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Abstract
We give the first polynomial-time approximation scheme (PTAS) for the stochastic load balancing
problem when the job sizes follow Poisson distributions. This improves upon the 2-approximation
algorithm due to Goel and Indyk (FOCS’99). Moreover, our approximation scheme is an efficient
PTAS that has a running time double exponential in 1/ε but nearly-linear in n, where n is the
number of jobs and ε is the target error. Previously, a PTAS (not efficient) was only known for jobs
that obey exponential distributions (Goel and Indyk, FOCS’99).

Our algorithm relies on several probabilistic ingredients including some (seemingly) new results
on scaling and the so-called “focusing effect” of maximum of Poisson random variables which might
be of independent interest.
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1 Introduction

We consider the following fundamental problem in scheduling theory: given n jobs with job
sizes w1, . . . , wn ≥ 0, assign jobs to m machines such that the maximum load of any machine
(i.e., the total size of jobs assigned to the machine) is minimized. In other words, we want to
partition [n] into sets S1, . . . , Sm so as to minimize maxi∈[m]

∑
j∈Si wj . Often referred to as

load balancing or makespan minimization, this is one of the classical NP-complete problems
and along with its many variants, has been extensively studied both in theoretical computer
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science as well as operations research. While the exact problem is hard, this problem admits
a polynomial time approximation scheme (PTAS) [12] and later work improved this to an
efficient PTAS [16, 15, 14, 1]. Several other variants of this problem have also been studied –
this includes (i) the related machines case where the machines can have different speeds [13];
(ii) the unrelated machines case where the job size itself depends on the machine on which
it is scheduled [20]; and (iii) the precedence constrained case where there are precedence
constraints on schedule of jobs [7, 5].

All the aforementioned variants of this problem have the common feature that the job
sizes are known in advance to the algorithm designer. However, in many situations, there
might be uncertainty in the job size. An obvious way to model this uncertainty is via the
framework of stochastic optimization as follows – we have m machines and n jobs where
the size of the ith job is given by the random variable Wi. If we now assign the jobs to m
machines (given by S1, . . . , Sm), then the load of the jth machine is given by the random
variable

∑
i∈Sj Wi. Similar to the case when the job sizes are deterministic, in stochastic

load balancing, one would like to minimize the maximum load. However, since the maximum
load (across machines) is itself a random variable – arguably, the most natural objective is
to then minimize the expected maximum load. In other words, we seek to find a partition of

[n] into sets S1, . . . , Sm so as to minimize E
[

maxj∈[m]
∑
i∈Sj Wi

]
.

Throughout this paper, we assume that the random variables {Wi}ni=1 are independent –
that is the job sizes are independent of each other. Further, note that the algorithm designer
is assumed to know the distribution of the random variables {Wi}ni=1 (though, of course,
not the actual realizations of the loads).

To our knowledge, Kleinberg, Rabani and Tardos [18] were the first to consider this
problem in the algorithms community. They gave a O(1)-factor approximation algorithm
for this problem. Soon thereafter, Goel and Indyk [9] considered the problem of obtaining
better approximation for special classes of random variables – in particular, (i) if each {Wi}
is an exponential random variable, they obtain a PTAS (though not an efficient one); (ii) if
each {Wi} is a Poisson random variable, then they obtain a 2-approximation algorithm. In
fact, this 2-approximation is obtained by considering the (deterministic) instance with loads
{w1, . . . , wn} where wi = E[Wi] and then applying Graham’s heuristic [10] on this instance.

Somewhat more complicated variants of this problem have also been considered – as an
example, Gupta et al. [11] considered the problem of stochastic load balancing on unrelated
machines. Here, the load of job i on machine j is given by a random variable Wi,j . For
this variant, [11] gave a O(1) approximation algorithm (thus extending the guarantee of
[18] to the case of unrelated machines). Similarly, Molinaro [22] considered the problem of
minimizing the expected `p norm of the loads (the version we have can be seen as minimizing
the expected `∞ norm of the loads). Despite all this impressive progress, the only case where
we have a PTAS for stochastic load balancing is when all the loads {Wi} are exponential
random variables. As the main result of this paper, we obtain an efficient PTAS for stochastic
load balancing when all the loads are Poisson random variables.

I Theorem 1. There is an algorithm PoiScheduling(n,m, {λi}ni=1 , ε) that given an in-
stance of the load balancing problem with n jobs and m machines where the size of the
ith job is Wi = Poi (λi) (i.e. a Poisson random variable with mean λi), and a parameter
0 < ε < 1, outputs a job assignment whose expected maximum load satisfies L ≤ (1 + ε)L∗,
where L∗ is the expected maximum load of an optimal assignment. The algorithm runs in
time 22O(1/ε2) +O(n log2 n log log2 n).
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Theorem 1 is the first PTAS for stochastic load balancing with Poisson jobs. Prior to
this result, the best known approximation algorithm for this setting was due to Goel and
Indyk [9] (mentioned earlier) and had an approximation factor of 2. In fact, our PTAS is also
an efficient PTAS – i.e., the running time remains polynomial in n even for some ε = o(1).
In contrast, the PTAS from [9] for exponential random variables was not an efficient PTAS.
Finally, we point out that our running time is doubly exponential in the error parameter ε.
While this can be potentially improved to a singly exponential dependence in ε, it is unlikely
to be improved further – in particular, [6] showed that under the ETH, any PTAS for even
the deterministic load balancing problem must have a singly exponential dependence on ε1.

1.1 Our techniques
At a high level, to design an algorithm for stochastic load balancing, we must come up with
an algorithmically tractable proxy for the objective function E[maxj∈[m]

∑
i∈Sj Wi]. However,

the expected maxima of random variables (and more generally stochastic processes) can
be notoriously difficult to reason about. Indeed, we point out that in the last fifty years,
significant effort in probability theory has been devoted towards understanding the maximum
of even simple families of random variables such as Gaussians [8, 24]. Despite this challenge,
the hope is that by exploiting structural properties of Poisson random variables along with
appropriate algorithmic primitives, we will be able to design an efficient PTAS for stochastic
load balancing for Poisson jobs.

