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Abstract
A long line of research on fixed parameter tractability of integer programming culminated with
showing that integer programs with n variables and a constraint matrix with tree-depth d and largest
entry ∆ are solvable in time g(d, ∆)poly(n) for some function g, i.e., fixed parameter tractable when
parameterized by tree-depth d and ∆. However, the tree-depth of a constraint matrix depends on
the positions of its non-zero entries and thus does not reflect its geometric structure. In particular,
tree-depth of a constraint matrix is not preserved by row operations, i.e., a given integer program
can be equivalent to another with a smaller dual tree-depth.

We prove that the branch-depth of the matroid defined by the columns of the constraint matrix
is equal to the minimum tree-depth of a row-equivalent matrix. We also design a fixed parameter
algorithm parameterized by an integer d and the entry complexity of an input matrix that either
outputs a matrix with the smallest dual tree-depth that is row-equivalent to the input matrix or
outputs that there is no matrix with dual tree-depth at most d that is row-equivalent to the input
matrix. Finally, we use these results to obtain a fixed parameter algorithm for integer programming
parameterized by the branch-depth of the input constraint matrix and the entry complexity. The
parameterization by branch-depth cannot be replaced by the more permissive notion of branch-width.
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1 Introduction

Integer programming is a fundamental problem of importance in both theory and practice.
It is well-known that integer programming in fixed dimension, i.e., with a bounded number
of variables, is polynomially solvable since the work of Lenstra and Kannan [21, 26] from
the 1980’s. Much subsequent research has focused on studying extensions and speed-ups of
the results of Kannan and Lenstra. However, on the side of integer programs with many
variables, research has been sparser. Until relatively recently, the most prominent tractable
case is that of totally unimodular constraint matrices, i.e., matrices with all subdeterminants
equal to 0 and ±1; in this case, all vertices of the feasible region are integral and algorithms
for linear programming can be applied.

Besides total unimodularity, many recent results [1, 2, 5, 6, 9, 10, 14, 15] on algorithms
for integer programming exploited various structural properties of the constraint matrix
yielding efficient algorithms for n-fold IPs, tree-fold IPs, multi-stage stochastic IPs, and
IPs with bounded fracture number and bounded tree-width. This research culminated with
an algorithm by Levin, Onn and the third author [25] who constructed a fixed parameter
algorithm for integer programs with bounded (primal or dual) tree-depth and bounded
coefficients. We remark that it is possible to show that the problem is W[1]-hard when
parameterized by tree-depth only [10,24] and NP-hard even for instances with coefficients
and tree-width (even path-width) bounded by two [7, Lemma 102] (also cf. [10, 25]).

The tree-depth of a constraint matrix depends on the position of its non-zero entries
and thus does not properly reflect the true geometric structure of the integer program. In
particular, a matrix with a large (dual) tree-depth may be row-equivalent to another matrix
with small (dual) tree-depth that is susceptible to efficient algorithms. We will overcome this
drawback with tools from matroid theory. To do so, we consider the branch-depth of the
matroid defined by the columns of the constraint matrix and refer to this parameter as to
the branch-depth of the matrix. Since this matroid is invariant under row operations, the
branch-depth of a matrix is row-invariant, i.e., preserved by row operations, and captures
the true simplicity of the geometric structure of the problem, which can be obfuscated in the
case of tree-depth by the choice of the basis.

Our main results can be summarized as follows (we state the results exactly in the next
subsection).

The branch-depth of a matrix A is equal to the minimum dual tree-depth of a matrix
row-equivalent to A (Theorem 1).
There exists a fixed parameter algorithm for computing a matrix with minimum tree-depth
that is row-equivalent to an input matrix (Theorem 32).

Our second result is based on a fixed parameter algorithm for computing the branch-depth
of a vector matroid represented over a finite field (Theorem 28). Computing decompositions
of such matroids is of interest in relation to model checking, in particular monadic second
order model checking is fixed parameter tractable for matroids with bounded branch-width
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that are representable over finite fields [16–18], also see [11]. The existing fixed parameter
algorithm [19, 20] for computing the branch-width of such matroids relies on the upper
bound on the size of excluded minors for branch-width by Geelen et al. [12] and needs to
precompute the (likely very large) list of excluded minors. We could follow a similar path in
the setting of branch-depth, however, we decided to design a completely explicit algorithm.
While this turned out surprisingly challenging, the hidden constants are significantly better,
and we hope that our techniques can be extended to the even more challenging setting of
branch-width.

We remark that our first result in conjunction with existing results on approximating
branch-depth of a matroid (Theorem 6) yields a fixed parameter algorithm for integer
programs with bounded branch-depth (Corollary 4). Since the branch-depth of the constraint
matrix is always at most its dual tree-depth (Proposition 12), our algorithm extends the
algorithm presented in [25] for integer programs with small dual tree-depth. Since the
algorithm from our second result (Theorem 32) preserves that the entry complexity is
bounded (cf. Theorem 3), it can also be used a preprocessing step for the algorithm presented
in [25], which gives another proof of Corollary 4. Our results on fixed parameter tractability
of integer programming cannot be extended to constraint matrices with bounded branch-
width (see the discussion at the end of this section); however, Cunningham and Geelen [3]
(also cf. [27] for detailed proofs and implementation) provided a slicewise pseudopolynomial
algorithm for IPs with non-negative matrices with bounded branch-width, i.e., the problem
belongs to the complexity class XP for unary encoding of input.

1.1 Exact statement of our results
To state our results precisely, we need to fix some notation. We consider the general integer
programming (IP) problem in the standard form:

min {f(x) | Ax = b , l ≤ x ≤ u , x ∈ Zn} , (1)

where A ∈ Zm×n is an integer m×n matrix, b ∈ Zm, l, u ∈ (Z∪{±∞})n, and f : Zn → Z is
a separable convex function, i.e., f(x) =

∑n
i=1 fi(xi) where fi : Z→ Z are convex functions.

In particular, each fi(xi) can be a linear function of xi. We remark that integer programming
is well-known to be NP-hard even when f(x) ≡ 0, or when the largest coefficient ∆ := ‖A‖∞
is 1 (by a reduction from the Vertex Cover problem), or when m = 1 (by a reduction from
the Subset Sum problem). We refer the reader to Section 2 for the definitions of the primal
and dual tree-depth of a matrix A and the branch-depth of A.

We now demonstrate the drawback of the parameterization of integer programs by
tree-depth that we have mentioned earlier. Consider the following matrices A and A′.

A =



1 1 · · · 1 1
2 1 · · · 1 1

1 2
. . . 1 1

...
. . . . . . . . . 1

1 1
. . . 2 1

1 1 · · · 1 2


and A′ =



1 1 · · · 1 1
1 0 · · · 0 0

0 1
. . . 0 0

...
. . . . . . . . . 0

0 0
. . . 1 0

0 0 · · · 0 1


.

