-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Dagstuhl Research Online Publication Server

Demystifying the Real-Time Linux Scheduling
Latency (Artifact)

Daniel Bristot de Oliveira
Red Hat, Inc, Italy
bristot@redhat.com

Daniel Casini
Scuola Superiore Sant’Anna, Italy
daniel.casini@santannapisa.it

Ro6mulo Silva de Oliveira
Universidade Federal de Santa Catarina, Brazil
romulo.deoliveira@ufsc.br

Tommaso Cucinotta
Scuola Superiore Sant’Anna, Italy
tommaso.cucinotta@santannapisa.it

— Abstract

The “Demystifying the Real-Time Linux Schedul- tool kit is used in the experimental section, per-

ing Latency” paper defines a safe bound for the forming the scheduling latency analyses on real
real-time Linux scheduling latency. It also presents platforms. This artifact provides the means to
a tool kit that enables the measurements and ana- evaluate the tool kit and to reproduce the results
lysis of the variables that compose the bond. The of the experimental section.

2012 ACM Subject Classification Computer systems organization — Real-time operating systems
Keywords and phrases Real-time operating systems, Linux kernel, PREEMPT RT, Scheduling latency
Digital Object Identifier 10.4230/DARTS.6.1.2

Funding This work has been partially supported by CAPES, The Brazilian Agency for Higher Educa-
tion, project PrInt CAPES-UFSC “Automation 4.0.”

Related Article Daniel Bristot de Oliveira, Daniel Casini, Romulo Silva de Oliveira, and Tommaso
Cucinotta, “Demystifying the Real-Time Linux Scheduling Latency”, in 32nd Euromicro Conference on
Real-Time Systems (ECRTS 2020), LIPIcs, Vol. 165, pp. 9:1-9:23, 2020.
https://doi.org/10.4230/LIPIcs.ECRTS.2020.9

Related Conference 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020), July 7-10,
2020, Virtual Conference

1 Scope

The “Demystifying the Real-Time Linux Scheduling Latency” paper defines a safe bound for the
real-time Linux scheduling latency. It also proposes a tool kit that enables the measurement of
the variables by tracing the events of the PREEMPT RT thread model [1] using an efficient
approach for high-frequency trace analysis [2]. The tool kit is then used to perform the trace and
analysis of the scheduling latency on real systems, demonstrating the practical benefits of the
analysis. The results of the experiments are presented in Section 6 of the paper. This artifact
provides the means to evaluate the tool kit and reproduce the results of the experimental section.
It is composed of a self bootable operating system image, configured with the PREEMPT _RT
kernel, that includes the mentioned tool kit. It also delivers a set of scripts that replicates the
execution of all experiments presented in the paper, which can be used to validate the results.
IO: Daniel Bristot de Qliveira, Daniel Ca.sini,. Rémulo Silva de Oliveira, and Tommaso Cucinotta;

33 icensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)
Dagstuhl Artifacts Series, Vol. 6, Issue 1, Artifact No. 2, pp. 2:1-2:3

\\v DAGSTUHL Dagstuhl Artifacts Series
ARTIFACTS SERIES Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://core.ac.uk/display/343692408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-4577-7855
mailto:bristot@redhat.com
https://orcid.org/0000-0003-4719-3631
mailto:daniel.casini@santannapisa.it
https://orcid.org/0000-0002-8853-9021
mailto:romulo.deoliveira@ufsc.br
https://orcid.org/0000-0002-0362-0657
mailto:tommaso.cucinotta@santannapisa.it
https://doi.org/10.4230/DARTS.6.1.2
https://doi.org/10.4230/LIPIcs.ECRTS.2020.9
https://creativecommons.org/licenses/by/3.0/de/deed.en
https://www.dagstuhl.de/darts
https://www.dagstuhl.de

2:2

Demystifying the Real-Time Linux Scheduling Latency (Artifact)

2 Content

The artifact is delivered via a self-bootable operating system disk image. The image can be
written on any HD or SSD with more than 16 GiB of space. By booting the system with the disk
containing the image, a Fedora 31 will start with all set for the experiments.