The starting points of our algorithm are two natural heuristics which have previously
been analyzed in the context of stochastic load balancing.
1. The first heuristic is to construct an instance of (deterministic) load balancing where the

size of the ith job is wi = E[Wi]. One can then apply the PTAS (say from [1]) to get an
allocation of the n jobs into m machines. The obvious pitfall here is that the actual job
size is a Poisson random variable which may typically be very far from its mean. In other
words, this heuristic has a good guarantee provided

E[ mmax
j=1

Poi(µj)] ≈
mmax
j=1

[E [Poi(µj)]],

where µj is the expected load size of the jth machine2. Of course, the above relation
may be far from true and indeed, we want to point out that while the left hand side
E[maxmj=1 Poi(µj)] is just a function of µ1, . . . , µj , it is far from being a linear function
of µ1, . . . , µj . It is easy to create an instance where the optimum obtained by replacing
each Poisson load by its expectation is a constant factor away from the true optimum.
Despite this limitation, this heuristic is in fact of both theoretical and practical value.
In particular, from a theoretical aspect, recall that Poi(λ) concentrates around λ (with
standard deviation

√
λ). This can be leveraged to show that if the optimum allocation

must necessarily have at least one machine with a (sufficiently) large load, then the
allocation for the deterministic load balancing problem provides a near optimal allocation
for the stochastic version as well.

2. The second heuristic is a greedy algorithm – namely, we first assign an arbitrary order to
the jobs and iteratively assign each job to the machine with the least current expected load.
This is the same as the Graham’s rule [10], and is precisely how the authors of [9] obtained

1 One can reduce an instance of deterministic load balancing to one of Poisson load balancing by scaling
up all job sizes such that they all become at least ω(ε−2 logm). By Chernoff bounds and union bound
this reduction preserves (1 +O(ε))-approximation.

2 Note that Poi (λ1)+Poi (λ2) = Poi (λ1 + λ2) if Poi (λ1) and Poi (λ2) are independent, so every machine’s
load is still a Poisson random variable.

ICALP 2020
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a 2-approximation for load balancing Poisson jobs. The underlying rationale for this rule
is the following cruical fact about Poisson random variables. Suppose µ1 ≥ µ2 ≥ µ3 ≥ µ4
such that µ1+µ4 = µ2+µ3. Then, E[max{Poi(µ1),Poi (µ4)}] ≥ E[max{Poi(µ2),Poi(µ3)}].
This fact can in fact be extended to prove that if there is an allocation such that the
expected load is the same across all machines, then that is an optimum allocation. Of
course, such an allocation might not exist – however, heuristically we might hope that if
all the job sizes are small, then we can approximately equalize the expected load on the
machines and that such an allocation might have a near-optimal expected maximum load.

It turns out that these heuristics (even when rigorously analyzed) are not sufficient to provide
a PTAS for stochastic load balancing in all regimes of job sizes and (number of) machines.
Therefore we need some other observations. The first crucial observation is that if there is
a job size λ which is more than the average load (i.e. the total expected job size divided
by m), then in the optimal allocation, such a job is assigned its own separate machine
(Observation 17). This observation can be iteratively applied so that we are now left with
job sizes {λi}n

′

i=1 and m′ machines such that

n′

max
i=1
{λi} ≤

∑n′

i=1 λi
m′

:= µ.

In other words, no job is larger than the average expected load across the m′ machines, i.e.,
µ. With this simplification, we discuss another familiar trick in the context of allocation
problems – namely we create a rounded instance such that each job size (now call it {λ′i}n

′

i=1)
is now in the interval [εµ, 2µ]. The rounding procedure we apply is identical to the rounding
procedure used by [1] in the context of deterministic load balancing. A key property is that
the number of different (expected) job sizes in this modified instance is a constant – i.e., only
dependent on the target error parameter ε.

This rounding step highlights a key technical challenge our algorithm faces – namely, it is
possible that by “multiplicatively dilating” the job sizes, the expected maximum load of the
machines can change significantly. In other words, suppose µ1, . . . , µm ≥ 0, then is it the
case that for any 0 < δ < 1,

E[ mmax
j=1

Poi((1 + δ)µj)] ≈ (1 +O(δ))E[ mmax
j=1

Poi(µj)] ? (1)

While intuitively this looks reasonable, it is not clear if this is true in full generality.
Fortunately for us, we obtain the following dichotomy:
1. When µ is very large (this corresponds to the Case 1 in the analysis), we are able to show

that the first heuristic above provides a PTAS – in other words, just substituting each
stochastic job Wi with a deterministic job wi such that wi = E [Wi] and then applying
the PTAS for the deterministic case [1, 14, 15] gives a PTAS for the stochastic case. The
underlying reason is that in this case, the expected maximum is essentially the same as
the expected heaviest load across the m machines.
The same algorithm also works if µ is in a “certain intermediate range” andm is sufficiently
large (this corresponds to Case 3 in the analysis). In fact, in this case, even the greedy
heuristic described earlier provides a PTAS. The underlying reason why the deterministic
PTAS works is the following: in this regime, the expected maximum remains essentially
the same even if all the loads were to go up by a factor of 2.

2. Outside of the above two cases, our heuristics (greedy or deterministic scheduling) fail
to provably work. However, in these cases, we are able to prove (1). In other words, we
are able to show that dilating or contracting each job size by a factor of (1 + δ) affects
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the expected maximum by only a factor of 1±O(δ). Thus, we can apply the rounding
procedure from [1] to reduce to the case where the number of different job sizes is a
constant. In fact, this is enough to obtain a PTAS for the stochastic load balancing
problem though not an efficient PTAS.
Finally, to get an efficient PTAS, we leverage a third property of the “maximum of
Poisson random variables” – namely, the so-called “focusing effect” [3, 2, 4]. Roughly
speaking, it says that suppose we have m independent Poisson random variables (call
them X1, . . . ,Xm), each with mean µ, then there is an integer I such that (maxmi=1 Xi) ∈
[I, I + 1] with probability 1− o(1) as m→∞. We extend this to (certain instances of)
independent but not identically distributed Poisson random variables. Essentially such a
“focusing effect”, whenever it holds, allows us to express the expected maximum of the
loads of m machines as a linear function of the allocation and then employ an integer
linear program (ILP) to find the optimal allocation.
To explain how an ILP comes into the picture, first of all, we can assume that m (i.e.,
the number of machines) is sufficiently large in terms of the target error parameter δ. If
this is not the case, then we can simply employ dynamic programming to find a good
allocation (it is now an efficient PTAS because m is a constant). Once m is large, we
show the following:
(a) Either there is a transition point t= t(µ1,. . . ,µm) such that max{Poi(µ1),. . . ,Poi(µm)}

sharply concentrates within 1±O(δ) of the transition point. In this case, we want
to find the smallest t∗, for which there is an allocation with loads µ1, . . . , µm such
that t∗ = t(µ1, . . . , µm). We use ILP and binary search to find such t∗. Observe that
in this case, the smallest such t∗ will minimize the expected maximum load (up to
1±O(δ)).

