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Abstract
In this paper, we consider the problem of assigning 2-dimensional vector jobs to identical machines
online so to minimize the maximum load on any dimension of any machine. For arbitrary number of
dimensions d, this problem is known as vector scheduling, and recent research has established the
optimal competitive ratio as O

( log d
log log d

)
(Im et al. FOCS 2015, Azar et al. SODA 2018). But, these

results do not shed light on the situation for small number of dimensions, particularly for d = 2
which is of practical interest. In this case, a trivial analysis shows that the classic list scheduling
greedy algorithm has a competitive ratio of 3. We show the following improvements over this baseline
in this paper:

We give an improved, and tight, analysis of the list scheduling algorithm establishing a competitive
ratio of 8/3 for two dimensions.
If the value of opt is known, we improve the competitive ratio to 9/4 using a variant of the
classic best fit algorithm for two dimensions.
For any fixed number of dimensions, we design an algorithm that is provably the best possible
against a fractional optimum solution. This algorithm provides a proof of concept that we can
simulate the optimal algorithm online up to the integrality gap of the natural LP relaxation of
the problem.
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1 Introduction

In the online load balancing problem, the goal is to allocate n jobs appearing online on a
set of m identical machines so as to minimize the maximum load on any machine (called
makespan). This problem was introduced in the 1960s by Graham [26, 27], who gave the
list scheduling algorithm that assigns each arriving job to the machine with minimum

1 Work done while at CWI Amsterdam, The Netherlands.
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load, and achieves a competitive ratio2 of 2.3 Since then, there has been a long line of
work that aims to improve this constant below 2, both when the optimal value opt is
unknown [10, 37, 1, 19, 18, 11, 25, 28, 2], and when opt is known [9, 40, 4, 38, 39, 21, 20, 12].
The current record is a competitive ratio of 1.916 due to Albers [2] for unknown opt, and
1.5 due to Bohm et al. [12] for known opt.

Recent research has further expanded the scope of this problem to vector jobs that have
multiple dimensions, the resulting problem being called vector scheduling [15, 7, 43, 29, 8, 30].
As earlier, the goal is to minimize the makespan of the assignment, which now represents
the maximum load across all machines and all dimensions. This problem arises in data
centers where jobs with multiple resource requirements have to be allocated to machine
clusters to make efficient use of limited resources such as CPU, memory, and network
bandwidth [24, 44, 41, 17, 31, 32].

It is now known that the right dependence of the competitive ratio for vector scheduling on
the number of dimensions d is Θ(log d/ log log d) [29]. While this gives a satisfactory answer
when the number of dimensions is large, in the practical context, the number of dimensions
is usually small since they represent distinct computational resources. In particular, the
majority of the systems scheduling literature (e.g., see [24] and follow-up papers) considers
only two resources, CPU and memory, since they often tend to be the most critical bottleneck
resources. Unfortunately, the existing bounds for vector scheduling do not shed any light on
this case since we are interested in optimizing the constant in the competitive ratio. In this
paper, we initiate the study of the online 2-dimensional scheduling problem, or 2DSched
in short.

1.1 Results and Techniques
Baseline. Graham’s list scheduling algorithm can be naturally extended to d > 1 dimensions
by assigning each job to the machine that minimizes the makespan after the assignment.
This algorithm has a competitive ratio of 3 for d = 2 (and d+ 1 for general d). To see this,
assume wlog the optimum makespan opt = 1 by scaling. Since the average load on each
dimension is at most opt, it follows that there is always some machine where the sum of
loads on its two dimensions is at most 2. Consequently, this machine has a load of at most 2
on each of its dimensions. Now, note that the load of any single job cannot exceed opt on
any dimension; hence, the maximum load on a machine after the greedy assignment of a job
cannot exceed 3.

Unfortunately, despite the aforementioned recent progress, no existing algorithms are
known to have a competitive ratio better than 3. Thus, our goal is to break the 3-competitive
ratio barrier for the problem. This requires a new approach since the existing analytical
methods are based on potential functions, concentrations, or volume bounds, and they all
seem to inevitably lose a considerable constant factor in the competitive ratio.

A Novel Analytical Technique: Characterizing Reachable States

Our new approach is to directly characterize the set of reachable states of the algorithm.
To illustrate our approach, let us take a close look at the above analysis of list scheduling.
For the analysis to be tight, a configuration (machine loads) must be created where half

2 The competitive ratio of an online minimization problem is the maximum ratio between the objective of
the algorithm and that of an (offline) optimal solution, see e.g., [13].

3 The competitive ratio is actually 2− 1/m for m machines, but we will ignore o(1) terms throughout
since we consider instances of arbitrary problem size in this paper.
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the machines have a load of (roughly, ignoring lower order terms) (2, 0) and the remaining
half have a load of (0, 2). If a job of load (1, 1) now arrives, then the maximum load will
increase to 3 no matter where the job is assigned. But, do we ever create such imbalance in
the configurations of the machines?

To rule out such states/configurations, we need to define the set of reachable states of
the algorithm. Our first contribution is to develop a general framework that allows us to
characterize the set of reachable states of not only the greedy algorithm, but of a much
larger class of algorithms that we call priority-based algorithms. Roughly speaking, these are
algorithms where the newly arriving job is assigned to minimize a “disutility function” that
maps the current load of the machines (i.e., the current state) and the load of the current job
to a real number. For such algorithms, our main observation is that if m machines come to
have load vectors c = (c1, c2, ..., cm) – meaning that this configuration is reachable – then any
pair (ci, cj) is a reachable state for the same algorithm on just two machines. Furthermore,
we identify a specific pair (ci, cj) that captures the essential characteristics of the algorithm
under consideration.

Using this framework, we show that the greedy makespan minimization algorithm that
we described above is 8/3-competitive – and our analysis is tight. We defer the lower bound
to the full version of the paper.

I Theorem 1 (Section 4). There exists a priority-based algorithm that is 8/3-competitive for
the 2DSched problem with unknown opt. Furthermore, this analysis is tight.

If we know the value of opt, then we obtain a better competitive ratio of 2.25 by using a
different algorithm that explicitly minimizes the difference of the loads on the two dimensions
without violating the preset threshold α · opt, where α = 2.25 is the desired competitive
ratio. Again, this analysis is tight, the proof of which we defer to the full version of the
paper. This “balance algorithm” can be thought of as a generalization of the popular best fit
strategy used in bin packing (see [33, 35] for one-dimensional bin packing).

I Theorem 2 (Section 5). There exists a priority-based algorithm that is 2.25-competitive
for the 2DSched problem with known opt. Furthermore, this analysis is tight.

Recall that the minimum makespan problem for d = 1 has been widely studied for both
the known and unknown opt scenarios, and our results obtain corresponding bounds for the
2DSched problem.

