
Improved Bounds for Matching in Random-Order
Streams
Aaron Bernstein
Rutgers University, Department of Computer Science, New Brunswick, NJ, USA
https://aaronbernstein.cs.rutgers.edu
bernstei@gmail.com

Abstract
We study the problem of computing an approximate maximum cardinality matching in the semi-
streaming model when edges arrive in a random order. In the semi-streaming model, the edges of
the input graph G = (V, E) are given as a stream e1, . . . , em, and the algorithm is allowed to make
a single pass over this stream while using O(npolylog(n)) space (m = |E| and n = |V |). If the order
of edges is adversarial, a simple single-pass greedy algorithm yields a 1/2-approximation in O(n)
space; achieving a better approximation in adversarial streams remains an elusive open question.

A line of recent work shows that one can improve upon the 1/2-approximation if the edges of
the stream arrive in a random order. The state of the art for this model is two-fold: Assadi et al.
[SODA 2019] show how to compute a 2

3 (∼ .66)-approximate matching, but the space requirement
is O(n1.5polylog(n)). Very recently, Farhadi et al. [SODA 2020] presented an algorithm with the
desired space usage of O(npolylog(n)), but a worse approximation ratio of 6

11 (∼ .545), or 3
5 (= .6) in

bipartite graphs.
In this paper, we present an algorithm that computes a 2

3 (∼ .66)-approximate matching using
only O(n log(n)) space, improving upon both results above. We also note that for adversarial streams,
a lower bound of Kapralov [SODA 2013] shows that any algorithm that achieves a 1 − 1

e
(∼ .63)-

approximation requires (n1+Ω(1/ log log(n))) space. Our result for random-order streams is the first to
go beyond the adversarial-order lower bound, thus establishing that computing a maximum matching
is provably easier in random-order streams.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Graph Algorithms, Sublinear Algorithms, Matching, Streaming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2020.12

Category Track A: Algorithms, Complexity and Games

Funding Aaron Bernstein: NSF CAREER Grant 1942010 and Simons Collaboration on Algorithms
and Geometry.

Acknowledgements I want to thank Sepehr Assadi for several very helpful discussions.

1 Introduction

Computing a maximum cardinality matching is a classical problem in combinatorial optimiz-
ation, with a large number of algorithms and applications. Motivated by the rise of massive
graphs, much of the recent research on this problem has focused on sub-linear algorithms
that are able to compute a matching without storing the entire graph in memory. One of the
standard sub-linear models for processing graphs is known as the semi-streaming model [17]:
the algorithm has access to a sequence of edges (the stream), and is allowed to make a
single pass over this sequence while only using only O(npolylog(n)) internal memory, where
n is the number of vertices in the graph. Note that the memory used is still significantly
smaller than the number of edges in the graph, and that O(n) memory is also necessary if
we want the algorithm to output the actual edges of the matching. (One typically assume

EA
T

C
S

© Aaron Bernstein;
licensed under Creative Commons License CC-BY

47th International Colloquium on Automata, Languages, and Programming (ICALP 2020).
Editors: Artur Czumaj, Anuj Dawar, and Emanuela Merelli; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aaronbernstein.cs.rutgers.edu
mailto:bernstei@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Improved Bounds for Matching in Random-Order Streams

Table 1 Single-pass semi-streaming algorithms known for the maximum matching when edges
arrive in a random order. The space bounds are expressed in terms of O(log(n))-size words, though
many existing results do not state the exact polylog(n) term. The result of Gamlath et al. [18]
works in weighted graphs; all others are restricted to unweighted graphs.

Approximation Factor
Bipartite graphs General graphs Space

Konrad et al. [28] 0.5005 0.5003 O(n)
Gamlath et al. [18] 0.512 0.506 O(n · polylog(n))
Konrad [27] 0.539 - O(n · polylog(n))
Assadi et al. [3] 0.666 0.666 O(n1.5 · polylog(n))
Farhadi et al. [16] 0.6 0.545 O(n · polylog(n))
This paper 0.666 0.666 O(n log(n))

O(log(n))-size words, so that a single edge can be stored in O(1) space; if one were to express
space in terms of the number of bits, all the space bounds in this paper would increase by a
O(log(n)) factor.)

If the edges of the stream arrive in an arbitrary order, a simple greedy algorithm can
compute a maximal matching – and hence a 1/2-approximate maximum matching – in a
single streaming pass and O(n) space. Going beyond a 1/2-approximation with a single pass
is considered one of the main open problems in the area. The strongest lower bound is by
Kapralov [23], who build upon an earlier lower bound of Goel et al. [20]: any algorithm with
approximation ratio ≥ 1− 1/e ∼ .63 requires n1+Ω(1/ log log(n))) space [23]. But we still do
not know where the right answer lies between 1/2 and 1− 1/e.

