
Analysis of Memory-Contention in Heterogeneous
COTS MPSoCs
Mohamed Hassan
McMaster University, Hamilton, Canada
mohamed.hassan@mcmaster.ca

Rodolfo Pellizzoni
University of Waterloo, Canada
rpellizz@uwaterloo.ca

Abstract
Multiple-Processors Systems-on-Chip (MPSoCs) provide an appealing platform to execute Mixed
Criticality Systems (MCS) with both time-sensitive critical tasks and performance-oriented non-
critical tasks. Their heterogeneity with a variety of processing elements can address the conflicting
requirements of those tasks. Nonetheless, the complex (and hence hard-to-analyze) architecture of
Commercial-Off-The-Shelf (COTS) MPSoCs presents a challenge encumbering their adoption for
MCS. In this paper, we propose a framework to analyze the memory contention in COTS MPSoCs
and provide safe and tight bounds to the delays suffered by any critical task due to this contention.
Unlike existing analyses, our solution is based on two main novel approaches. 1) It conducts a
hybrid analysis that blends both request-level and task-level analyses into the same framework.
2) It leverages available knowledge about the types of memory requests of the task under analysis
as well as contending tasks; specifically, we consider information that is already obtainable by
applying existing static analysis tools to each task in isolation. Thanks to these novel techniques,
our comparisons with the state-of-the art approaches show that the proposed analysis provides the
tightest bounds across all evaluated access scenarios.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization→ System on a chip; Computer systems organization→ Multicore architectures

Keywords and phrases DRAM, Memory, COTS, Multi-core, Real-Time, Embedded Systems, Ana-
lysis

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.23

1 Introduction

Unlike traditional embedded systems, Mixed Criticality Systems (MCS) such as those
deployed in automotive and avionics embrace both safety-critical as well as high-performance
tasks. Accordingly, low-end microcontrollers often used for traditional real-time embedded
systems no longer meet the requirements of MCS. To address this challenge, researchers
have explored the deployment of multi-core architectures (e.g. [8, 22, 27]). Among those
architecture, Multiple-Processors Systems-on-Chip (MPSoCs) standout as a viable option
to meet the various demands of MCS [12]. Their heterogeneity provides an opportunity
to leverage different Processing Elements (PEs) to meet different tasks’ requirements. For
instance, real-time cores such as the ARM R5 in the Xilinx’s Zynq Ultrascale+ [4] adopt
a simpler architecture and hence are easier to analyze. Therefore, they can be used for
time-sensitive safety-critical tasks. On the other hand, performance-oriented PEs such as
GPUs and the ARM A-series cores can be utilized by high-performance tasks. That said,
MPSoCs have their own challenges when deployed in MCS. Shared memory components
such as on-chip caches and off-chip Dynamic Random Access Memories (DRAMs) create
interference among PEs as they contend to access this shared memory. Memory interference
can lead to a 300% increase in the total Worst-Case Execution Time (WCET) of a task in an

© Mohamed Hassan and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed.hassan@mcmaster.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2020.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

8-core system if a task spends only 10% of its execution time in memory accesses [28]. Similar
trends were reported for the multi-core Freescale’s P4080 platform [25]. In this paper, we
focus on the analysis of memory contention delays in heterogeneous commercial-off-the-shelf
(COTS) MPSoC platforms, where our goal is to derive a safe bound on these delays suffered
by any critical task in a MCS executing on these platforms upon accessing the off-chip
DRAM.

1.1 Related Work and Motivation
There exist several works whose goal is to manage interference due to contention while
accessing the off-chip DRAM. Some of these works address this interference by entirely
redesigning the memory controller to make DRAM accesses more predictable [7,13,17,23,34],
which we refer the reader to the survey in [9] for their evaluation and comparison. Others
propose operating system level solutions to alleviate the interference by partitioning DRAM
banks among PEs [21,26,36], while controlling the maximum number of accesses issued by
each PE [1,2, 39].