(b) Otherwise, there is a transition point t = t(µ,m) such that max{Poi(µ1), . . . ,Poi(µm)}
sharply concentrates in the set [t − 1, t]. Observe that t only depends on µ and
m, and hence can be easily computed. With the knowledge of t, we now use
an ILP to find an assignment µ1, . . . , µm which maximizes the probability that
max{Poi(µ1), . . . ,Poi(µm)} = t− 1 and thus minimizes the expected maximum load.

1.2 Organization
In Section 2, we formally state the problem, establish some notations, and describe some
properties of Poisson random variables that we will utilize. In Section 3 we give an overview
of our concentration and scaling results for the maximum of Poisson random variables. In
Section 4 we present our efficient polynomial-time approximation scheme and its analysis.

2 Preliminaries

We use Poi (λ) to denote a Poisson random variable with mean λ. Recall that Pr [Poi (λ)=k]=
e−λ · λ

k

k! for k ∈ N. In the stochastic load balancing problem considered in this paper, we are
given n jobs and m machines where the job sizes are independent Poisson random variables
Poi (λ1) ,Poi (λ2) , . . . ,Poi (λn). We will call λi the size of job i. Our goal is to assign the
jobs to the machines so that the expected maximum load

L
def= E

 mmax
j=1

∑
i∈Sj

Poi (λi)

 (2)

is minimized, where Sj is the set of jobs assigned to machine j.

ICALP 2020
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It is well known that the sum of two independent Poisson random variables also follows a
Poisson distribution, i.e. Poi (λ1)+Poi (λ2) = Poi (λ1 + λ2). Therefore if we let µj =

∑
i∈Sj λi,

we can write (2) as L = E
[
maxmj=1 Poi (µj)

]
. We will call µj the load of machine j.

Henceforth, our analysis of Poisson random variables will mainly serve the purpose of
characterizing the expected maximum load, and therefore we will use µ and µ1, µ2, . . . , µm
to denote the means when stating useful claims about Poisson distributions.

I Definition 2. We write M(m,µ) to denote the random variable whose value is the maximum
of m i.i.d. Poi (µ).

In [9] the authors proved that Poisson distributions are log-concave:

I Proposition 3 ([9]). For any t ≥ 0, the function

ft(µ) = log Pr [Poi (µ) ≤ t] (3)

is decreasing and concave with respect to µ.

For any random variables X and Y taking values on N, we say X stochastically dominates
Y, denoted by X ≥sd Y, if Pr [X ≥ k] ≥ Pr [Y ≥ k] holds for every k ∈ N. Note that for
independent X,Y we have Pr [max {X,Y} ≥ k + 1] = 1−Pr [X ≤ k] Pr [Y ≤ k]. Now by
Proposition 3 we have the following:

I Proposition 4 (Lemma 2.1 of [9]). Given 0 ≤ µ1 ≤ µ′1 ≤ µ′2 ≤ µ2 such that µ1+µ2 = µ′1+µ′2,
it holds that max {Poi (µ1) ,Poi (µ2)} ≥sd max {Poi (µ′1) ,Poi (µ′2)}.

Poisson random variables satisfy exponential tail bounds:

I Proposition 5 (Theorem 4.4, Theorem 4.5 of [21]). Let X be a Poisson random variable
with mean µ. For 0 < δ < 1 we have

Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3, (4)

Pr [X ≤ (1− δ)µ] ≤ e−µδ
2/2. (5)

In our analysis we will need to use Stirling’s approximation to deal with factorials:

I Proposition 6 (Stirling’s approximation [23]). For any integer n > 0,

e
(n
e

)n
≤
√

2πn
(n
e

)n
e1/(12n+1) ≤ n! ≤

√
2πn

(n
e

)n
e1/12n ≤ en

(n
e

)n
. (6)

3 Concentration and Scaling Results for Maximum of Poissons

In this section we present our concentration and scaling results for the maximum of independ-
ent Poisson random variables Poi (µ1) ,Poi (µ2) , . . . ,Poi (µm), which will be used to prove
the correctness of our algorithm. Full proofs of these results are deferred to the full version
of the paper.

Throughout we assume µ1 ≥ µ2 ≥ . . . ≥ µm ≥ 0, and define µ = (
∑m
j=1 µj)/m. We use δ

as an error parameter, which measures how well the maximum of Poissons is concentrated.
We consider five different cases based on the relationship between µ, m, and µj ’s, and state
our results for each of them. Note that while the ranges of µ in these cases are disjoint,
we prove our lemmas below for slightly overlapping ranges of µ for ease of analyzing our
algorithm in Section 4.
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Fix δ ∈ (0, 1/10]. We prove our results for the following cases respectively:
Case 1: 6

δ2 logm < µ.

Case 2: 1
21/δ+1 logm < µ ≤ 6

δ2 logm and m ≥ 22
2
δ .

Case 3: 1
mδ

< µ ≤ 1
21/δ+1 logm, m ≥ 2 2

δ log 2
δ , and ∀j, µj ∈ [µ/4, 4µ].

Case 4: 4 logm
m < µ ≤ 1

mδ
, m ≥ 2100/δ2 , and ∀j, µj ∈ [µ/4, 4µ].

Case 5: µ ≤ 4 logm
m , m ≥ 1000(1/δ) log2(1/δ), and ∀j, µj ∈ [µ/4, 4µ].

For Case 1 we show that maxmj=1 Poi (µj) is concentrated within (1 ± O(δ))µ1. For
each of Case 2, Case 3, and Case 4 we define a certain transition point and show that
maxmj=1 Poi (µj) is concentrated around this point. For Case 5 we show that maxmj=1 Poi (µj)
takes value 0 or 1 with high probability. For all cases we show that the maximum value is
robust to contraction or dilation of µj ’s. In particular maxmj=1 Poi (µj) does not blow up by
more than 1 +O(δ) when we scale all µj ’s by 1 + δ. We call these scaling results.

I Lemma 7 (Case 1). Suppose δ ∈ (0, 1/10] and µ > 6
δ2 logm. Then

µ1 ≤ E
[

mmax
j=1

Poi (µj)
]
≤ (1 + 5δ)µ1. (7)

I Lemma 8 (Case 2). Suppose δ ∈ (0, 1/10], 1
21/δ+1 logm < µ ≤ 12

δ2 logm, and m ≥ 22
2
δ .

