
Dynamic Longest Common Substring in
Polylogarithmic Time
Panagiotis Charalampopoulos
Department of Informatics, King’s College London, UK
Institute of Informatics, University of Warsaw, Poland
panagiotis.charalampopoulos@kcl.ac.uk

Paweł Gawrychowski
Institute of Computer Science, University of Wrocław, Poland
gawry@cs.uni.wroc.pl

Karol Pokorski
Institute of Computer Science, University of Wrocław, Poland
pokorski@cs.uni.wroc.pl

Abstract
The longest common substring problem consists in finding a longest string that appears as a
(contiguous) substring of two input strings. We consider the dynamic variant of this problem, in
which we are to maintain two dynamic strings S and T , each of length at most n, that undergo
substitutions of letters, in order to be able to return a longest common substring after each
substitution. Recently, Amir et al. [ESA 2019] presented a solution for this problem that needs
only Õ(n2/3) time per update. This brought the challenge of determining whether there exists a
faster solution with polylogarithmic update time, or (as is the case for other dynamic problems),
we should expect a polynomial (conditional) lower bound. We answer this question by designing
a significantly faster algorithm that processes each substitution in amortized logO(1) n time with
high probability. Our solution relies on exploiting the local consistency of the parsing of a collection
of dynamic strings due to Gawrychowski et al. [SODA 2018], and on maintaining two dynamic
trees with labeled bicolored leaves, so that after each update we can report a pair of nodes, one
from each tree, of maximum combined weight, which have at least one common leaf-descendant of
each color. We complement this with a lower bound of Ω(log n/ log log n) for the update time of
any polynomial-size data structure that maintains the LCS of two dynamic strings, even allowing
amortization and randomization.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases string algorithms, dynamic algorithms, longest common substring

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.27

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/2006.02408.

Funding Panagiotis Charalampopoulos: Partially supported by ERC grant TOTAL under the
European Union’s Horizon 2020 Research and Innovation Programme (agreement no. 677651).

1 Introduction

The well-known longest common substring (LCS) problem, formally stated below, was con-
jectured by Knuth to require Ω(n logn) time. However, in his seminal paper that introduced
suffix trees, Weiner showed how to solve it in linear time (for constant alphabets) [29]. Since
then, this classical question was considered in many different versions, such as obtaining
a tradeoff between the time and the working space [21,27], or computing an approximate
LCS under either the Hamming or the edit distance (see [9,20,28] and references therein), to
name a few.

EA
T

C
S

© Panagiotis Charalampopoulos, Paweł Gawrychowski, and Karol Pokorski;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 27; pp. 27:1–27:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692444?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-6024-1557
mailto:panagiotis.charalampopoulos@kcl.ac.uk
https://orcid.org/0000-0002-6993-5440
mailto:gawry@cs.uni.wroc.pl
https://orcid.org/0000-0002-2140-8641
mailto:pokorski@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.ICALP.2020.27
https://arxiv.org/abs/2006.02408
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Dynamic Longest Common Substring in Polylogarithmic Time

Problem: Longest Common Substring
Input: Two strings S and T of length at most n over an alphabet Σ.
Output: A longest substring X of S that is a substring of T .

We consider the dynamic version of this problem where the strings are updated and we
are to report an LCS after each update. That is, we return the length of an LCS and a pair
of starting positions of its occurrences in the strings. The allowed update operations are
substitutions of single letters in either S or T . In fact, with due care, our algorithms can be
adapted to handle all edit operations, i.e. insertions and deletions as well, but we only allow
substitutions for the sake of a clearer exposition of the main ideas.

Dynamic problems on strings are of wide interest. Maybe the most basic question
in this direction is that of maintaining a dynamic text while enabling efficient pattern
matching queries. This is clearly motivated by, say, the possible application in a text editor.
The first structure achieving polylogarithmic update time and optimal query time for this
problem was designed by Sahinalp and Vishkin [26]. Later, the update time was improved
to O(log2 n log logn log∗ n) at the cost of O(logn log logn) additional time per query by
Alstrup et al. [2]. Recently, Gawrychowski et al. [15] presented a data structure that requires
O(log2 n) time per update and allows for time-optimal queries. Other problems on strings
that have been studied in the dynamic setting include maintaining repetitions, such as the
set of square substrings [5] or a longest palindromic substring [4, 7].

As for the LCS problem itself, Amir et al. [6] initiated the study of this question in the
dynamic setting by considering the problem of constructing a data structure over two strings
that returns the LCS after a single edit operation in one of the strings. However, in their
solution, after each edit operation, the string is immediately reverted to its original version.
Abedin et al. [1] improved the tradeoffs for this problem by designing a more efficient solution
for the so-called heaviest induced ancestors problem. Amir and Boneh [3] investigated some
special cases of the partially dynamic LCS problem (in which one of the strings is assumed
to be static); namely, the case where the static string is periodic and the case where the
substitutions in the dynamic string are substitutions with some letter # 6∈ Σ. Finally, Amir
et al. [7] presented the first algorithm for the fully dynamic LCS problem (in which both
strings are subject to updates) that needs only sublinear time per edit operation (insertion
or deletion of a letter) in either string, namely Õ(n2/3). As a stepping stone towards this
result, they designed an algorithm for the partially dynamic LCS problem that takes Õ(

√
n)

time per edit operation.
For some natural dynamic problems, the best known bounds on the query and the update

time are of the form O(nα), where n is the size of the input and α is some constant. Henzinger
et al. [16] introduced the online Boolean matrix-vector multiplication conjecture that can be
used to provide some justification for the polynomial time hardness of many such dynamic
problems in a unified manner. This brings the question of determining if the bound on the
update time in the dynamic LCS problem should be polynomial or subpolynomial.

We answer this question by significantly improving on the bounds presented by Amir
et al. [7] and presenting a solution for the fully dynamic LCS problem that handles each
update in amortized polylogarithmic time with high probability. As a warm-up, we present a
(relatively simple) deterministic solution for the partially dynamic LCS problem that handles
each update in amortized O(log2 n) time.

After having determined that the complexity of fully dynamic LCS is polylogarithmic, the
next natural question is whether we can further improve the bound to polyloglogarithmic. By
now we have techniques that can be used to not only distinguish between these two situations

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:3

but (in some cases) also provide tight bounds. As a prime example, static predecessor for a set
of n numbers from [n2] requires Ω(log logn) time for structures of size Õ(n) [25], and dynamic
connectivity for forests requires Ω(logn) time [24], with both bounds being asymptotically
tight. In some cases, seemingly similar problems might have different complexities, as in the
orthogonal range emptiness problem: Nekrich [22] showed a data structure of size O(n log4 n)
with O(log2 logn) query time for 3 dimensions, while for the same problem in 4 dimensions
Pǎtraşcu showed that any polynomial-size data structure requires Ω(logn/ log logn) query
time [23]. In the full version of this work, we show the following results, each obtained
through a series of reductions, starting from the problem of answering reachability queries in
butterfly graphs that was considered in the seminal paper of Pătraşcu [23].

I Theorem 1. Any structure of Õ(n) size for maintaining an LCS of a dynamic string S
and a static string T , each of length at most n, requires Ω(logn/ log logn) time per update
operation.

I Theorem 2. Any polynomial-size structure for maintaining the LCS of two dynamic strings
of length n requires Ω(logn/ log logn) time per update operation.

Finally, we demonstrate that the difference in the allowed space in the above two lower
bounds is indeed needed. To this end, we show that partially dynamic LCS admits an
O(n1+ε)-space, O(log logn)-update time solution, for any ε > 0.

