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Abstract
Fault tolerant distance preservers are sparse subgraphs that preserve distances between given pairs
of nodes under edge or vertex failures. In this paper, we present the first non-trivial constructions of
subset distance preservers, which preserve all distances among a subset of nodes S, that can handle
either an edge or a vertex fault.

For an n-vertex undirected weighted graph or weighted DAG G = (V,E) and S ⊆ V , we
present a construction of a subset preserver with Õ(|S|n) edges that is resilient to a single
fault. In the single pair case (|S| = 2), the bound improves to O(n). We further provide a
nearly-matching lower bound of Ω(|S|n) in either setting, and we show that the same lower
bound holds conditionally even if attention is restricted to unweighted graphs.
For an n-vertex directed unweighted graphG = (V,E) and r ∈ V, S ⊆ V ,we present a construction
of a preserver of distances in {r} × S with Õ(n4/3|S|5/6) edges that is resilient to a single fault.
In the case |S| = 1 the bound improves to O(n4/3), and for this case we provide another matching
conditional lower bound.
For an n-vertex directed weighted graph G = (V,E) and r ∈ V, S ⊆ V , we present a construction
of a preserver of distances in {r} × S with Õ(n3/2|S|3/4) edges that is resilient to a single vertex
fault. (It was proved in [14] that the bound improves to O(n3/2) when |S| = 1, and that this is
conditionally tight.)
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1 Introduction

Distance Preservers. This paper is about distance preservers, a graph-theoretic primitive
that appears in work on spanners [16, 32, 23, 17, 2, 1, 24], hopsets [2, 28, 27], shortcutting
[27, 2], shortest path algorithms [5, 4, 21, 18], etc.; recently, distance preservers have also
been a popular topic in their own right [17, 20, 16, 12, 25, 18].
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15:2 New Fault Tolerant Subset Preservers

I Definition 1 (Distance Preservers). For a graph G = (V,E) and a set P ⊆ V × V of
“demand pairs”, a subgraph H = (V,EH ⊆ E) is a distance preserver of G,P if

distG(s, t) = distH(s, t) for all (s, t) ∈ P.

When P = S × S for some S ⊆ V , we say that H is a subset distance preserver of G,S.

Most often, the goal is to determine the worst-case tradeoff between the number of demand
pairs and the number of edges needed for a distance preserver. For example, a classic result
in the area is that any p demand pairs in an n-node graph have a distance preserver on
O(np1/2) edges [20].

The subset distance preserver structure P = S × S is quite common in the known
applications of distance preservers (e.g. [4, 21, 18]), and one of the primary reasons distance
preservers were first developed was to address this setting [22]. Despite this, our understanding
of subset distance preservers lags far behind our understanding of the general case. There is
no graph setting in which the structure P = S × S is known to be useful towards proving
sparser distance preservers, and yet our lower bounds get much worse when they are required
to have this structure. To illustrate, one of the main questions in the area is whether one can
generally have a subset preserver with only a constant number of edges per demand pair:

Is there an absolute constant c > 0 such that, for any |P | = n2−c demand pairs in an n-node
graph, there is always a distance preserver on O(|P |) edges?

In the sourcewise setting P = S × V , the answer is clearly yes (build a shortest path
tree rooted at each s ∈ S). In the pairwise setting, i.e. P is arbitrary, it was proved by
Coppersmith and Elkin [20] that the answer is no (even if attention is restricted to undirected
unweighted graphs). But in the intermediate subset setting P = S × S, the question is
completely open: we can neither prove it for undirected unweighted graphs, nor refute it for
directed weighted graphs; all we know is that c ≤ 2

3 [12].

Fault Tolerance. Distance preservers and friends are often applied to networks or distributed
systems where parts can spontaneously fail. A natural additional requirement for these
applications is fault-tolerance, meaning roughly that the preserver is robust to these failures:

I Definition 2 (Fault Tolerant Distance Preservers). For a graph G = (V,E) and demand
pairs P , a distance preserver H of G,P is fault tolerant (FT) if for any vertex or edge x we
have that H \ {x} is still a distance preserver of G \ {x}.1 We say H is vertex (edge) fault
tolerant, abbreviated VFT (EFT), to indicate that x must specifically be a vertex (edge).

The current literature reflects a world in which vertex faults are harder to analyze
than edge faults; many basic questions in the area are closed for EFT but open for (V)FT
[19, 9, 8, 13, 15]. To highlight one example:

For a single demand pair (s, t) in an undirected (possibly weighted) graph G, is there always
an FT distance preserver on O(n) edges?

In [14], it is proved that the answer is yes for the special case of edge failures. The argument
leverages a convenient structural fact about edge failures, which may generally explain some
of the EFT/VFT discrepancy: a shortest path in G \ {x} is always the union of two shortest
paths in G when x is an edge [3], but nothing like this seems to hold when x is a vertex.
Accordingly, the above question is open when the failures can be vertices.

1 One can also consider a version where several nodes/edges fail at once. However, recent lower bounds
have proved that the available preserver quality is quite poor already for f = 2 faults [30, 14], so f = 1
may be the more applicable setting.
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1.1 Our Results
In this work, we show that the P = S × S structure does actually seem to be useful in the
FT setting. For background, it was proved by Bilo et al. [8] that any |S| source nodes in an
n-node undirected weighted graph has an EFT preserver on Õ(n|S|) edges. Our main results
fill in several gaps around this result, extending to the general FT setting and providing
corresponding lower bounds.

I Theorem 3 (Undirected Graphs). For any undirected weighted n-node graph G = (V,E,w)
and set of source nodes S ⊆ V , there is a general FT subset distance preserver on Õ(n|S|)
edges. When |S| = 2, the bound improves to O(n). Moreover, for any given value of |S| there
are examples where Ω(n|S|) edges are needed.

We note that Theorem 3 positively resolves the latter open question mentioned above. We
think this bound Õ(n|S|) is surprising; to explain why, let us compare to the corresponding
bounds in the non-faulty setting. Here the current state-of-the-art [20] is that |S| = σ source
nodes in an n-node graph have a subset distance preserver of size

O
(

min
{
n+ n1/2σ2, nσ

})
.

In particular, when σ ≥
√
n the bound is O(nσ). In other words, following Theorem 3,

one can tolerate a fault in this parameter regime essentially for free. It is more likely
that this reflects the weakness of our current understanding of non-faulty subset distance
preservers, rather a world in which fault tolerance is actually free. Still, the non-faulty subset
distance preserver bounds have resisted improvement for the last 15 years, so the unintuitive
hypothesis of free fault tolerance suggested by Theorem 3 may be hard to refute.

Since Theorem 3 is essentially best possible, for the rest of the paper we investigate to
what extent it extends to other graph settings. For example, what if attention is restricted
to unweighted graphs? Our lower bound construction fundamentally relies on the use of
edge weights, and thus it does not constrain this setting. However, we show that it can be
replaced with a conditional lower bound: it will not be possible to meaningfully improve
Theorem 3 for unweighted graphs without first improving on the non-faulty setting. This
result will use a new parameter for distance preservers that we call the gap. For a graph G
and demand pairs P , the gap is

γ(P ) := max
(s,t),(s′,t′)∈P

distG(s, t)− distG(s′, t′).