To make progress on this intriguing problem, several recent papers studied a more relaxed
model, where the graph is still arbitrary, but the edges are assumed to arrive in a uniformly
random order. Konrad et al. were the first to go beyond a 1/2-approximation in this
setting: they showed that in random-order streams, there exists an O(n)-space algorithm
that computes an .5003-approximate matching, or .5005-approximate for bipartite graphs [28].
This was later improved to .506 in general graphs [18] and .539 in bipartite graphs [27].
Assadi et al. then showed an algorithm with an approximation ratio of (2/3 − ε) ∼ .66,
but their algorithm had a significantly larger space requirement of O(n1.5polylog(n)) [3].
Finally, very recently (SODA 2020), Farhadi et al. achieved the current state of the art for
O(npolylog(n)) space; their algorithm achieves an approximation ratio of 6/11 ∼ .545 for
general graphs and 3/5 = .6 for bipartite graphs [16]. A summary of these results can be
found in Table 1.

Although this line of work suggests that computing a maximum matching might be
fundamentally easier in random-order streams, we note that even in bipartite graphs, none of
the previous results go beyond the best known lower bound for adversarial streams mentioned
above [23]: the algorithm of Assadi et al. uses too much space (n1.5 � n1+1/ log log(n)), while
the result of Farhadi et al. has an approximation ratio of .6 < 1− 1/e.

Our result is the first to go beyond the adversarial-order lower bound, thus establishing
that computing a matching is provably easier in random-order streams.

I Theorem 1 (Our Result). Given any (possibly non-bipartite) graph G and any approximation
parameter 1 > ε > 0, there exists a deterministic single-pass streaming algorithm that with
high probability computes a (2/3 − ε)-approximate matching if the edges of G arrive in a
uniformly random order. The space usage of the algorithm is O(n log(n)poly(ε−1)).

A. Bernstein 12:3

Our result significantly improves upon the space requirement of Assadi et al. [3] and the
approximation ratio of Farhadi et al. [16]. In fact, our algorithm achieves the best of both
those results (see Table 1). On top of that, our result is quite simple; given that it improves
upon a sequence of previous results, we see this simplicity as a plus.

Related Work

If the only requirement is to return an approximate estimate of the size of the maximum
matching, rather than the actual edges, a surprising result by Kapralov et al. shows that
one can get away with very little space: given a single pass over a random-order stream, it is
possible to estimate the size within a 1/polylog(n) factor using only polylog(n) space [24];
a very recent improvement reduces the polylog factors to O(log2(n)) [25]. There is also a
line of work that estimates the size of the matching in o(n) space in adversarial streams for
special classes of graphs as such planar graphs or low-arboricity graphs [14, 8, 30, 11, 31].

There are many one-pass streaming algorithms for computing a maximum matching in
weighted graphs. For adversarial-order streaming, a long line of work culminated in a (1/2−ε)-
approximation using O(n) space [17, 29, 13, 12, 32, 19]. Gamlath et al. recently showed that
for random-order streams, one can achieve an approximation ratio of 1/2 + Ω(1), [18]. See
also other related work on weighted graphs in [8].

There are several results on upper and lower bounds for computing a maximum matching
in dynamic streams (where edges can also be deleted) [26, 10, 6, 9, 5]. Finally, there are
several results that are able to achieve better bounds by allowing the algorithm to make
multiple passes over the stream: some results focus on just two or three passes [28, 15, 22, 27],
while others seek to compute a (1− ε)-approximate matching by allowing a large constant
number (or even log(n)) passes [29, 1, 21, 2].

Overview of Techniques

The basic greedy algorithm trivially achieves a 1/2-approximate matching in adversarial
streams; in fact, Konrad et al later showed that the ratio remains 1/2 + o(1) even in random-
order streams [28]. Existing algorithms for improving the 1/2 ratio in random-order streams
generally fall into two categories. The algorithms in [28, 27, 18, 16] use the randomness
of the stream to compute some fraction of short augmenting paths, thus going beyond the
1/2-approximation of a maximal matching. The result in [3] instead shows that one can
obtain a large matching by constructing a subgraph that obeys certain degree-properties.

Our result follows the framework of [3]. Given any graph G, an earlier result of Bernstein
and Stein for fully dynamic matching defined the notion of an edge-degree constrainted
subgraph (denoted EDCS), which is a sparse subgraph H ⊆ G that obeys certain degree-
properties [7]. They showed that any EDCS H always contains a (2/3 − ε)-approximate
matching. The streaming result of Assadi et al. [3] then showed that given a random-order
stream, it is possible to compute an EDCS H in O(n1.5) space; returning the maximum
matching in H yields a (2/3− ε)-approximate matching in G.