Since this work focuses on analyzing DRAM interference in COTS architectures to provide
safe memory delay bounds, the closest related efforts are [14,20,37]. The first two [20,37]
provide both job- and request-driven bounds, while the third [14] provides request-driven
bounds only. Job-driven analysis utilizes information about total number of requests from
competing cores to calculate the total Worst-Case Memory Delay (WCD) suffered by a core.
Request-driven analysis, in contrast, derives a bound on the per-request WCD suffered by any
single memory request. This bound is then multiplied by the total number of requests issued
by the core to compute the total memory delay. Four observations about these efforts motivate
our work. 1) Both [20] and [37] assume a specific platform with a particular architecture
and OS configuration, and thus, the derived bounds are only limited to COTS platforms
that follow these assumptions. 2) Although [14] addresses this limitation by exploring a wide
set of COTS platforms, it only provides request-driven bounds. 3) Comparing both request-
and job-driven analyses, we find that whichever one provides tighter bounds is dependent
on the characteristics of running applications. In particular, it depends on the relative
ratio between the number of requests of the core under analysis and the total number of
interfering requests from competing cores. If the former is much smaller, then request-driven
analysis will provide the tighter bound. On the other hand, if the latter is much smaller,
then job-driven analysis will provide the tighter bound. Considering the minimum of both
bounds as proposed in [20,37] is certainly a viable approach. However, instead of conducting
each analysis separately and then considering the smallest result, a hybrid approach that
blends both analyses at a per-core basis can further tighten the bound. 4) All aforementioned
works do not differentiate between different types of requests issued by cores such as reads
vs writes, and DRAM row hits vs DRAM row conflict requests. Leveraging such information,
as we show in this work, can significantly reduce the WCD and provide tighter bounds.

Motivated by these observations, this paper makes the following contributions.
1. It proposes an approach that blends both request- and job-driven analyses in the same

framework. Both analyses are combined to form a single optimization problem. The
solution to this problem provides a tighter, yet safe, bound on the cumulative memory
delay suffered by requests of the core under analysis. We open-source the problem
formulation that implements the analysis for the community to use and extend 1.

1 https://gitlab.com/FanusLab/memory-contention-analysis

https://gitlab.com/FanusLab/memory-contention-analysis


M. Hassan and R. Pellizzoni 23:3

2. Unlike existing solutions, this framework leverages information, if available, about the
requests issued by the core under analysis as well as interfering cores. Specifically, we
consider the number of read and write requests, and the number of DRAM row hits and
row conflicts issued by each task. This information can be obtained by analyzing all tasks
in the system in isolation either statically using static analysis tools or experimentally.
That said, we make no assumption about the times at which those requests are issued or
their sequence patterns since this information is run-time dependent and is affected by
the behavior of competing tasks, and hence, not possible to obtain by simply analyzing
the tasks in isolation.

3. Contrary to existing job-analysis [20, 37], we cover a wide set of commodity COTS
platforms. Namely, we consider the same 144 platform instances covered by [14].

4. Unlike [14], which provides bounds for only 81 out of those 144 platform instances and
declares the remaining 63 instances unbounded, the proposed framework is able to safely
bound all 144 instances thanks to its hybrid approach using both request- and job-driven
analyses.

5. We conduct a comprehensive evaluation to compare with both job-driven analyses in [20,37]
as well as request-driven analyses in [14,20,37] using a variety of interference scenarios.
This comparison shows that the proposed approach achieves tighter bounds under all
scenarios. The proposed approach provides 24% – 42% tighter bounds compared to [37],
23% – 21× tighter bound compared to [20], and a minimum of 4% tighter bound compared
to [14], while it is able to provide bounds for scenarios that are deemed unbounded by [14]
as aforementioned.

2 Background

2.1 Background on DRAM
DRAM consists of cells that are grouped in banks. Each bank resembles an array of

columns and rows, and has a row buffer that holds the most recently accessed row in that
bank. An on-chip Memory Controller (MC) manages accesses to the DRAM by issuing
DRAM commands on the command bus. Namely, we have three main commands: ACT, CAS,
and PRE. 1) If the requested row is already available in the row buffer, the request consists
of only a CAS command that executes the actual read (R) or write (W) operation. We call
the request in this case an open request. 2) If the requested bank is idle (i.e., does not have
an activated row in the buffer), the MC issues an ACT command first to activate the row,
followed by a CAS command. 3) If the requested row is different from the activated row in
the row buffer (a bank conflict), the MC issues all three commands: PRE to precharge the
old row, ACT to activate the requested row, and CAS to read/write. We call the request that
suffers a bank conflict, a close request. The MC is able to issue only one command at any
single cycle to the DRAM. Therefore, if there are more than one command that are ready to
be sent to the DRAM at the same cycle, we say that there is a command bus conflict. Only
one of them will be issued by the MC, while the others are delayed to subsequent cycles.