Intuitively, the gap measures how close G,P are to a “layered” instance: except for a few
degenerate cases, the gap is 0 if and only if G is a layered graph, P is a subset of the first ×
last layer, and the shortest paths for P cross the layers directly without backtracking. We
use the following technical hypothesis for our unweighted lower bound:

I Hypothesis 4. For any σ = σn, there is an n-node undirected unweighted graph G and
demand pairs P = S × T with

|S| ≤ σ and |T | ≤
√

nσ

(γ(P ) + 1)

such that any distance preserver has Ω(nσ) edges.

We remark that this hypothesis is only plausible when |T | = Ω(σ), and hence we need
γ(P ) = O(n/σ). But the current understanding of non-faulty distance preservers is compatible
with the bounds in Hypothesis 4, even if we were to assume more strongly that γ(P ) = 0.

ICALP 2020



15:4 New Fault Tolerant Subset Preservers

I Theorem 5. Assuming Hypothesis 4, for any σ = σn, there are examples of undirected
unweighted n-node graphs and node subsets of size |S| = σ where any FT distance preserver
needs Ω(nσ) edges.

Thus Theorem 3 is conditionally tight even for unweighted graphs. Next, we ask if it
extends to directed graphs. For the special case of DAGs, we observe that any replacement
path avoiding a failure can be represented by concatenation of two original shortest paths
linked together by an edge (much like the EFT setting). This allows the above content to
extend directly to preservers for DAGs.

I Theorem 6 (DAGs). The upper and lower bound of Theorem 3 both still hold when the
input graph G is a weighted DAG. If G is an unweighted DAG, then the lower bound of
Theorem 5 still holds as well, assuming that Hypothesis 4 also holds for unweighted DAGs.

The general directed setting is trickier. The question of single-pair FT preservers for
directed weighted graphs was settled in [14]; these need at least Ω(n4/3) and at most O(n3/2)
edges,2 and hence Theorem 3 does not extend to this setting. For directed unweighted graphs,
we provide the first improvements on this upper bound:

I Theorem 7 (Directed Unweighted Graphs). For any directed unweighted n-node graph
G = (V,E), and demand pairs (r, S) ∈ V × 2V there is an FT distance preserver on
Õ(n4/3|S|5/6) edges. When |S| = 1, the bound improves to O(n4/3).

Like before, we show conditional tightness of this bound, although here only in the
single-pair setting. Our lower bound needs the following hypothesis:

IHypothesis 8. There is an n-node directed unweighted graph G and demand pairs P = S×T
with

|S|, |T |, γ(P ) = O(n1/3)

such that any distance preserver has Ω(n4/3) edges.

Hypothesis 8 is more tenuous than Hypothesis 4, as it is right on the boundary of current
techniques. We will discuss the interpretation of these hypotheses more shortly. Still, the
point is that one cannot meaningfully improve our single-fault distance preservers without
first gaining an improved understanding of the non-faulty case:

I Theorem 9. Assuming Hypothesis 8, there are examples of directed unweighted n-node
graphs and single demand pairs where any FT distance preserver needs Ω(n4/3) edges.

We remark that if the goal is just to refute the extension of Theorem 3 to directed
graphs, rather than to show exact tightness of Theorem 7, then one can get by with a weaker
assumption than Hypothesis 8 (e.g. the preserver lower bound can be Ω(n1.01), or one can
trade this off with a relaxation of |S|, |T |, γ(P )).

Lastly, we mention that our techniques give a nontrivial extension of the single-pair result
in [14] to the multi-target setting.

2 More specifically, it was proved that the correct size bound is exactly that of a non-faulty distance
preserver of n demand pairs in an n-node directed weighted graph. Due to [20], this is at least Ω(n4/3)
and at most O(n3/2).
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I Theorem 10 (Directed Weighted Graphs). For any directed weighted n-node graph G =
(V,E) and demand pairs (r, S) ∈ V × 2V , there is an FT distance preserver on Õ(n3/2|S|3/4)
edges.

We recall from [14] that the bound improves to O(n3/2) when |S| = 1, and that this single-pair
bound is unimprovable under the hypothesis that the current bounds for non-faulty distance
preservers of directed weighted graphs are tight.

1.2 Interpretation of Hypotheses
Since our lower bounds rely on Hypotheses 4 and 8, we will give them some more context
here and discuss how likely they are to be true. Currently, except for a certain tiny range of
parameters [12], the state-of-the-art upper bounds for non-faulty S × T preservers are based
entirely on a property called consistency:

I Definition 11 (Consistency). A set of paths Π in a (possibly directed) graph G are consistent
if, for any π1, π2 ∈ Π with nodes u < v ∈ π1, u < v ∈ π2, the subpaths π1[u v], π2[u v]
are equal.

In other words, given any set of consistent paths with endpoints in S×T , one can exploit
the consistency property to prove upper bounds on the total number of edges contained in
the union of all these paths [20, 12]. Interpreting S × T as demand pairs for a preserver, it
is not hard to break shortest path ties in such a way that the chosen paths are consistent,
and so these “consistency bounds” yield preserver upper bounds, which are essentially
state-of-the-art.

With this in mind, let us imagine a weaker version of Hypotheses 4, where we hypothesize
a consistent set of S×T paths with Ω(nσ) edges in their union, the gap γ(S×T ) defined as the
maximum difference between any two path lengths, and |S|, |T | are bounded as before. From
a construction in [16], this hypothesis is true. The similar “consistency-weakened” version of
Hypothesis 8 is also true, from an unpublished construction of Bodwin and Reingold.

So, the truth of Hypotheses 4 and 8 essentially depends on how smoothly one can pass
from consistent paths to unique shortest paths without destroying the other important
properties of the construction, like the edge density and the gap. It is hard to say for sure
whether this will be possible. Our guess is that the consistency bounds can be improved –
and thus Hypotheses 4, 8 are false – but that this will require major new technical ideas that
are not currently in the literature. The main evidence for this is that the consistency bounds
have been polynomially improved for general pairwise preservers, which do not require the
structure P = S×T [16]. But in the P = S×T setting the consistency bounds have resisted
improvement for the last 15 years [20], despite significant research effort, so we feel that
Hypotheses 4, 8 accurately mark the boundaries of current knowledge. Thus we interpret
these hypotheses, and the corresponding lower bounds, as proof that no more progress can
really be made in the FT setting until the non-faulty setting is understood first.

1.3 Related Work
For an n-vertex unweighted graph G and a set of sources S, Parter and Peleg [31] showed
that there exists an S × V FTP with O

(
n3/2|S|1/2) edges. This bound holds also for the

case of a single node failure and when the graph is directed. They also showed that this
result is existentially optimal, namely, there exist n-vertex graphs and a set of sources S
such that any S × V FTP has at least Ω

(
n3/2|S|1/2) edges.

For the more general case of P = S × T , [8] showed an FTP of size Õ
(
n4/3|S|1/3|T |1/3)

under edge failure. An FTP for a single pair in undirected (possibly weighted) graph of linear
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15:6 New Fault Tolerant Subset Preservers

size was explicitly presented in [14], but was also implied by previous replacement-paths
algorithms, e.g., [29].