As further evidence of the generality of our analysis framework, we also analyze a natural
extension of the popular first fit rule used for bin packing problems. (The reader is referred to
[23, 6] for multi-dimensional first fit bin packing and [16] for a full survey on one-dimensional
first fit bin packing.) In this algorithm, given a target competitive ratio, the algorithm
assigns a new job to the first bin that does not violate the competitiveness guarantee. This
can be implemented as stated if opt is known, and has a tight competitive ratio of 2.5. (The
proof of the next theorem is deferred to the full version of the paper.)

I Theorem 3. The first fit algorithm is 2.5-competitive for the 2DSched problem with
known opt. Furthermore, this analysis is tight.

We also show that if the first fit algorithm is suitably augmented with a framework for
guessing the value of opt and adjusting this guess over time, then it has a competitive ratio
better than the naïve bound of 3 for unknown opt. (The proof of the next theorem is also
deferred to the full version of the paper.)

I Theorem 4. The first fit algorithm is 2.89-competitive for the 2DSched problem with
unknown opt.

ICALP 2020
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While we only showcase the power of our framework by giving tight analyses of the
algorithms described above, we believe that our framework has the potential to find more
applications. This is because it reduces characterizing the reachable states for an arbitrary
number of machines to those for only two machines, making the search space of the worst-case
assignment much more tractable from an analytical perspective. In fact, our framework is
easily extendable to arbitrary d, so that we only need to consider reachable states pretending
that there are only d machines. While we currently know how to analytically characterize
the reachable states only when d = 2, and therefore the results in this paper are only for this
case, it is plausible (and an interesting direction of future work) to further extend such a
characterization to higher dimensions analytically and/or numerically using the fact that
the number of available machines is small. In that case, our framework would be useful in
providing results for online vector scheduling in d > 2 dimensions, e.g., in cases of three or
four dimensions that are also of practical interest.

A Near-optimal Algorithm

We now switch our attention to a different type of algorithmic result. Note that the
competitive ratio of all the known algorithms for d ≥ 2 are based on their comparison against
the fractional optimum. That is, as long as the total load vector is m ·~1, and each job load
vector is at most ~1, an α-competitive algorithm produces a schedule where the load vector on
each machine is at most α ·~1. Note that when d = 1, the competitive ratio 2 is also obtained
against the fractional optimum and even the best competitive ratio 1.916 against the actual
optimum is not far from 2.

Our next result is to give an online algorithm whose competitive ratio nearly matches
the best one can hope for against the fractional optimum for any fixed d. Here our high-level
approach is as follows. We first use a variant of the algorithm in [29] to assign jobs to groups
of machines, ensuring that every group receives at most 1 + ε times its share of the load in
an optimal fractional solution. Then, we assign jobs to machines within each group. We
differentiate between “big” jobs and “small” jobs in this assignment. For the big jobs, we use
discretization to bound the number of job types, and then use an optimal decision tree to
make the actual assignments. Note that the optimal decision tree can be found offline for
every possible job arrival pattern since the total number of big jobs in a group is small, and
the one that matches the online sequence can be pressed into service in the online algorithm.
To assign small jobs using the decision tree, we batch and encapsulate small jobs of similar
load vectors into bin vectors. To enable this online, we pre-allocate some bin vectors. Thus,
we can effectively reduce the problem of assigning small jobs to the scalar bin packing using
pre-allocation and the decision tree.

I Theorem 5 (Section 6). For any d ≥ 1 and ε > 0, assuming that the value of the optimum
makespan4 is known a priori, there exists a deterministic online algorithm for the online
vector load balancing problem whose competitive ratio is (1 + ε)c∗d, where c∗d is the best
competitive ratio one can hope for against the fractional optimum. Furthermore, the running
time of the algorithm is polynomial in n for any fixed d, ε.5 (For a more formal statement of
this result, see Definition 23 and Theorem 24.)

Before closing this section, we note the contrast between the first set of results based on
the new analysis framework, and the last result that yields the nearly best competitive ratio
against the fractional optimum. While the near optimality of the last solution is attractive,

4 More accurately, the value of the fractional optimum makespan.
5 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.
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the first set of algorithms are much more practical since the complexity of obtaining an
optimal decision tree is likely to be prohibitive for the last algorithm. Furthermore, the last
result does not give a numerical performance guarantee, unlike the first set of algorithms.
Indeed, these two sets of results complement each other, and cumulatively provide the first
insights into the 2DSched problem.

1.2 Related Work

The online load balancing problem for 1-dimensional jobs has had a long history. It was
introduced by Graham in the 1960s [26, 27], who gave the list scheduling algorithm with
a competitive ratio of 2. In the last three decades, there have been a series of results for
improving the competitive ratio below 2 and obtaining lower bounds on the competitive
ratio [10, 37, 1, 19, 18, 11, 25, 28, 2]. The best algorithm known is a 1.916-competitive
algorithm due to Albers [2]. These results address the situation where the online algorithm
does not know the value of opt. Azar and Regev [9] introduced the problem of online load
balancing when opt is known, and called this problem bin stretching. For bin stretching,
a series of results [40, 4, 38, 39, 21, 20, 12] have led to a 1.5-competitive algorithm due to
Böhm et al. [12].

Recent research has expanded the scope of this problem to vector jobs, the resulting prob-
lem being called vector scheduling. Matching upper and lower bounds of O(log d/ log log d)
have been derived for d dimensions [15, 7, 43, 29]. Note that since the competitive ratio is
super-constant, opt can be assumed to be known by a standard guess and double trick. All
these results are for an arbitrary number of machines and jobs. There is a large literature on
variations, generalizations, and special cases of these problems, such as optimizing norms
other than makespan, considering non-identical machines, focusing on a small constant
number of machines, handling only jobs of small size, etc. that we omit here for brevity. The
reader is referred to several excellent surveys on the topic, e.g., by Azar [5], Sgall [46, 47],
Pruhs, Sgall, and Torng [45], Albers [3], etc.

The online load balancing problem is also related to the online bin packing problem,
where the capacity of every machine is fixed and the goal is to minimize the number of
machines used. For a single dimension, this problem has been studied since the work of
Johnson in the 1970s; see, e.g., [34, 36] and surveys [22, 48]. For vector jobs, the problem was
introduced by Garey et al. [23] and has been extensively studied in the last few years [7, 6, 8].

We note that some results of a flavor similar to Theorem 5 are known for other scheduling
problems. Specifically, Lübbecke et al. [42] showed online algorithms of competitive ratios
arbitrarily close to the optimum for the objective of minimizing total weighted completion
time and its generalizations on unrelated machines. Various types of priority-based algorithms
have been extensively studied for various scheduling problems. See [14] for the relevant
pointers and follow-up works.

Roadmap

We present the general framework for analyzing priority based algorithms in Section 3 and use
it to analyze the greedy algorithm in Section 4 for unknown opt and the balance algorithm
in Section 5 for known opt. Finally, we present the near-optimal algorithm against the
fractional optimum in Section 6.