The JEDEC DRAM standard [18] defines a set of timing constraints on the three
commands that must be satisfied by all MC designs; the value of each constraint depends
on the specific DRAM device type and speed. Table 1 exemplifies with constraints from a
single-rank DDR3 device; it also shows the value of the constraints for the particular device
speed we use in the evaluation. It is important to note that the proposed analysis is not
specific to this particular device and can be applied to any DRAM. For DDR4 devices, the
bank-group timing constraints need to be also considered in addition to the ones in Table 1;

ECRTS 2020



23:4 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Table 1 JEDEC timing constraints for DDR3-1333H [18].

(a) Intra-bank (conflict) constraints.
Parameters Description cycles
tRCD ACT to CAS delay 9
tRL RD to Data Start 9
tRP PRE to ACT Delay 9
tW L WR to Data Start 8
tRAS ACT to PRE Delay 24
tRC ACT to ACT (same bank) 33
tW R Data End of WR to PRE 10
tRT P Read to PRE Delay 5

(b) Inter-bank constraints.
Parameters Description cycles

Inter-bank CAS constraints
tCCD CAS to CAS delay 4
tRT W RD to WR Delay 6
tW T R WR to RD Delay 5

Inter-bank ACT constraints
tRRD ACT to ACT (diff bank in

same rank)
4

tF AW Four bank activation window 20

however, a similar analysis can be applied. Each constraint represents the minimum number
of clock cycles that must elapse between the transmission of a command or data and a
successive command or data; with the exception of tFAW , which represents the minimum
distance every four, rather than two, successive ACT commands. We distinguish between two
types of constraints: intra-bank constraints are applied between data/commands issued to the
same bank, while inter-bank ACT/CAS constraints are applied between data/commands of
the same type (ACT or CAS) issued to any bank. Correspondingly, we shall say that a request
causes intra-bank delay on another one if it triggers intra-bank constraints; or ACT/CAS
delay if it triggers inter-bank ACT/CAS constraints. Note that there are no inter-bank
constraints for PRE commands; however, due to the effect of command bus conflicts, a PRE
command can still cause PRE delay on another PRE command. For ease of exposition,
Figure 1 depicts an example of intra-bank constraints (Figure 1a) as well as inter-bank
constraints (Figure 1b). Note that when considering two consecutive requests, intra-bank
constraints can affect the latency of the second request only in the case of a bank conflict: if
the two requests access the same bank without conflict, then the second request must be
open and only the inter-bank CAS constraints apply. Hence, we also refer to intra-bank
constraints and delay as conflict constraints/delay. A command (or request) is denoted as
intra- or (inter-)ready when it meets all its intra- (or inter-)bank constraints. A command
cannot be issued before it is both intra- and inter-ready. DRAM cells have to be periodically
refreshed to prevent data leakage through issuing REF (refresh) commands. Refresh delays
can be often neglected compared to other delays [20]. It can also be added as an extra delay
term to the execution time of a task using existing methods [3, 35]. Accordingly and similar
to previous works [14,20,37], we do not account for the refresh delay.

Arbitration. Requests are first queued into per-bank queues. Then two-level arbitration
is deployed as follows: 1) Intra-bank arbitration is implemented between requests of the
same bank. This usually uses a First Ready-First Come First Serve (FR-FCFS) scheduling
mechansim [20,24,31]. FR-FCFS prioritizes open requests, which target data already available
in the row buffer over close requests. 2) Inter-bank arbitration: the MC deploys a Round
Robin (RR) mechanism to arbitrate among intra-ready commands at the head of the bank
queues [6, 14, 16, 32, 33, 36]. In case of a command bus conflict, we assume the following
priority order is enforced: CAS, ACT, and then PRE such that CAS have the highest priority
upon bus conflicts, while PRE commands have the least. This is known as column-first
scheduling and it targets to reduce latency [24,31].

