atri Rudra: AR is partially funded by NSF grant CCF-1763481.
Mary Wootters: MW is partially funded by NSF CAREER award CCF-1844628.

Acknowledgements We would like to thank Mark Iwen for useful conversations. Thanks also to
Stefan Steinerberger for showing us the proof of a number theory lemma we used in the 1-sparse
Jacobi solver and graciously allowing us to use it, and to Clément Canonne for helpful comments
on our manuscript. We also thank Eric Winsor for pointing out an error in a lemma in an earlier
version of this paper. Thanks also to anonymous reviewers who pointed out some missing references
and whose comments improved the presentation of the paper.

1 Introduction

In this paper, we consider the following sparse recovery problem. Suppose that we have query
access to a vector x ∈ RN , which has the property that for a fixed orthogonal transform
matrix F, x̂ = Fx is k-sparse (or approximately k-sparse, in the sense that x̂ is close in
`2 distance to a k-sparse vector). The goal is to recover an approximation ẑ to x̂, so that
‖x̂− ẑ‖2 is small with high probability, as quickly as possible.

Variants of this problem have been studied extensively over several decades – we refer
the reader to the book [16] for many examples and references. One particularly well-studied
example is the sparse Fast Fourier Transform (sFFT) – see the survey [18] and the references
therein. In this case, the matrix F is taken to be the Discrete Fourier Transform (DFT)
and a long line of work has produced near-optimal results: algorithms with running time
O(k polylog(N)) and sample complexity O(k logN) [8, 9, 19,23–27]– though not all of these
works achieve both the claimed sample complexity and runtime at the same time.

We study the sparse recovery problem for a more general class of transforms F called
orthogonal polynomial transforms, and in particular those that arise from Jacobi polynomials,
a broad class of orthogonal polynomials (OPs). Jacobi polynomials include as special cases
many familiar families of OPs, including Gegenbauer and in particular Chebyshev, Legendre,
and Zernike1 polynomials, and the corresponding OP transforms appear throughout numerical
analysis and signal processing.

Despite the progress on the sFFT described above, much remains unknown for general
orthogonal polynomial transforms. As discussed more in Section 1.2 below, the sample
complexity of the sparse recovery problem is well understood, and the “correct” answer

1 To be more precise the radial component of a Zernike polynomial is a Gegenbauer and hence, a Jacobi
polynomial.

https://arxiv.org/abs/1907.08362

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:3

is known to be Θ(k polylog(N)) queries to x. However, the algorithmic results that go
along with these sample complexity bounds result in poly(N) time algorithms. Our goal in
this work will be sublinear time algorithms as well as sublinear sample complexity. There
are sublinear-time algorithms available for the special cases of Chebyshev and Legendre
polynomials that work by essentially reducing to the Fourier case [21]. For general Jacobi
polynomials, such reductions are not available. We elaborate in the full version of the paper
why reducing general Jacobi polynomials to the Fourier case does not seem easy. There are
also algorithms based on Prony’s method, some of which work for quite general families of
OPs [29]. However these general results require exact sparsity; to the best of our knowledge
versions of Prony’s method that are provably robust to noise are restricted to classes of OPs
similar to the Fourier transform.

Results

In this work, we give the first (to the best of our knowledge) sublinear-time algorithms with
provable guarantees for the (approximately-)sparse recovery problem for general orthogonal
transforms derived from Jacobi polynomials. We discuss our results in more detail in Section 3
and briefly summarize them here. Our algorithms run in time poly(k log(N)) and given
query access to v = F−1v̂, can find approximations to v̂ when v̂ is approximately k-sparse of
an appropriate form. More precisely, we can handle vectors v̂ = x̂ + ŵ where x̂ is k-sparse
with a “spread-out” support (made precise in Definition 2.3), and ŵ is an adversarial noise
vector with sufficiently small `2 norm. We obtain guarantees of the following flavor: for any
such vector v, we can find ẑ such that ‖ẑ− x̂‖2 ≤ 0.01‖x̂‖2 with high probability.

We note that these results are weaker than the results for the sFFT: our sample complexity
and running time are polynomially larger, and we need stronger assumptions on the sparse
signals. However, we also note that the decade or so of work on the sFFT culminating in
the results above began with similar results (see [17], for example, in which the dependence
on k is an unspecified polynomial) and we hope that this work will similarly be a first step
towards near-optimal algorithms for general orthogonal polynomial transforms.

Techniques

Our techniques follow the outline of existing algorithms for the sFFT, although as we
elaborate on in Section 1.3, the situation for general Jacobi polynomials is substantially
more complicated. More precisely, we first give a very general reduction, which reduces the
k-sparse case to the 1-sparse case. The idea of such a reduction was implicit in the sFFT
literature, but previous work has relied heavily on the structure of the DFT. Our reduction
applies to a broad class of OPs including Jacobi polynomials. Next, we show how to solve
the 1-sparse recovery problem for general Jacobi polynomials. The basic idea is to use known
approximations of Jacobi polynomial evaluations by certain cosine evaluations [35] in order
to iteratively narrow down the support of the unknown 1-sparse vector. We give a more
detailed overview of our techniques in Section 1.3.

Organization

For the rest of the introduction, we briefly introduce orthogonal polynomial transforms,
discuss previous work, and give a high-level overview of our approach. After that we introduce
the formal notation and definitions we need in Section 2, after which we state our results
more formally in Section 3.

ICALP 2020

58:4 Sparse Recovery for Orthogonal Polynomial Transforms

Due to space constraints, proofs of our main results are in the full version of the paper,
including the reduction from k to 1-sparse recovery, the 1-sparse recovery algorithm for
Jacobi polynomials, and the resulting k-sparse recovery algorithm for Jacobi polynomials.

1.1 Orthogonal Polynomial Transforms
Orthogonal polynomials (OPs) play an important role in classical applied mathematics,
mathematical physics, and the numerical analysis necessary to simulate solutions to such
problems. We give more precise definitions in Section 2; briefly, a family of orthogonal
polynomials p0(X), p1(X), . . . is a collection of polynomials defined on an interval D of R,
that are pairwise orthogonal with respect to a (non-negative) weight function w.