Our result also takes the EDCS as its starting point, but it is unclear how to compute an
EDCS H of G using less than O(n1.5) space. Our algorithm requires two new contributions.
Firstly, we show that it is sufficient for H to satisfy a somewhat relaxed set of properties. Our
main contribution is then to use an entirely different construction of this relaxed subgraph,
which uses the randomness of the stream more aggressively to compute H using low space.

ICALP 2020

12:4 Improved Bounds for Matching in Random-Order Streams

2 Notation and Preliminaries

Consider any graph H = (VH , EH). We define degH(v) to be the degree of v in H and we
define the degree of an edge (u, v) to be degH(u) + degH(v). A matching M in H is a set
of vertex-disjoint edges. All graphs in this paper are unweighted and undirected. We use
µ(H) to denote the size of the maximum matching in H. Unless otherwise indicated, we
let G = (V,E) refer to the input graph and let n = |V | and m = |E|. We note that every
graph referred to in the paper has the same vertex V as the input graph; when we refer to
subgraphs, we are always referring to a subset of edges on this same vertex set.

The input graph G = (V,E) is given as a stream of edges S = 〈e1, . . . , em〉. We assume
that the permutation (e1, . . . , em) of the edges is chosen uniformly at random among all
permutations of E. We use S[i,j] to denote the substream 〈ei, . . . , ej〉, and we use G>i ⊆ G
to denote the subgraph of G containing all edges in {ei+1, . . . , em}.

Our analysis will apply concentration bounds to segments S[i,j] of the stream. Observe
that because the stream is a random permutation, any segment S[i,j] is equivalent to sampling
j− 1 + 1 edges from the stream without replacement. We can thus apply the Chernoff bound
for negatively associated variables (see e.g. the primer in [33]).

I Theorem 2 (Chernoff). Let X1, . . . Xn be negatively associated random variables taking
values in [0, 1]. Let X =

∑
Xi and let µ = E[X]. Then, for any 0 < δ < 1 we have

Pr[X ≤ µ(1− δ)] ≤ exp(−µ · δ
2

2),

and

Pr[X ≥ µ(1 + δ)] ≤ exp(−µ · δ
2

3)

The early and late sections of the stream

Our algorithm will use the first εm edges of the stream to learn about the graph and will
effectively ignore them for the purposes of analyzing the maximum matching. Thus, we
only approximate the maximum matching in the later (1− ε)m edges of stream; because the
stream is random, these edges still contain a large fraction of the maximum matching. We
use the following definitions and lemmas to formalize this intuition.

I Definition 3. We Let Eearly denote the first εm edges of the stream, and Elate denote
the rest: that is, Eearly = {e1, . . . , eεm}, and Elate = {eεm+1, . . . , em}. Define Gearly =
(V,Eearly) and Glate = (V,Elate) = G>εm.

For the probability bounds to work out, we need to assume that µ(G) ≥ 20 log(n)ε−2.
We justify this assumption by observing that every graph G satisfies m ≤ 2nµ(G), so if
µ(G) < 20 log(n)ε−2, then the algorithm can trivially return an exact maximum matching by
simply storing every edge using only O(m) = O(log(n)ε−2) space. This justifies the following:

B Claim 4 (Assumption). We can assume for the rest of the paper that µ(G) ≥ 20 log(n)ε−2.

Combining Claim 4 with Chernoff bound we get the following lemma, which allows us to
focus our analysis on the edges in Glate.

I Lemma 5. Assuming that ε < 1/2, we have that Pr[µ(Glate) ≥ (1− 2ε)µ(G)] ≥ 1− n−5.

A. Bernstein 12:5

Proof. Fix some maximum matching M = (f1, ..., fµ(G)) of G. Define Xi to be the indicator
variable that edge fi ∈ M appears in Glate. Since the stream is random, and since Glate
contains exactly (1− ε)m edges, we have that E[Xi] = (1− ε) and

∑
E[Xi] = (1− ε)µ(G).

It is also easy to see that the Xi are negatively associated, since these variables correspond
to sampling (1 − ε)m edges without replacement. Recall from Claim 4 that we assume
µ(G) ≥ 20 log(n)ε−2. Applying the Chernoff Bound in Theorem 2 completes the proof. J

Existing Work on EDCS

We now review the basic facts about the edge-degree constrained subgraph (EDCS), which
was first introduced in [7].