Considerably much less is known for the multiple fault setting (even for edges faults).
Parter [30] showed an upper bound of O(n5/3) edges for {s} × V (edge) f -FTP with f = 2,
in undirected unweighted graphs. A matching lower bound of Ω

(
|S|1/(f+1) · n2−1/(f+1)) for

sourcewise (P = S × V ) f -FTP was also provided in [30], for any f . Gupta and Khan [26]
extended this result, providing a tight upper bound for sourcewise (S × V ) f -FTP with
f = 2. This bound holds also for the case of a two vertex failures and when the graph is
directed. For the more general case of f failures, Bodwin et al. [14] showed an upper bound
of Õ(f · |S|1/2f · n2−1/2f ) edges for a S × V f -FTP. This result holds under both edge and
vertex faults, and in directed graphs. For weighted graphs, [14] showed that even a single
pair f -FTP with f ≥ 2 has Θ(n2) edges.

Baswana and Khanna [7] proved the existence of a (1+ε) multiplicative vertex FT spanner
for P = {s} × V , with O(n/ε3 + n logn) edges, for any ε > 0. Recently, Bilo et al. [11]
improved this result to O(n logn/ε2), for both edge and vertex single failure. In [10], Bilò et
al. showed construction of approximate FTP to handle multiple edge failures. They showed
that for any f ≥ 1 and for P = {s} × V , we can compute an FTP O(fn) size that after
failure of f edge preserves distance up to a multiplicative stretch of (2f + 1).

1.4 Preliminaries and Tools
Graph Notations. We use the following graph notations and definitions in the context
of a given undirected graph G = (V,E,w) with n = |V |, m = |E| and a weight function
w : E → R+. To avoid complications due to shortest-paths of the same length, we assume
throughout that all shortest path are computed with a consistent tie-breaking function π
that guarantees the uniqueness of the shortest-paths3. For every x, y ∈ V , and a subgraph
G′ ⊆ G, let π(x, y,G′) be the (unique) x-y shortest path in G′, when G′ = G we may simply
write π(x, y). For any path P , let P [x, y] be the subpath of P between x and y and let
P (x, y) = P [x, y] \ {x, y}. For a node v ∈ V , let Tv be the shortest path tree rooted at v.
For v, x ∈ V , let Tv(x) the subtree of Tv rooted at x.

For s, t ∈ V and a failure x ∈ V , the replacement path Ps,t,x is the unique s-t shortest
path in G \ {x}. To avoid cumbersome notation, when s or t are clear from context, we may
omit them from the notation. Let Ds,t,x be the detour segment of the replacement path
defined by Ps,t,x \ π(s, t).

For a path P , let E(P ) denote its edges and V (P ) denote its vertices. Similarly, for
a collection of paths P, we denote their edges and vertices with E(P) =

⋃
P∈P E(P ) and

V (P) =
⋃
P∈P V (P ) respectively. We denote the first and last vertex of a path P by first(P )

and last(P ) respectively. Similarly, for a collection of path P, we denote their sources and
terminals with first(P) =

⋃
P∈P first(P ) and last(P) =

⋃
P∈P last(P ). For a tree T and

vertices u, v let LCA(u, v) denote the least common ancestor of u and v in T .

Heavy Path Decomposition. For a shortest path tree Ts rooted at s, we use the heavy-path
decomposition technique devised by Sleator and Tarjan [33] in order to break the tree Ts into
vertex-disjoint paths with several desired properties. The following lemma summarizes the
main properties of this partitioning scheme (proof can be also found in [7]).

3 See Def. 11 for a formal definition of a consistent tie-breaking.
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I Lemma 12 ([33]). There exist a linear time algorithm that given an n-vertex tree T
computes a path Q in T whose removal breaks T into vertex-disjoint subtrees T1, ..., T` such
that for each i ≤ `:
|V (Ti)| ≤ n/2 and V (Q) ∩ V (Ti) = ∅,
Ti is connected to Q through some edge.

The desired decomposition is obtained by recursively applying Lemma 12 (on each of the
subtrees Ti), getting a partition of T into vertex disjoint paths HP(T ). A useful property of
the decomposition is that for every edge (u, v) ∈ T that does not appear in any of the paths
HP(T ), it holds that |V (Ts(v))| ≤ |V (Ts(u))|/2. This yields the following useful lemma.

I Lemma 13 ([7]). For any vertex v, its path to the root in T intersects at most logn paths
in HP(T ).

2 Fault Tolerant Preservers for Undirected Graphs

2.1 Preservers for Undirected Weighted Graphs
I Theorem 14. Any undirected (possibly weighted) G = (V,E,w) and a set S ⊆ V of sources
has a S × S subset (vertex) fault tolerant preserver H with O(n|S| logn) edges.

The subgraph H simply contains all the S × S replacement paths, that is,

H = {Ps,t,x | s, t ∈ S, x ∈ π(s, t)}.

To prove Theorem 14, we will provide a bound on the size of H.

Size Analysis. A replacement path Ps,t,x is short if it has at most n/|S| edges; otherwise it
is long. Throughout this section, we mainly focus on bounding the number of edges in the
collection of all short replacement paths, denoted throughout by Pshort:

I Lemma 15. |E(Pshort)| = O(n|S| logn).

We start by observing that to prove Theorem 14 it is indeed sufficient to consider only
the short replacement paths.

B Claim 16. Lemma 15 implies Theorem 14.

Proof. Let S∗ be a sample of nodes obtained by including each node independently with
probability p = |S|/n, and let S′ = S∗ ∪ S. For each edge e in a long replacement
path P = Ps,t,x, by standard Chernoff bounds, with constant probability there are nodes
s1, s2 ∈ S′ ∩ P , separated by ≤ n/|S| edges in P , such that e comes between s1 and s2 in P .
We thus have e ∈ Ps1,s2,x, so e is now part of a short replacement path. Hence e is counted in
Lemma 15 with at least constant probability. Since only O(n|S| logn) edges may be counted
in this way, by linearity of expectation it follows that there are O(n|S| logn) total edges in
long replacement paths. C

Road-Map for Proving Lemma 15. From now on, we focus on the collection of short
replacement paths, P = Pshort. We will show the existence of a subgraph H ′ with Õ(|S|n)
edges that contains all the edges of P. This subgraph will be the union of three auxiliary
sub-graphs each containing a different subset of replacement paths. For any source s ∈ S,
we first show the existence of a subgraph Hs of size Õ(n) such that Hs ∪ T (S) include

ICALP 2020



15:8 New Fault Tolerant Subset Preservers

most of the replacement paths which originate at s, where T (S) = ∪sTs. Then, letting
H2 =

⋃
s∈S Hs, we have that |H2| = Õ(n|S|). Finally, the third subgraph H3 will include

a collection of left-over O(|S|2 logn) (short) replacement paths, and thus its size will be
bounded by O(n|S| logn) as well.

Partitioning of Replacement Paths based on Heavy-Path Decomposition. Throughout,
we consider a fixed source node s ∈ S and the set Ps = {Ps,t,x | Ps,t,x ∈ P, t ∈ S} of all its
short replacement paths. We then divide these replacement paths into several subsets based
on the heavy-path decomposition HP(Ts) of the shortest-path tree Ts as follows. For every
path Q ∈ HP(Ts), let

Ps(Q) := {Ps,t,x | x ∈ Q and x 6= LCA(t, last(Q))} and P ′s =
⋃

Q∈HP(Ts)

Ps(Q) .