Orthogonal polynomials naturally give rise to (discrete) orthogonal polynomial transforms.
In particular, we define the transform as follows– F is an N ×N matrix, with each column
corresponding to an orthogonal polynomial p0, . . . , pN−1 and each row an evaluation point
λ0, . . . , λN−1 in a suitable domain and suitably normalized so that it is an orthogonal matrix
(Definition 2.1). A familiar example might be the DFT: in this language, the DFT matrix is
defined by the polynomials 1, X,X2, . . . , XN−1, evaluated at points λj = ωj where ω is the
Nth root of unity.2 Like the Fourier Transform, it is known that all OP transforms admit
“fast” versions, allowing matrix-vector multiplication in time O(N log2(N)) [15].3 Thus, our
problem of sparse recovery for OP transforms is a natural extension of the sFFT problem,
with applications to several areas mentioned below.

In this work we study Jacobi polynomials (defined formally in Section 2), which are a very
general class of orthogonal polynomials. These include Chebyshev polynomials, Legendre
polynomials, Zernike polynomials and more generally Gegenbauer polynomials. These OP
families show up in many places. For example, Zernike polynomials are a family of orthogonal
polynomials on the unit disk that permit an analytic expression of the 2D Fourier transform
on the disk. They are used in optics and interferometry [36]. They can be utilized to extract
features from images that describe the shape characteristics of an object and were recently
used for improved cancer imaging [39]. Different families of orthogonal polynomials give
rise to different quadrature rules for numerical integration [12,33]. Specifically, Chebyshev
polynomials are used for numerical stability (see e.g. the ChebFun package [3]) as well as
approximation theory (see e.g. Chebyshev approximation [1]). Chebyshev polynomials also
have certain optimal extremal properties, which has resulted in many uses in theoretical
computer science, including in learning theory, quantum complexity theory, linear systems
solvers, eigenvector computation, optimization, and more [28]. Further, Jacobi polynomials
form solutions of certain differential equations [2].

More recently, orthogonal polynomials and orthogonal polynomial transforms have found
applications in various facets of machine learning. For example, Dao et al. [13] leverage the
connection between orthogonal polynomials and quadrature to derive rules for computing

2 We note that in this work we consider a setting slightly different than this example, where D = [−1, 1]
rather than S1.

3 We note that even though the work of [15] has in some sense solved the problem of computing any
OP transform in near-linear time, many practical issues still remain to be resolved and the problem
of computing OP transforms in near-linear time has seen a lot of research activity recently. We just
mention two recent works [6, 7] that present near-linear time algorithms for the Jacobi polynomial
transforms (and indeed their notion of uniform Jacobi transform corresponds exactly to the Jacobi
polynomial transform that we study in this paper). However, these algorithms inherently seem to
require at least linear-time and it is not clear how to convert them into sub-linear algorithms, which is
the focus of our work.

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:5

kernel features in machine learning. The Legendre Memory Unit [38] augments recurrent
neural networks by orthogonalizing the history of features on a sliding Legendre basis;
mathematically, this is essentially an online update of the discrete Legendre Transform.
More directly, Thomas et al. [37] apply parametrized families of structured matrices directly
inspired by orthogonal polynomial transforms (De Sa et al. [14]) as layers in neural networks.
In this context, any form of structured matrix that admits fast operations is valuable, such
as those considered in this work. Although not directly applied yet, all of these applications
have a natural way of incorporating sparsity if the appropriate sparse transforms exist, which
is a particular focus of modern ML in the face of sharply increasing trends in computation.

1.2 Related Work
As previously described, there has been a great deal of work on the sFFT; we refer the
reader to the survey [18] for an overview. There has also been work on non-Fourier OP
transforms. We break up our discussion below into discussion on the sample complexity
(which as mentioned above is largely settled) and the algorithmic complexity (which remains
largely open).

Sample complexity

The sample complexity of OP transforms F has been largely pinned down by the compressed
sensing literature. For example, suppose that F ∈ RN×N is any orthogonal and sufficiently
flat matrix, in the sense that none of the entries of F are too large. Then a result of Haviv
and Regev (sharpening of results by Bourgain, and Rudelson and Vershynin) shows that
m = O(k log2 k logN) samples suffice to establish that the matrix Φ ∈ Rm×N (which is made
up ofm sampled rows from FT) has the Restricted Isometry Property (RIP) [5,20,34]. Finding
x̂ = Fx from samples of F of corresponds to the problem of finding an (approximately)
k-sparse vector x̂ from the linear measurements Φx̂, which is precisely the compressed sensing
problem. It is known that if Φ satisfies the RIP, then this can be solved (for example with `1
minimization) in time NO(1). On the other hand, recent results by Błasiok et al. show that
this is essentially tight when F are certain Fourier matrices over constant sized prime finite
fields, such as the Hadamard matrix, in that O(k log k logN) queries (for a certain range of
k) to x are needed to compute a k-sparse approximation of Fx [4].

Foucart and Rauhut [16] show that if the orthogonal polynomials satisfy a Bounded
Orthogonal System (BOS) that are suitably flat, then if the m evaluation points λj are
chosen uniformly at random proportional to the weight function w, then the m×N matrix Φ
defined by normalizing PN [i, j] = pj(λi) appropriately satisfies the RIP with high probability
provided that m has an appropriate dependence on N, k, ε, and the flatness of the matrix,
and this again gives an NO(1)-time algorithm to solve the sparse recovery problem.

Rauhut and Ward [32] show that for Jacobi polynomial transforms if the evaluation
points were picked according to the Chebyshev measure, then with O(k polylogN) random
measurements, the corresponding matrix has the RIP (note that the Foucart and Rauhut
sample the evaluation points according to the measure of orthogonality for the Jacobi
polynomials, which in general is not the Chebyshev measure). This result again does not
give a sub-linear time algorithm but was used in the result of [21] which we describe below.