Techniques and roadmap. We first consider the partially dynamic version of the problem
where updates are only allowed in one of the strings, say S, in Section 3. This problem
is easier as we can use the static string T as a reference point. We maintain a partition
of S into blocks (i.e. substrings of S whose concatenation equals S), such that each block
is a substring of T , but the concatenation of any two consecutive blocks is not. This is
similar to the approach of [8] and other works that consider one dynamic and one static
string. The improvement upon the Õ(

√
n)-time algorithm presented in [7] comes exactly

from imposing the aforementioned maximality property, which guarantees that the sought
LCS is a substring of the concatenation of at most three consecutive blocks and contains
the first letter of one of these blocks. The latter property allows us to anchor the LCS in S.
Upon an update, we can maintain the block decomposition, by updating a constant number
of blocks. It then suffices to show how to efficiently compute the longest substring of T that
contains the first letter of a given block. We reduce this problem to answering a heaviest
induced ancestors (HIA) query. This reduction was also presented in [1, 6], but we describe
the details to make following the more involved solution of fully dynamic LCS easier.

In Section 4 we move to the fully dynamic LCS problem. We try to anchor the LCS in
both strings as follows. For each of the strings S and T we show how to maintain, in logO(1) n

time, a collection of pairs of adjacent fragments (e.g. (S[i . . j − 1], S[j . . k])), denoted by JS
for S and JT for T , with the following property. For any common substring X of S and T

there exists a partition X = X`Xr for which there exists a pair (U`, Ur) ∈ JS and a pair
(V`, Vr) ∈ JT such that X` is a suffix of both U` and V`, while Xr is a prefix of both Ur and
Vr. We can maintain this collection by exploiting the properties of the locally consistent
parsing previously used for maintaining a dynamic collection of strings [15]. We maintain
tries for fragments in the collections and reduce the dynamic LCS problem to a problem on
dynamic bicolored trees, which we solve by using dynamic heavy-light decompositions and
2D range trees.

I C A L P 2 0 2 0

27:4 Dynamic Longest Common Substring in Polylogarithmic Time

2 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. Let S = S[1]S[2] · · ·S[n] be a string of length
|S| = n over an integer alphabet Σ. For two positions i and j on S, we denote by S[i . . j] =
S[i] · · ·S[j] the fragment of S that starts at position i and ends at position j (it is the empty
string ε if j < i). A string Y , of length m with 0 < m ≤ n, is a substring of S if there exists
a position i in S such that Y = S[i . . i+m− 1]. The prefix of S ending at the i-th letter
of S is denoted by S[. . i] and the suffix of S starting at the i-th letter of S is denoted by
S[i . .]. The reverse string of S is denoted by SR. The concatenation of strings S and T is
denoted by ST , and the concatenation of k copies of string S is denoted by Sk. By lcp(S, T)
we denote the length of the longest common prefix of strings S and T .

We define the trie of a collection of strings C = {S1, S2, . . . , Sk} as follows. It is a rooted
tree with edges labeled by single letters. Every string S that is a prefix of some string in C

is represented by exactly one path from the root to some node v of the tree, such that the
concatenation of the labels of the edges of the path, the path-label of v, is equal to S. The
compacted trie of C is obtained by contracting maximal paths consisting of nodes with one
child to an edge labeled by the concatenation of the labels of the edges of the path. Usually,
the label of the new edge is stored as the start/end indices of the corresponding fragment of
some Si. The suffix tree of a string T is the compacted trie of all suffixes of T$ where $ is a
letter smaller than all letters of the alphabet Σ. It can be constructed in O(|T |) time for
linear-time sortable alphabets [11]. For a node u in a (compacted) trie, we define its depth as
the number of edges on the path from the root to u. Analogously, we define the string-depth
of u as the total length of labels along the path from the root to u.

We say that a tree is weighted if there is a weight w(u) associated with each node u of
the tree, such that weights along the root-to-leaf paths are increasing, i.e. for any node u
other than the root, w(u) > w(parent(u)). Further, we say that a tree is labeled if each of
its leaves is given a distinct label.

I Definition 3. For rooted, weighted, labeled trees T1 and T2, two nodes u ∈ T1 and v ∈ T2,
are induced (by `) if and only if there are leaves x and y with the same label `, such that x
is a descendant of u and y is a descendant of v.

Problem: Heaviest Induced Ancestors
Input: Two rooted, weighted, labeled trees T1 and T2 of total size n.
Query: Given a pair of nodes u ∈ T1 and v ∈ T2, return a pair of nodes u′, v′ such that
u′ is ancestor of u, v′ is ancestor of v, u′ and v′ are induced and they have the largest
total combined weight w(u′) + w(v′).

This problem was introduced in [14], with the last advances made in [1]. The next lemma
encapsulates one of the known trade-offs.

I Lemma 4 ([14]). There is a data structure for the Heaviest Induced Ancestors
problem, that can be built in O(n log2 n) time and answers queries in O(log2 n) time.

3 Partially Dynamic LCS

In this section, we describe an algorithm for solving the partially dynamic variant of the LCS
problem, where updates are only allowed on one of the strings, say S, while T is given in
advance and is not subject to change.

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:5

Let us assume for now that all the letters of S throughout the execution of the algorithm
occur at least once in T ; we will waive this assumption later. Also, for simplicity, we assume
that S is initially equal to $|S|, for $ 6∈ Σ. We can always obtain any other initial S by
performing an appropriate sequence of updates in the beginning.

I Definition 5. A block decomposition of string S with respect to string T is a sequence of
strings (s1, s2, . . . , sk) such that S = s1s2 . . . sk and every si is a fragment of T . An element
of the sequence is called a block of the decomposition. A decomposition is maximal if and
only if sisi+1 is not a substring of T for every i ∈ [k − 1].

Maximal block decompositions are not necessarily unique and may have different lengths,
but all admit the following useful property.

I Lemma 6. For any maximal block decomposition of S with respect to T , any fragment
of S that occurs in T is contained in at most three consecutive blocks. Furthermore, any
occurrence of an LCS of S and T in S must contain the first letter of some block.

Proof. We prove the first claim by contradiction. If (s1, s2, . . . , sk) is a maximal block
decomposition of S with respect to T and a fragment of S that occurs in T spans at least four
consecutive blocks si, si+1, si+2, . . . , sj , then si+1si+2 is a substring of T , a contradiction.

As for the second claim, it is enough to observe, that if an occurrence of an LCS in S

starts in some other than the first position of a block b, then it must contain the first letter
of the next block, as otherwise its length would be smaller than the length of block b, which
is a common substring of S and T . J

We will show that an update in S can be processed by considering a constant number of
blocks in a maximal block decomposition of S with respect to T . We first summarize the
basic building block needed for efficiently maintaining such a maximal block decomposition.

I Lemma 7. Let T be a string of length at most n. After O(n log2 n)-time and O(n)-space
preprocessing, given two fragments U and V of T , one can compute a longest fragment of T
that is equal to a prefix of UV in O(log logn) time.

Proof. We build a weighted ancestor queries structure over the suffix tree of T . A weighted
ancestor query (`, u) on a (weighted) tree T , asks for the deepest ancestor of u with weight at
most `. Such queries can be answered in O(log logn) time after an O(n)-time preprocessing
of T if all weights are polynomial in n [12], as is the case for suffix trees with the weight of
each node being its string-depth. We also build a data structure for answering unrooted LCP
queries over the suffix tree of T . In our setting, such queries can be defined as follows: given
nodes u and v of the suffix tree of T , we want to compute the (implicit or explicit) node where
the search for the path-label of v starting from node u ends. Cole et al. [10] showed how to
construct in O(n log2 n) time a data structure of size O(n logn) that answers unrooted LCP
queries in O(log logn) time. With these data structures at hand, the longest prefix of UV
that is a fragment of T can be computed as follows. First, we retrieve the nodes of the suffix
tree of T corresponding to U and V using weighted ancestor queries in O(log logn) time. In
more detail, if U = T [i . . j] then we access the leaf of the suffix tree corresponding to T [i . .]
and access its ancestor at string-depth |U |, and similarly for V . Second, we ask an unrooted
LCP query to obtain the node corresponding to the sought prefix of UV . J

I Lemma 8. A maximal block decomposition of a dynamic string S, with respect to a static
string T , can be maintained in O(log logn) time per substitution operation with a data
structure of size O(n logn) that can be constructed in O(n log2 n) time.