On Linux, the image can be writing using the dd command as root. For example, given that a
16GB USB memory stick is presented as the /dev/sdb device, the following command will write
the image ecrts2020.img to it:

dd if=ecrts2020.img of=/dev/sdb

On Windows, it is possible to write the image using the Win32 disk imager tool.

Inside the home directory, there are some scripts that automate the execution of the experi-
ments. The script run_experiment.sh is the principal of these scripts. Running it without any
arguments will result in a five minutes trace and analysis. It accepts a different duration as its
first argument (time in minutes). For instance, the command: run_experiments.sh 15 will run
the trace for 15 minutes. The script code has useful comments and can be used to learn how
to use the tool. It is important to notice that, the longer the tracing section, the larger are the
memory and disk requirements. Still, the experiments can run on any regular modern PC in
2020.

Other scripts then use the above-mentioned script to setup and start experiments presented
in Section 6 of the paper. They are the following:

run_experiment_la.sh: the experiment 1.a in Figure 26.
run_experiment_1b.sh: the experiment 1.b in Figure 26.
run_experiment_1c.sh: the experiment 1.c in Figure 26.
run_experiment_2a.sh: the experiment 2.a in Figure 26.
run_experiment_2b.sh: the experiment 2.b in Figure 26.
run_experiment_2c.sh: the experiment 2.c in Figure 26.
run_experiment_3a.sh: the experiment 3.a in Figure 27.
run_experiment_3b.sh: the experiment 3.b in Figure 27.
run_experiment_3c.sh: the experiment 3.c in Figure 27.
run_experiment_4a.sh: the experiment 4.a in Figure 27.

It is possible to find the kernel source and binary, the latency parser module source and binary,
and the perf tool code that we extended and/or developed for the paper inside the demo folder.

The default user (ecrts) asks no password, and the root password is ecrts2020. Sudo asks no
password for the ecrts user to run a command as root.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). Additional material can be found at:
https://bristot.me/demystifying-the-real-time-linux-latency/.

4 Tested platforms

The self-bootable operating system image runs on any system with the Intel 64 bits processors.
Before starting the experiments, to achieve similar results, the hardware must be tuned for low
latency. As a general rule, the authors suggest to:

https://bristot.me/demystifying-the-real-time-linux-latency/

D. B. de Oliveira, D. Casini, R.S. de Oliveira, and T. Cucinotta

disable hyperthreading;

disable power management;

disable frequency scaling;

disable sources of SMI,

disable deep idle states.

disable turbo boost;

setup all the BIOS for performance.

Beware that, because laptop processors are optimized for power savings, and often face thermal
throttling, they are less deterministic, and this can influence the results (of any tool). So for the
artifact evaluation, we suggest using desktops, workstations or servers.

It is also important to keep in mind that the results presented in the experimental section

are only valid for that specific environment.

Every and each hardware will present its own

interrupt task set, and will force the threads to cross by different code sections that influence in
the values. Moreover, all the results are based on observed values: it is not a goal of the paper
to demonstrate finding the worst values. The main objective of this experimental study is to
corroborate the practical applicability of the analysis tool.

The artifact is available under GPL v2 license.

License

MD5 sum of the artifact

3454c0893db32779b83f01ab8c65bacd

Size of the artifact

6.67 GB (compressed)

— References

1

Daniel B. de Oliveira, Romulo S. de Oliveira, and
Tommaso Cucinotta. A thread synchronization
model for the preempt_ rt linux kernel. Journal
of Systems Architecture, page 101729, 2020. doi:
10.1016/j.sysarc.2020.101729.

Daniel Bristot de Oliveira, Tommaso Cucinotta,
and Roémulo Silva de Oliveira. Efficient formal
verification for the linux kernel. In International
Conference on Software Engineering and Formal
Methods, pages 315—332. Springer, 2019.

2:3

DARTS

https://doi.org/10.1016/j.sysarc.2020.101729
https://doi.org/10.1016/j.sysarc.2020.101729

	Scope
	Content
	Getting the artifact
	Tested platforms
	License
	MD5 sum of the artifact
	Size of the artifact