ICALP 2020
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2 Preliminaries

In this paper, we focus on the online 2-dimensional scheduling problem, or 2DSched in short.
In this problem, a set of n jobs V, indexed by j ∈ [n], and represented by 2-dimensional
non-negative vectors vj = (vj(1), vj(2)) arrive in an online sequence. On arrival, a job must
be assigned to one of a given set of m identical machines M , indexed by i ∈ [m]. The goal of
the algorithm is to minimize the makespan, which is defined as the maximum load on any
dimension of any machine. Formally, for any machine i, let V ji denote the set of vectors
assigned to this machine after the arrival of the j’th vector. Then, we say that machine i’s
configuration is given by cji =

∑
vj′∈V

j
i
vj′ , which is (we may omit the superscript j if it is

clear from the context):

(cji (1), cji (2)) =

 ∑
vj′∈V

j
i

vj′(1),
∑

vj′∈V
j

i

vj′(2)

 .

For any value k, we say ci ≤ ~k if ci(1) ≤ k and ci(2) ≤ k; otherwise, we say ci � ~k if at least
one of these inequalities are violated, i.e., if ci(1) > k or ci(2) > k. Analogously, we define
ci ≥ ~k if ci(1) ≥ k and ci(2) ≥ k; otherwise, we say ci � ~k.

Let us denote the optimal offline configuration by opt; overloading notation, let opt also
represent the makespan of this configuration. The online algorithm is said to be α-competitive
if cni ≤ ~a for all i ∈ [m], where a = α · opt. We show two sets of results, the first when the
value of opt is known and the second when opt is unknown to the algorithm. Note that if
opt is unknown, then its value is not used in the definition of the algorithm. Nevertheless,
for the sake of the analysis, we normalize and set opt = 1, which also implies that for all job
vectors vj ∈ V , we have vj(1), vj(2) ∈ [0, 1], and

∑
j∈[n] vj/m ≤ ~1. For convenience, we call

the first coordinate the left coordinate, and the second coordinate the right coordinate. We
call a job a left vector if its left coordinate is larger than or equal to its right coordinate, and
a right vector otherwise.

3 Priority-based Algorithms

In this section, we give a framework to analyze a large class of algorithms that prioritize
machines based on their current load. More specifically, such an algorithm computes a
certain disutility for each machine only using its current load and the arriving job’s load and
assigns it to a machine with the least disutility. Thus, this class of algorithms are completely
determined by the disutility function: u : (c, g) → [0,∞] where c ∈ [0,∞)2 represents a
machine’s current load vector, and g ∈ [0,∞)2 a job’s load vector. Formally, given a set [m] of
machines, the algorithm Priority(u) assigns job j to machine i∗ := arg mini∈[m] u(cj−1

i , vj)
breaking ties arbitrarily but consistently. Here, as mentioned before, cj−1

i denotes machine
i’s load just before assigning job j. After assigning job j, we update cji∗ = cj−1

i∗ + vj while
keeping cji = cj−1

i for all i 6= i∗. If u(cj−1
i , vj) =∞ for all i ∈ [m], then Priority(u) declares

failure.

3.1 Analysis Framework: Zooming in on Jobs Assigned to Two
Machines

Now we present our general framework to analyze the above type of priority-based algorithms.
The key to this framework is to define the set of reachable configurations.
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I Definition 6. We say that an ordered tuple C = (c1, c2, . . . , cm), which we call a con-
figuration, where ci ∈ [0,∞)2, is reachable by Priority(u) if machines have load vectors
c1, c2, . . . , cm after Priority(u) assigns some sequence of jobs [n] to machines [m], such
that ||vj ||∞ ≤ 1 for all j ∈ [n] and

∑
j∈[n] vj ≤ m ·~1. The set of reachable configurations is

denoted by Rm(u).

Unfortunately, it seems extremely challenging to characterize the reachable configurations
for m machines in general. Our key observation is that the priority-based choices made by
our algorithms allows us to focus on the loads of only two machines.

I Observation 7. For any disutility function u and configuration C = (c1, c2, . . . , cm) ∈
Rm(u), and for any pair i 6= j ∈ [m], we have (ci, cj) ∈ R2(u).

Proof. For notional convenience, say machines i and j have load vectors ci and cj , respectively.
Consider the jobs that are assigned to machines i and j. If we assign those jobs to machines
i and j pretending that no other machines exist, the two machines i and j each would get
assigned exactly the same set of jobs. This is because Priority(u) prioritizes machines only
based on their current respective load vector and the arriving job’s load vector. Thus, we
have shown (ci, cj) ∈ R2(u). J

Now, the looming question is which pair of machines we should focus on. If α is the
target competitive ratio we want to establish, we would like to focus on critical machines,
i.e., where one of the coordinates has a load exceeding α− 1 since they cannot accommodate
a job of load vector ~1. Also, we would like to focus on a pair where the “average” load
between the two dimensions is not so high to draw a contradiction – more precisely, a convex
combination of the load vectors of the two machines should be capped by ~1. To denote such
a pair, we will often use the notation p = (pf , ps), where pf , ps ∈ [0,∞)2,

I Definition 8. For an unordered pair of configuration p = (pf , ps), we define
p ∈ L(α) iff pf +~1 � ~α and ps +~1 � ~α, and we say p is overloaded; and
p ∈ F iff for all λ ∈ [0, 1], we have λ · pf + (1− λ) · ps � ~1, and we say p is overflown.

The next lemma shows that there will always be at least one pair of configurations that
has not overflown.

I Lemma 9. For any C = (c1, c2, . . . , cm) ∈ Rm(u) such that ci 6= ~0 for all i ∈ [m], there
exist k 6= ` ∈ [m] such that (ck, c`) /∈ F .

Proof. Let q =
∑

i∈[m]
ci

m ; note q ≤ ~1 since C ∈ Rm(u). Clearly, q is in the convex hull of
the vectors, c1 . . . , cm. However, the convex hull doesn’t include ~0. Since the convex hull is
in two-dimensional space, this means there exists γ ∈ (0, 1], such that γ · q is on the segment
(ck, c`) for some k, ` ∈ [m]. Thus, there exists λ ∈ [0, 1] such that

λ · ck + (1− λ) · c` = γ · q.

As q ≤ ~1, we have (ck, c`) /∈ F . J

The following observation is immediate from the definition of L(α) and F , it will be
useful to first enlist the different cases in terms of these individual coordinate values.

I Observation 10. For any α > 2, if (pf , ps) ∈ L(α) \ F , then we have:
either pf (2), ps(1) > 1 and pf (1), ps(2) < 1;
or, pf (1), ps(2) > 1 and pf (2), ps(1) < 1.