Define transition point t2 = t2(µ1, µ1, . . . , µm) as the largest integer satisfying3

m∑
j=1

Pr [Poi (µj) ≥ t2] ≥ 1
3 . (8)

Then for any random variable X taking values on N, we have

(1− 6δ)E [max {t2,X}] ≤ E
[
max

{
mmax
j=1

Poi (µj) ,X
}]
≤ (1 + 10δ)E [max {t2,X}] , (9)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 16δ)E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (10)

I Lemma 9 (Case 3). Suppose δ ∈ (0, 1/10], 1
mδ

< µ ≤ 1
21/δ+1 logm, and m ≥ 2 2

δ log 2
δ .

Define transition point t3 = t3(m,µ) = logm
log 1

µ+log logm . Then for any random variable X on
N we have

(1− 4δ) max {t3,X} ≤ max {M(m,µ),X} ≤ (1 + 14δ) max {t3,X} , (11)

and

E [max {M(m, 4µ),X}] ≤ (1 + 20δ) E [max {M(m,µ),X}] . (12)

3 The choice of 1
3 in the definition of t2 is arbitrary. In principle any constant bounded away from both 1

and 0 suffices.

ICALP 2020
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I Lemma 10 (Case 4). Suppose δ ∈ (0, 1/10], 4 logm
m < µ ≤ 2

mδ
, m ≥ 2100/δ2 , and

µ1, . . . , µm ∈ [µ/4, 4µ]. Define transition point t4 = t4(m,µ) = dγ4(m,µ)e where γ4(m,µ) =
logm

log 4
µ+log logm . Let W be a Bernoulli random variable taking values on t4 − 1 and t4 where

Pr [W = t4 − 1] =
∏m
j=1 Pr [Poi (µj) ≤ t4 − 1]. Then for any random variable X on N we

have

(1− 5δ)E [max {W,X}] ≤ E
[
max

{
mmax
j=1

Poi (µj) ,X
}]
≤ (1 + 16δ)E [max {W,X}] , (13)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 16δ)E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (14)

I Lemma 11 (Case 5). Suppose δ ∈ (0, 1/10], µ ≤ 8 logm
m , m ≥ 1000(1/δ) log2(1/δ),

and ∀j, µj ∈ [µ/4, 4µ]. Let W be a 0/1 Bernoulli random variable with E [W] = 1 −∏m
j=1 Pr [Poi (µj)=0]= 1− e−mµ. Then for any random variable X on N we have

max {W,X} ≤ E
[

mmax
j=1

Poi (µj)
]
≤ (1 + 10δ) max {W,X} , (15)

and

E
[
max

{
mmax
j=1

Poi ((1 + δ)µj) ,X
}]
≤ (1 + 10δ) E

[
max

{
mmax
j=1

Poi (µj) ,X
}]

. (16)

4 An Efficient Polynomial-time Approximation Scheme

Our PTAS for stochastic load balancing is heavily inspired by the approach of [1, 15] for the
deterministic load balancing problem. Thus, we first begin with a recap of their approach.

4.1 Recap of the PTAS for deterministic load balancing
Consider any instance of deterministic load balancing where the job sizes are {λi}ni=1 and
we have m machines – the goal is to find an assignment with smallest maximum load. The
algorithms in [1, 15] proceed in two phases: In phase I, we assign “big” jobs to separate
machines. Here big jobs are the maximal set of jobs whose size is greater than the remaining
average load. In other words, it is the maximal set B ⊆ [n] satisfying that ∀i ∈ B,
λi > (

∑
i/∈B λi)/(m− |B|) := µ. Exploiting the convexity of the objective function (i.e. the

function max {x1, x2, . . . , xm}), [1, 15] show that an optimum assignment (i) assigns the
jobs in B to their own separate machines; (ii) assigns the remaining jobs to the remaining
machines in a way such that each of these machines have a load between µ/2 and 2µ.

With this, we are only left with the problem of assigning the small jobs, i.e., the jobs not in
B. A second key step here is to round the sizes of the remaining jobs, such that (i) the number
of different job sizes is now4 Õ(1/ε) and (ii) the potential number of different assignments
to any single machine is 2Õ(1/ε). Crucially, both these numbers are just dependent on the
target error parameter ε. With this rounding, [1, 14] formulate the problem of finding an
optimal assignment on the remaining (rounded) jobs as an integer linear program with

4 Recall that Õ(f) denotes O(f logc f) for some constant c.
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2Õ(1/ε) variables – referred to as a configuration-IP. The configuration-IP can be solved in
time exponential in the number of variables and linear in the input length using algorithms
in [19, 17].

I Theorem 12 ([17]). There is an algorithm ILP that solves an integer linear program with
p variables in time pO(p)O(n) where n is the length of input.

This leads to an overall running time of 22Õ(1/ε) +O(n logn) [1], where the running time
O(n logn) comes from the pre-processing step of sorting the job sizes (to find the big jobs).

I Theorem 13 ([1]). There is an algorithm DetScheduling that given an instance of the
load balancing problem with n jobs and m machines where the jobs have deterministic sizes
λ1, λ2, . . . , λn, and a parameter 0 < ε < 1, outputs a job assignment whose maximum load is
at most (1 + ε) of the maximum load of an optimum assignment. The algorithm runs in time
22Õ(1/ε) +O(n logn).

The authors in [15] then use a sparsification technique to show that the configuration-IP
has an optimum solution with a small support size, which leads to an improved running time
of 2O(1/ε) log4(1/ε) +O(n logn). Later by improving the runtime of solving the ILP, a running
time of 2O(1/ε) log2(1/ε) +O(n logn) was achieved [16].

4.2 Overview of our approach
We now give an overview of our approach for the stochastic load balancing problem. Recall
that we have n jobs and m machines where the ith job has size Poi(λi). Similar to the
deterministic case [1, 15], we define “big” jobs as the maximal set of jobs whose (expected)
size is greater than the remaining (expected) average load, i.e. the maximal set B ⊆ [n]
satisfying that ∀i ∈ B

λi >

∑
i/∈B λi

m− |B|
. (17)

By Proposition 3, the objective function is convex with respect to the machine loads (similar
to [1, 15]). Thus, we assign the jobs in B to separate machines (see Lines 2–5 of Algorithm 1).