I Definition 6. Let G = (V,E) be a graph, and H = (V,EH) a subgraph of G. Given any
parameters β ≥ 2 and λ < 1, we say that H is a (β, λ)-EDCS of G if H satisfies the following
properties:

[Property P1]. For any edge (u, v) ∈ H, degH(u) + degH(v) ≤ β
[Property P2]. For any edge (u, v) ∈ G \H, degH(u) + degH(v) ≥ β(1− λ).

The crucial fact about the EDCS is that it always contains a (almost) 2/3-approximate
matching. The simplest proof of Lemma 7 below is in Lemma 3.2 of [4].

I Lemma 7 ([4]). Let G(V,E) be any graph and ε < 1/2 be some parameter. Let λ, β be
parameters with λ ≤ ε

64 , β ≥ 8λ−2 log (1/λ). Then, for any (β, λ)−EDCS H of G, we have
that µ(H) ≥ (2

3 − ε)µ(G). (Note that the final guarantee is stated slightly differently than
in Lemma 3.2 of [4], and to ensure the two are equivalent, we set λ to be a factor of two
smaller than in Lemma 3.2 of [4].)

3 Our Modified Subgraph

Unlike the algorithm of [3], we do not actually construct an EDCS of G, as we do not know
how to do this in less than O(n1.5) space. We instead rely on a more relaxed set of properties,
which we analyze using Lemma 7 as a black-box. We now introduce some of the basic new
tools used by our algorithm. Note that graph G in the lemma and definitions below crucially
refers to any arbitrary graph G, and not necessarily the main input graph of the streaming
algorithm.

I Definition 8. We say that a graph H has bounded edge-degree β if for every edge (u, v) ∈ H,
degH(u) + degH(v) ≤ β.

I Definition 9. Let G be any graph, and let H be a subgraph of G with bounded edge-degree
β. For any parameter λ < 1, we say that an edge (u, v) ∈ G \H is (G,H, β, λ)-underfull if
degH(u) + degH(v) < β(1− λ)

The two definitions above effectively separate the two EDCS properties: any subgraph
H of G with bounded edge-degree β automatically satisfies property P1 of an EDCS, and
underfull edges are then those that violate property P2. We now show that one can always
construct a large matching from the combination of these two parts.

I Lemma 10. Let ε < 1/2 be any parameter, and let λ, β be parameters with λ ≤ ε
128 ,

β ≥ 16λ−2 log (1/λ). Consider any graph G, and any subgraph H with bounded edge-degree β.
Let X contain all edges in G\H that are (G,H, β, λ)-underfull. Then µ(X∪H) ≥ (2/3−ε)µ(G)

ICALP 2020

12:6 Improved Bounds for Matching in Random-Order Streams

Proof. Note that it is NOT necessarily the case that H ∪ X is an EDCS of G, because
adding the edges of X to H will increase vertex and edge degrees in H, so H ∪X might not
satisfy property P1 of an EDCS. We thus need a more careful argument.

LetMG be the maximum matching in G, letMH
G = MG∩H and letMG\H

G = MG∩(G\H).
LetXM = X∩MG\H

G . Note that by construction,MG ⊆ H∪MG\H
G , so µ(H∪MG\H

G) = µ(G).
We now complete the proof by showing that H ∪XM is a (β+ 2, 2λ)-EDCS of H ∪MG\H

G .
Let us start by showing property P2. Recall that X contains all edges (u, v) in G \H for
which degH(u) + degH(v) < β(1 − λ), so by construction XM contains all such edges in
M

G\H
G . Thus, every edge (u, v) ∈ (H ∪MG\H

G) \ (H ∪ XM) = M
G\H
G \ XM must have

degH(u) + degH(v) ≥ β(1−λ) ≥ (β+ 2)(1−2λ), where the last inequality is just rearranging
the algebra to fit Property P2 for our new EDCS parameters of β + 2, 2λ.

For property P1, note that XM ⊆ M
G\H
G is a matching, so for every vertex v we have

degH(v) ≤ degH∪XM (v) ≤ degH(v) + 1. Now, for (u, v) ∈ H we had degH(u) + degH(v) ≤ β
(by property P1 of H), and for (u, v) ∈ XM ⊆ X we had degH(u) + degH(v) < β (by
definition of X). Thus, for every (u, v) ∈ H∪XM we have that degH∪XM (u)+degH∪XM (v) ≤
degH(u) + degH(v) + 2 ≤ β + 2.

Note that because of how we set the parameters, β′ = β + 2 < 2β and λ′ = 2λ
satisfy the requirements of Lemma 7. We thus have that µ(H ∪ X) ≥ µ(H ∪ XM) ≥
(2/3− ε)µ(H ∪MG\H

G) = (2/3− ε)µ(G). J

4 The Algorithm

4.1 The Two Phases
Our algorithm will proceed in two phases. Once phase I terminates, the algorithm proceeds
to phase II and never returns to phase I. The goal of phase I is to construct a suitable
subgraph H of G. We now state the formal properties that will be guaranteed by phase I.