The dual tree-depth of the matrix A is equal to the number of its rows while the dual
tree-depth of A′ is two (its dual graph is a star); we remark that the branch-depth of both
matrices A and A′ is also equal to two. Since the matrices A and A′ are row-equivalent,
the integer programs determined by them ought to be of the same computational difficulty.
More precisely, consider the following matrix B:
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26:4 Optimal Tree-Depth and Integer Programming

B =



1 0 0 · · · 0 0
−1 1 0 · · · 0 0

−1 0 1
. . . 0 0

−1
...

. . . . . . . . . 0

−1 0 0
. . . 1 0

−1 0 0 · · · 0 1


.

Since A′ = BA, it is possible to replace an integer program of the form (1) with an integer
program with a constraint matrix A′ = BA, right hand side b′ = Bb, and bounds l′ = l and
u′ = u, and attempt to solve this new instance of IP which has dual tree-depth two.

In Section 4, we first observe that the branch-depth of a matrix A is at most its dual
tree-depth, and prove that the branch-depth of a matrix A is actually equal to the minimum
dual tree-depth of a matrix A that is row-equivalent to A:

I Theorem 1. Let A be a matrix over a field F. The branch-depth of A is equal to the
minimum dual tree-depth of a matrix A′ that is row-equivalent to A, i.e., that can be obtained
from A by row operations.

The tools developed to prove Theorem 1 together with existing results on matroid branch-
depth yield an algorithm that given a matrix A of small branch-depth yields a matrix B that
transforms the matrix A to a row-equivalent matrix with small dual tree-depth. Recall that
the entry complexity of a matrix A, denoted by ec(A), is the maximum length of the binary
encoding of an entry Ai,j (the length of binary encoding a rational number r = p/q with p

and q being coprime is dlog2 pe+ dlog2 qe+ 1).

I Theorem 2. There exist a computable function g : N→ N and an FPT-parameter algorithm
parameterized by d with running time polynomial in ec(A), n and m that for an input m× n

integer matrix A and an integer d

1. outputs that the branch-depth of A is larger than d, or
2. outputs an invertible rational matrix B ∈ Qm×m such that the dual tree-depth of BA is

at most 4d and the entry complexity of BA is O(g(d) ec(A)).
However, we go further and design a fixed parameter algorithm for computing the branch-
depth of a vector matroid (Theorem 32) and use this algorithm to prove the following
strengthening of Theorem 2.

I Theorem 3. There exist a computable function g′ : N2 → N and an FPT-parameter
algorithm parameterized by d with running time polynomial in ec(A), n and m that for an
input m× n integer matrix A and an integer d

1. outputs that the branch-depth of A is larger than d, or
2. outputs an invertible rational matrix B ∈ Qm×m such that the dual tree-depth of BA is

equal to the branch-depth of A and the entry complexity of BA is at most g′(d, ec(A)).
As explained above, Theorems 2 and 3 allow us to perform row operations to obtain an
equivalent integer program with small dual tree-depth from an integer program with small
branch-depth. In particular, if the instance of an integer program described as in (1) has
bounded branch-depth, then Theorem 3 yields a matrix B such that the instance with
A′ = BA, b′ = Bb, l′ = l and u′ = u has dual tree-depth equal to branch-depth. To apply
the algorithm from [25], we need to transform the matrix A′ into an integer matrix. We
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do so by multiplying each row by the least common multiple of the denominators of the
fractions in this row; note that the value of this least common multiple is at most 22ec(A′)

since there can be at most 2ec(A′) different denominators appearing in the row. In particular,
the entry complexity of the resulting integer matrix is bounded by a function of the entry
complexity of A′. Also note that since the parameter dependence in the algorithm of [7] is
roughly ec(A)tdD(A)2·2tdD(A) , improving the exponent by replacing A with a row-equivalent
matrix with smaller dual tree-depth likely outweighs the increase in the coefficients, which
enters as the base of the exponent. Hence, we obtain the following corollary of the theorem.

I Corollary 4. There exists a computable function g′′ : N2 → N such that integer programs
with n variables and a constraint matrix A can be solved in time polynomial in g′′(bd(A), ec(A))
and n, where bd(A) and ec(A) are the branch-depth and the entry complexity of the matrix
A, i.e., integer programming is fixed parameter tractable when parameterized by branch-depth
and entry complexity.

We note that the results of [7,25] give a strongly fixed-parameter algorithm (i.e., an algorithm
whose number of arithmetic operations does not depend on the size of the numbers involved)
for integer programming in the regimes discussed above if the objective function f is a
linear function (i.e., f(x) = wx for some w ∈ Zn). Hence, the corollary above also gives a
strongly-polynomial algorithm when f is a linear function.

We also remark that existing hardness results imply that the parameterization both by
branch-depth and entry complexity in Corollary 4 is necessary unless FPT =W[1], i.e., it
is not sufficient to parameterize instances only by one of the two parameters. Likewise, it
is not possible to replace the branch-depth parameter by the more permissive notion of
branch-width [3]. In fact, even solving integer programs with constant dual tree-width and
constant entry complexity is NP-hard [25] (the dual tree-width of A is an upper bound on the
branch-width of the vector matroid formed by columns of A). Let us also mention that Fomin
et al. [8] proved lower bounds on the complexity of integer programming parameterized by
branch-width under the exponential-time hypothesis.

The algorithm given in Corollary 4 is parameterized by the branch-depth of the vector
matroid formed by the columns of the matrix A, i.e., it corresponds to the dual tree-depth of
A. It is natural to ask whether the tractability also holds in the setting dual to this one, i.e.,
when the branch-depth of the vector matroid formed by the rows of the matrix A is bounded.
This hope is dismissed in Proposition 14.

2 Notation

In this section, we fix the notation used throughout the paper and present the notions of
tree-depth of a graph and of branch-depth of a matroid, including the results concerning
them that we will need further. To avoid our presentation becoming cumbersome through
adding or subtracting one at various places, we define the depth of a rooted tree to be the
maximum number of edges on a path from the root to a leaf, and define the height of a
rooted tree to be the maximum number of vertices on a path from the root to a leaf, i.e., the
height of a rooted tree is always equal to its depth increased by one. The depth of a vertex
in a rooted tree is the number of edges on the path from the root to that particular vertex.
The height of a rooted forest F is the maximum height of a rooted tree in F . The closure
cl(F ) of a rooted forest is the graph obtained by adding edges from each vertex to all its
descendants. Finally, the tree-depth td(G) of a graph G is the minimum height of a rooted
forest F such that the closure cl(F ) of the rooted forest F contains G as a subgraph. It can
be shown that the path-width of a graph G is at most its tree-depth td(G) decreased by
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26:6 Optimal Tree-Depth and Integer Programming

one, and in particular, the tree-width of G is at most its tree-depth decreased by one (in
this extended abstract, we do not give the definitions of path-width and tree-width here due
to space limitations). We would like to note that the tree-depth as used in [23] is equal to
the minimum depth of a rooted tree F such that G ⊆ cl(F ), however, we here follow the
definition of tree-depth that is standard; still, we wish to highlight this subtle difference
since [23] is one of our main references.