While these approaches can give near-optimal sample complexity, they do not give
sublinear-time algorithms. In fact, it is faster to compute x̂ exactly by computing Fx, if we
care only about the running time and not about sample complexity [15]. Thus, we turn our
attention to sublinear-time algorithms.

ICALP 2020

58:6 Sparse Recovery for Orthogonal Polynomial Transforms

Sublinear-time algorithms for OP transforms

There have been several works generalizing and building on the sFFT results mentioned
above. One direction is to the multi-dimensional DFT (for example in [23, 27]). Another
direction is to apply the sFFT framework to orthogonal polynomials with similar structure.
One example is Chebyshev polynomials and the Discrete Cosine Transform (DCT). It was
observed in [21] that this can be reduced to sFFT in a black box manner, solving the
sparse recovery problem for Chebyshev polynomials and the DCT. A second example of OP
transforms which can essentially be reduced to the sFFT is Legendre polynomials. Hu et
al. [21] seek to recover an unknown k-term Legendre polynomial (with highest magnitude
degree limited to be N/2), defined on [−1, 1], from samples. They give a sublinear two-phase
algorithm: in the first phase, they reduce k-sparse-Legendre to sFFT to identify a set of
candidate Legendre polynomials. The second phase uses the RIP result for BOS to produce
a matrix that is used to estimate the coefficients of the candidate Legendre polynomials. We
note that in this work the setting is naturally continuous, while ours is discrete.

Choi et al. [10, 11] study higher dimensions and obtain sublinear-time algorithms for
more general harmonic expansions in multiple dimensions. These results complement our
work. More precisely, that work shows how to use any algorithm for a univariate polynomial
transform (the work in [11] needs these algorithms to have certain specific properties) to design
an algorithm for a multi-variate polynomial transform where the multi-variate polynomials
are products of univariate polynomials in the individual variables. Thus our improvements
for univariate polynomial transforms can (potentially) be used with [10,11].

Finally, there are sparse OP transforms based on Prony’s method. The work [29] extends
Prony’s method to a very general setting, including Jacobi polynomials, and gives an
algorithm that requires only O(k) queries to recover exactly k-sparse polynomials. However,
these general results work only for exact sparsity and are in general not robust to noise.
There has been work extending and modifying these techniques to settings with noise (for
example, [22,30]), but to the best of our knowledge the only provable results for noise are
for either the sFFT or closely related polynomial families. We note that [31] presents a
Prony-like algorithm for Legendre and Gegenbauer polynomials and demonstrates empirically
that this algorithm is robust to noise, although they do not address the question theoretically.

1.3 Technical overview

Our technical results have two main parts. First, inspired by existing approaches to the
sFFT, we provide a general reduction from the k-sparse recovery problem to the 1-sparse
recovery algorithm, which works for any family of OPs that is sufficiently “flat”: that is,
no entry of the matrix F is too large. Second, we provide a 1-sparse recovery algorithm for
Jacobi polynomials. We give an overview of both parts below.

For what follows, let F be an orthogonal matrix. For simplicity in this overview we will
assume that there is no noise. That is, we want to compute the exactly k-sparse x̂ = Fx
given query access to x. However, we note that our final results do work for approximately
k-sparse vectors v̂ = x̂ + ŵ provided that ‖ŵ‖2 is sufficiently small.

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:7

1.3.1 Reduction to one-sparse recovery

We give a general reduction from the k-sparse recovery problem to the one-sparse recovery
problem, which works for a broad class of OP families defined on a finite interval.4 At a high
level, the idea is as follows. Suppose that x̂ = Fx is k-sparse and b ∈ RN is a “filter”: at
this stage it is helpful to think of it like a boxcar filter, so b is 1 on some interval I and zero
outside of that interval. If we choose this interval randomly, we might hope to isolate a single
“spike” of x̂ with b: that is, we might hope that Dbx̂ is one-sparse, where Db is the diagonal
matrix with b on the diagonal. Suppose that this occurs, so y = Dbx̂ is one sparse. In
order to take advantage of this with a black-box solution to the one-sparse recovery problem
ŷ = Fy, we would need query access to the vector y = F−1Dbx̂ = F−1DbFx, while what
we have is query access to x. Thus, we would like to design b so that F−1DbF is row-sparse.
This would allow us to query a position of y = F−1Dbx̂ using only a few queries from x.

One of our main technical contributions is showing how to design such a vector b, so that
b approximates a boxcar filter and so that F−1DbF is row-sparse for any OP transform F.

Then, given this filter, we can iteratively identify and subtract off “spikes” in x̂ until we
have recovered the whole thing. Of course, the actual details are much more complicated
than the sketch above. First, the one-sparse solver might have a bit of error, which will get
propagated through the algorithm. Second, in our analysis the vector x̂ need not be exactly
k-sparse. Third, b will only approximate a boxcar filter, and this is an additional source of
error that needs to be dealt with. Complete details are in the full version of the paper.

For the reader familiar with the sFFT, this approach might look familiar: most sFFT
algorithms work by using some sort of filter to isolate single spikes in an approximately sparse
signal. Below, we highlight some of the challenges in extending this idea beyond the Fourier
transform. Some of these challenges we have overcome, and one we have not (yet) overcome.
We mention this last open challenge both because it explains the assumption we have to
make on the sparsity structure of x̂, and also because we hope it will inspire future work.

Challenge 1: Choice of filter

One key difficulty in extending sFFT algorithms to general orthogonal polynomials is that
the filters used in the sFFT approach are very specific to the Fourier transform. Indeed,
much of the progress that has been made on that problem has been due to identifying better
and better choices of filter specialized to the Fourier transform. In order to find filters that
work for any OP family, we take a different approach and construct a filter out of low-degree
Chebyshev polynomials. Then we use the orthogonality properties of the OP family to
guarantee that F−1DbF has the desired sparsity properties.

Challenge 2: Explicit black-box reduction

Because our goal is generality (to as broad a class of OPs as possible), we give an explicit
reduction that uses a 1-sparse solution as a black box. To the best of our knowledge, existing
work on the sFFT does not explicitly do this: a reduction of this flavor is certainly implicit
in many of these works, and even explicitly given as intuition, but we are not aware of an
sFFT algorithm which actually uses a 1-sparse recovery algorithm as a black box.