I Definition 11 (parameters). Throughout this section we use the following parameters.
Let ε < 1/2 be the final approximation parameter we are aiming for. Set λ = ε

128 and set
β = 16λ−2 log (1/λ); note that λ and β are O(poly(1/ε)). Set α = εm

nβ2+1 = O(mn poly(1/ε))
and γ = 5 log(n)mα = O(n log(n)poly(1/ε)).

I Lemma 12. Phase I uses O(nβ) = O(npoly(1/ε)) space and constructs a subgraph H of
G. The phase satisfies the following properties:
1. Phase I terminates within the first εm edges of the stream. That is, Phase I terminates

at the end of processing some edge ei with i ≤ εm.
2. When Phase I terminates at the end of processing some edge ei, the subgraph H ⊆ G

constructed during this phase satisfies the following properties:
a. H has bounded edge-degree β. As a corollary, H has O(nβ) edges.
b. With probability at least 1− n−3, the total number of (G>i, H, β, λ)-underfull edges in

G>i \H is at most γ. (Recall that G>i denotes the subgraph of G that contains all
edges in {ei+1, . . . , em}.)

We now show that if we can ensure the properties of Lemma 12, our main result follows.

Proof of Theorem 1. Let us say that Phase I terminates after edge ei and let H be the
subgraph constructed by Phase I. Phase II of the algorithm proceeds as follows. It initializes
an empty set X. Then, for every edge (u, v) in S[i+1,m], if degH(u) + degH(v) < β(1 − λ)
(that is, if (u, v) is (G>i, H, β, λ)-underfull), the algorithm adds edge (u, v) to X. After the
algorithm completes the stream, it then returns the maximum matching in H ∪X.

A. Bernstein 12:7

Let us now analyze the approximation ratio. By property 1 of Lemma 12, G>i ⊆ Glate;
thus, X contains all (Glate, H, β, λ)-underfull edges. By property 2a, H has bounded edge-
degree β. Thus, applying Lemma 10, we have that µ(H) ≥ (2/3− ε)µ(Glate). Combining
this with Lemma 5, we get that µ(H) ≥ (2/3 − ε)(1 − 2ε)µ(G) ≥ (2/3 − 3ε)µ(G); using
ε′ = ε/3 thus yields the desired approximation ratio.

For the space analysis, we know from Lemma 12 that Phase I requires O(nβ) space,
which is the space needed to store subgraph H. By Property 2b, the size of X in Phase II is
at most O(n log(n)). The overall space is thus O(n log(n) + nβ) = O(n log(n) + npoly(1/ε)).

Finally, note that the only two probabilistic claims are Lemma 5 and Property 2b of
Lemma 12, both of which hold with probability ≥ 1− n−3. A union bound thus yields an
overall probability of success ≥ 1− 2n−3. J

4.2 Description of Phase I
All we have left is to describe Phase I and prove Lemma 12. See Algorithm 1 for pseudocode
of the entire algorithm. Recall the parameters ε, β, λ, α, γ from Definition 11. Phase I is split
into epochs, each containing exactly α edges from the stream. So in epoch i, the algorithm
looks at S[(i−1)α+1,iα].

Phase I initializes the graph H = ∅. In epoch i, the algorithm goes through the edges
of S[(i−1)α+1,iα] one by one. For edge (u, v), if degH(u) + degH(v) < (1 − λ)β, then the
algorithm adds edge (u, v) to H (Line 5). (Note that the algorithm changes H over time, so
degH(u)+degH(v) always refers to the degrees inH at the time edge (u, v) is being examined.)
After each edge insertion to H, the algorithm runs procedure RemoveOverfullEdges(H) (Line
7); this procedure repeatedly picks an edge (x, y) with degH(x) + degH(y) > β until no such
edge remains. Note that as a result, our algorithm preserves the invariant that H always has
bounded edge-degree β.

In each epoch, the algorithm also has a single boolean FoundUnderfull, which is set
to True if the algorithm ever adds an edge to H during that epoch. At the end of the epoch,
if FoundUnderfull is set to True, then the algorithm simply proceeds to the next epoch.
If FoundUnderfull is False, then the algorithm permanently terminates Phase I and
proceeds to Phase II. (The intuition is that since the ordering of the stream is random, if the
algorithm failed to find an underfull edge in an entire epoch, then there must be relatively
few underfull edges left in the stream, so Property 2b of Lemma 12 will be satisfied.)

Note that FoundUnderfull being false is the only way Phase I can terminate (Line 9);
we prove in the analysis that this deterministically occurs within the first εm edges of the
stream.