ICALP 2020
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If the algorithm Priority(u) reaches a state where no machine can accommodate another
job of load ~1, then using Lemma 9, we can find a pair of configurations in L(α) \ F . Then,
using the facts that the pair is overloaded yet not overflown, we can determine the sign of a
certain function V (pf , ps) defined on the configuration’s load vectors; this function will be
useful to draw a contradiction later. Formally, for a pair of configuration (pf , ps), define

V (pf , ps) := pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) − 1 (1)

I Lemma 11. For α > 2, if (pf , ps) ∈ L(α) \ F , then we have V (pf , ps) ≤ 0.

Proof. Since pf + 1, ps + 1 � ~α and α > 2, we can assume wlog that pf (2) > 1; the other
case pf (1) > 1 can be handled similarly. Then, we must have

ps(2) < 1 and ps(1) > 1 and pf (1) < 1,

since (pf , ps) ∈ L(α) \ F ; see Observation 10. Define

f(λ, k) := λ · pf (k) + (1− λ) · ps(k).

Since (pf , ps) /∈ F , there must exist λ∗ ∈ [0, 1] such that f(λ∗, 1), f(λ∗, 2) ≤ 1. Observe
f(λ, k) is monotonically decreasing in λ when k = 1, and monotonically increasing when
k = 2. For

λ̃ = ps(1)− 1
ps(1)− pf (1) ∈ [0, 1], i.e., 1− λ̃ = 1− pf (1)

ps(1)− pf (1) ,

we have f(λ̃, 1) = 1. Since f(λ, 1) is monotonically decreasing, λ∗ ≥ λ̃. Since f(λ, 2) is
monotonically increasing, we have

f(λ̃, 2) = pf (2) · (ps(1)− 1) + ps(2) · (1− pf (1))
ps(1)− pf (1) ≤ f(λ∗, 2) ≤ 1,

as desired. J

Having established the sign of V (pf , ps), we now observe that it is an increasing function
in any of the coordinates of the two configurations pf , ps.

I Observation 12. For α > 2 and p = (pf , ps) ∈ L(α) \ F we have(
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
> ~0.

Proof. By taking partial derivatives on pf (1), pf (2), ps(1), ps(2) respectively, we have(
∂V (pf , ps)
∂pf (1) ,

∂V (pf , ps)
∂pf (2) ,

∂V (pf , ps)
∂ps(1) ,

∂V (pf , ps)
∂ps(2)

)
=
(

(pf (2)− ps(2)) · (ps(1)− 1)
(pf (1)− ps(1))2 ,

1− ps(1)
pf (1)− ps(1) ,

(pf (2)− ps(2)) · (1− pf (1))
(pf (1)− ps(1))2 ,

pf (1)− 1
pf (1)− ps(1)

)
> ~0,

where the last inequalities follow from Observation 10. J

I Corollary 13. For any α > 2, if (pf , ps), (p′f , p′s) ∈ L(α) \ F , and pf ≥ p′f and ps ≥ p′s,
then we have V (pf , ps) ≥ V (p′f , p′s).
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We now have all the pieces for the refined analysis of Priority(u). Suppose we want
to show Priority(u) is α-competitive. Towards this end, it is sufficient to show that if
C = (c1, c2, . . . , cm) ∈ Rm(u), then we have ci + ~1 ≤ ~α for some i ∈ [m]. For the sake of
contradiction, suppose not. Then, by Lemmas 9 and 11, we have (ck, c`) ∈ L(α) \F for some
k, ` ∈ [m], and V (ck, c`) ≤ 0. Further, by Observation 7, we know (ck, c`) ∈ R2(u). This
leads to the following lemma.

I Lemma 14. If R2(u) ∩ L(α) \ F = ∅, then Priority(u) is α-competitive.

Note that this lemma allows us to analyze Priority(u) pretending that there are only
two machines. Now showing the condition R2(u) ∩ L(α) \ F = ∅ of the lemma depends on α
and the disutility function u governing Priority(u).

4 Greedy Algorithm: Unknown opt

In this section we consider the natural algorithm that assigns an arriving job to the machine
yielding the minimum makespan. We recover this algorithm by setting the disutility function
u to be the following:

Max(c, g) = ||c+ g||∞ (2)

We call this algorithm Priority(Max). Our goal in this section is to prove the following
theorem.

I Theorem 15 (Upper Bound of Theorem 1). Priority(Max) is 8/3-competitive for the
2DSched problem.

To show Theorem 15, we will set α = 8/3 and use Lemma 14. We begin with an easy
observation, which immediately follows from ||vj ||∞ ≤ 1 for all jobs j. (The latter is a
consequence of normalizing opt in the analysis, and not an assumption on the input.)

I Observation 16. For any p = (ps, pf ) ∈ R2(Max), we have | ||ps||∞ − ||pf ||∞| ≤ 1.

It is straightforward to show Priority(Max) is 3-competitive using this observation.
To obtain a tighter bound, we will show the following:

I Lemma 17. For α = 8/3, we have (R2(Max) ∩ L(α)) \ F = ∅.

Note that Lemma 17 implies Theorem 15 by applying it to Lemma 14. So, the rest of this
section is devoted to proving Lemma 17.

For a pair of configurations (pf , ps), define

H1(pf , ps) := ps(2) + pf (1)− ps(1) + 1
H2(pf , ps) := ps(2) + pf (1)− pf (2) + 1

I Lemma 18. For a pair of configurations p = (pf , ps), we have p /∈ R2(Max) if

min{H1(pf , ps), H2(pf , ps), H1(ps, pf ), H2(ps, pf )} < 0.

Proof. Assume for the sake of contraction that there exists (pf , ps) ∈ R2(Max) such that
the minimum is non-negative. Further, assume that (pf , ps) is one among such configurations
that is reachable by the minimum number of jobs assigned. Clearly, (pf , ps) 6= ((0, 0), (0, 0)).
Since (pf , ps) is unordered, assume wlog that there exist c, g such that pf = c + g and
(c, ps) ∈ R2(Max) and g ≤ ~1 can be assigned to (a machine of load) c according to Priority
(Max), meaning ||c+ g||∞ ≤ ||ps + g||∞. We consider two cases.
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Case 1. H1(pf , ps) < 0; this is symmetric to H2(ps, pf ) < 0. We have

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 ≤ ps(2) + c(1) + g(1)− ps(1) + 1 = H1(pf , ps) < 0,

which is a contradiction to the minimality of (pf , ps).
Case 2. H2(pf , ps) < 0; this is symmetric to H1(ps, pf ) < 0. In this case we have

0 > H2(pf , ps) = ps(2) + pf (1)− pf (2) + 1 ≥ ps(2)− pf (2) + 1 ≥ ps(2)− pf (2) + g(2);

hence we have ps(2) + g(2) < pf (2). If g(1) < pf (2)− ps(1), then

||c+ g||∞ = ||pf ||∞ ≥ pf (2) > ||ps + g||∞,

which is a contradiction to Priority(Max) assigning g to c. Therefore, we have g(1) ≥
pf (2)− ps(1). Then, we have

H1(c, ps) = ps(2) + c(1)− ps(1) + 1 = ps(2) + pf (1)− g(1)− ps(1) + 1
≤ ps(2) + pf (1)− pf (2) + 1 = H2(pf , ps) < 0,

which is also a contradiction. J

We are now ready to prove Lemma 17.