4 We note that our results do not (yet) work for the case when the orthogonality is defined over an infinite
interval. In particular, our reduction does not work for the Hermite and Laguerre polynomials.

ICALP 2020

58:8 Sparse Recovery for Orthogonal Polynomial Transforms

Challenge 3: Equi-spaced evaluation points

The evaluations points in DFT and the DCT are equispaced (in the angular space). This
fact is crucially exploited in sFFT algorithms (as well as the reduction of DCT to DFT – see
the full version of this paper for more details on the reduction). Unfortunately, the roots
of Jacobi polynomials are no longer equally spaced. However, it is known that the roots
of Jacobi polynomials are “spread out” (in a sense made below precise in Definition 2.2),
and we show that this property is enough for our reduction. In fact, our reduction from
k-sparse recovery to 1-sparse recovery works generally for any “flat” OP family with “spread
out” roots.

(Open) Challenge 4: Permuting the coordinates of x̂

In the approach described above, we hoped that an interval I would “isolate” a single spike.
In the sFFT setting, this can be achieved through a permutation of the coordinates of x̂. In
our language, in the sFFT setting it is possible to define a random (enough) permutation
matrix P so that Px̂ has permuted coordinates, and so that F−1DbPF is row-sparse – this
argument crucially exploits the fact that the roots of unity are equispaced in the angle space.
This means that not only can we sample from the one-sparse vector Dbx̂, but also we can
sample from DbPx̂, and then there is some decent probability that any given spike in x̂ is
isolated by b. However, we have not been able to come up with (an approximation to) such
a P that works in the general OP setting. This explains why we require the assumption that
the support of x̂ be reasonably “spread out,” so that we can hope to isolate the spikes by b.
This assumption is made precise in Definition 2.3. We note that if such a P were found in
future work, this would immediately lead to an improved k-sparse recovery result for Jacobi
polynomials, which would work for arbitrary sparse signals x̂.

1.3.2 A one-sparse recovery algorithm for Jacobi polynomials
With the reduction complete, to obtain a k-sparse recovery algorithm for general Jacobi
polynomials we need to solve the one-sparse case. We give an overview of the basic idea
here, with full details in the full version of the paper. First, we note that via well-known
approximations of Jacobi polynomials [35], one can approximate the evaluation of any Jacobi
polynomial at a point in (−1, 1) by evaluating the cosine function at an appropriate angle.
Using some standard local error-correcting techniques (for example, computing cos(A) via
cosA = cos(A+B)+cos(A−B)

2 cosB for a random B), we reduce the 1-sparse recovery problem to
computing some unknown value θ, corresponding to the index of the spike, from noisy values
of cos(wθ) for some integers w ≥ 1, corresponding to evaluations of the Jacobi polynomials
for this index. Since the reduction is approximate, some care has to be taken to handle some
corner cases where the approximation does not hold. In particular, we have to figure out for
which real numbers y ∈ [0, N) does its orbit 〈xy〉 for x ∈ ZN have small order. We give a
result to handle this, which to the best of our knowledge (and somewhat surprisingly) seems
to be new.5 With this out of the way, our algorithm to compute the value of θ from the
evaluations cos(wθ) is based on the following idea. Assuming we already know cos(θ) up
to ±ε, we get a noisy estimate of θ (which lives in the range arccos(cos(θ) ± ε)) and then
use the evaluations at w > 1 to “dilate” the range where we know θ lies, reducing ε. We

5 We thank Stefan Steinerberger for showing us a much simpler proof than our original more complicated
proof, which also gave worse parameters.

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:9

proceed iteratively until the region of uncertainty is small enough that there are only O(1)
possibilities remaining, which we then prune out using the fact that F is orthogonal and flat,
in the sense that none of its entries are too large. (We note that proving F is flat needs a
bit of care. In particular, we need a sharper bound on Jacobi polynomials (than the cosine
approximation mentioned above) in terms of Bessel functions to prove that all entries of F
are small.) Similar ideas have been used for 1-sparse recovery for the DFT (for example,
in [19]), although our situation is more complicated than the DFT because working with
cosines instead of complex exponentials means that we lose sign information about θ along
the way (though it is similar in spirit to the one-sparse recovery algorithm for DFT in [19]).

2 Background and Preliminaries

2.1 Notation
We use bold lower-case letters (x,y) for vectors and bold upper-case letters (P,F) for
matrices. Non-bold notation x, y, U is used for scalars in R. In general, if there is a given
transform F we are considering, then the notation x̂ ∈ RN indicates F · x. We use the
notation x[i] or X[i, j] to index into a vector or matrix, respectively. All of our vectors and
matrices are 0-indexed, i.e. the entries of a vector x ∈ RN are x[0], . . . ,x[N − 1]. We use [N]
to denote the set {0, . . . , N − 1}. Given a subset S ⊂ [N], we will denote the complement
set (i.e. [N] \ S) by Sc.

Given a vector x ∈ RN and an integer 1 ≤ s ≤ N , we define large(s,x) to be the
magnitude of the sth largest value in x (by absolute value).

For any vector u ∈ RN , we define Du ∈ RN×N as the diagonal matrix with u on its
diagonal. For a diagonal matrix D, and any real α we denote Dα to denote the diagonal
matrix with the (i, i) entry being (D[i, i])α. Given a vector x ∈ RN and set S ⊆ [N], xS
denotes the vector x where all entries out of S are masked to 0. For x ∈ RN , supp(x) ⊆ [N]
denotes the support (i.e. the set of non-zero positions) of x.

We use x ± h to refer to either the interval [x − h, x + h] or a point in this interval,
whichever is clear from context. Similarly, if S is an interval [a, b] then S ± h is the interval
[a− h, b+ h].

When stating algorithms, we use superscript notation to denote query access. That is
A(x)(z) takes input z and has query access to x.

We use the notation f(n) . g(n) to mean that there is some constant C so that, for
sufficiently large n ≥ n0, f(n) ≤ Cg(n).