I C A L P 2 0 2 0

27:6 Dynamic Longest Common Substring in Polylogarithmic Time

Proof. We keep the blocks on a doubly-linked list and we store the starting positions of blocks
in an O(n)-size predecessor/successor data structure over [n] that supports O(log logn)-time
queries and updates [30]. This allows us to navigate in the structure of blocks, and in
particular to be able to compute the block in which the edit occurred and its neighbors.

Suppose that we have a maximal block decomposition B = (s1, . . . , sk) of S with respect
to T . Consider an operation which updates the letter x located in block si to y, so that
si = sl

ixs
r
i. Consider a block decomposition B′ = (s1, s2, . . . , si−1, s

l
i, y, s

r
i, si+1, . . . , sk) of

string S′ after the update. Note that both sl
i and sr

i may be empty. This block decomposition
does not need to be maximal. However, since B is a maximal block decomposition of S, none
of the strings s1s2, s2s3, . . ., si−2si−1, si+1si+2, si+2si+3, . . ., sk−1sk occurs in T . Thus,
given B′, we repeatedly merge any two consecutive blocks from (si−1, s

l
i, y, s

r
i, si+1) whose

concatenation is a substring of T into one, until this is no longer possible. We have at most
four merges before obtaining a maximal block decomposition B′ of string S′. Each merge is
implemented with Lemma 7 in O(log logn) time. J

As for allowing substitutions of letters that do not occur in T , we simply allow blocks of
length 1 that are not substrings of T in block decompositions, corresponding to such letters.
It is readily verified that all the statements above still hold.

Due to Lemma 6, for a maximal block decomposition (s1, s2, . . . , sk) of S with respect to
T , we know that any occurrence of an LCS of S and T in S must contain the first letter of
some block of the decomposition and cannot span more than three blocks. In other words, it
is the concatenation of a potentially empty suffix of si−1si and a potentially empty prefix of
si+1si+2 for some i ∈ [k] (for convenience we consider the non-existent sis to be equal to
ε). We call an LCS that can be decomposed in such way a candidate of si. Our goal is to
maintain the candidate proposed by each si in a max-heap with the length as the key. We
also store a pointer to it from block si. The max-heap is implemented with an O(n)-size
predecessor/successor data structure over [n] that supports O(log logn)-time queries and
updates [30]. We assume that each block si stores a pointer to its candidate in the max-heap.

After an update, the candidate of each block b that satisfies the following two conditions
remains unchanged: (a) b did not change and (b) neither of b’s neighbors at distance at most
2 changed. For the O(1) blocks that changed, we proceed as follows. First, in O(log logn)
time, we remove from the max-heap any candidates proposed by the deleted blocks or blocks
whose neighbors at distance at most 2 have changed. Then, for each new block and for each
block whose neighbors at distance at most 2 have changed, we compute its candidate and
insert it to the max-heap. To compute the candidate of a block si, we proceed as follows. We
first compute the longest suffix U of si−1si and the longest prefix V of si+1si+2 that occur
in T in O(log logn) time using Lemma 7. Then, the problem in scope can be restated as
follows: given two fragments U and V of T compute the longest fragment of UV that occurs
in T . This problem can be reduced to a single HIA query over the suffix trees of T and TR

as shown in [1, 6] and we provide a brief overview at the end of this section. Combining the
above discussion with Lemmas 4 and 8 we obtain that an LCS can be maintained after an
O(n log2 n) time preprocessing in O(log2 n) time per update. In fact, the bottleneck in the
update time in this approach is in Lemma 4, that is, the HIA structure, as the additional
time in the update is only O(log logn). We can thus obtain a faster data structure at the
expense of slower preprocessing using the following lemma.

I Lemma 9. For any ε > 0, there is a structure for the Heaviest Induced Ancestors
problem, that can be built in O(n1+ε) time and answers queries in constant time.

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:7

Proof. Consider an instance of HIA on two trees T1 and T2 of total size m containing at
most ` leaves, and let b be a parameter to be chosen later. We will show how to construct
a structure of size O(b2m) that allows us to reduce in constant time a query concerning
two nodes u ∈ T1 and v ∈ T2 to two queries to smaller instances of HIA. In each of the
smaller instances the number of leaves will shrink by a factor of b, and the total size of all
smaller instances will be O(m). Let b = nδ, where n is the total size of the original trees.
We recursively repeat the construction always choosing b according to the formula. Because
the depth of the recursion is at most logb n = O(1), this results in a structure of total size
O(n1+ε) for ε = 2δ and allows us to answer any query in a constant number of steps, each
taking constant time.

We select b evenly-spaced (in the order of in-order traversal) leaves of T1 and T2 and call
them marked. Consider a query concerning a pair of nodes u ∈ T1 and v ∈ T2. Let u′′, v′′ be
the nearest ancestors of u and v, respectively, that contain at least one marked leaf in their
subtrees. u′′ and v′′ can be preprocessed in O(m) space and accessed in constant time. We
have three possibilities concerning the sought ancestors u′, v′:
1. u′ is an ancestor of u′′ and v′ is an ancestor of v′′ (not necessarily proper),
2. u′ is a descendant of u′′,
3. v′ is a descendant of v′′.

To check the first possibility, we preprocess every pair of marked leaves x, y. Both u′′ and
v′′ store pointers to some marked leaves in their subtrees, so it is enough to consider a query
concerning two ancestors of marked leaves x, y. This can be solved similarly as preprocessing
two heavy paths for HIA queries in O(log2 n) time [14], except that now we can afford to
preprocess the predecessor for every possible depth on both paths in O(m) space, which
decreases the query time to constant. The overall space is O(b2m).

The second and the third possibility are symmetric, so we focus on the second. By
removing all marked leaves and their ancestors from T1 we obtain a collection of smaller
trees, each containing less than n/b leaves. Because u′ is below u′′, u and u′ belong to the
same smaller tree. For technical reasons, we want to work with O(b) smaller trees, so we
merge all smaller trees between two consecutive marked leaves by adding the subtree induced
by their roots in T1. Now consider the smaller tree T i1 containing u (and, by assumption,
also u′′). We extract the subtree of T2 induced by the leaves of T i1 , call it T i2 , and build a
smaller instance of HIA for T i1 and T i2 . To query the smaller instance, we need to replace
v by its nearest ancestor that belong to T i2 . This can be preprocessed for each i and v in
O(bm) space. By construction, T i1 and T i2 contain less than n/b leaves, and each node of
T1 shows up in at most two trees T i1 . Each node of T2 might appear in multiple trees T i2 ,
but the number of non-leaf nodes in T i2 is smaller than its number of leaves, so the overall
number of non-leaf nodes is smaller than m, and consequently the overall number of nodes is
smaller than 2m.

The construction time can be verified to be at most the size of the structure. J

I Theorem 10. It is possible to maintain an LCS of a dynamic string S and a static string
T , each of length at most n, (i) after an O(n log2 n)-time preprocessing in O(log2 n) time
per substitution operation, or (ii) after an O(n1+ε)-time preprocessing in O(log logn) time
per substitution operation.

We now briefly explain the reduction to HIA in the interests of self-containment and
developing intuition in a relatively easier setting before we move on to the harder problem of
maintaining an LCS of two dynamic strings.