The primal graph of an m × n matrix A is the graph GP (A) with vertices {1, . . . , n},
i.e., its vertices correspond to the columns of A, where vertices i and j are connected if A

contains a row whose i-th and j-th entries are non-zero. The primal tree-depth tdP (A) of a
matrix A is the tree-depth of its primal graph. Analogously, the dual graph of A is the graph
GD(A) with vertices {1, . . . , m}, i.e., its vertices correspond to the rows of A, where vertices
i and j are connected if A contains a column whose i-th and j-th entries are non-zero, i.e.,
the dual graph GD(A) is isomorphic to the primal graph of the matrix AT . Finally, the dual
tree-depth of A, which is denoted by tdD(A), is the tree-depth of the dual graph tD(A).

We next introduce the notion of branch-depth of a matroid. To keep our presentation
self-contained, we start by recalling the definition of a matroid. A matroid M is a pair (X, I),
where I is a non-empty hereditary collection of subsets of X that satisfies the augmentation
axiom. The collection I is hereditary if for every X ′ ∈ I, I contains all subsets of X ′. The
augmentation axiom asserts that for all X ′ ∈ I and X ′′ ∈ I with |X ′| < |X ′′|, there exists
an element x ∈ X ′′ \X ′ such that X ′ ∪ {x} ∈ I. The sets contained in I are referred to
as independent. The rank r(X ′) of a set X ′ ⊆ X is the size of the maximum independent
subset of X ′; the rank r(M) of a matroid M = (X, I) is the rank of X and an independent
set of size r(M) is a basis of M . A circuit is a set X ′ ⊆ X such that X ′ is not independent
but every proper subset of X ′ is. Two elements of x and x′ are said to be parallel if
r({x}) = r({x′}) = r({x, x′}) = 1, and an element x of M is a loop if r({x}) = 0.

Two particular examples of matroids are graphic matroids and vector matroids. If G

is a graph, then the pair (E(G), I) where I contains all acyclic subsets of edges of G is a
matroid and is denoted by M(G); matroids of this kind are called graphic matroids. If X is a
set of vectors of a vector space and I contains all subsets of X that are linearly independent,
then the pair (X, I) is a matroid; matroids of this kind are vector matroids. In the setting of
vector matroids, the rank of X ′ ⊆ X is the dimension of the linear hull of X ′. If (X, I) is a
vector matroid, we write L (X ′) for the linear hull of the vectors contained in X ′ ⊆ X and
abuse the notation by writing dim X ′ for dimL (X ′).

In what follows, we will need a notion of a quotient of a vector space, which we now
recall. If A is a vector space and K a subspace of A, the quotient space A/K is a vector
space of dimension dim A− dim K obtained from A by considering cosets of A given by K

and inheriting addition and scalar multiplication from A; see e.g. [13] for further details if
needed. One can show show for every subspace K of A, there exists a subspace B of A with
dimension dim A− dim K such that each coset contains a single vector from B, i.e., every
vector w of A can be uniquely expressed as the sum of a vector wB of B and a vector wK of
K. We call the vector wB to be the quotient of w by K. Note that the quotient of a vector
is not uniquely defined by K, however, it becomes uniquely defined when the subspace B

is fixed.
A depth-decomposition of a matroid M = (X, I) is a pair (T, f), where T is a rooted tree

and f is a mapping from X to the leaves of T such that the number of edges of T is the
rank of M and the following holds for every subset X ′ ⊆ X: the rank of X ′ is at most the
number of edges contained in the paths from the root to the vertices f(x), x ∈ X ′. If the
matroid M contains two parallel elements x and x′, we will always assume that f(x) = f(x′).
The branch-depth bd(M) of a matroid M is the smallest depth of a tree T that forms a



T. F.N. Chan, J.W. Cooper, M. Koutecký, D. Král’, and K. Pekárková 26:7

depth-decomposition of M . For example, if M = (X, I) is a matroid of rank r, T is a path
with r edges rooted at one of its end vertices, and f is a mapping such that f(x) is equal to
the non-root end vertex of T for all x ∈ X, then the pair (T, f) is a depth-decomposition of
M . In particular, the branch-depth of any matroid M is well-defined and is at most the rank
of M . We remark that the notion of branch-depth of a matroid given here is the one defined
in [22,23]; another matroid parameter, which is also called branch-depth but is different from
the one that we use here, is defined in [4]. Finally, the branch-depth bd(A) of a matrix A is
the branch-depth of the vector matroid formed by the columns of A. Since the vector matroid
formed by the columns of A and the vector matroid formed by the columns of any matrix
row-equivalent to A are the same, the branch-depth of A is invariant under row operations.

An extended depth-decomposition of a vector matroid M = (X, I) is a triple (T, f, g) such
that (T, f) is a depth-decomposition of M and g is a bijective mapping from the non-root
vertices of T to a basis of the linear hull of X that satisfies that every element x ∈ X is
contained in the linear hull of the g-image of the non-root vertices on the path from f(x) to
the root of T . We next state and prove a simple proposition on the way that the vectors
forming M are expressed as linear combinations of the vectors of the base formed by the
g-image.

I Proposition 5. Let (T, f, g) be an extended depth-decomposition of a vector matroid M .
Let X ′ be a subset of elements of M and let X ′′ be an independent subset of X ′ with r(X ′)
elements. Then for every vector x′ ∈ X ′, there is a vector x′′ ∈ X ′′ such that x′ is contained
in the linear hull of the g-images of the vertices on the path from f(x′′) to the root.

If (T, f, g) is an extended depth-decomposition of a matroid M and all g-images are elements
of the matroid M , then we say that the extended depth-decomposition is principal. Kardoš
et al. [23, Corollary 3.17] designed an algorithm that outputs an approximation of an optimal
depth-decomposition; we state the result here for the case of vector matroids.

I Theorem 6. There exists a polynomial-time algorithm that given a vector matroid M and
an integer d, either outputs that the branch-depth of M is larger than d or outputs a principal
extended depth-decomposition of M of depth at most 4d.