We will also define a small subset of the left-over replacement paths Ls = Ps \ P ′s. The
analysis shows that |Ls| = O(|S| logn), and since all these replacement paths are short, the
total number of edges in these left-over replacement paths can be bounded by O(|S|n logn).
We next bound the number of edges in each of the subsets Ps(Q), enjoying the fact that the
failures of all the replacement paths in these sets lie on a single path.

Bounding the number of edges in Ps(Q) (failure on a single path). Let Q = 〈x0, ..., xk〉.
Following Baswana and Khanna [7], for every xi ∈ Q, we define the vertex partition of
Ts \ {xi} into

Ui : V (Ts \ Ts(xi)), Di := V (Ts(xi+1)) and Oi := V (Ts) \ (Ui ∪Di ∪ {xi}).

Note that for any i 6= j, Oi and Oj are pairwise disjoint. This property is crucial for our
construction.

I Observation 17. Fix xi ∈ Q. If Ps,t,xi
∈ Ps(Q) and Ps,t,xi

6= π(s, t) then t ∈ Di.

Proof. Since Ui ∪Oi ∪Di = V \ {xi}, we need to rule out two cases. (i) Assume that t ∈ Ui.
In this case xi /∈ π(s, t), and thus Ps,t,xi = π(s, t). (ii) Assume that, t ∈ Oi. In this case,
we must also have that xi = LCA(t, last(Q)) and thus Ps,t,xi

/∈ Ps(Q) (this path will be
included in the left-over set Ls). As Ui ∪Oi ∪Di = V , we conclude that t ∈ Di. J

I Lemma 18. Fix xi ∈ Q and t ∈ S ∩Di. The replacement path P = Ps,t,xi
is of the form

p1(P ) ◦ e1(P ) ◦ p2(P ) ◦ e2(P ) ◦ p3(P ) where e1(P ), e2(P ) are edges, p1(P ) ⊆ Ts, p3(P ) ⊆ Tt
and V (p2(P )) ⊆ Oi. Each of the edges e1(P ), e2(P ) (but not both) and some of the paths
pi(P ), i ∈ {1, 2, 3} might be empty.

Proof. Let Pi = pi(P ) for i ∈ {1, 2, 3}, and ej = ej(P ) for j ∈ {1, 2}. Let z be the first
vertex of the path P (i.e., closest to s) that belongs to Di. Let u be the last vertex of the
path P (i.e., closest to t) that belongs to Ui. Let P1 = P [s, u] and P3 = P [z, t]. We first claim
that P1 ⊂ Ts. To see this, observe that since u ∈ Ui, xi /∈ π(s, u) and thus P1 = π(s, u) ⊆ Ts.
Since P1 = π(s, u), it also implies that u appears strictly before z on the path P .

Next, we show that P3 ⊂ Tt by proving that xi /∈ π(z, t). Assume towards contradiction
otherwise, i.e., that xi ∈ π(z, t). We have that π(z, t) = π(z, xi) ◦ π(xi, t). Since (xi, xi+1)
appears on both of the paths π(z, xi) and π(xi, t), we get an alternative z-t path π(z, xi+1) ◦
π(xi+1, t) that is strictly shorter, leading to a contradiction. As xi /∈ π(z, t), we get that
P3 = π(z, t) ⊂ Tt as required. It remains to consider the path P (u, z). If P ∩Oi = ∅ then
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Figure 1 The partition of the path P = Ps,t,xi suggested in Lemma 18 is presented. P1 = p1(P )
is the portion of P that appears before o, P3 = p3(P ) is the portion of P from z, and the remaining
portion is P2 = p2(P ). In the figure, e1 = e1(P ) and e2 = e2(P ).

we are done. Otherwise, Let o, o′ be the first (resp. last) vertices in Oi on the path P . Note
that it might be the case that o = o′. Letting e1 = (u, o), e2 = (o′, z), and P2 = P [o, o′], we
get that P = P1 ◦ e1 ◦ P2 ◦ e2 ◦ P3 and by definition V (P2) ⊆ Oi. The claim follows. J

From now on, for any path P ∈ Ps(Q), let pi(P ), ej(P ) denote the partition defined in
Lemma 18 (for i ∈ [3], j ∈ [2]). As p1(P ), p3(P ) ⊆ T (S), it remains to mainly bound the
edges contributed by p2(P ) for every P ∈ Ps(Q). To do that, we focus on a fixed failure
xi ∈ Q and define a special graph Gi (which is not necessarily a sub-graph of G) in which
p2(P ) is a shortest path. A similar approach has been taken in [7]. For every xi ∈ Q, define
the graph Gi = (Vi, Ei) such that Vi = Oi ∪ {s} and Ei includes the edges of G[Oi] and the
following additional edges. For each o ∈ Oi with a neighbor in Ui, Ei contains the edge (s, o)
with weight min(u,o)∈E,u∈Ui

{w(π(s, u,G)) + w((u, o))}. Letting τi denote the shortest paths
tree rooted at s in Gi, define

H(s,Q) :=
( ⋃
i<k

(τi ∩G)
)
∪
( ⋃
P∈Ps(Q),j∈{1,2}

ej(P )
)
.

We show the following:

I Lemma 19.
(i) For every Ps,t,xi

∈ Ps(Q), it holds that Ps,t,xi
⊆ T (S) ∪H(s,Q) .

(ii) |E(H(s,Q))| = O(|Ts(first(Q))|+ |Ps(Q)|) .

Proof. (i) Since p1(Ps,t,xi
), p3(Ps,t,xi

) ⊆ T (S) and e1(Ps,t,xi
), e2(Ps,t,xi

) ∈ H(s,Q), it is
sufficient to show that p2(Ps,t,xi) ⊆ τi ∩G. Specifically, we show that p2(Ps,t,xi) is a suffix of
a shortest path rooted in s in the graph Gi.

Let o, o′ be the first (resp., last) nodes in Ps,t,xi ∩Oi. First, observe that the existence
of an edge e = (s, o) ∈ Gi with weight w(e) implies that there exists a path in G[Ui ∪ Oi]
of weight w(e) from s to o, such that all of its vertices are in Ui except the last one. Thus,
if there exists a path of weight W from s to o ∈ O in Gi, it implies that there exists a
path in G[Ui ∪ Oi] of weight W from s to o. We now claim p2(Ps,t,xi

) ⊆ τi ∩ G. Let
u ∈ Ui be the vertex preceding o on the path Ps,t,xi such that e1(Ps,t,xi) = (u, o) (i.e.,
alternatively, u is the last vertex in Ui on the path Ps,t,xi

). By the optimal subpath property,
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15:10 New Fault Tolerant Subset Preservers

Ps,t,xi [s, o′] is a shortest path in G \ {xi}, and by Lemma 18 it is in the subgraph G[Ui ∪Oi].
Recall that V (Ps,t,xi

[s, u]) ⊆ Ui and V (Ps,t,xi
[o, o′]) ⊆ Oi. Thus e1(Ps,t,xi

) is the edge that
minimizes w(π(s, u,G)) + w((u, o)), namely, w((s, o)) = w(π(s, u,G)) + w((u, o)). Therefore
(s, o) ◦ Ps,t,xi [o, o′] is a shortest path from s to o′ in Gi, and p2(Ps,t,xi) ⊆ τi ∩G.