2.2 System Model and Platform Instances
We consider a system with P PEs, where some of these PEs are critical (Pcr) and others
are non-critical (Pncr) such that P = Pcr + Pncr. PEs share write-back write-allocate
Last-Level Cache (LLC); hence, writes to DRAM occurs only because of cache eviction of



M. Hassan and R. Pellizzoni 23:5

A W
DATA

P A
tRCD tWL

tB
tWR tRP

tRAS

(a) Intra-bank constraints.

W
DATAtWL
tB RtWTRW

tCCD
tRTW

DATA
W

tRL

(b) Inter-bank constraints.

Figure 1 DRAM timing constraints example. tB is the data transfer time (4 cycles for a burst
length of 8).

dirty cache blocks. We find this to be the common policy deployed in COTS architectures
and it is also adopted by previous related works [14, 37]. Requests that miss in the LLC
are sent to the DRAM. We consider a single-channel single-rank DRAM subsystem with
NB banks. Similar to related work [14,20,37], we do not make any assumption about the
computation and memory access patterns of the PE under analysis, or any of the interfering
PEs. Nonetheless, as we detail in Section 3, our goal is to improve upon existing DRAM
analyses, and in particular the framework in [14], by incorporating knowledge about the
number of requests produced by all PEs in the system. The overall behavior of the memory
subsystem depends on both the MC configuration, as well as on the characteristics of PEs that
generate memory requests. To this end, the work in [14] defined a set of fundamental platform
features that affect the delay analysis; the combination of the features, specified as a tuple
〈wb, thr, pr, breorder, pipe, part〉, characterizes one of 144 possible platform instances. Since
we reuse the same features in our analysis, here we summarize their values and corresponding
behavior.

Read-Write Arbitration. wb ∈ {0, 1}. If wb = 0, the MC assigns the same priority for
both reads and writes. If wb = 1, the MC employs write batching, where it prioritizes
reads while queuing writes in a dedicated write buffer. We consider the same watermarking
implementation discussed in related work [14,30,37]: the MC services a batch of Wbtch writes
when the number of buffered writes exceeds a given threshold.

First-Ready Threshold. thr ∈ {0, 1}. FR-FCFS arbitration reorders intra-ready requests
over non intra-ready ones targeting the same bank. If thr = 1, the MC deploys a thresholding
mechanism [15, 20] to avoid starvation, where at most Nthr intra-ready requests can be
re-ordered ahead of any other request targeting the same bank. If thr = 0, then no reordering
threshold is implemented.

PE Prioritization. pr ∈ {0, 1}. If pr = 1, the MC prioritizes requests of critical PEs over
non-critical ones [15,30]. If pr = 0, all PEs are treated equally.

Inter-bank Reordering. breorder ∈ {0, 1}. As discussed, the MC employs a RR arbiter
which selects among banks with intra-ready commands. If the command of the highest
priority bank is not inter-ready, then the MC can reorder ahead of it the command of the
next highest priority bank (based on the RR order) with a ready command. If breorder = 1,
then the reordered commands can be of the same type; in particular, a W command can be
reordered ahead of a R command of vice-versa. As shown in [14], this can lead to a situation
where an unbounded number of CAS commands is reordered ahead of another CAS command.
To avoid starvation, we also consider breorder = 0, where inter-bank reordering is allowed
only for commands of different type.

ECRTS 2020



23:6 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Table 2 System model symbols.

Symbol Description Instances Symbol Description Instances
P Number of PEs all NBcr Number of banks assigned to critical PEs part = PartAll

Pcr Number of critical PEs all NBncr Number of banks assigned to non-critical PEs part = PartAll

Pncr Number of non-critical PEs all Nthr Intra-bank reorder threshold thr = 1
NB Number of DRAM banks all Wbtch Write batch length wb = 1
NBp Number of DRAM banks assigned to the p-th PE all PR Number of outstanding requests pipe 6= IO

PE pipeline architecture. pipe ∈ {IO, IOCr, OOO}. If pipe = IO, all PEs are in order
and can generate only one pending memory request at a time. If pipe = OOO, all PEs are
out-of-order, and we let PR to denote the maximum number of outstanding requests in the
MC queue for each PE. If pipe = IOCr, then critical PEs are in order, while non-critical
ones are out-of-order [4].