If (T, f, g) is an extended depth-decomposition and u is a vertex of T , then Ku is the linear
hull of the g-images of the vertices on the path from u to the root of T ; in particular, if u

is the root, then Ku contains the zero vector only. It will always be clear from the context
for which extended depth-decomposition of M the spaces Ku are defined since the vertex u

determines which rooted tree T is considered.
A branch of a rooted tree T is a subtree S rooted at a vertex u of T , with u having at

least two children, such that S contains exactly u, one child u′ of u, and all descendants
of u′. In particular, a rooted tree has a branch if and only if it has a vertex with at least
two children. A branch S is primary if every ancestor of the root of S has exactly one child.
Every rooted tree T that is not a rooted path has at least two primary branches and all
primary branches are rooted at the same vertex. We write Ŝ for the set of elements of the
matroid M mapped by f to the leaves of S and ‖S‖ for the number of edges of S. Let S be
a branch of T and S1, . . . , Sk be the other branches with the same root. The branch S is at
capacity if

r
(

X \
(

Ŝ1 ∪ · · · ∪ Ŝk

))
= r(M)− ‖S1‖ − ‖S2‖ − · · · − ‖Sk‖,

where X is the set of all elements of the matroid M . Note that if S is primary, then the left
side of the equality is r(Ŝ) and the right side is h + ‖S‖ in this case, where h is the depth
of the root of S In particular, a primary branch S is at capacity if and only if the rank of

ICALP 2020



26:8 Optimal Tree-Depth and Integer Programming

root

u

S

T

root

u

S

T ′

Figure 1 The trees T and T ′ from the statement of Lemma 8.

Ŝ is equal to the sum of ‖S‖, i.e., if and only if the rank inequality from the definition of
a depth-decomposition holds with equality for the set Ŝ. Finally, a branch S rooted at a
vertex u is solid if the matroid (M/Ku)

[
Ŝ
]
is connected.

3 Optimal extended depth-decompositions

The goal of this section is to show that every vector matroid has an extended depth-
decomposition with depth equal to its branch-depth. To do so, we start with noting that
branches rooted at the root of the decomposition tree are always at capacity; the proof is
left due to space limitations.

I Lemma 7. Let (T, f) be a depth-decomposition of a vector matroid M . If T has a branch
S rooted at the root of T , then S is at capacity.

The following lemma is a core of an argument that every matroid has a depth-decompo-
sition of optimal depth such that each primary branch is at capacity. See Figure 1 for the
illustration of the operation described in the statement of the lemma.

I Lemma 8. Let (T, f) be a depth-decomposition of a vector matroid M . Assume that T

contains a primary branch S that is not at capacity. Let u be the root of S, and let T ′ be the
rooted tree obtained from T by changing the root of S to be the parent of u. Then, (T ′, f) is
a depth-decomposition of M .

Proof. Let X be all elements of M and fix a subset X ′ of X. We need to show that dim X ′

is at most the number e0 of edges on the paths in T ′ from the vertices in the f -image of X ′ to
the root. If X ′ contains an element of X \ Ŝ, then the number of such edges is the same in the
trees T and T ′ and the inequality follows from the fact that (T, f) is a depth-decomposition
of M . Hence, we will assume that X ′ is a subset of Ŝ. Observe that collectively the primary
branches of T different from S contain r− h−‖S‖ edges, where h is the depth of the root of
S. We derive using the fact that (T, f) is a depth-decomposition the following:

e0 + 1 + (r − h− ‖S‖) ≥ dim X ′ ∪ (X \ Ŝ)

= dim X ′ + dim X \ Ŝ − dimL (X ′) ∩ L
(

X \ Ŝ
)

≥ dim X ′ + dim X \ Ŝ − dimL
(

Ŝ
)
∩ L

(
X \ Ŝ

)
= dim X ′ + dim X \ Ŝ − (dim Ŝ + dim X \ Ŝ − dim X)

= dim X ′ − dim Ŝ + r.
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This implies that dim X ′ is at most

e0 + dim Ŝ + 1− h− ‖S‖ ≤ e0,

where the inequality follows using that S is not at capacity, i.e., dim Ŝ < h + ‖S‖. Hence,
(T ′, f) is a depth-decomposition of M . J

We can obtain the following by iteratively applying Lemma 8.

I Lemma 9. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) of depth d.
There exists a depth-decomposition of M of depth at most d such that every primary branch
is at capacity.

The following lemma describes the way how the structure of the vector matroids is
captured by depth-decompositions such that each primary branch is at capacity.

I Lemma 10. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) such
that T is not a rooted path and each primary branch of T is at capacity. Let S1, . . . , Sk be
the primary branches of T , and let A1, . . . , Ak be the linear hulls of Ŝ1, . . . , Ŝk, respectively.
Further, let h be the depth of the common root of S1, . . . , Sk in T . There exists a subspace
K of dimension h such that Ai ∩Aj = K for all 1 ≤ i < j ≤ k.

We are now ready to prove the main theorem of this section.

I Theorem 11. Let (T, f) be a depth-decomposition of a vector matroid M = (X, I) of depth
d. There exists an extended depth-decomposition of M of depth at most d.

Proof. The proof proceeds by induction on the rank of M . By Lemma 9, we can assume
that all primary branches of T are at capacity. If T is a rooted path, we assign elements of a
basis of L (X) to the non-root vertices of T arbitrarily, i.e., we choose g to be any bijection
to a basis of L (X), which yields an extended depth-decomposition (T, f, g) of M . Note that
if the rank of M is one, then T is the one-edge rooted path, i.e., this case covers the base of
the induction in particular.

We next assume that T is not a rooted path for the rest of the proof. Let S1, . . . , Sk be
the primary branches of T , and let h be the depth of the common root of S1, . . . , Sk. By
Lemma 10, there exists a subspace K of dimension h such that the intersection of linear
hulls of Ŝi and Ŝj is K for all 1 ≤ i < j ≤ k; let b1, . . . , bh be an arbitrary basis of K.

We define Mi, i = 1, . . . , k, to be the matroid such that the elements of Mi are Ŝi and
X ′ ⊆ Ŝi is independent if and only if the elements X ′ ∪ {b1, . . . , bh} are linearly independent.
In particular, the rank of X ′ ⊆ Ŝi in Mi is equal to dim X ′ ∪K − h. The matroid Mi can
be viewed as obtained by taking the vector matroid with the elements Ŝi ∪ {b1, . . . , bh} and
contracting the elements b1, . . . , bh. In particular, Mi is a vector matroid, and the vector
representation of Mi can be obtained from Ŝi by taking quotients by K. Note that the rank
of Mi is dim Ŝi ∪K − h, i.e., its rank is smaller than the rank of M and we will be able to
eventually apply induction to it.

Let fi be the restriction of f to Ŝi. We claim that (Si, fi) is a depth-decomposition of
Mi. Let X ′ be a subset of Ŝi, and let ei be the number of edges contained in the union of
paths from the elements f(x), x ∈ X ′, to the root of Si. By the definition of Mi, the rank of
X ′ in Mi is equal to dim X ′ ∪K − h. Choose an arbitrary j 6= i, 1 ≤ j ≤ k. Since (T, f) is a
depth-decomposition of M , the intersection of linear hulls of Ŝi and Ŝj is K, and the branch
Sj is at capacity, i.e., dim Ŝj = ‖Sj‖+ h, we obtain that the rank of X ′ in Mi is equal to
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dim X ′ ∪K − h = dim X ′ ∪ Ŝj − dim Ŝj

≤ ei + ‖Sj‖+ h− dim Ŝj = ei.