Proof of Lemma 17. Since (pf , ps) ∈ L(α) \ F and α = 8/3, we assume wlog that pf (2) >
α − 1 = 5/3 and ps(1) > α − 1 = 5/3 (see Observation 10; the other case is symmetric).
Then, we have

H1(pf , ps) = ps(2) + pf (1)− ps(1) + 1 ≥ 0 by Lemma 18,

which yields

ps(2) + pf (1) ≥ 2/3.

Letting pf (1) = x, we have

ps(2) ≥ 2/3− x.

Note that

pf ≥ p′f := (x, 5/3 + ε); and ps ≥ p′s := (5/3 + ε, 2/3− x)

for sufficiently small ε > 0. Thus, (p′s, p′f ) /∈ F . Also notice (p′s, p′f ) ∈ L(α). Therefore, by
Corollary 13, we have

V (pf , ps) ≥ V (p′f , p′s) ≥ 0.

By taking the limit ε→ 0, we have

V (pf , ps) > lim
ε→0

V (p′f , p′s) = (3x− 1)2

3 · (5− 3x) ≥ 0,

which is a contradiction to (pf , ps) ∈ L(α) \ F by Lemma 11. J
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5 Balance Algorithm: Known opt

In this section, we consider another priority-based greedy algorithm, Priority(Bal). The
rule Bal is defined as follows:

Bal(c, g) =
{
d(c) · d(g) c+ g ≤ α · opt
∞ otherwise,

(Bal-α)

where d(v) := v(2)− v(1) measures the signed difference between v’s right load and left load.
In other words, Priority(Bal) tries to minimize the difference between the left and

right loads over all machines, without violating a pre-defined threshold α. Note that this
algorithm needs to know the value of opt, which is wlog assumed to be 1 by scaling. The
Priority(Bal) algorithm keeps the machines in sorted order of the (signed) difference
between the loads on the two coordinates (the left load minus the right load we say that the
machines are maintained in left to right order where the rightmost (resp., leftmost) machine
has the largest difference between the loads on the first and second coordinate (resp., second
and first coordinate). Recall that a left (resp., right) vector is one whose first (resp., second)
coordinate is larger. The Priority(Bal) algorithm assigns a left (resp., right) vector to
the rightmost (resp., leftmost) machine that can accommodate it, i.e., whose load on any
dimension does not exceed the desired competitive ratio α after the assignment. In order
to achieve it, given a left (right) vector the algorithm would prefer to assign to the most
unbalanced right (left) machine that can accommodate the vector.

I Theorem 19 (Upper Bound of Theorem 2). Priority(Bal), knowing opt a priori, is
2.25-competitive for the 2DSched problem.

To prove Theorem 19, thanks to Lemma 14, it suffices to show the following.

I Lemma 20. For α = 2.25, we have (R2(Bal) ∩ L(α)) \ F = ∅.

The remainder of this section is devoted to proving Lemma 20. Instead of analysing
directly R2(Bal), we introduce a slightly modified rule of Bal, which is not subject to α:

Bal-No-Lim(c, g) = d(c) · d(g) (3)

Note that R2(Bal-No-Lim) ∩ {v | v ∈ [0, α]2} ⊆ R2(Bal) and the subtle difference
between R2(Bal-No-Lim) and R2(Bal). The closure R2(Bal-No-Lim) attempts to assign
a vector g to only mitigate the difference of the left and right loads of the two machines. If
we can assign g to the machine i∗ that achieves this, then this assignment would be exactly
the same as Priority(Bal) would make. However, in the closure R2(Bal-No-Lim), if g
would overflow machine i∗, it doesn’t add it to the other machine even if it would be possible
under Priority(Bal). This is summarized in the following observation.

I Observation 21. For two pairs of configuration p = (ca, cb), p′ = (ca + g, cb), such that p′
is reachable in R2(Bal) by assigning a job of load g ∈ [0, 1]2 into (a machine of load) ca in
the pair p, if (ca + g, cb) ∈ R2(Bal) \ R2(Bal-No-Lim) and (ca, cb) ∈ R2(Bal-No-Lim),
then cb + g � ~α and (d(ca)− d(cb)) · d(g) > 0.

For a pair of configuration (cs, cf ), define

H3(cf , cs) := d(cs)− d(cf ) + 1 = cs(2)− cs(1)− cf (2) + cf (1) + 1

I Lemma 22. For a pair of configuration p = (ps, pf ), if H3(pf , ps) < 0 or H3(ps, pf ) < 0,
then we have p /∈ R2(Bal-No-Lim).
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Proof. Assume for the purpose of contradiction that p ∈ R2(Bal-No-Lim). Assume
H3(pf , ps) < 0, since the case H3(ps, pf ) < 0 is symmetric. There must exist a vector g
such that pf = c+ g, and (c, ps) ∈ R2(Bal-No-Lim), for which Priority (Bal-No-Lim)
assigned to c, hence we have

Bal-No-Lim(c)−Bal-No-Lim(ps) = (d(c)− d(ps)) · d(g) ≤ 0.

We consider two cases.

Case 1. g(2) > g(1): Clearly, g(2)−g(1) ≤ 1. However, d(ps)−d(pf )+1 = H3(pf , ps) < 0,
hence

d(ps) < d(pf )− 1 = d(c+ g)− 1 = c(2) + g(2)− c(1)− g(1)− 1 ≤ c(2)− c(1) = d(c).

Therefore, (d(c)− d(ps)) · (g(2)− g(1)) > 0, which is a contradiction.
Case 2. g(2) ≤ g(1): We have

c(2)− c(1)− 1 ≥ c(2) + g(2)− c(1)− g(1)− 1 = pf (2)− pf (1)− 1 > ps(2)− ps(1).

Therefore, we have H3(c, ps) < 0 hence (c, ps) /∈ R2(Bal-No-Lim), which is a contradic-
tion. J

We now have all the pieces to prove Lemma 20.

Proof of Lemma 20. Assume for the purpose of contradiction that there exists a pair
p = (cr, c`) ∈ R2(Bal) ∩ L(α)) \ F . Let

〈
p∅, p1, . . . pn = p

〉
a sequence of reachable pairs i.e.

for all i, pi ∈ R2(Bal) and pi+1 is reachable from pi by a single vector assignment under
Priority(Bal).