The notation J� means Jj for all indices j.

2.2 Orthogonal Polynomials
For the remainder of this paper, we consider polynomials p0(X), p1(X), . . . that form a
normalized orthogonal polynomial family with respect to some compactly supported measure
w(X). By suitably scaling and translating X, we can ensure that the orthogonality is on
[−1, 1].6 In particular deg(pi) = i and for any i, j ≥ 0,∫ 1

−1
pi(X)pj(X)w(X)dX = δi,j , (1)

where δi,j = 1 if i = j and 0 otherwise.

6 See footnote 4.

ICALP 2020

58:10 Sparse Recovery for Orthogonal Polynomial Transforms

Then for given N evaluation points λ0, . . . λN−1, define the orthogonal polynomial trans-
form PN as follows. For any 0 ≤ i, j < N , we have

PN [i, j] = pj(λi).

In other words, the rows of PN are indexed by the evaluation points and the columns are
indexed by the polynomials.

For the rest of the paper, assume λ0 ≤ λ1 ≤ · · · ≤ λN−1 are the roots of pN (X). Then it
is well-known (see e.g. [35]) that

The roots lie in the support of the measure (i.e. λi ∈ [−1, 1]) and are distinct (i.e.
λ0 < λ1 < · · · < λN−1).
There exists Gaussian quadrature weights w` = 1∑N−1

j=0
pj(λ`)2 , i = 0, . . . , N − 1 such that

for any polynomial f(X) of degree at most 2N − 1,

∫ 1

−1
f(X)w(X)dX =

N−1∑
`=0

f(λ`) · w`. (2)

We are now ready to define the orthogonal matrix corresponding to PN that we deal
with in this paper:

I Definition 2.1. Let p0(X), . . . , pN−1(X), . . . be an orthogonal polynomial family, λ0, . . . ,

λN−1 be the roots of pN (X), and w0, . . . , wN−1 be the Gaussian quadrature weights. Define
Dw to be the diagonal matrix with w0, . . . , wN−1 on its diagonal, and

FN = D
1
2
wPN .

Note that by (1) and (2),

FTNFN = PT
NDwPN = IN ,

so FN is an orthogonal matrix. In particular,

PT
NDwPN [i, j] =

N−1∑
k=0

pi(λk)wkpj(λk) =
∫ 1

−1
pi(X)pj(X)w(X) dX = δi,j .

Note that since FN is orthogonal, by definition we have

F−1
N = FTN .

2.2.1 Jacobi Polynomials and Special Cases
In this section we define Jacobi Polynomials, our main object of interest, and point out a few
special cases. We note that families of named orthogonal polynomials {pi(X)} are sometimes
defined through different means, hence are normalized differently up to constants. The
corresponding discrete orthogonal polynomial transform (e.g. Discrete Legendre Transform)
frequently refers to multiplication by P instead of F. In these cases, the transform satisfies
PT
NDwPN = D for a diagonal matrix D corresponding to the normalization. The transform

FN = D
1
2
wPD− 1

2 we consider (note that this matrix is indeed orthogonal) is thus equivalent
up to diagonal multiplication.

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:11

Jacobi polynomials

Jacobi polynomials are indexed by two parameters α, β > −1 and these are polynomials{
P

(α,β)
j

}
j≥0

that are orthogonal with respect to the measure

w(α,β)(X) = (1−X)α · (1 +X)β

in the range [−1, 1]. This definition is not normalized, in the sense that we have PT
NDwPN =

D, where

D[j, j] = 2α+β+1

2j + α+ β + 1 ·
Γ(j + α+ 1)Γ(j + β + 1)
Γ(j + 1)Γ(j + α+ β + 1)

(see [35, Pg. 68, (4.3.3)]).
We record three well-known special cases: Chebyshev polynomials (of the first kind) are

special case of α = β = − 1
2 and Legendre polynomials are the special case of α = β = 0 (up

to potentially a multiplicative factor that could depend on the degree j). Another notable
special case of Jacobi polynomials are the Gegenbauer or ultraspherical polynomials (α = β).
Our results hold for all Jacobi polynomials with α, β ≥ − 1

2 , which include essentially all
named special cases of Jacobi polynomials used in practice.

Chebyshev polynomials of the 1st kind

The Chebyshev polynomials of the 1st kind are orthogonal with respect to the weight measure
w(X) = (1−X2)− 1

2 .
The normalized transform FN has the closed form

FN [i, j] =

√

1
N j = 0√
2
N · cos

[
π
N j
(
i+ 1

2
)]

j = 1, . . . , N − 1.

This is a variant of the Discrete Cosine Transform (DCT-III, or the inverse DCT). It is
well-known that the DCT-III can be “embedded” into a DFT of twice the dimension, and we
work out some of the details of how to use the sparse FFT to compute a sparse DCT in the
full version of the paper.

Legendre polynomials

Legendre polynomials are orthogonal with respect to the uniform measure i.e. w(X) = 1
and play a critical role in multipole expansions of potential functions (whether electrical
or gravitational) in spherical coordinates. They are also important for solving Laplace’s
equation in spherical coordinates.

2.2.2 Roots of Orthogonal Polynomials

Since λi ∈ [−1, 1] for all i, there is a unique θi ∈ [0, π] such that λi = cos θi. Our reduction
holds for orthogonal polynomials that have roots that are “well-separated” in this angle
space:

ICALP 2020

58:12 Sparse Recovery for Orthogonal Polynomial Transforms

I Definition 2.2. Let 0 < C0 < C1. A family of orthogonal polynomials p0(X), p1(X), . . . is
(C0, C1, γ0)-dense if for all large enough d, the following holds.

Let λ0, . . . , λd−1 be the roots of pd, and θi = arccosλi. Then for any i ∈ [d], for any
γ ≥ γ0/d:

C0γd ≤
∣∣∣{θ0, . . . , θd−1} ∩

[
θi −

γ

2 , θi + γ

2

]∣∣∣ ≤ C1γd.

It turns out that any family of Jacobi polynomials has the required property: their roots
are spaced out such that θ` is close to `π/N .