We proceed with (ii). As V (τi∩G) ⊆ Oi, by the mutual disjointness of Oi’s, it follows that∑
i<k

|τi ∩G| ≤
∑
i<k

|Oi| ≤ |Ts(first(Q))| .

The claim follows by noting that contribution of e1(P ) and e2(P ) for every P ∈ Ps(Q) is at
most 2|Ps(Q)|. J

Interestingly, Lemma 19(ii) yields an immediate linear upper bound for single pair preservers.
That is, in the case where S = {s, t} and Q = π(s, t), the set Ps(Q) contains all the
replacement paths. As |Ps(Q)| includes at most one path for each failure, its size is bounded
by |π(s, t)| = O(n).

I Corollary 20 (Single-Pair FT Preservers). Any undirected (possibly weighted) graph G =
(V,E), and a pair of nodes s, t ∈ V has a single-pair FT Preserver of linear size.

Bounding the set P ′
s. So far, we assume that the failing vertex appears on a fixed path

Q ∈ HP(Ts). We next bound the total number of edges in the union of all paths P ′s =⋃
Q∈HP(Ts) Ps(Q). By Lemma 19, every Ps,t,xi

∈ Ps(Q) is contained in T (S) ∪ H(s,Q).
Therefore, it remains to bound the number of edges in the subgraph Hs = ∪Q∈HP(Ts)H(s,Q).

I Lemma 21. |E(Hs)| = O(n logn).

Proof. Since Hs = ∪Q∈HP(Ts)H(s,Q), by Lemma 19 it is sufficient to show that:
(i) ΣQ∈HP(Ts)|Ts(first(Q))| = O(n logn) and
(ii) ΣQ∈HP(Ts)|Ps(Q)| = O(n logn).

Begin with (i). By Lemma 13, for every t ∈ S, the s-t path in Ts intersects with at most
logn paths Q ∈ HP(Ts). Since a vertex t appears in Ts(first(Q)) only if first(Q) ∈ π(s, t), it
holds that each vertex belongs to at most logn such subtrees.

We proceed with (ii) and first show that ΣQ∈HP(Ts)|Ps(Q)| ≤ |P ′s|. Recall that Ps(Q)
includes the replacement paths of P ′s whose failure appears in Q. Since HP(Ts) is a
partition of Ts, every two paths Q 6= Q′ in this partitioning are vertex disjoint. Thus for
Q 6= Q′ ∈ HP(Ts), P ′s(Q) ∩P ′s(Q′) = ∅, implying that {P ′s(Q)}Q∈HP(Ts) is a partition of P ′s
and the claim follows.

Next, we show that |P ′s| = O(n logn) by claiming that for every t ∈ S, there are at most
O(n logn/|S|) replacement paths between s and t in P ′s. Fix t ∈ S and let P ′s(t) = {Ps,t,x |
Ps,t,x ∈ P ′s}. Our goal is to show that |P ′s(t)| ≤ O(n logn/|S|). Note that in the case where
G is unweighted, for every short replacement path Ps,t,x with hop-length of O(n logn/|S|),
it holds that the original shortest path π(s, t) is short as well, and thus it has at most
O(n logn/|S|) vertex failures that require a replacement path. Consider a shortest path
π(s, t) in a weighted graph and let ` := c · n logn/|S|. In the case that π(s, t) has hop-length
less than 2`, the lemma trivially holds. Otherwise, we assume |π(s, t)| > 2`. Let s′ be the
`’th vertex on the path from s, namely π(s, s′) has hop-length of `. Similarly, let t′ be the
`’th vertex on the path from t, namely π(t′, t) has hop-length of `. Observe that any short
replacement path P ∈ P ′s(t) avoids both s′, t′, otherwise its length is larger than `. This
implies that the starting point of any detour of a path in P ′s(t) is before s′ and its ending
point is after t′. We show that there is at most one replacement path P ∈ P ′s(t) for all the
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failures in π(s′, t′). Assume towards contradiction that there are two replacement paths
Pv, Pu ∈ P ′s(t), and u, v ∈ π(s′, t′). As both Pv, Pu avoid π(s′, t′), both avoid u, v. Thus, we
get that both paths are shortest paths in G\{u, v}, which is a contradiction to the uniqueness
of the shortest paths. As any other shortest path must have a failure on π(s, s′) or π(t′, t),
we have that |P ′s(t)| ≤ 1 + 2`. Thus, for any t ∈ S, we have that |P ′s(t)| = O(n logn/|S|),
and |P ′s| = O(n logn), as desired. J

Bounding the number of edges in the left-over subset Ls. It remains to bound the
number of edges contributed by the left-over replacement paths.

B Claim 22. |Ls| = O(|S| logn) and thus |E(Ls)| = O(n logn).

Proof. We first claim that for every fixed t ∈ S, Ls contains O(logn) replacement paths
between s and t. Thus, |Ls| = O(|S| logn). Recall that Ps,t,x ∈ Ls if and only if there
exists a path Q ∈ HP(Ts) such that x ∈ Q and x = LCA(t, last(Q)). Thus, we have
that x ∈ π(s, t) ∩Q. According to Lemma 13, there are at most logn paths from HP(Ts)
intersecting with π(s, t) in Ts. Since an LCA is unique for every pair of nodes, for each such
path Q there is only one failure x such that x = LCA(t, last(Q)). Since each path in Ls
is short, i.e., has at most O(n/|S|) edges, the total number of edges in the paths of Ls is
bounded by O(n|S| logn) as desired. C

We are now ready to complete the proof of Lemma 15.

Proof of Lemma 15. The collection of all short replacement paths P is divided into
⋃
s P ′s

and the left-over sets
⋃
s Ls. By Lemma 19(i), E(P ′s) ⊆ Hs∪T (S). By Lemma 21, |E(Hs)| =

O(n logn) and thus the total number of edges in
⋃
s P ′s is bounded by O(n|S| logn). By

Claim 22, |E(Ls)| = O(n logn) and thus E(
⋃
s Ls) = O(n|S| logn). The lemma follows. J

2.2 Preservers for Undirected Unweighted Graphs
We next extend our constructions to the S × T setting. In [8], such an extension has been
provided for the case of the single edge failure. We obtain the following theorem.

I Theorem 23. For any undirected unweighted G = (V,E) and subsets S, T ⊆ V , one can
compute a (vertex) fault tolerant S × T preserver H with Õ(n4/3|S|1/3|T |1/3) edges.

Proof. The subgraph H simply contains all the S × T replacement paths, i.e., H =
{Ps,t,x | s, t ∈ S, x ∈ π(s, t)}. We will bound size the size of this subgraph, by bounding
the size of subgraph H ′ that contains H. Let R be a random subset of O(n/L) nodes where
L is a parameter to be optimized later. Let ` = dL logne. The subgraph H ′ = H1 ∪H2 is
defined as follows.
1. Let H1 be an W ×W FPT for W = R ∪ S obtained by Theorem 14.
2. Let H2 = {`-length suffix of Ps,t,x | s, t ∈ S × T, x ∈ π(s, t), distG(x, t) ≤ `}.