Assigning the small jobs (i.e., the jobs outside B) is however somewhat more complicated.
As stated in Section 1.1, there are two principal difficulties in applying the approaches
from [1, 15] to handling the remaining jobs. One is to discretize the job sizes, and the other
is to formulate the problem of minimizing the expected maximum load as an integer linear
program. The key to circumventing both these difficulties lies in the (technical) results on
concentration and scaling of maximum of Poisson random variables proven in Section 3.
To understand their role, let us begin with some notation. Let m(1) = m− |B| denote the
number of the remaining machines. Consider an assignment of the remaining jobs and let
Poi (µ1) ,Poi (µ2) , . . . ,Poi (µm(1)) be the corresponding distributions of the machine loads.
Suppose µ1 ≥ µ2 ≥ . . . ≥ µm(1) and let µ = (

∑m(1)

j=1 µj)/m(1). By an argument similar to the
deterministic case [1, 15] (see Observation 18), we can restrict ourselves to the case when
µj ∈ [µ/2, 2µ] for all j ∈ [m(1)]. Let δ ∈ (0, 1) be a target error parameter (roughly speaking,
we set δ ≈ Θ(ε)).

Our results in Section 3 first imply that when µ is sufficiently large in terms of 1/δ and
m(1) (the condition of Lemma 7), or µ is in a certain intermediate range but m(1) is large
enough in terms of 1/δ (the condition of Lemma 9), it suffices to find an assignment by
running the deterministic load balancing algorithm in Theorem 13. When µ does not satisfy
the above conditions but m(1) is sufficiently large in terms of 1/δ, we have the following
dichotomy:
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1. maxm(1)

j=1 Poi (µj) is concentrated within (1 ± O(δ)) of a certain transition point t =
t(µ1, . . . , µm(1)) (Lemma 8), or

2. takes value dte − 1 or dte with high probability, where the transition point t = t(m(1), µ)
only depends on m(1) and µ (Lemmas 10 and 11).

Further, in all of the cases,

E
[

mmax
j=1

Poi ((1 + δ)µj)
]
≤ (1 +O(δ))E

[
mmax
j=1

Poi (µj)
]

(18)

(Lemmas 8, 10, and 11). Finally, when m is sufficiently small in terms of δ, we can use
dynamic programming to get an efficient PTAS.

Let us now see how the above structural results are useful in algorithm design – first
of all, (18) immediately allows us to discretize the job sizes by rounding up their means to
the nearest integer power of (1 + δ), with proper handling of jobs with size below a certain
threshold5. Once the job sizes are rounded, the existence of the transition points (rather, the
precise definitions of these transition points in Section 3) can be used to construct integer
linear programs which can find a near optimal solution. As an example, if we are in Case 4
as defined above, by Lemma 10 minimizing the expected maximum is the same as finding
µ1, µ2, . . . , µm(1) such that the probability that the maximum load is dte is minimized. This
finishes our overview of the PTAS.

4.3 Our PTAS
We give a full description of our efficient PTAS in Algorithm 1 as PoiScheduling, which
calls Rounded (Algorithms 2), ILPScheduling (Algorithm 3), and DPScheduling as
subroutines. The detailed description of DPScheduling is deferred to the full version as it
uses mostly standard ideas.

PoiScheduling first handles the “big” jobs in the same way as deterministic case
(Lines 2–5 of Algorithm 1). As before µ denotes the remaining average machine load (i.e.
RHS of (17)) and m(1) denote the number of the remaining machines. PoiScheduling then
does one of the following for the remaining jobs:
1. When µ is large enough to meet the condition of Case 1, or µ and m(1) meet the condition

of Case 3, PoiScheduling directly uses the algorithm for deterministic case as a blackbox
(Lines 7–9 of Algorithm 1).

2. When µ and m(1) meet the condition of Case 2, Case 4, or Case 5, PoiScheduling first
rounds the sizes of the remaining jobs in the same way as [15] (Line 6 of Algorithm 1).
Then for Case 2 it uses integer linear programming in conjunction with a binary search
to find the smallest transition point t2 achievable by an assignment of the remaining
jobs, where the ILPs have linear objective functions and configuration-IP from [1, 15] as
feasibility constraints (Lines 10–12 of Algorithm 1). Case 4 and Case 5 are also handled
by integer linear programs (Lines 13-15 and Lines 16-17 of Algorithm 1 respectively).

3. When none of the conditions of Case 1 -Case 5 is met, namely m(1) ≤ 22O(1/ε) and µ ≤
O(ε−2 logm), PoiScheduling finds an assignment by dynamic programming (Line 19
of Algorithm 1).

PoiScheduling uses Rounded, ILPScheduling and DPScheduling as subroutines.
Roughly speaking, Rounded takes a multi-set of job sizes and a parameter δ as input and
outputs a multi-set of job sizes such that the number of different job sizes only depends

5 The specific rounding scheme we use is identical to the one used in [15].
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on δ. ILPScheduling takes the jobs and the number of machines m, and a function f as
input. The goal of ILPScheduling is to find an assignment with loads µ1, . . . , µm such
that

∑m
j=1 f(µj) is minimized. DPScheduling takes the jobs and number of machine, and

an error parameter ε as input and returns an assignment of jobs with at most (1 + ε) error
with respect to an optimum assignment by a dynamic programming.

By using the algorithm in [17] (Theorem 12) to solve the integer linear programs,
PoiScheduling achieves a running time double exponential in 1/ε and nearly-linear in n.
Note that although the algorithm in Theorem 12 needs integral coefficients, we can compute
the coefficients with a high precision (inverse polynomial precision) which is sufficient to
get our desired approximation and does not affect our running time, so we don’t get into
the details. We also note that while it is possible to use the sparsification technique in [15]
to improve our running time of solving integer linear programs to single exponential in
1/ε, our dynamic program for the case when 1/ε ≥ Ω(log logm) still takes time double
exponential in 1/ε.

The performance of PoiScheduling is characterized in Theorem 1. The performances
of Rounded and DPScheduling are characterized in Lemmas 14 and 15 respectively. We
do not give a separate lemma for ILPScheduling but analyze it in our proofs directly.

Note that Lemma 14 below only gives guarantees for how the job sizes and individual
machine loads change after rounding; the lemma itself does not make assertions about the
expected maximum load. Instead, guarantees for the latter will follow from our scaling
results in Section 3.