Hence, (Si, fi) is a depth-decomposition of Mi.
We now apply induction to each matroid Mi and its depth-decomposition (Si, fi), i =

1, . . . , k, to obtain extended depth-decompositions (S′i, f ′i , gi) of Mi such that the depth of S′i
is at most the depth of Si. Let T ′ be a rooted tree obtained from a rooted path of length h

by identifying its non-root end with the roots of S′1, . . . , S′k. Note that the depth of T ′ does
not exceed the depth of T . Further, let f ′ be the unique function from X to the leaves of T

such that the restriction of f ′ to the elements of Mi is fi. Finally, let g be any function from
the non-root vertices of T such that the h non-root vertices of the path from the root are
mapped to the vectors b1, . . . , bh by g and g(v) = gi(v) for every non-root vertex v of Si.

We claim that (T ′, f ′, g) is an extended depth-decomposition of M . We first verify that,
for every x ∈ X, f ′(x) is contained in the linear hull of the g-image of the non-root vertices
on the path from f ′(x) to the root. Fix x ∈ X and let i be such that x ∈ Ŝi. Since (S′i, f ′i , gi)
is an extended depth-decomposition of Mi, x is contained in the linear hull of K and the
gi-images of the non-root vertices on the path from f ′(x) = fi(x) to the root of S′i. Hence, x

is contained in the linear hull of the g-image of the non-root vertices on the path from f ′(x)
to the root of T ′.

Consider now an arbitrary subset X ′ ⊆ X. We have already established that all elements
of X ′ are contained in the linear hull of the g-image of the non-root vertices on the paths
from f ′(x), x ∈ X ′, to the root of T ′. Since the dimension of this linear hull is equal to the
number of non-root vertices on such paths, which is equal to the number of edges of the
paths, it follows that (T ′, f ′) is a depth-decomposition of M . J

4 Optimal tree-depth of a matrix

In this section, we relate the optimal dual tree-depth of a matrix A to its branch-depth. We
start with observing that the branch-depth of a matrix A is at most its dual tree-depth; the
proof is left due to space limitations.

I Proposition 12. If A is an m× n matrix, then bd(A) ≤ tdD(A).

We next establish the main theorem of this section.

I Theorem 13. Let A be an m×n matrix of rank m, M the vector matroid formed by columns
of A, and (T, f, g) an extended depth-decomposition of M . Further, let Im(g) = {w1, . . . , wm}.
The dual tree-depth of the m× n matrix A′ such that the j-th column of A is equal to

m∑
i=1

A′ijwi

is at most the depth of the tree T .

Proof. Let F be the rooted forest obtained from T by removing the root and associate the
i-th row of A′ with the vertex v of F such that g(v) = wi. Note that the height of F is the
depth of T . We will establish that the dual graph GD(A′) is contained in the closure cl(F )
of F . Let i and i′, 1 ≤ i, i′ ≤ m, be such that the vertices of F associated with the i-th and
i′-th rows of A′ are adjacent in GD(A′). This means that there exists j, 1 ≤ j ≤ n, such that
A′ij 6= 0 and A′i′j 6= 0. Let v be the leaf of T such that the j-th column of A is mapped by f
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to v. The definition of an extended depth-decomposition yields that the j-th column is a
linear combination of the g-image of the non-root vertices on the path from v to the root of
T . In particular, the path contains the two vertices of T mapped by g to wi and wi′ ; these
two vertices are associated with the i-th and i′-th rows of A′. Hence, the vertices associated
with the i-th and i′-th rows are adjacent in cl(F ). We conclude that GD(A′) is a subgraph
of cl(F ). J

Proposition 12 and Theorem 11 combine to a proof of Theorem 1.

5 Parameterized algorithms for integer programming

The main purpose of this section is to combine Theorem 1 with the existing approximation
algorithm for branch-depth (Theorem 6) to obtain an approximation algorithm for computing
a row-equivalent matrix with small dual tree-depth if it exists.

Proof of Theorem 2. Let A be an m× n matrix. Without loss of generality, we can assume
that the rows of A are linearly independent, i.e., the rank of A is m. This also implies that
the rank of the column space of A is m, in particular, n ≥ m.

We apply the approximation algorithm described in Theorem 6 to the vector matroid M

formed by the columns of the matrix A, and we obtain an extended depth-decomposition
(T, f, g) of M . If the depth of T is larger than 4d, then the branch-depth of A is larger than
d; we report this and stop. Let Bg be the matrix with the columns formed by the vectors in
Im(g) and let B = B−1

g . Note that the matrix A′ from the statement of Theorem 13 is equal
to BA. By Theorem 13, the dual tree-depth of A′ is at most 4d. The proof that the entry
complexity of A′ is at most O(d · 4d · ec(A)) is left due to space limitations. J

Theorem 2 yields Corollary 4, which asserts that integer programming is fixed parameter
tractable when parameterized by the branch-depth and the entry complexity of the constraint
matrix. We complement this corollary by showing that integer programming is not fixed
parameter tractable when parameterized by the “primal” branch-depth.

I Proposition 14. Integer programming is NP-hard for instances with constraint matrices A

satisfying bd(AT ) = 1 and ec(A) = 1, i.e., for instances such that the vector matroid formed
by rows of the constraint matrix has branch-depth one.

6 Structure of extended depth-decompositions

In this section, we present structural results on extended depth-decompositions that we need
to design a fixed parameter algorithm to compute a depth-decomposition of a vector matroid
with an optimal depth. The proofs of the next two lemmas are left due to space limitations;
we note that the first of the two lemmas can be viewed as a generalization of Lemma 10.

I Lemma 15. Let (T, f) be a depth-decomposition of a vector matroid M and let U be a set
of vertices of T such that every vertex contained in U has at least two children and every
ancestor of a vertex in U with at least two children is contained in U . Assume that every
branch of T rooted at a vertex from U is at capacity. Every vertex u ∈ U can be associated
with a subspace Lu of the linear hull of the elements of M such that the dimension of Lu is
the depth of u and the following holds. Let u be a vertex of U , let S1, . . . , Sk be all branches
rooted at u, and let A1, . . . , Ak be the linear hulls of Ŝ1, . . . , Ŝk, respectively. If each ancestor
of u has a single child, let L0 be the vector space containing the zero vector only; otherwise,
let u′ be the nearest ancestor of u with at least two children, and let L0 be the space Lu′ . It
holds that L (Ai ∪ L0) ∩ L (Aj ∪ L0) = Lu for all 1 ≤ i < j ≤ k.
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I Lemma 16. Let (T, f) be a depth-decomposition of a vector matroid M , u1 a vertex of T

with at least 2 children, and u2, . . . , uk all ancestors of u1 with at least two children (listed
in the increasing distance from u1). Assume that every branch rooted at one the vertices
u1, . . . , uk is at capacity, and let L1 be the space Lu1 from the statement of Lemma 15 applied
with U = {u1, . . . , uk}. Further, let S1 be any branch rooted at u1 and f1 the restriction of
f to S1. The pair (S1, f1) is a depth-decomposition of the vector matroid (M/L1)

[
Ŝ1

]
and

a branch of (S1, f1) is at capacity if and only if it is at capacity in (T, f). In addition, if
(S′1, f ′1) is another depth-decomposition of the vector matroid (M/L1)

[
Ŝ1

]
, then (T ′, f ′) is

a depth-decomposition of the vector matroid M , where T ′ is obtained from T by replacing
S1 with S′1, and the function f ′ is defined as f ′(x) = f ′1(x) for x ∈ Ŝ1, and f ′(x) = f(x)
otherwise.