Correctness. Fix {s, t} ∈ S × T and x ∈ π(s, t). First assume that |Ps,t,x| ≤ `. It then
implies that also |π(s, t)| ≤ ` and thus also that dist(x, t) ≤ `. Concluding that
Ps,t,x ⊆ H2. Next, assume that |Ps,t,x| > `. By Chernoff bound, w.h.p. it holds that
|Ps,t,x ∩R| 6= ∅. Let r ∈ R be the closest vertex to t from R on π(s, t), we then have that
Ps,t,x = Ps,r,x ◦ Pr,t,x, and |Pr,t,x| ≤ ` (as r is the closest vertex to t from R). Since H1
is an W ×W FPT, we have that Ps,r,x ⊂ H1. It is left to show that Pr,t,x is included
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in either H1 or H2. First, assume that dist(x, t) > `. As ` ≥ |Pr,t,x| ≥ |π(r, t)|, it holds
that x /∈ π(r, t) and thus Pr,t,x = π(r, x). Since the W ×W preservers of Theorem 14
contains all BFS trees of the W nodes, it includes the BFS tree Tr, and Pr,t,x ⊂ H1. Next,
assume that dist(x, t) ≤ `. By construction, as |Pr,t,x| ≤ `, it holds that Pr,t,x ⊂ H2.

Size Analysis. By Theorem 14, |E(H1)| = O
(
n(|S|+ n/`) log2 n

)
. In addition, |E(H2)| =

O(|S||T |`2) as it includes ` edges of ` s-t replacement paths for every s, t pair. Letting
` = n2/3(|S||T |)−1/3 gives O(n4/3(|S||T |)1/3 log2 n). This bound matches the state of the
art bound known for one edge failure by [8] (Theorem 11). J

3 Fault Tolerant Preservers for General Directed Graphs

We start by defining a couple of notations needed for our constructions. Recall the for each
pair of vertices s, t ∈ V , and a node fault x ∈ π(s, t), the detour of replacement path Ps,t,x is
represented as Ds,t,x. We denote ∂Ds,t,x to denote the partial subpath of Ds,t,x obtained by
removing the first and last vertex from Ds,t,x.

Any partial detour ∂Ds,t,x is a shortest path in the graph G \π(s, t), so we have following
lemma.

I Lemma 24. For any s, t ∈ V , and x ∈ π(s, t), the path ∂Ds,t,x is a shortest path in
G \ π(s, t).

We now describe the fault-tolerant distance preservers with respect to pair-set {r} × S,
for a given choice of a root node r ∈ V and a set S ⊆ V . Let T represent the shortest path
tree rooted at r in G. We initialize H0 to T . Further for each s ∈ S and failure x ∈ π(r, s),
we add the two edge present in E(Ds,t,x) \E(∂Ds,t,x) to H0. In the process, we add at most
O(n|S|) edges to H.

For a directed path Q, we use “HQ” to represent the minimal sub-graph such that H0+HQ

is a 1-FT distance preserver for pairs in (r × S) when vertex-faults in G are restricted to
path Q. One of our main-contributions in achieving sparseness for (non-acyclic graphs) is
in obtaining tight bound over the size of HQ. This is captured in the Proposition 25 and
Proposition 29.

3.1 Preservers for Directed Weighted Graphs
We obtain the following bound on HQ for directed weighted graphs.

I Proposition 25. For any directed path Q = (y  z) in T (between two vertices y, z with
y being ancestor of z in T ), the graph HQ, for a directed possibly weighted graph G, requires
at most O(|T (y)| |S|3/4

√
|Q|) edges, where |Q| denotes the number of vertices in path Q.

Proof. Let Q be a directed y  z tree-path in T , for some y, z ∈ V with y being ancestor of
z. Let k = |S ∩ T (y)|, and α be an integer parameter to be decided later on. For simplicity
we assume K = k/α is integer. Let S1, . . . , Sα be an arbitrary partition of S ∩ T (y), each of
size K, satisfying the constraint that for each (s, s′) ∈ Si × Si+1, LCA(s, z) is either equal
to or an ancestor of LCA(s′, z). Further let w0 = y, wi be LCA(Si ∪ {z}) for 1 ≤ i ≤ α, and
wα+1 = z. Observe that for i ∈ [1, α], wi is either equal to, or a ancestor of wi+1. Partition Q
in consecutive segments (blocks): B0 = Q[w0, w1], B1 = Q[w1, w2], . . . , Bα = Q[wα, wα+1].
Further, let Li be the number of vertices in Bi, for 0 ≤ i ≤ α. (See Figure 2).

We will analyze the failures in each block separately. Fix an index 1 ≤ i ≤ K. We
distinguish two cases as below.



G. Bodwin, K. Choudhary, M. Parter, and N. Shahar 15:13

Figure 2 Depiction of block-partitioning of y  z tree-path, for K = α = 3. Observe that the
sets S1, S2, . . . , Sα are each of size K = 3.

Analysis of replacement path to vertices in Si on vertex failure in Bi. Consider a pair
(f, s) ∈ Bi×Si. Observe that on failure of f , the partial detour ∂Dr,s,f (of replacement path
Pr,s,f ) is a shortest path in G \Bi[wi,LCA(s, z)]. (Recall Bi[wi,LCA(s, z)] is the sub-path
of Bi comprising of those vertices that are ancestor of s in T ). Furthermore, it follows from
our tie-breaking scheme that none of the vertices of ∂Dr,s,f can lie outside T (y). So, for a
fixed s ∈ Si, to compute an (r, s) FT-preserver containing partial-detours corresponding to
f ∈ Bi, we can simply use Coppersmith-Elkin’s [20] pairwise-distance preserver over graph
G[T (y)] \Bi[wi,LCA(s, z)], where, G[T (y)] is the graph induced by vertices in subtree T (y).

Since fault f has Li choices, this gives a bound of O(|T (y)| ·
√
Li) edges, for a single

s ∈ Si. On summing over |Si| = K = k/α nodes in Si, and each of the α blocks, we get a
bound (say X1):

X1 = O
(
|T (y)| · k

α
·
∑
i∈[1,α]

(√
Li
))

(1)

Analysis of replacement path to vertices in ∪j>iSj on vertex failure in Bi. Consider a
pair (f, s) ∈ Bi×∪j>iSj . Observe that on failure of f , the partial detour ∂Dr,s,f is a shortest
path in G \Bi, since all the vertices in Bi are ancestor of s. So here we will use a distance
preserver over graph G[T (y)] \Bi, and the number of pairs (as well as partial-detours) is at
most |S ∩ T (y)| · Li. Hence, handling failures on Bi incurs us O(|T (y)| ·

√
k Li) cost. On

summing over all blocks, we get a bound (say X2):

X2 = O
(
|T (y)| ·

∑
i∈[0,α]

(√
k · Li

))
(2)

For a given α, we haveX1 ≤ O(|T (y)|·(k2/α)1/2·
√
|Q|) andX2 ≤ O(|T (y)|·(kα)1/2·