I Lemma 14 ([15]). The algorithm {λ′i}
n′

i=1 = Rounded({λi}ni=1 , µ, δ) runs in time O(n).
Suppose all λi ≤ µ, δ ∈ (0, 1), and µ = (

∑n
i=1 λi)/m for an integer m. The number of

different sizes in {λ′i}
n′

i=1 is bounded by O( 1
δ log 1

δ ), and each λ′i = δµ + kδ2µ for some
k ∈ Z≥0, k ≤ 2

δ2 . n′ is bounded by O(m/δ). For any assignment of {λi}ni=1 to m machines
with loads µ1, µ2, . . . , µm, there is an assignment of {λ′i}

n′

i=1 to m machines with loads
µ′1, µ

′
2, . . . , µ

′
m such that all µ′j ≤ (1 + 5δ)µj. Conversely, for any assignment {λ′i}

n′

i=1 to m
machines with loads µ′1, µ′2, . . . , µ′m, there is an assignment of {λi}ni=1 to m machines with
loads µ1, µ2, . . . , µm such that all µj ≤ (1 + 5δ)µ′j , and the latter assignment can be found in
O(n) time given the former assignment if both {λi}ni=1 and {λ′i}

n′

i=1 are sorted.

I Lemma 15. Given jobs {νi}n
(0)

i=1 , {λi}
n(1)

i=1 , number of machines m, and ε ∈ (0, 1
10 ]. Let

m(1) = m−n(0), µ = (
∑n(1)

i=1 λi)/m(1), and δ = max
{

ε
1000m(1) , 2−109/ε2

}
. Suppose all λi ≤ µ,

all νi > µ, and µ ≤ 6000000ε−2 logm(1). Then DPScheduling({νi}n
(0)

i=1 , {λi}
n(1)

i=1 ,m, ε)
finds in O(n(0)ε−4 log2m(1)) + (m(1)/δ)O( 1

δ log 1
δ ) time an assignment with expected maximum

load L ≤ (1 + ε)L∗, where L∗ is the expected maximum load of an optimum assignment.

A detailed proof of Lemma 15 is deferred to the full version of the paper. First we show
how to prove Theorem 1 using the lemma.

4.4 Proof of Theorem 1
The following lemma shows that if Algorithm 1 does not use dynamic programming to find
an assignment, then we have a good approximation.

I Lemma 16. If Algorithm 1 returns an assignment without going into Line 19, then
L ≤ (1 + ε)L∗, where L,L∗ is the expected maximum load of the assignment returned by
Algorithm 1 and the optimum assignment respectively.
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Algorithm 1 PoiScheduling(n,m, {λi}n
i=1 , ε).

Input :Number of jobs n, number of machines m, job sizes {λi}ni=1, and ε ∈ (0, 1)
Output :A job assignment φ : [n]→ [m]

1 µ← (
∑n
i=1 λi)/m, and sort {λi}ni=1 such that λ1 ≤ λ2 ≤ . . . ≤ λn.

2 n(1) ← n and m(1) ← m.
3 while λn(1) > µ do
4 Assign the job with size λn(1) to the empty machine m(1): φ(n(1))← m(1).

5 µ← m(1)µ−λ
n(1)

m(1)−1 , n(1) ← n(1) − 1, and m(1) ← m(1) − 1.

6 δ ← ε
1000 and {λ′i}

n′

i=1 ← Rounded({λi}n
(1)

i=1 , µ, δ).
7 if µ > 6

δ2 logm(1) or
(

1
(m(1))δ < µ ≤ 1

21/δ+1 logm(1) and m(1) ≥ 2 2
δ log 2

δ

)
then

// Case 1, Case 3

8 Create a new instance with m(1) machines and deterministic job sizes {λi}n
(1)

i=1 .
9 Run DetScheduling in Theorem 13 to find a (1 + ε

5 )-optimum assignment
φ′ : [n(1)]→ [m(1)].

10 else if 1
2δ+1 logm(1) < µ ≤ 6

δ2 logm(1) and m(1) ≥ 222/δ then
// Case 2

11 Use binary search to find the smallest t2 ∈ [µ, 100µ logm(1)] s.t. there is an
assignment of {λ′i}

n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∑m(1)

j=1 Pr [Poi (µj) > t2] < 1
3 ; this

is by (opt, φ′)← ILPScheduling({λ′i}
n′

i=1 ,m
(1), x→ Pr [Poi (x) > t2]) for

each guess of t2 and checking if opt < 1
3 .

12 (opt, φ′)← ILPScheduling({λ′i}
n′

i=1 ,m
(1), x→ Pr [Poi (x) > t2]).

13 else if 4 logm(1)

m(1) < µ ≤ 1
(m(1))δ and m(1) ≥ 2100/δ2 then

// Case 4

14 t4 ←
⌈

logm(1)

log 4
µ+log logm(1)

⌉
.

15 Find an assignment of {λ′i}
n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∏m(1)

j=1 Pr [Poi (µj) < t4] is
maximized, by
(opt, φ′)← ILPScheduling({λ′i}

n′

i=1 ,m
(1), x→ − ln(Pr [Poi (x) < t4])).

16 else if µ ≤ 4 logm(1)

m(1) and m(1) ≥ 1000(1/δ) log2(1/δ) then
// Case 5

17 Find an assignment of {λ′i}
n′

i=1 with loads {µj}m
(1)

j=1 s.t.
∏m(1)

j=1 Pr [Poi (µj) = 0] is
maximized, by
(opt, φ′)← ILPScheduling({λ′i}

n′

i=1 ,m
(1), x→ − ln(Pr [Poi (x) = 0])).

18 else
19 φ′ ← DPScheduling({λi}ni=n(1)+1 , {λi}

n(1)

i=1 ,m, ε).

20 If φ′ is an assignment of the rounded jobs {λ′i}
n′

i=1, use Lemma 14 to covert it to an
assignment of {λi}n

(1)

i=1 such every machine’s load overflows by no more than (1 + 5δ).

21 Return the assignment φ ∪ φ′.
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Algorithm 2 Rounded({λi}n
i=1 , µ, δ).

Input : Job sizes {λi}ni=1, µ s.t. all λi ≤ µ, and δ ∈ (0, 1)
Output :Rounded job sizes {λ′i}n

′

i=1
1 n′ ← 0 and S ← 0.
2 for i← 1 to n do
3 if λi ≥ δµ then
4 n′ ← n′ + 1.
5 ν ← (1 + δ)kδµ where k is the unique integer s.t.

(1 + δ)k−1δµ < λi ≤ (1 + δ)kδµ.
6 λn′ ← lδ2µ where l is the unique integer s.t. (l − 1)δ2µ < ν ≤ lδ2µ.
7 else
8 S ← S + λi.