Lemmas 15 and 16 allow to extend Lemma 8 to all branches.

I Lemma 17. Let (T, f) be a depth-decomposition of a vector matroid M , and S0 a branch
of T rooted at a vertex u0 such that S0 is not at capacity. Suppose that every branch rooted
at an ancestor of u0 is at capacity. Let T ′ be the rooted tree obtained from T by changing the
root of S0 to be the parent of u0. Then, (T ′, f) is a depth-decomposition of M .

Lemmas 15–17 yield an iterative algorithm described in the next theorem.

I Theorem 18. There exists a polynomial time algorithm that given a vector matroid M

and a depth-decomposition (T, f) of M outputs an extended depth-decomposition (T ′, f ′, g) of
M such that the depth of T ′ is at most the depth of T and every branch of T ′ is at capacity.

We obtain the following two statements as corollaries of Theorem 18.

I Corollary 19. Every vector matroid M has a depth-decomposition (T, f) with depth bd(M)
such that every branch of T is at capacity.

I Corollary 20. If (T, f) is a depth-decomposition of a vector matroid M , then there exists
g such that (T, f, g) is an extended depth-decomposition of M .

We conclude this section with a theorem that asserts that every vector matroid has a
depth-decomposition of minimum depth that has a special structure. We need three auxiliary
lemmas.

I Lemma 21. Let M be a vector matroid and M1, . . . , Mk be its components. Further,
let (Ti, fi, gi) be an extended depth-decomposition of Mi. Let T be the rooted tree obtained
from the trees T1, . . . , Tk by identifying the roots of the trees, let f be the mapping from the
elements of M to the leaves of T such that f(x) = fi(x) if x belongs to Mi, and let g be
the mapping such that g(v) = gi(v) if v is a non-root vertex of Ti. The triple (T, f, g) is an
extended depth-decomposition of M .

I Lemma 22. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let u be a vertex with at least two children. If S is a branch rooted at u, then Ŝ is a union of
components of M/Ku.

I Lemma 23. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let u be a vertex with at least two children. Further, let S be a branch rooted at u and
(T ′, f ′, g′) be an extended depth-decomposition of the matroid (M/Ku)

[
Ŝ
]
. Let T ′′ be the

rooted tree obtained by removing from T the branch S and identifying the root of T ′ with
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u, setting f ′′(x) = f ′(x) for elements x ∈ Ŝ and f ′′(x) = f(x) for other elements x of M ,
and setting g′′(v) = g(v) for vertices of T not contained in S and g′′(v) = g′(v) + Ku for
non-root vertices of T ′. The triple (T ′′, f ′′, g′′) is an extended depth-decomposition of M .

We are now ready to prove the final theorem of this section.

I Theorem 24. Every vector matroid M has an extended depth-decomposition (T, f, g) of
depth bd(M) such that every branch of T is both at capacity and solid.

Proof. We start with a depth-decomposition (T, f, g) of M with depth td(M) and modify
it iteratively as follows. At each iteration, we first apply Theorem 18 to obtain a depth-
decomposition such that every branch is at capacity. If every branch is solid, we stop.
If there is a branch S that is not solid, we proceed as follows. Since S is not solid, the
matroid (M/Ku)

[
Ŝ
]
is not connected, where u is the root of S. Let M1, . . . , Mk be the

components of the matroid (M/Ku)
[
Ŝ
]
and let Xu be the set containing all loops of the

matroid (M/Ku)
[
Ŝ
]
. Let (Si, fi, gi) be an extended depth-decomposition of Mi, i = 1, . . . , k,

with depth bd(Mi). Since the branch-depth bd(Mi) of Mi is at most the branch-depth of
(M/Ku)

[
Ŝ
]
, the depth of each of the trees S1, . . . , Sk is at most the depth of S. By

Lemmas 21 and 23, it is possible to replace the branch S with the branches S1, . . . , Sk

rooted at the root of S and assigning the elements of Xu to arbitrary leaves of the branches
S1, . . . , Sk. Note that the depth of the new rooted tree does not exceed the depth of the
original rooted tree. In this way, we obtain a new extended depth-decomposition of M , and
we proceed to the next iteration. The proof that the procedure described above terminates
after at most rbd(M)+1 iterations is left due to space limitations. J

7 Algorithm for finite fields

In this section, we design a fixed parameter algorithm for computing a depth-decomposition
of a vector matroid over a fixed finite field. To do so, we need to introduce additional
notation. Let (T, f, g) be an extended depth-decomposition of a vector matroid M , and
let r be the rank of M . Let u0, . . . , u2r be a depth-first-search transversal of the tree T

(see Figure 2 for illustration). For i ∈ {0, . . . , 2r}, we define Ai to be the linear hull of Kui

and the f -preimage of the leaves among the vertices u0, . . . , ui. Similarly, we define Bi to
be the linear hull of Kui and the f -preimage of the leaves among the vertices ui, . . . , u2r.
The sequence (ui, Ai, Bi)i∈{0,...,2r} is called a transversal sequence for (T, f, g). Note that
Ai ∩Bi = Kui by the fact that Im(g) is a basis of the linear hull of elements of M . If (T, f, g)
is principal and (T ′, f ′, g′) is another extended depth-decomposition of M , we say that a
branch S of T ′ is i-crossed if Ŝ contains the g-image of a vertex on the path from ui to the
root of T .

I Lemma 25. Let M be a vector matroid, (T, f, g) a principal extended depth-decomposition
of M , and (T ′, f ′, g′) an extended depth-decomposition of M such that every branch is solid.
Further, let (ui, Ai, Bi)i∈{0,...,2r} be a transversal sequence for (T, f, g). If S is a branch of
(T ′, f ′, g′) that is not i-crossed, then Ŝ is a subset of Ai or Bi.

We will design a dynamic programming algorithm, which will be constructing an optimal
depth-decomposition of a vector matroid M using the information on the structure of M

captured by an extended depth-decomposition of M produced by an approximation algorithm
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u0 = u12

u1 = u7 = u11

u8 = u10u2 = u4 = u6

u3 u5 u9

Figure 2 An example of a depth-first-search transversal of a rooted tree.

given in Theorem 6. The depth-decomposition will be constructed iteratively for elements of
M in the order in that the leaves that they are assigned to appear in the transversal sequence
of the depth-decomposition produced by the approximation algorithm. Since it would not be
feasible to store all possible “partial” depth-decompositions, we need a more succinct way of
representing an already constructed part of a depth-decomposition, which we now formally
introduce.