√
|Q|),

where |Q| denotes the number of vertices on path Q. Optimizing over α, we get α must be
Θ(
√
k). This provides a bound of at most O(|T (y)|k3/4

√
|Q|) edges on the size of HQ. J

We are now ready to prove our results for directed weighted graphs. Previously it was know
by Bodwin et al. [14] that for a single-pair (r, s) ∈ V × V , we can compute a FTP with at
most O(n1.5) edges. A direct implementation of this result over pairs in {r}×S would result
in a bound of O(n1.5|S|) edges. However using Proposition 25 and heavy-path decomposition,
we are able to obtain a better bound of o(n1.5|S|) size for the {r} × S setting.
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15:14 New Fault Tolerant Subset Preservers

Let Q1 = (y1  z1), . . ., Qγ = (yγ  zγ) be the paths in the heavy-path decomposition of
T (i.e. HP(T )). Then

∑γ
i=1 |T (yi)| is O(n logn) (see Lemma 13). Since ∪γi=1V (Qi) = V (T ),

it follows that to handle all failures in T we incur at most O(n|S|3/4√n logn) cost.
Thus our {r}×S 1-FT distance-preserver for weighted directed graphs require Õ(n3/2|S|3/4)

edges.

I Theorem 26. For any n-node directed weighted graph G = (V,E), (r, S) ∈ V × 2V , there
is a 1-VFT (r × S) distance preserver H on Õ(n3/2|S|3/4) edges.

3.2 Preservers for Directed Unweighted Graphs
Using Proposition 25, together with a deeper insight into shortest-path’s structure in un-
weighted graphs, we provide an alternative and better bound on HQ.

Let Q be a directed y  z tree-path in T , with y being ancestor of z. Let ` (a function
of Q) be a parameter to be chosen later. For a triplet (r, s, x) we say that Dr,s,x is long if
the partial detour ∂Dr,s,x has at least ` nodes, and short otherwise. We separately analyse
the short and long detours.

Long Detours. Let us fix a node s ∈ S ∩ T (y). Let Ws ⊆ V (T (y)) be a random sample
of nodes obtained by including each node in T (y) \ π(r, s) independently with probability
`−1. For each long detour Dr,s,x, for x ∈ π(r, s), with constant probability or higher we
sample a node w ∈Ws. Edges of corresponding partial-detour intersecting a node w ∈Ws is
contained in the union of an in- and out-BFS tree rooted at w. Hence they contain O(|T (y)|)
edges. Unioning over all w ∈ Ws, all long detours that intersect Ws contain O(|T (y)|2/`)
edges in total. Finally, we note that since each long detour is counted with at least constant
probability, there are at most O(|T (y)|2/`) total edges contained in all long detours, for a
single node s. Summing this over s ∈ S gives a bound of O(|S| · |T (y)|2/`).

Short Detours. Let w0 = y, and for i = 1 to α = b|Q|/`c, let wi be the descendant of
wi−1 on Q at a distance ` from it. We partition Q into blocks: B0, B1, . . . , Bα such that Bi
includes wi but excludes wi+1, for i ∈ [0, α]. The following lemma presents the disjointness
relation for short detours corresponding to non-consecutive blocks.

I Lemma 27. For each s ∈ S ∩ T (y) and x ∈ Bi, a short partial detour ∂Dr,s,x lies in
T (wi) \ T (wi+2).

Proof. Consider a fault x ∈ Bi and a node s ∈ S ∩ T (y). Let a, b be respectively the first
and last vertices on Dr,s,x. As x ∈ Bi = Q[wi, wi+1] \ {wi+1}, node a must be at least the
grand parent of wi+1. Thus dist(a,wi+2) ≥ ` + 2, and moreover, distance from a to all
nodes in T (wi+2) is also at least `+ 2. Since distance from a to all vertices in ∂Dr,s,x is at
most `+ 1, this completes the proof that ∂Dr,s,x is disjoint with T (wi+2). J

From a more careful implementation of Proposition 29, it follows that the T (y) term in its
bound can in-fact be replaced by T (wi) \ T (wi+2) term when faults are restricted to Bi (see
Lemma 27). Thus the next lemma follows.

I Lemma 28. To handle short detours for faults on Bi, for i ∈ [0, α], we require at most

O
(
|T (wi) \ T (wi+2)| |S|3/4

√
`
)

edges to be added to H0.
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Since
∑α
i=0 |T (wi) \ T (wi+2)| = O(T (y)), the total cost of the construction of HQ is

O
(
|S| · |T (y)|2/`+ |T (y)| |S|3/4

√
`
)
.

Setting ` := |S|1/6|T (y)|2/3 thus proves the following.

I Proposition 29. For any directed path Q = (y  z) in T (between two vertices y, z with
y being ancestor of z in T ), the graph HQ, for a directed unweighted graph G, requires at
most O(|T (y)|4/3 |S|5/6) edges.

As a direct corollary of Proposition 29, we obtain an O(n4/3) upper bound for single
node-pair preserver. If the input pair is (r, s) ∈ V × V , then taking Q = π(r, s), provides us
the following.

I Corollary 30. For any n-node directed unweighted graph G = (V,E), r, s ∈ V , there is a
1-VFT (r, s) distance preserver H on O(n4/3) edges.

We now use the technique of heavy path decomposition. Let Qi = (yi  zi), 1 ≤ i ≤ γ
be the paths in the heavy-path decomposition of T (i.e. HP(T )). Then

∑γ
i=1 |T (yi)| is

O(n logn). So Proposition 29 directly proves the following.

I Theorem 31. For any n-node directed unweighted graph G = (V,E), (r, S) ∈ V × 2V ,
there is a 1-VFT (r × S) distance preserver H on Õ(n4/3|S|5/6) edges.

4 Fault Tolerant Preservers for Directed Acyclic Graphs

For DAGs, we first present our result for single node-pair case.

I Theorem 32. For every n-node directed graph G = (V,E) and a pair p ∈ V × V , there
exists a FT-vertex preserver H ⊆ G for p with O(n) edges.

Proof. Let p = (s, t), and Q = π(s, t) denote the s-t shortest path. Let T1 (T2) be an
outgoing (incoming) shortest path tree rooted at s (t) in G such that the s-t path in it
overlaps with Q; and let H be initialized to T1 ∪T2. Consider a vertex failure x on Q. Let yx
be the last vertex on the replacement path Ps,t,x lying outside subtree T1(x), and let zx be
its successor. As G is acyclic the zx to t shortest path in G cannot pass through x. Thus we
may assume Q[s, yx] is contained in T1, and Q[zx, t] is contained in T2. So, for each x ∈ Q,
it only remains to add edge (yx, zx) to H, thereby proving the linear size bound. J

In above theorem, we showed that for each x ∈ π(s, t), there is exists an edge ex,s,t =
(yx, zx) such that
1. treepathTs

(s, yx) doesn’t contains x,
2. no shortest-path from zx to t can contain x, and
3. the concatenated path treepathTs

(s, yx) · (yx, zx) · πG(zx, t) is an s-t shortest path in
G \ x,

where Ts, for s ∈ S, denotes the shortest path tree rooted at s.
To extend our construction to S×S setting we proceed as follows. We choose a uniformly

random set S̃ of Θ(|S|) vertices, and let R = S ∪ S̃ and L = n logn
|S| . Initialize H to ∪r∈R(Tr).