9 S# ← kδµ where k is the unique integer s.t. (k − 1)δµ < S ≤ kδµ.
10 λ′i ← δµ for each i = n′ + 1, . . . , n′ + S#/(δµ) and n′ ← n′ + S#/(δµ).
11 return {λ′i}n

′

i=1

Algorithm 3 ILPScheduling({λi}n
i=1 ,m, f).

Input : Job sizes {λi}ni=1, number of machines m, and a function f : R→ R
Output :An optimum value opt and a job assignment φ : [n]→ [m]

1 µ← (
∑n
i=1 λi)/m.

2 Let π1 < π2 < . . . < πd be all different sizes in {λi}ni=1 and ~π ← (π1, π2, . . . , πd)T .
3 Let nk be the number of jobs with size πk and ~n← (n1, n2, . . . , nd)T (so∑d

k=1 nk = n).
4 Q←

{
~c ∈ Zd≥0 : ~c T~π ≤ 4µ

}
(the set of possible assignments to a single machine).

5 Solve the following integer linear programming using Theorem 12:

min
∑
~c∈Q

x~c f(~c T~π)

s.t.
∑
~c∈Q

x~c = m

∑
~c∈Q

x~c ~c = ~n

x~c ∈ Z≥0, ∀~c ∈ Q. (19)

6 Return the optimum value of the ILP and an assignment φ extracted from its
solution.

We will provide a detailed proof of Lemma 16 in the next section. Roughly speaking,
for Case 1 and Case 3, where we do not use the rounded jobs, using the guarantee of the
deterministic load balancing algorithm we show that the maximum expected load of any
machine is bounded. Then by using the concentration results from Section 3, we can bound
the expected maximum load.

For three other cases, where the assignment obtained is for the rounded jobs, the proof
consists of two main steps. In the first step, we compare the individual machine loads of
the output assignment (of unrounded jobs) and the assignment of the rounded jobs given by
ILPScheduling by Lemma 14. Then by the concentration and scaling results from Section 3,
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we bound the expected maximum load of the output assignment using the transition point
of rounded jobs. In the second step, we bound the expected maximum of an optimum
assignment of rounded jobs by that of an optimum assignment of unrounded jobs by scaling
results from Section 3. Thus, we bound the expected maximum load of an output assignment
by that of an optimum assignment.

Now we prove Theorem 1.

Proof of Theorem 1. First we analyze the running time when PoiScheduling does not
use dynamic programming. If the algorithm invokes the efficient PTAS for deterministic
case in Theorem 13, the running time is bounded by 22Õ(1/ε) + O(n logn). Otherwise the
algorithm will first do the rounding. By Lemma 14 after the rounding the number of different
job sizes in {λ′i}

n′

i=1 becomes O( 1
δ log 1

δ ) = O( 1
ε log 1

ε ) and all job sizes are between δµ and
2µ. Now for each machine of 1, 2, . . . ,m(1), we only need to consider the assignments to
it with load at most 4µ. Therefore each machine can have at most O(1/δ) = O(1/ε) jobs,
and the number of different job profiles that can be assigned to one machine is at most
(1/ε)O(1/ε) = 2O( 1

ε log 1
ε ), which is the number of variables in the ILP. By Theorem 12 the ILP

can be solved in 22O( 1
ε

log 1
ε

)
O(logn) time. Since for Case 2 we need to do a binary search on

interval [µ, 100µ logm(1)], the total running time is bounded by 22O( 1
ε

log 1
ε

)
O(logn log logn).

If PoiScheduling uses dynamic programming, we have δ ≥ 2−109/ε2 and m(1) ≤ 22O(1/ε) .
Therefore the total running time is bounded by 22O(1/ε2) + O(nε−4 log2 n) by Lemma 15.
Combining these two cases gives us the desired running time.

The approximation guarantee directly follows from Lemmas 16 and 15. J

5 Proof of Correctness using Concentration Results

In this section, we will prove the correctness of Algorithm 1 using the concentration results
in Section 3. We refer to the case in Lemma 16 as the case with “large m” and the other
case as the one with “small m”. Here we only give the proof for large m but defer the proof
for small m to the full version of the paper.

5.1 Analysis for large m
In this subsection, we prove that if Algorithm 1 does not call DPScheduling (Line 19),
then L < (1 + ε)L∗ where L∗ is the expected maximum load of an optimum assignment and
L is the expected maximum load of the returned assignment by Algorithm 1. In our analysis,
by large m we mean that the condition on Line 7, 10, 13, or 16 is satisfied. By small m we
mean that none of those conditions is satisfied, i.e. the algorithm calls DPScheduling. In
this subsection, we will also consider the case when the algorithm finishes assigning all jobs
before Line 6.

I Lemma 16. If Algorithm 1 returns an assignment without going into Line 19, then
L ≤ (1 + ε)L∗, where L,L∗ is the expected maximum load of the assignment returned by
Algorithm 1 and the optimum assignment respectively.

Proof of Lemma 16. Let χ be the set of jobs each of which is assigned to a single machine
in the first loop of Algorithm 1. Let Λ be the (multi-)set of the sizes of the jobs in χ. Let
χ = {Poi (λ) |λ ∈ Λ} and X = maxλ∈Λ Poi (λ). Consider µ and m(1) as same as Algorithm 1
after Line 6. Suppose the algorithm returns an assignment where machine j has load µj . Let{
µ

(1)
j

}m(1)

j=1
be the machine loads corresponding to the assignment φ′ obtained before Line 20.
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That is, if φ′ is an assignment of the rounded jobs, µ(1)
j ’s are the corresponding rounded loads.

Without loss of generality, we assume µ(1)
1 ≥ µ(1)

2 ≥ . . . ≥ µ(1)
m(1) . Let µ(1) =

∑m(1)

j=1
µ

(1)
j

m(1) . Note
that if Algorithm 1 does not return an assignment using rounded jobs (Line 9), then µ = µ(1).
There are six possible cases:
Case 0: The algorithm finishes assigning all jobs before Line 6. Then it must be the case
that n ≤ m. Therefore assigning every job to a single machine is the optimum solution.
Case 1: µ > 6

δ2 logm(1) and the algorithm goes to Lines 7–9. First we state an observation.
Note that this is the same observation as Observation 2.1 in [1] for deterministic case.
Both our observation and the one in [1] follow from the convexity of the objective function
with respect to the machine loads.

I Observation 17. There is an optimum assignment such that each job in χ is solely assigned
to a separate machine.