Let (T, f, g) be a principal extended depth-decomposition of a vector matroid M with
rank r over a field F, (ui, Ai, Bi)i∈{0,...,2r} a transversal sequence for (T, f, g), and (T ′, f ′, g′)
another extended depth-decomposition of a matroid M . A frontier is a tuple (T0, d, a, b, h)
such that d, a, and b are non-negative integers, T0 is a rooted tree of depth with at most
d leaves, and h is a mapping from non-root vertices of T0 to Fd+a+b such that Im(h) is a
set of linearly independent vectors and for every j = 1, . . . , d, there is a leaf of T0 for which
the j-th unit vector is contained in the linear hull of the h-image of the vertices on the path
from the leaf to the root of T0. We will refer the middle a coordinates of images of h as
A-coordinates and to the last b coordinates as B-coordinates.

The i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,2r} is the
frontier (T0, d, a, b, h) such that

T0 is the rooted subtree of T ′ formed by the paths from the f ′-images of U to the root,
where U is the set of g-images of the vertices on the path from ui to the root of T .

The integer d is the depth of ui in T .

The integers a and b are the smallest integers for that there exists an a-dimensional
subspace LA of Ai and a b-dimensional subspace LB of Bi such that the linear hull of
the g′-images of the vertices of T0 (note that T0 is a subtree of T ′) is a subspace of the
linear hull of vu

1 , . . . , vu
d , LA and LB , where vu

1 , . . . , vu
d are g-images of the vertices on the

path from the root of T to ui (in this order).

Finally, h is a mapping from the non-root vertices of T0 to Fd+a+b that satisfies the
following. Let vA

1 , . . . , vA
a be vectors such that vu

1 , . . . , vu
d , vA

1 , . . . , vA
a form a basis of LA,

and let vB
1 , . . . , vB

b be vectors such that vu
1 , . . . , vu

d , vB
1 , . . . , vB

b form a basis of LB. The
value h(v) for a non-root vertex v of T0 is equal to the coordinates of f ′(v) with respect
to the (linearly independent) vectors vu

1 , . . . , vu
d , vA

1 , . . . , vA
a , vB

1 , . . . , vB
a .

The following lemma justifies the definition of an i-frontier. Informally speaking, the
lemma says that two depth-decompositions of a vector matroid M can be combined along
the same i-frontier, i.e., the i-frontier contains all information that needs to be stored when
iteratively constructing a depth-decomposition of M in a dynamic way for the elements of
contained in A0, A1, . . . , A2r.
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I Lemma 26. Let (T, f, g) be a principal extended depth-decomposition of a vector matroid
M , (ui, Ai, Bi)i∈{0,...,2r} a transversal sequence for (T, f, g), and (T ′, f ′, g′) and (T ′′, f ′′, g′′)
two solid extended depth-decompositions of M . Suppose that the i-frontiers of (T ′, f ′, g′) and
(T ′′, f ′′, g′′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,2r} are the same, and let T0 be the
rooted tree of the i-frontier. Obtain T ′A from T ′ by removing all branches S with Ŝ ⊆ Bi

that are not i-crossed, T ′′B from T ′′ by removing all branches S with Ŝ ⊆ Ai that are not
i-crossed, and T ′′′ by gluing T ′A and T ′′B together on the vertices that correspond to each vertex
of T0. Finally, let f ′′′ be a function from the elements of M to the leaves of T ′′′ defined as
follows. If x ∈ Ai \Bi, then f ′′′(x) = f ′(x). If x ∈ Bi \Ai, then f ′′′(x) = f ′′(x). Lastly, if
x ∈ Ai ∩Bi = Kui

, then f ′′′(x) is any leaf u of T0 such that x ∈ L (g′(Pu)). Then (T ′′′, f ′′′)
is a depth-decomposition of M .

Before stating the main result of this section, we need to observe that the number of
frontiers for any fixed d is bounded.

I Lemma 27. For every integer d and any finite field F, there exist at most d2d+4|F|2d4

choices of a rooted tree T of depth at most d, integers d′ ≤ d, a and b and a mapping h to
Fd′+a+b such that (T, d′, a, b, h) is a frontier.

We can now design a dynamic programming algorithm for computing the branch-depth
of a matroid represented over a fixed finite field. While there are many technical details
that needs to be taken care of, the basic idea of the algorithm is simple: we first obtain an
approximate depth-decomposition using Theorem 6 and then proceed computing along its
depth-first-search transversal possible frontiers; Lemma 26 guarantees that frontiers capture
all information that needs to be carried through dynamic programming, and their number of
frontiers is bounded by Lemma 27.

I Theorem 28. For the parameterization by a positive integer d and a prime power q, there
exists a fixed parameter algorithm that for a vector matroid M over the q-element field either
outputs that bd(M) is larger than d, or outputs a depth-decomposition of M with depth d.

Proof. We first apply the algorithm from Theorem 6. The algorithm either outputs that the
branch-depth of M is larger than d or outputs a principal extended depth-decomposition
(T, f, g) of a vector matroid M with depth at most 4d. For the purpose of the analysis of the
algorithm that we present, fix a solid extended depth-decomposition (Ts, fs, gs) of M with
depth bd(M), which exists by Theorem 24.

Let r be the rank of the matroid M , and let (ui, Ai, Bi)i∈{0,...,2r} be a transversal sequence
for (T, f, g). The algorithm then iteratively for j = 0, . . . , 2r computes a list of all frontiers
(T0, d′, a, b, h), d′ ≤ d for which there there exists a vector matroid M ′ with rank dim Ai + b

such that the restrictions of M and M ′ to the elements contained in the subspace Ai are the
same, and a solid extended depth-decomposition (T ′, f ′, g′) of M ′ of depth at most d such
that (T, d′, a, b, h) is the i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and its transversal
sequence.

Note that the number of such frontiers is bounded by a function of d and q only by
Lemma 27; the number of edges of T can be shown to be d′ + a + b. If the branch-depth
of M is at most d, then the set of such frontiers is non-empty for every j = 0, . . . , 2r: the
matroid M ′ in the i-th iteration can be chosen to be the the union of the restriction of the
matroid M to the elements of Ai and the elements of Ku, where u ranges over all the vertices
on the path from ui to the root of T . A solid extended depth-decomposition (T ′, f ′, g′) can
be obtained from (Ts, fs, gs) by removing all branches S with Ŝ ⊆ Bi that are not i-crossed.
So, if the set of the frontiers becomes empty at any of the iterations, the algorithm can stop
and output that the branch-depth of M is larger than d.
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We now describe the iterations of the algorithm in detail. For j = 0, the list of frontiers
contains a single element (R, 0, 0, 0, h), where R is the rooted tree that contains the root
only and h is the null mapping. We now describe how the algorithm computes the list for
j > 0 assuming that the list is already available for j − 1. The iteration of the algorithm
differs according to whether uj is a parent of uj−1 and uj is a child of uj−1.