I C A L P 2 0 2 0

27:8 Dynamic Longest Common Substring in Polylogarithmic Time

Let T1 and T2 be the suffix trees of T$ and TR#, respectively, where $ and # are
sentinel letters not in the alphabet and lexicographically smaller than all other letters. Note
that each suffix of T$ corresponds to a leaf in T1; similarly for T2. We label a leaf v of
T1 with the starting position of the suffix of T$ that it represents. For T2, however, we
label the leaf corresponding to TR[i . .]# with n − i + 2. Intuitively, if we consider a split
T = T [. . i− 1]T [i . .], the leaves corresponding to T [i . .]$ in T1 and T [. . i− 1]R# in T2 get
the same label. Further, let the weight of each node in T1 and T2 be its string-depth. Upon
query, we first compute the node p corresponding to V in T1 and the node q corresponding
to UR in T2 using weighted ancestor queries in O(log logn) time. Then the length of the
longest substring of UV is exactly the sum of the weights of the nodes returned by a HIA
query for p and q. (Some technicalities arise when p or q are implicit nodes, which can be
overcome straightforwardly.)

4 Fully Dynamic LCS

In this section, we prove our main result.

I Theorem 11. We can maintain an LCS of two dynamic strings, each of length at most n,
in logO(1) n time per substitution operation.

We start with some intuition. Let us suppose that we can maintain a decomposition of
each string in blocks of length roughly 2k for each level k = 0, 1, . . . , logn with the following
property: any two equal fragments U = S[i . . j] and V = T [i′ . . j′] are “aligned” by a pair of
equal blocks B1 in S and B2 in T at some level k such that 2k = Θ(|U |). In other words, the
decomposition of U (resp. V) at level k consists of a constant number of blocks, where the
first and last blocks are potentially trimmed, including B1 (resp. B2), and the distance of
the starting position of B1 from position i in S equals the distance of the starting position
of B2 from position i′ in T . The idea is that we can use such blocks as anchors for the LCS.
For each level, for each string B appearing as a block in this level, we would like to design a
data structure that:
a) supports insertions/deletions of strings corresponding to sequences of a constant number

of level-k blocks, each containing a specified block equal to B and a boolean variable
indicating the string this sequence originates from (S or T), and

b) can return the longest common substring among pairs of elements originating from
different strings that is aligned by a pair of specified blocks (that are equal to B).

For each substitution in either of the strings, we would only need to update O(logn) entries
in our data structures – a constant number of them per level.

Unfortunately, it is not clear how to maintain a decomposition with these properties. We
resort to the dynamic maintenance of a locally consistent parsing of the two strings, due
to Gawrychowski et al. [15]. We exploit the structure of this parsing in order to apply the
high-level idea outlined above in a much more technically demanding setting.

4.1 Locally Consistent Parsing
The authors of [15] settled the time complexity of maintaining a collection of stringsW under
the following operations: makestring(W) (insert a non-empty string W), concat(W1,W2)
(insert W1W2 to W , for W1,W2 ∈ W), split(W, i) (split the string W at position i and insert
both resulting strings to W, for W ∈ W), lcp(W1,W2) (return the length of the longest
common prefix of W1 and W2, for W1,W2 ∈ W). Let us note that operations concat and
split do not remove their arguments from W. A substitution can be implemented with a
constant number of calls to such operations.

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:9

I Theorem 12 (Gawrychowski et al. [15]). A collection W of strings of total length n can be
dynamically maintained under operations makestring(W), concat(W1,W2), split(W, i), and
lcp(W1,W2) with the operations requiring time O(logn+ |W |), O(logn), O(logn) worst-case
time with high probability and O(1) worst-case time, respectively.

At the heart of Theorem 12 lies a locally consistent parsing of the strings in the collection
that can be maintained efficiently while the strings undergo updates. It can be interpreted
as a dynamic version of the recompression method of Jeż [18,19] (see also [17]) for a static
string T . As such, we first describe the parsing of Theorem 12 for a static string T and then
extend the description to the dynamic variant for a collection of strings.

A run-length straight line program (RLSLP) is a context-free grammar which generates
exactly one string and contains two kinds of non-terminals: concatenations with production
rule of the form A→ BC (for symbols B,C) and powers with production rule of the form
A→ Bk (for a symbol B and an integer k ≥ 2), where a symbol can be a non-terminal or a
letter in Σ. Every symbol A generates a unique string denoted by gen(A).

Let T = T0. We can compute strings T1, . . . , TH , where H = O(logn) and |TH | = 1 in
O(n) time using interleaved calls to the following two auxiliary procedures:
RunCompress applied if h is even: for each Br, r > 1, replace all occurrences of Br as a

run by a new letter A. There are no runs after an application of this procedure.1

HalfCompress applied if h is odd: first partition Σ into Σ` and Σr; then, for each pair of
letters B ∈ Σ`, C ∈ Σr such that BC occurs in Th replace all occurrences of BC by a
new letter A.

We can interpret strings T = T0, T1, . . . , TH as an uncompressed parse tree PT(T), by
considering their letters as nodes, so that the parent of Th[i] is the letter of Th+1 that either
(a) corresponds to Th[i] or (b) replaced a fragment of Th containing Th[i]. We say that
the node representing Th[i] is the node left (resp. right) of the node representing Th[i+ 1]
(resp. Th[i− 1]). Every node v of PT(T) is labeled with the symbol it represents, denoted by
L(v). For a node v corresponding to a letter of Th, we say that the level of v, denoted by
lev(v), is h. The value val(v) of a node v is defined as the fragment of T corresponding to
the leaf descendants of v and it is an occurrence of gen(A) for A = L(v).

We define a layer to be any sequence of nodes v1v2 · · · vr in PT(T) whose values are
consecutive fragments of T , i.e. val(vj) = T [rj−1 + 1 . . rj] for some increasing sequence of ri’s.
The value of a layer C is the concatenation of the values of its elements and is denoted by
val(C). We similarly use gen(·) for sequences of symbols, to denote the concatenation of the
strings generated by them. We call a layer v1v2 · · · vr an up-layer when lev(vi) ≤ lev(vi+1)
for all i, and a down-layer when lev(vi) ≥ lev(vi+1) for all i.

In [15], the authors show how to maintain an RLSLP for each string in the collection,
each with at most c logn levels for some global constant c with high probability. Let T be a
string in the collection. For each fragment U = T [a . . b] of T , one can compute in O(logn)
time a context insensitive decomposition that consists in a layer C(U) of nodes in PT(T) with
value T [a . . b] and has the following property. It can be decomposed into an up-layer Cup(U)
and a down-layer Cdown(U) such that:

The sequence of the labels of the nodes in Cup(U) can be expressed as a sequence of at
most c logn symbols and powers of symbols dup(U) = Ar0

0 A
r1
1 · · ·Arm

m such that, for all i,
Ari
i corresponds to ri consecutive nodes at level i of PT(T); ri can be 0 for i < m.

1 A fragment T [i . . j] = Br is a run if it is a maximal fragment consisting of Bs.

I C A L P 2 0 2 0

27:10 Dynamic Longest Common Substring in Polylogarithmic Time

Similarly, the sequence of the labels of the nodes in Cdown(U) can be expressed as a
sequence of at most c logn symbols and powers of symbols ddown(U) = Btmm B

tm−1
m−1 · · ·B

t0
0

such that, for all i, Btii corresponds to ti consecutive nodes at level i of PT(T); ti can be
equal to 0.

We denote by d(U) the concatenation of dup(U) and ddown(U). Note that U = gen(d(U)) =
gen(A0)r0 · · · gen(Am)rmgen(Bm)tm · · · gen(B0)t0 . See Figure 1 for a visualization. The
parsing of the strings enjoys local consistency in the following way: d(U) = d(V) for any
fragment V of any string in the collection such that U = V . We will slightly abuse notation
and use the term “context insensitive decomposition” to refer to both d(U) and C(U). In
addition, we also use d(·) for substrings and not just for fragments.

a b a b a b a a b b c d a b a b a b c d

RunCompress

RunCompress

HalfCompress

HalfCompress

RunCompress

RunCompress

HalfCompress

HalfCompress

e f

g g g g g gh h

kk

` m

p q

r

Figure 1 An example PT(T) for T = T0 = abababaabbcdabababcd. We omit the label of each
node v with a single child u; L(v) = L(u). T3 = kefhkh and T6 = pq. We denote the nodes Cup(T)
by red (filled) squares and the nodes of Cdown(T) with blue (unfilled) squares. dup(T) = abg2`,
ddown(T) = hg3cd and hence d(T) = abg2`hg3cd.