Case 1. For all i ∈ [n], pi ∈ R2(Bal-No-Lim). Since p = (cr, c`) ∈ R2(Bal-No-Lim) ∩
L(α), assume wlog that cr(2) > α − 1, c`(1) > α − 1. In addition, since (cr, c`) ∈
R2(Bal-No-Lim), by Lemma 22, we have H3(cr, c`) = c`(2)− c`(1)− cr(2) + cr − 1 ≥ 0.
Therefore, we have

0 ≤ H3(cr, c`) ≤ H3((cr(1), α− 1), (α− 1, c`(1)) = 3− 2 · α+ cr(1) + c`(2).

By setting cr(1) = x , we have c`(2) ≥ 2 · α− 3− x. Note x ∈ [0, 1] since c`(1) > 1 and
(cr, c`) /∈ F . For α = 2.25, we have

V (cr, c`) > V ((x, α− 1), (α− 1, 2 · α− 3− x)) = (4x− 3)2

20− 16x ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11.
Case 2. pi /∈ R2(Bal-No-Lim) for some i ∈ [n]. Let i be the first index such that pi /∈
R2(Bal-No-Lim), let pi−1 = (ca, cb), pi = (ca + g, cb). Note that cr ≥ ca and c` ≥ cb.
By Observation 21 we have cb + g � ~α. Assuming wlog that cb(1) + g(1) > α, we have
cb(1) > α− g(1) > 1 since g ≤ ~1 and α > 2. For the same reason, we have cr(2) > α− 1,
and cr(1), c`(2) ≤ 1 (since (cr, c`) ∈ L(α) \ F).

Since V (cr, c`) is monotone increasing, we have V (cr, c`) > V (〈ca(1) + g, α − 1〉, cb).
Moreover, by our assumption pi−1 = (ca, cb) ∈ R2(Bal-No-Lim), by Lemma 22, we have

H3(ca, cb) = cb(2)− cb(1)− ca(2) + ca(1) + 1 ≥ 0,
ca(1) ≥ max{ca(2)− cb(2) + cb(1)− 1, 0} ≥ max{cb(1)− cb(2)− 1, 0}.
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Recall that cr(1) ≤ 1, and we have ca(1) ≥ cb(1)− cb(2)− 1, and g(1) > α− cb(1). Therefore,
1 ≥ cr(1) ≥ g(1) + ca(1) ≥ α − cb(1) + ca(1) ≥ α − cb(2) − 1, which yields cb(2) ≥ α − 2.
Thus,

V (cr, c`) > V (〈α− cb(1) + max{cb(1)− cb(2)− 1, 0}, α− 1〉, 〈cb(1), cb(2)).

We lower bound V by considering two cases:

Case A. If cb(1)− cb(2) < 1, then

V (cr, c`) > V (〈α− cb(1), α− 1〉, 〈cb(1), cb(2)) ≥ V (〈α− cb(1), α− 1〉, 〈cb(1), cb(1)− 1).

Case B. If cb(1)− cb(2) ≥ 1, then

V (cr, c`) > V (〈α−cb(2)−1, α−1〉, 〈cb(1), cb(2)) ≥ V (〈α−cb(2), α−1〉, 〈1+cb(2), cb(2)).

Setting x = cb(1)− 1(≥ α− 2) in the first case and x = cb(2) in the second case, we get
that x ≥ α− 2 in both cases. So, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) ≥ 0.

By setting α = 2.25, for x ≥ α− 2 = 0.25, we have

V (cr, c`) > V (〈α− 1− x, α− 1〉, 〈1 + x, x〉) = (2x− 1)2

8x− 1 ≥ 0,

which is a contradiction to p ∈ L(α) \ F by Lemma 11. J

6 A Nearly Optimal Algorithm Against the Fractional Optimal
Solution

Recall that all algorithms we developed and analyzed were based on the two most obvious
lower bounds for the optimal solution, the total load vector of all jobs and the maximum
job size on any dimension. Therefore, the benchmark we used can do better than the offline
optimum solution. For example, consider three job vectors (1, 1, 0), (1, 0, 1), (0, 1, 1) to be
scheduled on 2 machines. Since one of the two machines must receive at least two jobs, the
optimum makespan cannot be smaller than 2. However, this instance still has an average
load of 1 on all dimensions and no job has size greater than 1 on any dimensions. In other
words, the benchmark can distribute all jobs equally across all machines. For this reason, we
will call this benchmark the fractional optimum solution.

I Definition 23. For any number of dimensions d ≥ 1, the optimum competitive ratio c∗d
against the fractional optimum solution is defined as

inf
A

sup
J

maxi∈[m],k∈[d] ΛJ,mi (k)
max{||

∑
j∈J vj/m||∞,maxj∈J,k∈[d] vj(k)} ,

where A denotes an arbitrary deterministic online algorithm, J an arbitrary sequence of jobs,
m the number of machines, and ΛJ,mi the load vector of machine i under the assignment of
jobs J to machines [m] by the algorithm A.

Our goal is to develop and analyze an algorithm that performs nearly as well as the
fractional optimum solution.
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I Theorem 24. For any d ≥ 1 and ε > 0, assuming that the value of the optimum makespan6
is known a priori, there exists a deterministic online algorithm for the vector scheduling
problem whose competitive ratio is (1 + ε)c∗d. Further, the running time is polynomial in n
for any fixed d, ε.7

6.1 Assigning Jobs to Groups
The first stage of the algorithm is executed only when m ≥ (1 + 1

ε )α where α := 250
ε3 log d.

We group machines so that every group has exactly α machines; to simplify the notation we
assume that α is an integer to omit ceilings. The only one possible group that has less than
α machines is discarded. We assign jobs to the (remaining) groups and obtain the following
lemma using an algorithm and analysis very similar to [29]; hence, we defer the details to
the full version of the paper.

I Lemma 25. For a sufficiently small ε > 0, there exists an online algorithm that assigns
jobs to the groups, each consisting of α := 250

ε3 log d machines, such that every group’s total
load is at most (1 + ε)αd~1.

Note that the average load vector a machine should handle increases by a factor of at
most m

m−(α−1) ≤
1+1/ε

1+1/ε−1 = 1 + ε. We also slightly modify each job’s load vector: For each
job j, we minimally increase vj , so that we have vj(k) ≥ (ε/d)||vj ||∞. This is wlog since
increasing job load vectors can only increase the algorithm’s makespan and we fixed the
optimum to be 1.

I Lemma 26. The preprocessing step increases the total load vector to at most (1 + ε)m~1.

Proof. For the sake of contradiction, suppose the total load is more than (1 + ε)m on some
dimension. It means the load increased by more than εm on the dimension. We know that
job j contributes to the increase by at most (ε/d)||vj ||∞. Thus, the increase is at most∑
j(ε/d)||vj ||∞. However, we know

∑
j ||vj ||∞ ≤ md since the total load of all jobs across

all dimensions is md. Therefore, the increase is at most εm, which is a contradiction. J

Since we are only concerned with assigning jobs to groups of machines at this stage, to
simplify notation we pretend each group is a machine. By a machine i, we mean the i-th
group which consists of α machines.