2.3 Sparse Recovery Problem
We will consider approximately k-sparse vectors v̂ = x̂ + ŵ, where x̂ is k-sparse and ‖ŵ‖2 is
sufficiently small. We will require that x̂ has a “spread out” support, defined as follows.

I Definition 2.3. Let k ∈ [N] and 0 ≤ σ < 1. We say that a vector x ∈ RN is (k, σ)-sparsely
separated if there are k non-zero locations in x and any two non-zero locations are more
than σN indices apart.

It is not hard to see that a vector x with random support of size k is, with constant
probability,

(
k,Ω

(1
k2

))
-sparsely separated.

In our reduction, we will reduce the k-sparse recovery problem to the special case of
k = 1. Next, we define some notation for the 1-sparse case.

I Definition 2.4. We say that the matrix FN has an (N, ε, δ, µ) one-sparse recovery al-
gorithm with query complexity Q(N, ε, δ, µ) and time complexity T (N, ε, δ, µ) if there exists
an algorithm A with the properties below:

For all y so that ŷ = FNy can be decomposed as

ŷ = ỹ + w,

where ỹ = v · eh is 1-sparse and

‖w‖2 ≤ ε |v| ,

we have:
1. A makes at most Q(N, ε, δ, µ) queries into y = F−1

N (v · eh + w).
2. With probability at least 1− µ, A outputs ṽ · eh with |v − ṽ| ≤ δ |v| in time T (N, ε, δ, µ).

Pre-processing time

Our algorithm requires some pre-processing of FN . Our pre-processing step involves com-
puting the roots λ1, . . . , λN of pN and storing them in an appropriate data structure, and
additionally forming and storing some matrices that we will use in our algorithm. Finding
the roots and creating the data structure can be done in time poly(N), and the rest of the
pre-processing step also takes time poly(N). We note that this is an up-front cost that needs
to be only paid once.

Precision

We note that we need to make certain assumptions on size of the entries in v̂ since otherwise
we would not even be able to read coefficients that are either too large or too small and need
Ω(logN) bits to represent. Towards this end we will make the standard assumption that
‖v̂‖2 = 1. In particular, this allows us to ignore any coefficients that are smaller than say 1

N

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:13

since their contribution to ‖v̂‖2 is at most 1√
N
, which will be too small for our purposes.7 In

particular, this implies that we only have to deal with numbers that need O(logN) bits and
as is standard in the RAM model, basic arithmetic operations on such numbers can be done
in O(1) time. We will implicitly assume this for the rest of the paper (except in the proof of
one lemma, where we will explicitly make use of this assumption).

3 Results

In this section we state our main results. These results follow from more detailed versions
which are stated in the full version of the paper.

We start off with our main result for Jacobi polynomials. We state an informal version
here, and refer the reader to the full version of the paper for the formal result.

I Theorem 3.1 (General Sparse Recovery for Jacobi Polynomial Transform, Informal). Fix
arbitrary parameters α, β ≥ − 1

2 for Jacobi polynomials and let J(α,β)
N be the N×N orthogonal

matrix that arises from it as in Definition 2.1. Then there is an algorithm Recover that
does the following. Let v = x + w where x̂ = J(α,β)

N x is (k,C1/k
2)-sparsely separated, and

suppose that ‖ŵ‖2 . δminh∈supp(x̂) |x̂[h]|. Then with probability at least 0.99, Recover
outputs ẑ such that

‖x̂− ẑ‖2 . δ‖x̂‖2,

with poly
(
k logN
δ

)
queries and running time poly

(
k logN
δ

)
.

I Remark 3.2. The requirement on the noise term might be bad if one entry of x̂ is extremely
small compared to the rest. However in this case we can decrease k and add the very small
entries of x̂ to the noise term ŵ resulting in a potentially better guarantee. We note that
our algorithm iteratively finds the large components of x̂ and in fact has a mechanism for
stopping early when all of the “large-enough” entries have been found.
I Remark 3.3. The (k,O(1/k2))-sparsely separated requirement is chosen to reflect the
separation of a random k-sparse vector (c.f. comment below Definition 2.3). Smaller amounts
of sparse separation are acceptable, which translate accordingly into the query and time
complexity. The full dependence is in the complete result in the full version of the paper.

To prove the above result, we first reduce the k-sparse recovery problem to 1-sparse
recovery problem, in the presence of a small amount of noise. Next, we present an informal
statement of our reduction.

I Theorem 3.4 (Main Reduction, Informal). Let p1, . . . , pN be a (C0, C1, γ0)-dense orthogonal
polynomial family, and let FN be the N × N orthogonal matrix that arises from it as in
Definition 2.1. Suppose that |F−1

N [i, j]| . 1/
√
N for all i, j ∈ [N]. Suppose that for some

sufficiently small δ > 0, FN has a
(
N,O(δ), δ, O(C0/k

2)
)
one-sparse recovery algorithm with

query complexity Q and running time T .
Then there is an algorithm Recover that does the following. Let v = x + w where

x̂ = FNx is (k,C1/k
2)-sparsely separated, and suppose that ‖ŵ‖2 . δminh∈supp(x̂) |x̂[h]|.

Then with probability at least 0.99, Recover outputs ẑ so that

‖x̂− ẑ‖2 . δ‖x̂‖2,

with poly(k/δC0)Q queries and running time poly(k/δC0)T .

7 More generally, we can ignore smaller coefficients as long as they are polynomial sized in N .

ICALP 2020

58:14 Sparse Recovery for Orthogonal Polynomial Transforms

The final algorithmic piece missing from the result above is the algorithm for 1-sparse
recovery. We provide this missing piece for Jacobi polynomials:

I Theorem 3.5 (1-Sparse Recovery for Jacobi Transform, Informal). There exists a universal
constant C such that the following holds. Consider the Jacobi transform for any fixed
parameters α, β ≥ − 1

2 . There exists an (N, ε, C · ε, γ) 1-sparse recovery algorithm for the
Jacobi transform that makes poly

(
log
(
N
γ

)
· 1
ε

)
queries and takes time poly

(
log
(
N
γ

)
· 1
ε

)
.