4.3 Analysis
We now turn to proving Lemma 12. The hardest part is proving Property 1. Observe that
every epoch that doesn’t terminate Phase I must add at least one edge to H. To prove
Property 1, we use an auxiliary lemma that bounds the total number of changes made to H.

I Lemma 13. Fix any parameter β > 2. Let H = (VH , EH) be a graph, with EH initially
empty. Say that an adersary adds and removes edges from H using an arbitrary sequence of
two possible moves

[Deletion Move]. Remove an edge (u, v) from H for which degH(u) + degH(v) > β

[Insertion Move]. Add an edge (u, v) to H for some pair u, v ∈ V for which degH(u) +
degH(v) < β − 1.

Then, after nβ2 moves, no legal move remains.

ICALP 2020

12:8 Improved Bounds for Matching in Random-Order Streams

Algorithm 1 The algorithm for computing a matching in a random-order stream. After
initialization, the algorithm goes to Phase I. Once the algorithm exits Phase I, it moves on
to Phase II and never returns to Phase I. Line 9 is the only place where the algorithm can
exit Phase I.

Procedure Initilization
Initialize H = ∅ /* H is a global variable modified by Phase I */
Let ε < 1/2 be the main approximation parameter
Set λ = ε

128 , β = 16λ−2 log (1/λ), α = εm
nβ2+1 , γ = 5 log(n)mα (Definition 11).

Go To Phase I
Procedure Phase I

Do Until Termination /* each iteration corresponds to one epoch */
(1) FoundUnderfull ← FALSE
(2) for α Iterations: do /* each epoch looks at exactly α edges. */

(3) Let (u, v) be the next edge in the stream
(4) if degH(u) + degH(v) < β(1− λ) then

(5) Add edge (u, v) to H /* note: this increases degH(u) and
degH(v). */

(6) FoundUnderfull ← TRUE
(7) RemoveOverfullEdges(H)

(8) if FoundUnderfull = FALSE then
(9) Go To Phase II /* permanently exit Phase I. */ ;

/* Else, will move on to the next epoch of Phase I. */

Procedure RemoveOverfullEdges(H)
(1) while there exists (u, v) ∈ H such that degH(u) + degH(v) > β do

(2) Remove (u, v) from H /* note: this decreases degH(u) and
degH(v) */

/* note: when the while loop terminates, H is guaranteed to have
bounded edge-degree β. */

Procedure Phase II
(1) Initialize X ← ∅ /* all underfull edges will be added to X */ ;
(2) foreach remaining edge (u, v) in the stream do

(3) if degH(u) + degH(v) < β(1− λ) then
(4) Add edge (u, v) to X /* note: this does NOT change any

degH(v). */

(5) Return the maximum matching in H ∪X ;

Proof. The proof is similar to that of Proposition 2.4 in [4]. Define the following potential
functions Φ1(H) = (β− 1/2) ·

∑
v∈VH

degH(v), Φ2(H) =
∑

(u,v)∈EH
degH(u) + degH(v), and

the main potential function Φ(H) = Φ1(H) − Φ2(H). Note that initially H is empty so
Φ(H) = 0. We claim that at all times Φ(H) ≤ Φ1(H) ≤ nβ2. To see this, note that every
vertex v ∈ VH always has degH(v) ≤ β, because as long as degH(v) = β, the adversary
cannot perform any insertion moves incident to v. In the rest of the proof, we show that
every Insertion/Deletion move increases Φ(H) by at least 1; combined with the fact that at
all times 0 ≤ Φ(H) ≤ nβ2, we get that there are at most nβ2 moves in total.

A. Bernstein 12:9

Consider any Deletion Move of edge (u, v). Clearly Φ1(v) decreases by exactly 2β − 1.
We now show that Φ2(v) decreases by at least 2β. One the one hand, Φ2(v) decreases by at
least β + 1 because edge (u, v) no longer participates in the sum, and degH(u) + degH(v)
was > β before the deletion. But at the same time, since degH(u) + degH(v) ≥ β + 1
before the deletion, there are at least β − 1 edges other than (u, v) incident to u or v, and
each of their edge degrees decrease by 1 in the sum for Φ2(H). Thus, Φ2(H) decreases
by at least β + 1 + (β − 1) = 2β, while Φ1(H) decreases by exactly 2β − 1, so overall
Φ(H) = Φ1(H)− Φ2(H) increases by at least one.