Let us consider any sequence of nodes corresponding, for some j < m, to Arj

j with rj > 1
or Btjj with tj > 1. We note that Tj must have been obtained from Tj−1 by an application of
HalfCompress, since there are no runs after an application of procedure RunCompress. Thus,
at level j + 1 in PT(T), i.e. the one corresponding to Tj+1, all of these nodes collapse to a
single one: their parent in PT(T). Hence, we have the following lemma.

I Lemma 13. Let U be a fragment of T with dup(U) = Ar0
0 A

r1
1 · · ·Arm

m and ddown(U) =
Btmm B

tm−1
m−1 · · ·B

t0
0 . Then we have the following:

The value of Cup(U) is a suffix of the value of a layer Lup of (at most) c logn+ rm − 1
level-m nodes, such that the two layers have the same rightmost node. The last rm nodes
are consecutive siblings with label Am.
The value of Cdown(U) is a prefix of the value of the layer Ldown consisting of the subsequent
(at most) c logn + max(tm − 1, 0) level-m nodes. If tm 6= 0, then the first tm nodes of
Ldown are consecutive siblings with label Bm 6= Am.

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:11

The parse trees of the strings in the collection are not maintained explicitly. However,
we have access to the following pointers and functions, among others, which allow us to
efficiently navigate through them. First, we can get a pointer to the root of PT(T) for any
string T in the collection. Given a pointer P to some node v in PT(T) we can get deg(v)
and pointers to the parent of v, the k-th child of v and the nodes to the left/right of v.

Let us now briefly explain how the dynamic data structure of [15] processes a substitution
in T at some position i, that yields a string T ′. First, the context insensitive decompositions
of T [. . i− 1] and T [i+ 1 . .] are retrieved. These, together with the new letter at position i

form a layer of PT(T ′). The sequence of the labels of the nodes of this layer can be expressed
as a sequence of O(logn) symbols and powers of symbols. Then, only the portion of PT(T)
that lies above this layer needs to be (implicitly) computed, and the authors of [15] show how
to do this in O(logn) time. In total, we get PT(T ′) from PT(T) through O(log2 n) insertions
and deletions of nodes and layers that consist of consecutive siblings.

4.2 Anchoring the LCS
We will rely on Lemma 13 in order to identify an LCS S[i . . j] = T [i′ . . j′] at a pair of topmost
nodes of the context insensitive decompositions of S[i . . j] and T [i′ . . j′] in PT(S) and PT(T),
respectively. In order to develop some intuition, let us first sketch a solution for the case
that PT(S) and PT(T) do not contain any power symbols throughout the execution of our
algorithm. For each node v in one of the parse trees, let Z`(v) be the value of the layer
consisting of the (at most) c logn level-lev(v) nodes, with v being the layer’s rightmost node,
and Zr(v) be the value of the layer consisting of the (at most) c logn subsequent level-lev(v)
nodes. Now, consider a common substring X of S and T and partition it into the prefix
X` = gen(dup(X)) and the suffix Xr = gen(ddown(X)). For any fragment U of S that equals
X, Cup(U) is an up-layer of the form v1 · · · vm. Hence, by Lemma 13, X` is a suffix of Z`(vm).
Similarly, Xr is a prefix of Zr(vm). Thus, it suffices to maintain pairs (Z`(v),Zr(v)) for all
nodes v in PT(S) and PT(T), and, in particular, a pair of nodes u ∈ PT(S) and v ∈ PT(T)
that maximizes lcp(Z`(u)R,Z`(v)R) + lcp(Zr(u),Zr(v)). The existence of power symbols poses
some technical challenges which we overcome below.

For each node of PT(T), we consider at most one pair consisting of an up-layer and a
down-layer. The treatment of nodes differs, based on their parent. We have two cases.
1. For each node z with deg(z) = 2 and L(z) being a concatenation symbol, for each child v

of z, we consider the following layers:
The up-layer Jup(v) of the (at most) c logn level-lev(v) consecutive nodes of PT(T)
with v a rightmost node.
The down-layer Jdown(v) of the (at most) p level-lev(v) subsequent level-lev(v) nodes
of PT(T). If the node to the right of v is a child of a node w with more than two
children, then p = c logn+ deg(w). Otherwise p = c logn.

2. For each node z of PT(T) whose label is a power symbol and has more than one child, we
will consider O(logn) pairs of layers. In particular, for each v, being one of the c logn+ 1
leftmost or c logn+ 1 rightmost children of z, we consider the following layers:

The up-layer Jup(v) defined as the concatenation of (a) the (at most) c logn level-lev(v)
consecutive nodes of PT(T) preceding the leftmost child of z and (b) all the children
of z that lie weakly to the left of v, i.e. including v.
The down-layer Jdown(v) of the (at most) c logn subsequent level-lev(v) nodes of PT(T)
– with one exception. If v is the rightmost child of z and the node to its right is a child
of a node w with more than two children, then Jdown(v) consists of the c logn+ deg(w)
subsequent level-lev(v) nodes.

I C A L P 2 0 2 0

27:12 Dynamic Longest Common Substring in Polylogarithmic Time

In particular, we create at most one pair (Jup(v), Jdown(v)) of layers for each node v of
PT(T). Let Y`(v) = val(Jup(v)) and Yr(v) = val(Jdown(v)). Given a pointer to a node z in
PT(T), we can compute the indices of the fragments corresponding to those layers with
straightforward use of the pointers at hand in O(logn) time. With a constant number of
split operations, we can then add the string Yr(v) to our collection within O(logn) time.
Similarly, if we also maintain TR in our collection of strings, we can add the reverse of Y`(v)
to the collection within O(logn) time. We maintain pointers between v and these strings.
Note that each node of PT(T) takes part in O(logn) pairs of layers and these pairs can be
retrieved in O(logn) time. Similarly, for each node whose label is a power symbol, subsets
of its children appear in O(logn) pairs of layers; these can also be retrieved in O(logn)
time. Thus, throughout the updates on T , which delete/insert O(log2 n) nodes and layers of
consecutive siblings, we can maintain the pairs of layers in Õ(1) time. These pairs of layers
(or rather the pairs of their corresponding strings maintained in a dynamic collection) will
be stored in an abstract structure presented in the next section. In order to keep the space
occupied by our data structure Õ(n), after every n updates to the collection we delete our
data structure, and initialize a new instance of it for an empty collection, on which we call
makestring(S) and makestring(T). The cost of this reinitialization can be deamortized using
standard techniques. We summarize the above discussion in the following lemma.

I Lemma 14. We can maintain pairs (Y`(v)R,Yr(v)) for all v in PT(T) and PT(S), with
each string given as a handle from the dynamic collection, in Õ(1) time per substitution,
using Õ(n) space.

I Remark 15. Note that the above lemma holds in the case that insertions and deletions are
also allowed in S and T , as each such update operation is processed similarly to substitution
and affects Õ(1) pairs (Y`(v)R,Yr(v)). Everything that follows in this section is oblivious to
the kind of operations allowed in S and T .

The following lemma gives us an anchoring property, which is crucial for our approach.

I Lemma 16. For any common substring X of S and T , there exists a partition X = X`Xr

for which there exist nodes u ∈ PT(S) and v ∈ PT(T) such that:
1. X` is a suffix of Y`(u) and Y`(v), and
2. Xr is a prefix of Yr(u) and Yr(v).

Proof. Let dup(X) = Ar0
0 A

r1
1 · · ·Arm

m and ddown(X) = Btmm B
tm−1
m−1 · · ·B

t0
0 .

B Claim 17. Either rm > 1, tm = 0 and gen(dup(X)) is not a suffix of Ac logn+rm
m or there

exists a node v ∈ PT(T) such that:
1. gen(dup(X)) is a suffix of Y`(v), and
2. gen(ddown(X)) is a prefix of Yr(v).