4 Open Questions

To conclude, we list a few questions left open by our work.

1. First, it is natural to try and improve our k-sparse recovery algorithm to work for arbitrary
k-sparse support, rather than “well-separated” supports. One natural way to do this is
to address the fourth (open) challenge in Section 1.3 for a general class of OPs.

2. Second, we could hope to handle a more general class of noise ŵ than we currently do.
One could hope to handle any vector v, with an error guarantee that degrades smoothly
with the `2 norm of the “tail” of v. There is a long list of work on “de-noising” the
contribution of the “head” to the “tail” in the sFFT literature that could potentially be
useful here [23–27].

3. Third, we would like to extend our results to hold for OPs defined over infinite intervals
(e.g. Hermite and Laguerre polynomials).

4. Fourth, we would like to solve the sparse recovery for FT (where F is as in Definition 2.1):
i.e. given query access to x figure out a good k-sparse approximation to FTx (recall that
F−1 = FT). (Note that this problem can be equivalently stated as follows: given query
access to Fy, compute a good k-sparse approximation to y.) Currently our results do
not solve this problem since we cannot show that the existence of a filter b such that
FDbFT is row-sparse. Note that this is not an issue for DFT since it is symmetric.

5. Finally, we would like to reduce the exponent on k in our final runtime. In particular,
for the case of random k-sparse support, the dependence on k in the runtime for Jacobi
transform is k8. We note that we have not tried too hard to optimize the constants
though we believe even getting a quadratic dependence on k with our framework would be
challenging. We would like to stress that the majority of the work in the sFFT literature
has been to make the dependence on k be linear and for such results, it seems very
unlikely that a generic reduction from k-sparse recovery to 1-sparse recovery would work.
In other words, using the knowledge about the 1-sparse recovery algorithm for DFT seems
necessary to get a overall k-sparse FFT with running time kpoly(logn).

References
1 https://en.wikipedia.org/wiki/Approximation_theory#Chebyshev_approximation.
2 https://en.wikipedia.org/wiki/Jacobi_polynomials#Differential_equation.
3 http://www.chebfun.org.
4 Jaroslaw Blasiok, Patrick Lopatto, Kyle Luh, Jake Marcinek, and Shravas Rao. An improved

lower bound for sparse reconstruction from subsampled hadamard matrices. In David Zuck-
erman, editor, 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1564–1567. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00091.

5 Jean Bourgain. An Improved Estimate in the Restricted Isometry Problem, pages 65–70.
Springer International Publishing, Cham, 2014. doi:10.1007/978-3-319-09477-9_5.

https://en.wikipedia.org/wiki/Approximation_theory#Chebyshev_approximation
https://en.wikipedia.org/wiki/Jacobi_polynomials#Differential_equation
http://www.chebfun.org
https://doi.org/10.1109/FOCS.2019.00091
https://doi.org/10.1007/978-3-319-09477-9_5

A. Gilbert, A. Gu, C. Ré, A. Rudra, and M. Wootters 58:15

6 James Bremer, Qiyuan Pang, and Haizhao Yang. Fast Algorithms for the Multi-dimensional
Jacobi Polynomial Transform. arXiv e-prints, January 2019. arXiv:1901.07275.

7 James Bremer and Haizhao Yang. Fast algorithms for Jacobi expansions via nonoscillatory
phase functions. arXiv e-prints, March 2018. arXiv:1803.03889.

8 Volkan Cevher, Michael Kapralov, Jonathan Scarlett, and Amir Zandieh. An adaptive
sublinear-time block sparse fourier transform. In Hamed Hatami, Pierre McKenzie, and
Valerie King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 702–715. ACM,
2017. doi:10.1145/3055399.3055462.

9 Xue Chen, Daniel M. Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation without
a frequency gap. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pages 741–750. IEEE Computer Society, 2016. doi:10.1109/FOCS.2016.84.

10 Bosu Choi, Mark Iwen, and Felix Krahmer. Sparse Harmonic Transforms: A New Class of
Sublinear-time Algorithms for Learning Functions of Many Variables. arXiv 1808.04932, 2018.
arXiv:1808.04932.

11 Bosu Choi, Mark Iwen, and Toni Volkmer. Sparse harmonic transforms ii: Best s-term
approximation guarantees for bounded orthonormal product bases in sublinear-time. arXiv
preprint, 2019. arXiv:1909.09564.

12 John D. Cook. Orthogonal polynomials and gaussian quadrature. URL: https://www.
johndcook.com/OrthogonalPolynomials.pdf.

13 Tri Dao, Christopher M De Sa, and Christopher Ré. Gaussian quadrature for kernel
features. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 6107–6117. Curran Associates, Inc., 2017. URL: http://papers.nips.cc/paper/
7191-gaussian-quadrature-for-kernel-features.pdf.

14 Christopher De Sa, Albert Cu, Rohan Puttagunta, Christopher Ré, and Atri Rudra. A
two-pronged progress in structured dense matrix vector multiplication. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1060–1079.
SIAM, 2018.

15 J. R. Driscoll, D. M. Healy, Jr., and D. N. Rockmore. Fast discrete polynomial transforms with
applications to data analysis for distance transitive graphs. SIAM J. Comput., 26(4):1066–1099,
August 1997. doi:10.1137/S0097539792240121.

16 Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Springer Science & Business Media, August 2013.

17 A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse
fourier representations via sampling. In Proceedings of the Thiry-fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’02, pages 152–161, New York, NY, USA, 2002. ACM.
doi:10.1145/509907.509933.

18 Anna C Gilbert, Piotr Indyk, Mark Iwen, and Ludwig Schmidt. Recent Developments in the
Sparse Fourier Transform. IEEE Signal Processing Magazine, 2014. doi:10.1109/MSP.2014.
2329131.

19 Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse fourier
transform. In Proceedings of the forty-fourth annual ACM symposium on Theory of computing,
pages 563–578. ACM, 2012.