We now restate the problem: We are given m′ = bmα c machines. Let [n] denote the set of
all jobs arriving, which satisfies the following properties.

Property (i): The total job load vector, i.e.,
∑
j∈[n] vj is at most m′α(1 + ε)2~1.

Property (ii): For all j ∈ [n], ||vj ||∞ ≤ 1.
Property (iii): For all j ∈ [n], mink vj(k) ≥ (ε/d)||vj ||∞.

Our goal is to assign jobs to m′ machines so that each group receives jobs of total load at
most (1 + 7ε)α~1, which would immediately imply Lemma 25 by scaling ε.

The algorithm has two procedures. The algorithm pretends there are two sets M1 and
M2 of machines, where |M1| = |M2| = m′. The first procedure assigns all jobs to machines
M1 and identifies a set J2 of jobs, which will be assigned to machines M2 by the second
procedure. However, this is a shadow process: What really happens is that only jobs in

6 More accurately, the value of the fractional optimum makespan.
7 More precisely, the running time is polynomial in n and (d/ε)d(d/ε)O(d)

.



I. Cohen, S. Im, and D. Panigrahi 34:15

[n] \ J2 remain on machines M1 and the other jobs J2 are assigned to machines M2. Further,
the algorithm pairs machines between M1 and M2 arbitrarily and combine the load vectors
of the paired machines. To prove Lemma 25, it suffices to show the following two lemmas
(with scaling ε):

I Lemma 27. The makespan of the assignment of [n]\J2 to M1 is at most ((1+ε)5α+1)~1 ≤
(1 + 6ε)α~1.

I Lemma 28. The makespan of the assignment of J2 to M2 is at most εα~1.

We are now ready to describe the algorithm.

First procedure (assignment by a potential function): Let β := (1 + ε)3. Let
f(x) := βx. Each job j is assigned to a machine i ∈ M1 such that Φ(j) is minimized.
For every i ∈ M1, let Λ1

i,j denote machine i’s load vector right after assigning job j to
some machine in M1. If Λ1

i,j(k) ≥ βα+ 1, then j is added to queue J2 so that it can be
scheduled by the second procedure.

Φi,k(j) := f

Λ1
i,j(k)− β

m′

∑
j′∈[j]

vj′(k)

 ∀i ∈M1, j ∈ [n], k ∈ [d]

Φ(j) :=
∑
i∈M1

d∑
k=1

Φi,k(j)

Second procedure (assignment by greedy): This procedure is only concerned with
the jobs J2 that are passed from the first procedure. It allocates each job in J2 (in
the order that the jobs arrive in) to one of the machines in M2 such that the resulting
makespan, maxi∈M2,k∈[d] Λ2

i,j(k) is minimized; here Λ2
i,j is analogously defined as Λ1

i,j is
defined in the first procedure.

Note that Lemma 27 immediately follows due to the way the first procedure is defined.
The proof of Lemma 28 constitutes the heart of the analysis in this stage of the algorithm.
Since this closely follows techniques in [29], we defer the details of this analysis to the full
version of the paper.

6.2 Assigning Jobs to Machines Within Each Group
We need to define a fair amount of notation to formally describe our algorithm. We assume
that the input consists of m machines and the average load of all jobs to be assigned is at
most (1 + ε)m on all dimensions for some ε > 0.

For ease of reference, we list the following definitions.

Let β := ε
2md ; ∆ := ε2

d(1+1/β)d ; and δ := εβ∆/(2dm).
A vector is said to be a type vector if it is in {0, β, 2β, · · · , 1}d\{~0} and has 1 on at least one
dimension. Let Q denote the set of all type vectors. Note that |Q| ≤ (1 + 1/β)d ≤ (2/β)d.
We say a job j is small if ||vj ||∞ < ∆; otherwise it is big.
The volume of a job j is defined as its total size over all dimensions.

We discretize big jobs and small jobs in different manners:

Big jobs: For a big job j, we round its load on every dimension down to the nearest
integer multiple of δ. Let B denote the set of all possible load vectors of big jobs after
discretization.

ICALP 2020



34:16 Online Two-Dimensional Load Balancing

Small jobs: For a small job j, let pj = ||vj ||∞. Then, we discretize vj/pj by rounding each
entry down to the nearest integer multiple of β. Let qj denote the resulting discretized
vector of vj/pj ; note that qj ∈ Q. After rounding, we can express each small job j as
pjqj .

We are now ready to describe our algorithm. Below, assume that jobs are already
discretized. We will later show that the effect of discretization is negligible on the competitive
ratio.

6.2.1 Building a decision tree
We build a decision tree T to assign big jobs. To simplify the analysis later, we assume wlog
that the total load vector T receives is exactly m(1 + 4ε)~1. Each node of the decision tree
T corresponds to the current loads of all the m machines. Each node u has at most m|B|
children. Each edge (u,w) is associated with a pair (i, j) where j ∈ B and i ∈ [m], meaning
that if a big job j is assigned to machine i, then the machine loads vectors change from u to
w. Since the total volume of jobs is at most (1 + 4ε)md ≤ 5md and every big job has volume
at least ∆, the decision tree has depth at most 5md/∆ and the number of nodes is at most
(m|B|)5md/∆. We only need to keep nodes whose machine load vectors don’t contradict the
assumption that the total load of all jobs on each dimension is exactly (1 + 4ε)m.

Given that every node of the decision tree T corresponds to a configuration (machine load
vectors) that can be reached via a valid sequence of big jobs along with their assignment, our
goal is to compute the minimum makespan we can achieve from each node u. Formally, if u is
a leaf node, define g(u) to be the makespan norm of the machine load vectors corresponding
to u. Otherwise, let ui,j denote u’s child such that the edge (u, ui,j) is associated with (i, j).
Then, define g(u) := mini maxj g(ui,j).

We can use the tree T to assign big jobs as follows. Let u be the node corresponding to
the current machine load vectors. If a big job j arrives, then we assign j to machine i with
the minimum g(ui,j).

The following observation is immediate due to the optimal nature of the decision tree for
big jobs. In other words, the observation says that the decision tree yields a nearly optimal
algorithm against the fractional optimum.

I Observation 29. Let r denote the root of T . Then, g(r) ≤ (1 + 4ε)c∗d.

Proof. Since we assumed that the total load vector is exactly (1 + 4ε)m~1, the denominator in
Definition 23 is exactly (1 + 4ε). Since we know the decision tree gives an optimal algorithm
for big jobs, we have g(r)/(1 + 4ε) ≤ c∗d, as desired. J

6.2.2 Batching smalls jobs of the same type
We will first describe how we batch small jobs and assign them using the above decision tree
T assuming that we can wait until we collect enough volume of jobs for each type. For each
type vector q ∈ Q, we create a buffer F (q). The buffer has capacity ∆/ε. When a small job
j of vector pjqj arrives, we add it to buffer F (qj); j uses pj space of the buffer. There are
two events that trigger emptying a buffer. When we empty a buffer F (q), we encapsulate the
load vectors of all jobs in F (q) into a “bin” vector (∆/ε)q, and assign it using the decision
tree T . The buffer is emptied when either we cannot add a job j since it would exceed the
capacity ∆/ε or after all jobs arrive.