Proof. We assume that rm = 1 or gen(dup(X)) is a suffix of Ac logn+rm
m or tm 6= 0 and

distinguish between the following cases.
Case 1. There exists an occurrence Y of X in T , where the label of the parent of the

rightmost node u of Cup(Y) is not a power symbol. (In this case rm = 1.) Recall here, that
we did not construct any pairs of layers for nodes whose parent has a single child. Let v be
the highest ancestor of u with label Am. If u 6= v then all nodes that are descendants of v
and strict ancestors of u have a single child, while the parent of v does not. In addition, the
label of the parent of v must be a concatenation symbol, since only new letters are introduced
at each level and thus we cannot have new nodes with label Am appearing to the left/right
of any strict ancestor of u. Finally, note that a layer of k level-lev(v) nodes with v a leftmost

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:13

(resp. rightmost) node contains an ancestor of each of the nodes in a layer of k level-lev(u)
nodes with u a leftmost (resp. rightmost) node. Thus, an application of Lemma 13 for u
straightforwardly implies our claim for v.

Case 2. There exists an occurrence Y of X in T , where the label of the parent z of the
rightmost node u of Cup(Y) is a power symbol. Let W be the rightmost occurrence of X in
T such that the rightmost node w of Cup(W) is a child of z. We have three subcases.
a) We first consider the case rm = 1. Let us assume towards a contradiction that u is not one

of the c logn+1 leftmost or the c logn+1 rightmost children of z. Then, by Lemma 13 we
have that gen(dup(X)) is a suffix of Ac logn

m and gen(ddown(X)) is a prefix of Ac logn
m . Hence,

there is another occurrence of X |gen(Am)| positions to the right of Y , contradicting our
assumption that Y is a rightmost occurrence.

b) In the case that tm 6= 0, u must be the rightmost child of z since Am 6= Bm.
c) In the remaining case that gen(dup(X)) is a suffix of Ac logn+rm

m , either tm > 0 and we
are done, or gen(Cdown(Y)) is a prefix of the value of the (at most) c logn level-m nodes
to the right of u. In the latter case, either u is already among the rightmost c logn+ 1
children of z or there is another occurrence of X |gen(Am)| positions to the right of Y ,
contradicting our assumptions on Y . C

We have to treat a final case.

B Claim 18. If rm > 1, tm = 0 and gen(dup(X)) is not a suffix of Ac logn+rm
m then there

exists a node v ∈ PT(T) such that:
1. gen(Ar0

0 A
r1
1 · · ·A

rm−1
m−1 Am) is a suffix of Y`(v), and

2. gen(Am)rm−1gen(ddown(X)) is a prefix of Yr(v).

Proof. In any occurrence of X in T , the label of the parent z of the rightmost node of Cup(Y)
is a power symbol. Let u be the rm-th rightmost node of Cup(Y). By the assumption that
gen(dup(X)) is not a suffix of Ac logn+rm

m and Lemma 13, u must be one of the c logn leftmost
children of z. C

The combination of the two claims applied to both S and T yields the lemma. J

4.3 A Problem on Dynamic Bicolored Trees
Due to Lemmas 14 and 16, our task reduces to solving the problem defined below in
polylogarithmic time per update, as we can directly apply it to R = {(Y`(u)R,Yr(u)) : u ∈
PT(S)} and B = {(Y`(v)R,Yr(v)) : v ∈ PT(T)}. Note that |R|+ |B| = Õ(n) throughout the
execution of our algorithm.

Problem: LCP for Two Families of Pairs of Strings
Input: Two families R and B, each consisting of pairs of strings, where each string is
given as a handle from a dynamic collection.
Update: Insertion or deletion of an element in R or B.
Query: Return (P,Q) ∈ R and (P ′, Q′) ∈ B that maximize lcp(P, P ′) + lcp(Q,Q′).

Each element of B and R is given a unique identifier. We maintain two compacted
tries TP and TQ. By appending unique letters, we can assume that no string is a prefix of
another string. TP (resp. TQ) stores the string P (resp. Q) for every (P,Q) ∈ R, with the
corresponding leaf colored red and labeled by the identifier of the pair and the string P ′
(resp. Q′) for every (P ′, Q′) ∈ B, with the corresponding leaf colored blue and labeled by the

I C A L P 2 0 2 0

27:14 Dynamic Longest Common Substring in Polylogarithmic Time

identifier of the pair. Then, the sought result corresponds to a pair of nodes u ∈ TP and v ∈ TQ
returned by a query to a data structure for the Dynamic Bicolored Trees Problem
defined below for T1 = TP and T2 = TQ, with node weights being their string-depths.

Problem: Dynamic Bicolored Trees Problem
Input: Two weighted trees T1 and T2 of total size at most m, whose leaves are bicolored
and labeled, so that each label corresponds to exactly one leaf of each tree.
Update: Split an edge into two / attach a new leaf to a node / delete a leaf.
Query: Return a pair of nodes u ∈ T1 and v ∈ T2 with the maximum combined
weight that have at least one red descendant with the same label, and at least one blue
descendant with the same label.

To complete the reduction, we have to show how to translate an update in R or B into
updates in TP and TQ. Let us first explain how to represent TP and TQ. For each edge, we
store a handle to a string from the dynamic collection, and indices for a fragment of this
string which represents the edge’s label. For each explicit node, we store edges leading to
its children in a dictionary structure indexed by the first letters of the edges’ labels. For
every leaf, we store its label and color. An insert operation receives a string (given as a
handle from a dynamic collection), together with its label and color, and should create its
corresponding leaf. A delete operation does not actually remove a leaf, but simply removes
its label. However, in order to not increase the space complexity, we rebuild the whole data
structure from scratch after every m updates. This rebuilding does not incur any extra cost
asymptotically; the time required for it can be deamortized using standard techniques.

I Lemma 19. Each update in R or B implies O(1) updates in TP and TQ that can be
computed in O(logn) time.

Proof. Inserting a new leaf, corresponding to string U , to TP requires possibly splitting
an edge into two by creating a new explicit node, and then attaching a new leaf to an
explicit node. To implement this efficiently, we maintain the set C of path-labels of explicit
nodes of TP in a balanced search tree, sorted in lexicographic order. Using lcp queries
(cf. Theorem 12), we binary search for the longest prefix U ′ of U that equals the path-label
of some implicit or explicit node of TP . If this node is explicit, then we attach a leaf to
it. Otherwise, let the successor of U ′ in C be the path-label of node v. We split the edge
(parent(v), v) appropriately and attach a leaf to the newly created node. This allows us to
maintain TP after each insert operation in O(logn) time.

For a delete operation, we can access the leaf corresponding to the deleted string in
O(logn) time using the balanced search tree. J

It thus suffices to show a solution for the Dynamic Bicolored Trees Problem that
processes each update in polylogarithmic time.

We will maintain a heavy-light decomposition of both T1 and T2. This can be done by
using a standard method of rebuilding as used by Gabow [13]. Let L(u) be the number of
leaves in the subtree of u, including the leaves without labels, when the subtree was last
rebuilt. Each internal node u of a tree selects at most one child v and the edge (u, v) is heavy.
All other edges are light. Maximal sequences of consecutive heavy edges are called heavy
paths. The node r(p) closest to the root of the tree is called the root of the heavy path p and
the node e(p) furthest from the root of the tree is called the end of the heavy path. The
following procedure receives a node u of the tree and recursively rebuilds its subtree.

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:15

1: function decompose(u, r) . r is the root of the heavy path containing u.
2: S ← children(u)
3: v ← argmaxv∈S L(v)
4: if L(v) ≥ 5

6 · L(u) then
5: edge (u, v) is heavy
6: decompose(v, r)
7: S ← S \ {v}
8: for v ∈ S do
9: decompose(v, v)

Every root u of a heavy path maintains the number of insertions I(u) in its subtree since
it was last rebuilt. When I(u) ≥ 1

6 ·L(u), we recalculate the values of L(v) for nodes v in the
subtree of u and call decompose(u, u). This maintains the property that L(e(p)) ≥ 2

3L(r(p))
for each heavy path p and leads to the following.