Proof. Suppose in an optimum assignment there is a job in χ with size λi which is assigned
to a machine with another job of size λj and suppose i is the biggest index such that a job
with size λi shares its machine with another job. Let µ′ be the value of µ in Algorithm 1 just
before assigning λi to a machine, so we know λi > µ′. By removing λj from its machine, all
the other machines should have load at least µ′, otherwise we can assign λj to a machine with
load less than µ′ and by Proposition 4, the expected maximum decreases which contradicts the
optimality. But µ′ is the average load of remaining machines (machines that do not contain
any jobs from {λk|k > i}) and now each one has load more than µ′, a contradiction. J

Let L∗DET be the optimum answer of deterministic case for job sizes of {λi}n
(1)

i=1 and m(1)

machines, where n(1) = n−|χ|. Note that L∗ ≥ L∗DET and L∗ ≥ maxλ∈Λ λ, by Observation 17.
Since δ = ε

1000 , by Lemma 7 we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
Poi ((1 + ε/5)L∗DET ) , m

(1)

max
j=2

Poi (µj) ,X
}]

(by Theorem 13)

≤ (1 + 5δ) max
{

(1 + ε/5)L∗DET ,max
λ∈Λ

λ

}
(by (7) in Lemma 7)

≤ (1 + ε/200)(1 + ε/5)L∗ < (1 + ε)L∗. (20)

Case 2: The algorithm goes to Lines 10–12. By calling ILPScheduling multiple times,
Algorithm 1 finds the smallest transition point t2 for rounded jobs on m(1) machines as
defined in Lemma 8. Note that if L̂ is the optimum expected maximum for rounded version,
then L̂ ≤ (1 + 80δ)L∗ (by (10) in Lemma 8 and Lemma 14). Since δ = ε

1000 , m
(1) > 22100/ε

and 1
21/δ+1 logm(1) < µ(1) logm(1) ≤ (1 + 5δ) 6

δ2 logm(1) < 12
δ2 logm(1) (Lemma 14), then by

Lemma 8 we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)
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. . . ≤ (1 + 80δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (10) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)E [max {t2,X}] (by (9) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)
1− 6δ L̂ (by (9) in Lemma 8)

≤ (1 + 10δ)(1 + 80δ)2

1− 6δ L∗

< (1 + ε)L∗

Case 3: 1
(m(1))δ < µ ≤ 1

21/δ+1 logm(1) and m(1) ≥ 2 2
δ log 2

δ , and the algorithm goes to
Lines 7–9. First we state an observation which is the same as Observation 2.2 in [1] for
deterministic case and again follows from the convexity of the objective function with respect
to the machine loads

I Observation 18. If for each i, λi ≤ µ, then for each load µj in an optimum assignment
we have µ/2 ≤ µj ≤ 2µ.

Proof. Suppose a machine has load µj > 2µ and a job assigned to the machine is λi. λi ≤ µ,
so µj − λi > µ, so any other machines has load at least µ, a contradiction. So µj ≤ 2µ.

Suppose a machine has load µj < µ/2. So there is a machine with load µk > µ, so it has
at least two jobs assigned. So there is a job λi in µk such that λi ≤ µk/2, by taking it from
µk its load would be µk − λi ≥ µk/2 > µ/2 > µj , a contradiction as by reassigning λi to µj
by Proposition 4 the expected maximum decreases. So µ/2 ≤ µj . J

Since δ = ε
1000 and m(1) > 2 2

δ log 2
δ , the conditions of Lemma 9 holds and we get:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
M(m(1), (1 + ε/5)2µ),X

}]
(Observation 18 and Theorem 13)

≤ E
[
max

{
M(m(1), 4µ),X

}]
(Proposition 3)

≤ (1 + 20δ) E
[
max

{
M(m(1), µ),X

}]
(by (12) in Lemma 9)

< (1 + ε)L∗.

Case 4: The algorithm goes to Lines 13–15. By putting δ = ε
1000 and Observation 18,

an optimum assignment of rounded jobs satisfies the condition of Lemma 10. Let W be
the Bernoulli random variable as described in Lemma 10 but with respect to the machine
loads of an optimum assignment of the rounded jobs, then (1 − 5δ)E [max {W,X}] ≤ L̂

where L̂ is the optimum expected maximum of rounded version. By finding an assignment
maximimizing

∏m(1)

j=1 Pr [Poi (µj) ≤ t4 − 1], the value of E [max {W,X}] would be minimized.
Let the corresponding optimum W be W∗. So we have (1 − 5δ)E [max {W∗,X}] ≤ (1 −
5δ)E [max {W,X}] ≤ L̂. Note that L̂ ≤ (1 + 80δ)L∗ by (14) in Lemma 10 and Lemma 14.
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As 4 logm
m < µ(1) ≤ (1 + 5δ) 1

mδ
≤ 2

mδ
, by Lemma 10:

L = E
[
max

{
m(1)

max
j=1

Poi (µj) ,X
}]

≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)

≤ (1 + 80δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (14) in Lemma 10)

≤ (1 + 16δ)(1 + 80δ)E [max {W∗,X}] (by (13) in Lemma 10)

≤ (1 + 16δ)(1 + 80δ)
1− 5δ L̂

≤ (1 + 16δ)(1 + 80δ)2

1− 20δ L∗

< (1 + ε)L∗. (21)

Case 5: The algorithm returns an assignment on Line 17. With the same argument as the
previous case, by maximizing

∏m(1)

j=1 Pr [Poi (µj) = 0], the value E [max {W,X}] as defined
in Lemma 11 would be minimized. Let the corresponding optimum W be W∗. So we have
E [max {W∗,X}] ≤ L̂ where L̂ is the optimum expected maximum of rounded jobs with
m(1) machines and L̂ ≤ (1 + 50δ)L∗ by (16) in Lemma 11 and Lemma 14. So we get:

L ≤ E
[
max

{
m(1)

max
j=1

Poi
(

(1 + 5δ)µ(1)
j

)
,X
}]

(Lemma 14)

≤ (1 + 50δ)E
[
max

{
m(1)

max
j=1

Poi
(
µ

(1)
j

)
,X
}]

(by (16) in Lemma 11)

≤ (1 + 10δ)(1 + 50δ)E [max {W∗,X}] (by (15)) in Lemma 11)

≤ (1 + 10δ)(1 + 50δ)L̂
≤ (1 + 10δ)(1 + 50δ)2L∗

< (1 + ε)L∗.

So for all cases we have L < (1 + ε)L∗ and we are done. J
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