Next, for each s, t ∈ R satisfying distG(s, t) ≤ L and each x ∈ πG(s, t), add the edge ex,s,t
to H. Observe that in this process, we include at most O(n|S| logn) edges to H. Thus the
size of H is at most O(n|S| logn).

ICALP 2020



15:16 New Fault Tolerant Subset Preservers

It remains to prove the correctness of H. Consider a pair (s, t) ∈ S × S, and a vertex
x ∈ πG(s, t). Let (s = r0, r1, r2, . . . , r` = t) be the vertices in R lying on Ps,t,x, in the
order they appear. (Recall Ps,t,x denote the s to t replacement path in G \ x). With high
probability, length between consecutive ri’s in Ps,t,x is at most L. This shows that with high
probability each segment Ps,t,x[ri, ri+1], for i < `, is present in G \ x.

Therefore, with high probability, H is a S × S fault-tolerant preserver for the input DAG
G, and it comprises of at most O(n|S| logn) edges.

I Theorem 33. Any DAG (possibly weighted) G = (V,E,w) and a set S ⊆ V of sources has
a S × S sourcewise (vertex) fault tolerant preserver H with O(n|S| logn) edges.

Using the same analysis as in Theorem 23, the above result can be extended to obtain a
S × T preserver for unweighted DAGs with O(n4/3(|S||T |)1/3 log2 n) edges.

I Theorem 34. For any unweighted DAG G = (V,E) and subsets S, T ⊆ V , one can compute
a (vertex) fault tolerant S × T preserver H with Õ(n4/3|S|1/3|T |1/3) edges.

5 Lower Bounds for FT Preservers

5.1 Unconditional Lower-Bounds for Weighted Graphs
We show here a construction of a graph G on O(n) vertices with integral edge weights in
range [1, nc] (for some constant c) such that its ({s} × S)-distance preserver requires at least
Ω(n|S|) edges. Our lower bound construction is an adaption of {s} × V (1 + ε)-FTP by [6]
to the {s} × S exact-FTP setting.

The vertex set of V (G) constitutes n + σ vertices, and is union of disjoint sets U =
{u1, u2, . . . , un} and W = {w1, w2, . . . , wσ}. The edge set of E(G) (in both directed as well
as undirected scenario) is the union of the following two sets.

EU = {(un, un−1), . . . , (ui, ui−1), . . . , (u2, u1)}, with wt(ui, ui−1) = 1.
EU,W = {(ui, wj) | i ∈ [1, n], j ∈ [1, σ]}, with wt(ui, wj) = (i · n4).

Say that S = W , and let s = un be the designated source vertex. Let Ts be the shortest
path tree rooted at s in G. It is easy to verify the set EU ∪ ({u1}×W ) constitute the edges of
Ts. Now for any i ∈ [1, n] and j ∈ [1, σ], let Pi,j denote the path (un, un−1, . . . , ui) ◦ (ui, wj).
Then for any i, j, wt(Pi,j) = i · n4 + (n− i).

If vertex ui−1 fails then the shortest path from s to vertex wj (j ∈ [1, σ]) in G is path
Pi,j . Hence each wj must keep all its incoming edges in the FT-preserver. This shows there
exists graphs whose {s} × S FT-preserver must contain Ω(n|S|) edges, thereby, implying the
following result.

I Theorem 35. For any positive integers n and σ (≤ n), there exists an n-vertex (un)directed
weighted graph G = (V,E) with pair (s, S) ∈ V × 2V satisfying |S| = σ whose {s} × S 1-FT-
distance-preserver must contain Ω(n|S|) edges.

5.2 Conditional Lower-Bounds for Undirected Unweighted Graphs
I Hypothesis 36 (Gap S × T Distance Preserver Lower Bounds). For any σ = σn, there
is an n-node undirected unweighted graph G = (V,E) and demand pairs P = S × T with
|S| ≤ σ, |T | ≤

√
nσ/γ(P ) such that any distance preserver of P has Ω(nσ) edges.
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I Theorem 37. Assuming Hypothesis 36, for any σ = σn, there are examples of n-node
undirected unweighted graphs G = (V,E) and node subsets of size |S| = σ where Ω(nσ) edges
are needed for an S × S FT preserver of an undirected unweighted graph.

We first say the construction, which uses ideas from [31]. Let γ = γ(P ) be the gap of
an instance from Hypothesis 36. For i ∈ [σ], we create identical disjoint trees Ti, each on
O(n/σ) nodes, computed as follows. Let

β :=
√

n

σγ
,

and start with β disjoint paths Li,1, . . . , Li,β , where Li,j is path on 2jγ nodes with endpoints
(qi,j , si,j). For j ∈ [β − 1], the parent of qi,j is set to qi,j+1 by adding an edge; thus the node
qi,β =: ri is naturally viewed as the root of Ti, and {si,1, . . . , si,β} are then the leaves. We set

T̃ = {si,j | i ∈ [α], j ∈ [β]}

and take S̃ to be a set of |S̃| = σ new nodes. Noting that
∣∣∣T̃ ∣∣∣ = σβ =

√
nσ/γ, between S̃

and T̃ we may plug in an n-node distance preserver lower bound graph H from Hypothesis
36. We then let

S := S̃ ∪ {r1, . . . , rα}.

This completes the construction. One immediately counts that the number of vertices is

n+

∣∣∣∣∣
α⋃
i=1

Ti

∣∣∣∣∣ = O(n),

and |S| = 2σ, so it remains to argue that an FT subset distance preserver must contain a
non-faulty S̃ × T̃ preserver in the copy of H, which thus has Ω(nσ) edges. Consider nodes
ti,j ∈ T̃ , s ∈ S̃. Following the argument in [31], one can verify that on failure of qi,j−1, every
shortest ri  s path has the form

(qi,β , . . . , qi,j) ◦ Li,j ◦ π(ti,j , s)

where π(ti,j , s) is a shortest ti,j  s path in H.

5.3 Conditional Lower-Bounds for Directed Unweighted Graphs
For directed unweighted graphs, we prove:

IHypothesis 38 (Layered S×T Directed Distance Preserver Lower Bounds). There is an n-node
directed unweighted graph G = (V,E) and demand pairs S×T with |S|, |T |, γ(S×T ) ≤ O(n1/3)
such that any distance preserver of P has Ω(n4/3) edges.

I Theorem 39. Assuming Hypothesis 38, there are examples where Ω(n4/3) edges are needed
for a single-pair 1-VFT preserver of a directed unweighted graph.

To prove Theorem 39, we start with an s t shortest path π of length Θ(n2/3) and an n-
node distance preserver lower bound H from Hypothesis 38, and then we add some additional
nodes and edges to the graph to carefully connect these two parts of the construction. Then,
similar in spirit to our previous lower bounds, we prove that for each s′ ∈ S, t′ ∈ T pair
one can fault a particular node on π so that every shortest s t path passes through s′, t′.
This means one must implicitly keep a (non-faulty) distance preserver of H, which thus has
Ω(n4/3) nodes.
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