I Proposition 20. There are O(logm) heavy paths above any node.

As rebuilding a subtree of size s takes O(s) time, by a standard potential argument, we
get the following.

I Lemma 21. The heavy-light decompositions of T1 and T2 can be maintained in O(logm)
amortized time per update.

The main ingredient of our structure is a collection of additional structures, each storing
a dynamic set of points. Each such point structure sends its current result to a max-heap,
and after each update we return the largest element stored in the heap. The problem each of
these point structures are designed for is the following.

Problem: Dynamic Best Bichromatic Point
Input: A multiset of at most m bicolored points from [m]× [m].
Update: Insertions and deletions of points from [m]× [m].
Query: Return a pair of points R = (x, y) and B = (x′, y′) such that R is red, B is
blue, and min(x, x′) + min(y, y′) is as large as possible.

We call the pair of points sought in this problem the best bichromatic pair of points.
In Section 4.4 we explain how to modify range trees in order to obtain the following result.

I Lemma 22. There is a data structure for Dynamic Best Bichromatic Point that
processes each update in O(log2 m) amortized time.

Conceptually, we maintain a point structure for every pair of heavy paths from TP and
TQ. However, the total number of points stored in all structures at any moment is only
O(m log2 m) and the empty structures are not actually created. Consider heavy paths p of
T1 and q of T2. Let ` be a label such that there are leaves u in the subtree of r(p) in T1 and
v in the subtree of r(q) in T2 with the same color and both labeled by `. Then, the point
structure should contain a point (x, y) with this color, where x and y are the string-depths
of the nodes of p and q containing u and v in their light subtrees, respectively. It can be
verified that then the answer extracted from the point structure is equal to the sought result,
assuming that the corresponding pair of nodes belongs to p and q, respectively. It remains
to explain how to maintain this invariant when both trees undergo modifications.

I C A L P 2 0 2 0

27:16 Dynamic Longest Common Substring in Polylogarithmic Time

Splitting an edge does not require any changes to the point structures. Each label appears
only once in T1 and T2, and hence by Proposition 20 contributes to only O(log2 m) point
structures. Furthermore, by navigating the heavy path decompositions we can access these
structures efficiently. This allows us to implement each deletion in O(log4 m) amortized time,
employing Lemma 22. To implement the insertions, we need to additionally explain what
to do after rebuilding a subtree of u. In this case, we first remove all points corresponding
to leaves in the subtree of u, then rebuild the subtree, and then proceed to insert points to
existing and potentially new point structures. This can be amortized by the same standard
potential argument if we add another factor of O(log2 n) in the analysis to account for the
fact that we add a point in O(log2 n) point structures for each leaf in the subtree of u. Thus,
insertions require O(log5 n) amortized time as well.

Wrap-up. Lemma 16 reduces our problem to the LCP for Two Families of Pairs of
Strings problem for sets R and B of size Õ(n), so that each substitution in S or T yields
Õ(1) updates to R and B, which can be computed in Õ(1) time due to Lemma 14. The
LCP for Two Families of Pairs of Strings problem is then reduced to the Dynamic
Bicolored Trees Problem for trees T1 and T2 of size Õ(n), so that each update in R or
B yields O(1) updates to the trees, which can be computed in O(logn) time (Lemma 19).
We solve the latter problem by maintaining a heavy-light decomposition of each of the trees
in O(logn) amortized time per update (Lemma 21), and an instance of a data structure for
the Dynamic Best Bichromatic Point problem for each pair of heavy paths. For each
update to the trees, we spend O(log5 n) amortized time to update the point structures.

4.4 Dynamic Best Bichromatic Point
In this section we prove Lemma 22, i.e. design an efficient data structure for the Dynamic
Best Bichromatic Point problem.

With standard perturbation, we can guarantee that all x and y coordinates of points
are distinct. We maintain an augmented dynamic 2D range tree [31] over the multiset of
points. This is a balanced search tree T (called primary) over the x coordinates of all points
in the multiset in which every x coordinate corresponds to a leaf and, more generally, every
node u ∈ T corresponds to a range of x coordinates denoted by x(u). Additionally, every
u ∈ T stores another balanced search tree Tu (called secondary) over the y coordinates of all
points (x, y) ∈ S such that x ∈ x(u). Thus, the leaves of Tu correspond to y coordinates of
such points, and every v ∈ Tu corresponds to a range of y coordinates denoted by y(v). We
interpret every v ∈ Tu as the rectangular region of the plane x(u)× y(v), and, in particular,
each leaf v ∈ Tu corresponds to a single point in the multiset. Each node v ∈ Tu will be
augmented with some extra information that can be computed in constant time from the extra
information stored in its children. Similarly, each node u ∈ T will be augmented with some
extra information that can be computed in constant time from the extra information stored
in its children together with the extra information stored in the root of the secondary tree
Tu. Irrespectively of what this extra information is, as explained by Willard and Lueker [31],
if we implement the primary tree as a BB(α) tree and each secondary tree as a balanced
search tree, each insertion and deletion can be implemented in O(log2 m) amortized time.

Before we explain what is the extra information, we need the following notion. Consider
a non-leaf node u ∈ T and let u`, ur ∈ T be its children. Let v ∈ Tu be a non-leaf node with
children v`, vr ∈ Tu. The regions A = x(u`)× y(v`), B = x(u`)× y(vr), C = x(ur)× y(v`)
and D = x(ur)×y(vr) partition x(u)×y(v) into four parts. We say that two points p = (x, y)

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:17

T

u

ul ur

Tu

vvl vr
A

B

C

D

A

B

C

D

Figure 2 Left: A 2D range tree. Right: Node representing regions A, B, C, D. The best pair for
each case is denoted by a small square.

and q = (x′, y′) with x < x′ are shattered by v ∈ Tu if and only if p ∈ A and q ∈ D or p ∈ B
and q ∈ C (note that the former is only possible when y < y′ while the latter can only hold
when y > y′).

I Proposition 23. Any pair of points in the multiset is shattered by a unique v ∈ Tu (for a
unique u).

Now we are ready to describe the extra information. Each node u ∈ T stores the best
bichromatic pair with x coordinates from x(u). Each node v ∈ Tu stores the best bichromatic
pair shattered by one of its descendants v′ ∈ Tu (possibly v itself). Additionally, each node
v ∈ Tu stores the following information about points of each color in its region:
1. the point with the maximum x,
2. the point with the maximum y,
3. a point with the maximum x+ y.
We need to verify that such extra information can be indeed computed in constant time from
the extra information stored in the children.

I Lemma 24. Let v ∈ Tu be a non-leaf node, and v`, vr be its children. The extra information
of v can be computed in constant time given the extra information stored in v` and vr.

Proof. This is clear for the maximum x, y and x + y of each color, as we can take the
maximum of the corresponding values stored in the children. For the best bichromatic
pair shattered by a descendant v′ of v, we start with considering the best bichromatic
pair shattered by a descendant v′` of v` and v′r of vr. The remaining case is that the best
bichromatic pair is shattered by v itself. Let A,B,C,D be as in the definition of shattering.
Without losing generality we assume that the sought pair is p = (x, y) and q = (x′, y′) with
x < x′, red p and blue q. We consider two cases:
1. p ∈ A and q ∈ D: the best such pair is obtained by taking p with the maximum x+ y

and any q,
2. p ∈ B and q ∈ C: the best such pair is obtained by taking p with the maximum x and q

with the maximum y.
In both cases, we are able to compute the best bichromatic pair shattered by v using the
extra information stored at the children of v. See Figure 2. J

I Lemma 25. Let u ∈ T be a non-leaf node, and u`, ur be its children. The extra information
of v can be computed in constant time given the extra information stored in v`, vr and the
root of Tu.