Similarly, consider any Insertion Move of edge (u, v). Clearly Φ1(v) increases by exactly
2β−1. We now show that Φ2(v) increases by at most 2β−2. Recall that degH(u)+degH(v) ≤
β − 2 before the insertion, so after the insertion we have that degH(u) + degH(v) ≤ β, so
the edge (u, v) itself contributes at most β to the sum in Φ2. There are also at most β − 2
edges other than (u, v) incident to u or v, each of whose edge degrees increases by 1. Thus,
overall, Φ2(H) increases by at most β + (β − 2) = 2β − 2, so φ(H) increases by at least
(2β − 1)− (2β − 2) = 1. J

Proof of Lemma 12. Property 2a is clearly satisfied by construction, because after any
insertion to H the algorithm runs RemoveOnderfullEdges(H) (line 7) to ensure that H has
bounded edge-degree β. As a result, we clearly have that every vertex degree is at most β,
so Phase I needs only O(nβ) space to store H.

For the proof of Property 1, observe that any changes the algorithm makes to H follow
the rules for Insertion/Deletion moves from Lemma 13, so Algorithm 1 makes at most nβ2

changes to H. (Line 5 of Phase I corresponds to deletion moves in Lemma 13, while line
2 of RemoveOverfullEdges(H) corresponds to insertion moves. Note that line 5 of phase I
actually obeys an even stronger inequality than deletion moves, since β(1 − λ) < β − 1.)
Each epoch that does not terminate Phase I makes at least one change to H, so phase I goes
through at most nβ2 + 1 epochs before termination. Each epoch contains α edges, so overall
Phase I goes through at most α(nβ2 + 1) = εm edges, as desired.

All that remains is to prove Property 2b. As mentioned above, the intuition is simple:
the algorithm only exits Phase I if it fails to find a single underfull edge in the entire epoch
(Line 9), and since the stream is random, such an event implies that there are probably
relatively few underfull edges left in the stream. We now formalize this intuition.

Let Ai be the event that FoundUnderfull is set to FALSE in epoch i. Recall that
epoch i ends on edge eiα; let Bi be the event that the number of (G>iα, H, β, λ)-underfull
edges is more than γ. Note that Property 2b fails to hold if and only if we have Ai ∧ Bi for
some i, so we now upper bound Pr[Ai ∧ Bi]. Our bound relies on the randomness of the
stream. Let Eri contain all edges in the graph that have not yet appeared in the stream at
the beginning of epoch i (r for remaining). Let Eei be the edges that appear in epoch i (e for
epoch), and note that Eei is a subset of size α chosen uniformly at random from Eri . Define
Hi to be the subgraph H at the beginning of epoch i, and define Eui ⊆ Eri to be the set
{(u, v) ∈ Eri | degHi

(u) + degHi
(v) < β(1− λ)} (u for underfull). Observe that because of

event Ai, the graph H does not change throughout epoch i, so an edge that is underfull at
any point during the epoch will be underfull at the end as well. Thus, Ai ∧ Bi is equivalent
to the event that |Eui | > γ but Eui ∩ Eei = ∅.

Let Aki be the event that the kth edge of epoch i is not in Eui . We have that

Pr[Bi ∧ Ai] ≤ Pr[Ai | Bi] = Pr[A1
i | Bi]

α∏
k=2

Pr[Aki | Bi,A1
i , . . . ,Ak−1

i].

ICALP 2020

12:10 Improved Bounds for Matching in Random-Order Streams

Now, observe that

Pr[A1
i | Bi] < 1− γ

m

because the first edge of the epoch is chosen uniformly at random from the set of ≤ m

remaining edges, and the event fails if the chosen edge is in Eui , where |Eui | > γ by definition
of Bi. Similarly, for any k,

Pr[Aki | Bi,A1
i , . . . ,Ak−1

i] < 1− γ

m

because conditioning on the previous events Aji implies that no edge from Eui has yet appeared
in this epoch, so there are still at least γ edges from Eui left in the stream.

Recall from Definition 11 that γ = 5 log(n) · mα . Combining the three above equations
yields that Pr[Bi ∧ Ai] ≤ (1 − γ

m)α = (1 − 5 log(n)
α)α ≤ n−5. There are clearly at most n2

epochs, so union bounding over all of them shows that Property 2b fails with probability at
most n−3, as desired. J

5 Open Problems

We presented a new single-pass streaming algorithm for computing a maximum matching in
a random-order stream. The algorithm achieves a (2/3− ε)-approximation using O(n log(n))
space; these bounds improve upon all previous results for the problem.

But while 2/3 is a natural boundary, there is no reason to believe it is the best possible.
Is there an algorithm with approximation ratio 2/3 + Ω(1)? Is it possible to compute a
(1− ε)-approximate matching in random-order streams? A lower bound of 1− Ω(1) in this
setting would also be extremely interesting.