We start with describing the case that uj is a parent of uj−1. Let d′ < d be the depth of
uj . Then the depth of uj−1 is d′ + 1. The following is performed for every frontier of the
form (T0, d′ + 1, a, b, h) in the list from the previous iteration, and every leaf u of T0 such
that the linear hull of the h-image of the vertices from u to the root contains the (d′ + 1)-th
unit vector. If the leaves of T0 can be assigned distinct indices i′ = 1, . . . , d′ such that the
linear hull of the h-image of the vertices from each leaf to the root contains contains the i′-th
unit vector, where i′ is the index assigned to the leaf, then we include (T0, d′, a + 1, b, h′)
to the list from the j-th iteration, where h′ is a mapping from the non-root vertices of T0
obtained from h by turning the (d′ + 1)-th coordinate to be one of the A-coordinates and
applying any invertible linear transformation to the a + 1 A-coordinates, i.e., we fix such
a linear transformation L and set h′(v) = L(h(v)) for all vertices v of T0. If there exists
i′ = 1, . . . , d′ such that u is the only leaf for which the linear hull of the h-image of the
vertices from it to the root contains the i′-th unit vector, we continue with the next choice of
(T0, d′, a, b, h′) and u. Otherwise, for every i′ = 1, . . . , d′ there exists another leaf for which
the linear hull of the h-image of the vertices from it to the root contains the i′-th unit vector,
which means that we may be able to remove u from T0. So, let T ′0 be the tree obtained
from T0 by removing the path from u to the nearest ancestor with at least two children
and turn the (d′ + 1)-th coordinate to an A-coordinate. If the linear hull of the h-images
of the vertices of T ′0 restricted to their B-coordinates does not have dimension b, then it is
not possible to modify this frontier by removing u and we continue with the next choice of
(T0, d′, a, b, h′) and u. Otherwise, let a′ be the dimension of the linear hull of the h-images
of the vertices of T ′0 restricted to their A-coordinates and include (T0, d′, a′, b, h′) to the list
from the j-th iteration, where h′ is a mapping obtained from h by mapping its A-coordinates
by a linear transformation L such that L maps a-dimensional vector space to a′-dimensional
vector space and its image has dimension a′.

We next describe the case that uj is a child of uj−1. Again, let d′ ≤ d be the depth of
uj . Then the depth of uj−1 is d′ − 1. The following is performed for every frontier of the
form (T0, d′ − 1, a, b, h) in the list from the previous iteration. For every leaf u and every
i′ = 1, . . . , b such that the unit vector for the i′-th B-coordinate is contained in the linear
hull of the h-image of the vertices from u to the root, we turn the i′-th B-coordinate to
the d′-th coordinate to obtain h′ and include (T0, d′, a, b − 1, h′) to the list from the j-th
iteration. In addition, we perform the following. For every ` = 1, . . . , d, we consider a rooted
path of length ` and identify its root with a vertex T0 in all possible ways that the depth
of the resulting tree T ′ does not exceed d. Let u be the new leaf of T ′0 and let h′ be a
mapping obtained from h by assigning each of the ` new vertices one of the unit vectors for
the i′-th B-coordinates for i′ = b + 1, . . . , b + `. For every invertible linear transformation
L to the b + ` B-coordinates that yields h′′ such that the linear hull of the h′′-images of
the vertices on the path from u to the root of T ′0 contains the unit vector for the (b + `)-th
B-coordinate, we turn the (b + `)-th B-coordinate to the d′-th coordinate to obtain h′′′ and
include (T0, d′, a′, b + `− 1, h′′′) to the list from the j-th iteration.

Assume that all the iterations of the algorithm have been performed. If the list of frontiers
is empty after any iteration, the branch-depth of M exceeds d and the algorithm reports this.
Otherwise, the final list (for j = 2r) contains a single element (R, 0, 0, 0, h) where R is the
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rooted tree that contains the root only. Tracing back to the list for j = 0, we obtain a series
of frontiers (Ti, di, ai, bi, hi), i = 0, . . . , 2r, such that the i-th one can be obtained from the
(i− 1)-th by the operations explained earlier. Note that di is the depth of ui in T . In the
frontier (Ti, di, ai, bi, hi), the first di coordinate of the h-image correspond to the g-image of
the vertices on the path from the root of T to ui (in this order). The way the frontiers were
constructed guarantees consistency between the shape of the frontiers and the basis elements
displayed by frontiers; in particular, the mappings hi are projections of the linear hull of
elements of M to the subspace corresponding to the i-frontier and the linear transformations
used in the steps of the algorithm provides a consistent way of relating these projections
with each other. Hence, there exists an extended depth-decomposition (T ′, f ′, g′) such that
(Ti, di, ai, bi, hi) is the i-frontier of (T ′, f ′, g′) with respect to (T, f, g) and (ui, Ai, Bi)i∈{0,...,j}.
The algorithm computes this extended depth-decomposition (T ′, f ′, g′) and outputs it. J

Theorems 18 and 28 yield the following corollary.

I Corollary 29. For the parameterization by a positive integer d and a prime power q, there
exists a fixed parameter algorithm that for a vector matroid M over the q-element field either
outputs that bd(M) is larger than d, or computes bd(M) and outputs an extended depth-
decomposition of M with depth bd(M) such that every branch of the depth-decomposition is
at capacity.

8 Algorithm for rational matrices

In this section, we adopt the algorithm presented in Section 7 to matroids over rationals; the
proofs are left due to space limitations. We start with two auxiliary lemmas. We remark that
the bound of 22d−1 in Lemma 30 can be replaced with d · 2d−1 using a more careful analysis.

I Lemma 30. Let M be a vector matroid and (T, f) a depth-decomposition of M with depth
d such that every branch is at capacity. There exists a mapping g such that (T, f, g) is an
extended depth-decomposition of M and every element of Im(g) is a linear combination of at
most 22d−1 elements of M .

I Lemma 31. Let A be an integer matrix of branch-depth (over Q) at most d such that all
its entries are between −K and +K. Further, let q be a prime larger than (K22d)22d . The
following holds for any subset X of the columns of A: the vectors contained in X are linearly
independent over Q if and only they are independent over the q-element field.

We derive the following using Theorem 28, Corollary 29, and Lemmas 30 and 31.

I Theorem 32. For the parameterization by positive integers d and K, there exists a fixed
parameter algorithm that for a vector matroid M over Q such that the entries of all vectors in
M have complexity at most K either outputs that bd(M) is larger than d, or computes bd(M)
and outputs an extended depth-decomposition (T, f, g) of M with depth bd(M). Moreover,
the entry complexity of the vectors in Im(g) is bounded by a function of d and K.

Theorem 32 yields Theorem 3.
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