Proof. We seek the best bichromatic pair with x coordinates from x(u). If the x coordinates
are in fact from x(u`) or x(ur), we obtain the pair from the children of u. Otherwise, the
pair must be shattered by some v ∈ Tu that is a descendant of the root of Tu, so we obtain
the pair from the root of Tu. J

I C A L P 2 0 2 0

27:18 Dynamic Longest Common Substring in Polylogarithmic Time

References
1 Paniz Abedin, Sahar Hooshmand, Arnab Ganguly, and Sharma V. Thankachan. The heaviest

induced ancestors problem revisited. In 29th CPM, pages 20:1–20:13, 2018. doi:10.4230/
LIPIcs.CPM.2018.20.

2 Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching in dynamic texts.
In 11th SODA, pages 819–828, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.
338645.

3 Amihood Amir and Itai Boneh. Locally maximal common factors as a tool for efficient dynamic
string algorithms. In 29th CPM, pages 11:1–11:13, 2018. doi:10.4230/LIPIcs.CPM.2018.11.

4 Amihood Amir and Itai Boneh. Dynamic palindrome detection. CoRR, abs/1906.09732, 2019.
arXiv:1906.09732.

5 Amihood Amir, Itai Boneh, Panagiotis Charalampopoulos, and Eitan Kondratovsky. Repetition
Detection in a Dynamic String. In 27th ESA, pages 5:1–5:18, 2019. doi:10.4230/LIPIcs.
ESA.2019.5.

6 Amihood Amir, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, and Jakub
Radoszewski. Longest common factor after one edit operation. In 24th SPIRE, pages 14–26,
2017. doi:10.1007/978-3-319-67428-5_2.

7 Amihood Amir, Panagiotis Charalampopoulos, Solon P. Pissis, and Jakub Radoszewski.
Longest common substring made fully dynamic. In 27th ESA, pages 6:1–6:17, 2019. doi:
10.4230/LIPIcs.ESA.2019.6.

8 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and static
pattern matching. ACM Trans. Algorithms, 3(2):19, 2007. doi:10.1145/1240233.1240242.

9 Panagiotis Charalampopoulos, Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Linear-time
algorithm for long LCF with k mismatches. In 29th CPM, pages 23:1–23:16, 2018. doi:
10.4230/LIPIcs.CPM.2018.23.

10 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing with
errors and don’t cares. In 36th STOC, pages 91–100, 2004. doi:10.1145/1007352.1007374.

11 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th FOCS, pages
137–143, 1997. doi:10.1109/SFCS.1997.646102.

12 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and algorithms.
In 7th CPM, pages 130–140, 1996. doi:10.1007/3-540-61258-0_11.

13 Harold N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. In 1st SODA, pages 434–443, 1990. URL: http://dl.acm.org/citation.cfm?id=
320176.320229.

14 Travis Gagie, Paweł Gawrychowski, and Yakov Nekrich. Heaviest induced ancestors and
longest common substrings. In 25th CCCG, 2013. URL: http://cccg.ca/proceedings/2013/
papers/paper_29.pdf.

15 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Lacki, and Piotr
Sankowski. Optimal dynamic strings. In 29th SODA, pages 1509–1528, 2018. doi:
10.1137/1.9781611975031.99.

16 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In 47th STOC, pages 21–30, 2015. doi:10.1145/2746539.2746609.

17 Tomohiro I. Longest common extensions with recompression. In 28th CPM, pages 18:1–18:15,
2017. doi:10.4230/LIPIcs.CPM.2017.18.

18 Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions on
Algorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

19 Artur Jeż. Recompression: A simple and powerful technique for word equations. J. ACM,
63(1):4:1–4:51, 2016. doi:10.1145/2743014.

https://doi.org/10.4230/LIPIcs.CPM.2018.20
https://doi.org/10.4230/LIPIcs.CPM.2018.20
http://dl.acm.org/citation.cfm?id=338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.4230/LIPIcs.CPM.2018.11
http://arxiv.org/abs/1906.09732
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.4230/LIPIcs.ESA.2019.5
https://doi.org/10.1007/978-3-319-67428-5_2
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.4230/LIPIcs.ESA.2019.6
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.4230/LIPIcs.CPM.2018.23
https://doi.org/10.4230/LIPIcs.CPM.2018.23
https://doi.org/10.1145/1007352.1007374
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1007/3-540-61258-0_11
http://dl.acm.org/citation.cfm?id=320176.320229
http://dl.acm.org/citation.cfm?id=320176.320229
http://cccg.ca/proceedings/2013/papers/paper_29.pdf
http://cccg.ca/proceedings/2013/papers/paper_29.pdf
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.1145/2631920
https://doi.org/10.1145/2743014

P. Charalampopoulos, P. Gawrychowski, and K. Pokorski 27:19

20 Tomasz Kociumaka, Jakub Radoszewski, and Tatiana A. Starikovskaya. Longest common
substring with approximately k mismatches. Algorithmica, 81(6):2633–2652, 2019. doi:
10.1007/s00453-019-00548-x.

21 Tomasz Kociumaka, Tatiana A. Starikovskaya, and Hjalte Wedel Vildhøj. Sublinear space
algorithms for the longest common substring problem. In 22nd ESA, pages 605–617, 2014.
doi:10.1007/978-3-662-44777-2_50.

22 Yakov Nekrich. A data structure for multi-dimensional range reporting. In 23rd SOCG, pages
344–353, 2007. doi:10.1145/1247069.1247130.

23 Mihai Patrascu. Unifying the landscape of cell-probe lower bounds. SIAM J. Comput.,
40(3):827–847, 2011. doi:10.1137/09075336X.

24 Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput., 35(4):932–963, 2006. doi:10.1137/S0097539705447256.

25 Mihai Pǎtraşcu and Mikkel Thorup. Time-space trade-offs for predecessor search. In 38th
STOC, pages 232–240, 2006. doi:10.1145/1132516.1132551.

26 S. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of patterns using a
labeling paradigm. In 54th FOCS, pages 320–328, 1996. doi:10.1109/SFCS.1996.548491.

27 Tatiana A. Starikovskaya and Hjalte Wedel Vildhøj. Time-space trade-offs for the
longest common substring problem. In 24th CPM, pages 223–234, 2013. doi:10.1007/
978-3-642-38905-4_22.

28 Sharma V. Thankachan, Alberto Apostolico, and Srinivas Aluru. A provably efficient algorithm
for the k-mismatch average common substring problem. Journal of Computational Biology,
23(6):472–482, 2016. doi:10.1089/cmb.2015.0235.

29 Peter Weiner. Linear pattern matching algorithms. In 14th FOCS, pages 1–11, 1973. doi:
10.1109/SWAT.1973.13.

30 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(n). Infor-
mation Processing Letters, 17(2):81–84, 1983. doi:10.1016/0020-0190(83)90075-3.

31 Dan E. Willard and George S. Lueker. Adding range restriction capability to dynamic data
structures. J. ACM, 32(3):597–617, 1985. doi:10.1145/3828.3839.

I C A L P 2 0 2 0

https://doi.org/10.1007/s00453-019-00548-x
https://doi.org/10.1007/s00453-019-00548-x
https://doi.org/10.1007/978-3-662-44777-2_50
https://doi.org/10.1145/1247069.1247130
https://doi.org/10.1137/09075336X
https://doi.org/10.1137/S0097539705447256
https://doi.org/10.1145/1132516.1132551
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1007/978-3-642-38905-4_22
https://doi.org/10.1089/cmb.2015.0235
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1016/0020-0190(83)90075-3
https://doi.org/10.1145/3828.3839

	Introduction
	Preliminaries
	Partially Dynamic LCS
	Fully Dynamic LCS
	Locally Consistent Parsing
	Anchoring the LCS
	A Problem on Dynamic Bicolored Trees
	Dynamic Best Bichromatic Point