Another natural open problem is get improved bounds for weighted graphs. Gamlath et
al. [18] recently broke through the barrier of 1/2 and presented an algorithm for weighted
graphs that computes a .506-approximation (or .512 in bipartite graphs) in random-order
streams. Can we improve the approximation ratio to 2/3 in weighted graphs? To (1− ε)?

References
1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.
2 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal

algorithms for maximum matching under resource constraints. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland,
OR, USA, June 13-15, 2015, pages 202–211, 2015.

3 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, January 6-9, 2019, pages 1616–1635, 2019.

4 Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching
problems. In 2nd Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8-9,
2019 - San Diego, CA, USA, pages 11:1–11:20, 2019.

5 Sepehr Assadi, Sanjeev Khanna, and Yang Li. On estimating maximum matching size in graph
streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1723–1742,
2017.

A. Bernstein 12:11

6 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings in
dynamic graph streams and the simultaneous communication model. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364. SIAM,
2016.

7 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, pages 167–179, 2015.

8 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in dynamic
data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras, Greece,
September 14-16, 2015, Proceedings, pages 263–274, 2015.

9 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344, 2016.

10 Rajesh Hemant Chitnis, Graham Cormode, Mohammad Taghi Hajiaghayi, and Morteza
Monemizadeh. Parameterized streaming: Maximal matching and vertex cover. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 1234–1251, 2015.

11 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria,
pages 29:1–29:15, 2017.

12 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted matching,
via unweighted matching. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona,
Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

13 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discrete Math., 25(3):1251–1265,
2011.

14 Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. ACM Trans. Algorithms, 14(4):48:1–48:23, 2018.

15 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding large
matchings in semi-streaming. In Carlotta Domeniconi, Francesco Gullo, Francesco Bonchi,
Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, and Xindong Wu, editors, IEEE
International Conference on Data Mining Workshops, ICDM Workshops 2016, December 12-15,
2016, Barcelona, Spain, pages 608–614. IEEE Computer Society, 2016.

16 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mai, Anup Rao, and Ryan A. Rossi.
Approximate maximum matching in random streams. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
pages 1773–1785, 2020.

17 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

18 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019.

19 Mohsen Ghaffari and David Wajc. Simplified and space-optimal semi-streaming (2+epsilon)-
approximate matching. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd

ICALP 2020

https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
https://doi.org/10.1016/j.tcs.2005.09.013

12:12 Improved Bounds for Matching in Random-Order Streams

Symposium on Simplicity in Algorithms, SOSA@SODA 2019, January 8–9, 2019 – San Diego,
CA, USA, volume 69 of OASICS, pages 13:1–13:8. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2019.

20 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–485. SIAM, 2012. URL:
http://dl.acm.org/citation.cfm?id=2095116.2095157.

21 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013.

22 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes over
graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81
of LIPIcs, pages 15:1–15:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

23 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/1.
9781611973105.121.

24 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 734–751,
2014. doi:10.1137/1.9781611973402.55.

25 Michael Kapralov, Slobodan Mitrovic, Ashkan Norouzi-Fard, and Jakab Tardos. Space efficient
approximation to maximum matching size from uniform edge samples. In Proceedings of the
2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1753–1772, 2020.

26 Christian Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, pages
840–852, 2015.

27 Christian Konrad. A simple augmentation method for matchings with applications to streaming
algorithms. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd International
Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31,
2018, Liverpool, UK, volume 117 of LIPIcs, pages 74:1–74:16. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2018.

28 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th Interna-
tional Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings,
pages 231–242, 2012.

29 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization, Algorithms and Techniques, 8th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2005 and
9th InternationalWorkshop on Randomization and Computation, RANDOM 2005, Berkeley,
CA, USA, August 22-24, 2005, Proceedings, pages 170–181, 2005. doi:10.1007/11538462_15.

30 Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, pages 17:1–17:12, 2016.

31 Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In 1st Symposium on Simplicity in Algorithms, SOSA
2018, January 7-10, 2018, New Orleans, LA, USA, pages 14:1–14:4, 2018.

http://dl.acm.org/citation.cfm?id=2095116.2095157
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973402.55
https://doi.org/10.1007/11538462_15

A. Bernstein 12:13

32 Ami Paz and Gregory Schwartzman. A (2 + epsilon)-approximation for maximum weight
matching in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 2153–2161, 2017.

33 David Wajc. Negative association: definition, properties, and applications. URL: https:
//www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf.

ICALP 2020

https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf
https://www.cs.cmu.edu/~dwajc/notes/Negative%20Association.pdf

	Introduction
	Notation and Preliminaries
	Our Modified Subgraph
	The Algorithm
	The Two Phases
	Description of Phase I
	Analysis

	Open Problems