20 Ishay Haviv and Oded Regev. The restricted isometry property of subsampled fourier matrices.
In Geometric aspects of functional analysis, pages 163–179. Springer, 2017.

21 Xianfeng Hu, Mark Iwen, and Hyejin Kim. Rapidly computing sparse legendre expansions via
sparse fourier transforms. Numerical Algorithms, 74(4), 2017.

22 Y. Hua and T. K. Sarkar. Matrix pencil method for estimating parameters of exponentially
damped/undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 38(5):814–824, May 1990. doi:10.1109/29.56027.

ICALP 2020

http://arxiv.org/abs/1901.07275
http://arxiv.org/abs/1803.03889
https://doi.org/10.1145/3055399.3055462
https://doi.org/10.1109/FOCS.2016.84
http://arxiv.org/abs/1808.04932
http://arxiv.org/abs/1909.09564
https://www.johndcook.com/OrthogonalPolynomials.pdf
https://www.johndcook.com/OrthogonalPolynomials.pdf
http://papers.nips.cc/paper/7191-gaussian-quadrature-for-kernel-features.pdf
http://papers.nips.cc/paper/7191-gaussian-quadrature-for-kernel-features.pdf
https://doi.org/10.1137/S0097539792240121
https://doi.org/10.1145/509907.509933
https://doi.org/10.1109/MSP.2014.2329131
https://doi.org/10.1109/MSP.2014.2329131
https://doi.org/10.1109/29.56027

58:16 Sparse Recovery for Orthogonal Polynomial Transforms

23 Piotr Indyk and Michael Kapralov. Sample-optimal fourier sampling in any constant dimension.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 514–523.
IEEE, 2014.

24 Piotr Indyk, Michael Kapralov, and Eric Price. (nearly) sample-optimal sparse fourier transform.
In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, pages
480–499. Society for Industrial and Applied Mathematics, 2014.

25 Michael Kapralov. Sparse fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. In Daniel Wichs and Yishay Mansour, ed-
itors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Comput-
ing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 264–277. ACM, 2016.
doi:10.1145/2897518.2897650.

26 Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via isolation on
average. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 651–662. IEEE Computer
Society, 2017. doi:10.1109/FOCS.2017.66.

27 Michael Kapralov, Ameya Velingker, and Amir Zandieh. Dimension-independent sparse
fourier transform. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2709–2728,
2019. doi:10.1137/1.9781611975482.168.

28 Cameron Musco. Chebyshev polynomials in tcs and algorithm design. URL: http://www.
cameronmusco.com/personal_site/pdfs/retreatTalk.pdf.

29 Thomas Peter and Gerlind Plonka. A generalized prony method for reconstruction of sparse
sums of eigenfunctions of linear operators. Inverse Problems, 29(2):025001, January 2013.
doi:10.1088/0266-5611/29/2/025001.

30 Daniel Potts and Manfred Tasche. Parameter estimation for exponential sums by approximate
prony method. Signal Processing, 90(5):1631–1642, 2010. Special Section on Statistical Signal
and Array Processing. doi:10.1016/j.sigpro.2009.11.012.

31 Daniel Potts and Manfred Tasche. Reconstruction of sparse legendre and gegenbauer expansions.
BIT Numerical Mathematics, 56(3):1019–1043, 2016.

32 Holger Rauhut and Rachel Ward. Sparse legendre expansions via `1-minimization. J. Approx.
Theory, 164(5):517–533, May 2012. doi:10.1016/j.jat.2012.01.008.

33 T.J. Rivlin. An Introduction to the Approximation of Functions. Blaisdell book in numerical
analysis and computer science. Dover Publications, 1981. URL: https://books.google.com/
books?id=wtS2xm8ggA4C.

34 Mark Rudelson and Roman Vershynin. On sparse reconstruction from fourier and gaussian
measurements. Communications on Pure and Applied Mathematics, 61(8):1025–1045, 2008.
doi:10.1002/cpa.20227.

35 G. Szegö. Orthogonal Polynomials. Number v. 23 in American Mathematical Society col-
loquium publications. American Mathematical Society, 1975. URL: https://books.google.
com/books?id=3hcW8HBh7gsC.

36 William J. Tango. The circle polynomials of zernike and their application in optics. Applied
physics, 13(4):327–332, August 1977. doi:10.1007/BF00882606.

37 Anna Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré. Learning compressed
transforms with low displacement rank. In Advances in neural information processing systems,
pages 9052–9060, 2018.

38 Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time
representation in recurrent neural networks. In Advances in Neural Information Processing
Systems, pages 15544–15553, 2019.

39 Kun-Hsing Yu, Ce Zhang, Gerald J Berry, Russ B Altman, Christopher Ré, Daniel L Rubin,
and Michael Snyder. Predicting non-small cell lung cancer prognosis by fully automated
microscopic pathology image features. Nature Communications, 7, 2016.

https://doi.org/10.1145/2897518.2897650
https://doi.org/10.1109/FOCS.2017.66
https://doi.org/10.1137/1.9781611975482.168
http://www.cameronmusco.com/personal_site/pdfs/retreatTalk.pdf
http://www.cameronmusco.com/personal_site/pdfs/retreatTalk.pdf
https://doi.org/10.1088/0266-5611/29/2/025001
https://doi.org/10.1016/j.sigpro.2009.11.012
https://doi.org/10.1016/j.jat.2012.01.008
https://books.google.com/books?id=wtS2xm8ggA4C
https://books.google.com/books?id=wtS2xm8ggA4C
https://doi.org/10.1002/cpa.20227
https://books.google.com/books?id=3hcW8HBh7gsC
https://books.google.com/books?id=3hcW8HBh7gsC
https://doi.org/10.1007/BF00882606

	Introduction
	Orthogonal Polynomial Transforms
	Related Work
	Technical overview
	Reduction to one-sparse recovery
	A one-sparse recovery algorithm for Jacobi polynomials

	Background and Preliminaries
	Notation
	Orthogonal Polynomials
	Jacobi Polynomials and Special Cases
	Roots of Orthogonal Polynomials

	Sparse Recovery Problem

	Results
	Open Questions