This procedure is well defined due to the following lemma.
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I Lemma 30. Every bin vector is in B.

Proof. Consider any bin vector (∆/ε)q. To show that this is in B, we need to show the
following three: (i) it has size at least ∆ on some dimensions; (ii) each of its entries is a
multiple of δ; and (iii) it has size no more than 1 on every dimension. First, (i) follows
since ||q||∞ = 1 due to the way we defined small job types. To see (ii), consider q’s entry
on each dimension – we know that its value must be `β for some integer `. So, it suffices
to show that (∆/ε)(`β)/δ is an integer. Recall that δ := εβ∆/(2dm). Thus, we have,
(∆/ε)(`β)/δ = ∆

ε (`β) 2dm
εβ∆ , which is an integer assuming that 1/ε is an integer. To see (iii),

note that the maximum size over all dimensions is at most (∆/ε) = ε
d(1+1/β)d < 1. J

6.2.3 Batching small jobs online
In the online setting we cannot wait to aggregate small jobs of the same type. To handle
this issue, we pre-allocate one “bin” vector of each type. That is, before any jobs arrive,
we pretend that one job of each load vector q arrives and assign it using the decision tree
T . Then, batching jobs of the same type vector q in F (q) is actually done on the machine
that received the bin vector. Therefore, we can assign small jobs upon their arrival without
waiting.

We have fully described our online algorithm to assign jobs upon their arrival. We now
shift our focus to the analysis. When a job j is encapsulated into a type vector v of type
q ∈ Q, we say v contains job j.

I Observation 31. Every bin vector of each type q ∈ Q, possibly except one, has total size
of jobs at least (1− ε)(∆/ε).

Proof. Since small jobs are aggregated only when they are of the same type, for each type
q ∈ Q, we can focus on the scalar quantities, job sizes pj and the buffer size ∆/ε. The
observation follows from the fact that we empty buffer B(q) only when the total size of jobs
in the buffer B(q) exceeds (1− ε)(∆/ε), or at the end after all jobs arrive. The only exception
is due to the pre-allocation, which corresponds to emptying the buffer at the end. J

I Lemma 32. If the total job load vector is at most (1 + ε)m~1, then the decision tree, due to
batching and preallocation, receives jobs of total load vector at most (1 + 4ε)m~1.

Proof. By Observation 31, the total load vector T receives is at most (1 + ε)m~1/(1− ε) ≤
(1 + 3ε)m~1, plus

∑
q∈Q(∆/ε)q. Further, we have

∑
q∈Q(∆/ε)q = |Q|(∆/ε)~1 ≤ (1 + 1/β)d ·

ε2

d(1+1/β)d
1
ε
~1 ≤ ε~1. J

Therefore, the algorithm sends to the decision tree T big jobs (including bin vectors
which are big) of total load vector at most (1 + 4ε)m~1. Note that sending less loads only
helps our algorithm. By Observation 29, our algorithm’s makespan is at most (1 + 4ε)c∗d-
competitive if all jobs are discretized. We now show that when replacing each discretized
vector with the original vector, every machine’s load increases by at most 2ε~1. Knowing that
the optimum makespan is 1, this will mean that the competitive ratio of our algorithm is at
most (1 + 6ε)c∗d-competitive. By scaling ε appropriately, we obtain Theorem 24.

We complete the analysis by proving the following lemma.

I Lemma 33. Restoring the discretized jobs load vectors to their original vectors increases
each machine’s load vector by at most 2ε~1.
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Proof. For the sake of contradiction, suppose the total load increases by more than 2ε on
some fixed dimension d on some fixed machine i. In the first case, suppose at least ε increase
was due to big jobs. Then, since discretizing a big job reduces its load by less than δ on each
dimension, this means that the total number of big jobs assigned to the machine i is at least
ε/δ. Since a big job has a volume ∆ or more, the total volume of jobs assigned to machine i
is at least (ε/δ) ·∆ = ε/(ε∆/2dm) ·∆ = 2dm, which is a contradiction to the fact that each
machine has makespan at most (1 + 4ε), thus volume at most (1 + 4ε)d. Now suppose at least
ε increase was due to small jobs. Let S be the set of all small jobs assigned to machine i. We
know that discretizing a small job j reduces its load by at most pjβ on the fixed dimension
d. Thus, we have

∑
j∈S pjβ > ε. As a result, we have

∑
j∈S pj > ε/β = ε/(ε/2md) = 2md.

This implies that the total volume of the jobs in S is at least
∑
j∈S pj ≥ 2md, which is a

contradiction as before. J

6.3 Putting the Pieces Together
In Section 6.1 we showed if we use the first phase of the algorithm, then we can assign jobs
to groups of machines so that each group has m′ = O( 1

ε3 log d) machines and receives load at
most (1 + ε)m′~1. Otherwise, we can pretend all jobs are assigned to the single group of all
machines. In either case, we can assign jobs to groups of machines so that each group has
m′ = O( 1

ε4 log d) machines and receives load at most (1 + ε)m′~1. Then, using the procedure
in 6.2, we can assign jobs to machines within group, so that each machine’s load vector is
at most (1 + 6ε)c∗d~1. Thus, we have found an online algorithm whose competitive ratio is
(1 + ε)c∗d by appropriately scaling ε.

It now remains to show the running time of our algorithm. Since the running time is
mostly dominated by the second phase, we will focus on the second phase. It is an easy
exercise to see the running time is polynomially bounded by the size of decision tree and
n. As discussed, the number of nodes is (m|B|)5md/∆, where |B| ≤ (2/δ)d. By the above
discussion, we have m = O( 1

ε4 log d). Recall that β := ε
2md , ∆ := ε2

d(1+1/β)d , δ := εβ∆/(2dm).

By calculation, one can show that the tree size is (d/ε)d(d/ε)O(d)

. Thus, we have shown the
running time.

This completes the proof of Theorem 24.

7 Open Problems

This paper gives the first non-trivial results for the online vector scheduling problem with a
small number of dimensions. The most interesting open question is to better understand the
competitive ratio of “practical” algorithms when d > 2. For instance, what is the competitive
ratio of Priority(Max) when d > 2? Or, can we extend Priority(Bal) for d = 2 to
higher dimensions? Even for d = 2, in our analysis, we used as the lower bound the fractional
optimum where job vectors can be fractionally assigned to machines. This is inherently
limited by the integrality gap of the fractional assignment. Can we obtain better lower
bounds for the true optimum, and thereby improve the competitive ratio for the problem?
For instance, for d = 2, is there a 2-competitive algorithm?
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