Bank Partitioning. part ∈ {PartAll, PartCr, NoPart}. Several previous works (e.g. [7,
10,17,35]) have proposed DRAM bank partitioning, where banks are partitioned among PEs,
to reduce bank conflicts between PEs. Partitioning is typically implemented by manipulating
the page table in the OS [21,26,36]. If part = PartAll, then partitioning is applied to all
PEs. If part = PartCr, then partitioning is applied only to critical PEs, while non-critical
PEs can use all banks. If part = NoPart, no partitioning is used.

Table 2 further summarizes the parameters associated with each platform instance. In
Table 2, NBp depends on the applies bank partitioning scheme. For instance, if we have
NB = 8 and Pcr = Pncr = 2, under NoPart: NBp

= NB = 8 for all PEs, for PartAll:
NBp

= 8/4 = 2, while for PartCr: NBp
= 8/2 = 4 for critical PEs and NBp

= 8 for
non-critical PEs. NBcr

and NBncr
apply only under PartAll since it is the only partitioning

scheme, where critical and non-critical PEs do not share banks; hence, each bank can be
indicated as either critical or non-critical.

3 Preliminaries

We are interested in computing a bound on the cumulative delay ∆(t) suffered by requests
generated by one or more tasks running on a critical PE under analysis PEi in an interval
of time t. Specifically, we bound the processing delay of requests of PEi, that is, the extra
delay suffered after the request arrives at the head of the request queue for PEi. For an
out-of-order architecture, we do not consider queueing delay due to a request being queued
after other requests of PEi itself; such delay depends on the exact time at which requests
are issued and should be handled while statically analyzing PEi. Let e be the WCET of
the task(s) in isolation, that is, while the other PEs in the system are inactive and do not
cause any delay. Further assume that delay is composable, that is, e + ∆(t) is an upper
bound to the execution time of the task(s) when suffering a cumulative delay ∆(t) (note that
even if the PE is not timing compositional, the delay can still be composed by computing an
appropriate upper-bound to e as described in [11]). Then the execution time ē of the task(s)
can be bounded by the recurrence: ē = e + ∆(ē).

We assume that either through static analysis or measurements, it is possible to formulate
bounds on the number of requests that the task(s) produces in isolation (the original schedule
of memory requests). The number and type of such constraints depends on the capability
of the analysis or measurement framework. A coarse method might be only capable of
deriving the maximum number of requests H(i), while an improved method might be able
to bound the maximum number HR(i) and HW (i) of read and write requests, respectively.
There also exist analyses [5] that are able to differentiate between open and close requests,



M. Hassan and R. Pellizzoni 23:7

hence deriving bounds HRo(i), HRc(i) on the number of open and close read requests,
and similarly HW o(i), HW c(i) for write requests. Note that in this case it might hold
HRo(i) + HRc(i) > HR(i), as the analysis might not be able to classify as open or close
some of the requests. Hence, to provide a general analysis, we will consider all presented
terms, with the assumption that coarse estimation methods might result in a value of +∞
for some of the terms (i.e., they cannot provide a useful bound).

We are now interested in determining the number of requests of each type produced
by the task(s) when running together with the other P − 1 interfering PEs (the interfered
schedule). For simplicity, we will assume that the behavior of PEi, in terms of produced
memory requests, is not affected by interference; note that if the PE uses a cache, this implies
that the cache must be private or partitioned. Hence, the bounds on the number of reads
and write requests still hold. However, the type of each request (open or close) depends
on the state of the device, which can be affected by other PEs. Therefore, with no loss of
generality, let Ro(i), Rc(i), W o(i), W c(i) to denote the number of open/close read and write
requests for PEi in the interfered schedule. We then have:

if wb = 0 : Ro(i) ≤ HRo(i), W o(i) ≤ HW o(i) (1)
if PartAll and wb = 0 : Rc(i) ≤ HRc(i) (2)
if PartAll and wb = 0 : W c(i) ≤ HW c(i) (3)
if PartAll and wb = 0 : Rc(i) + W c(i) ≤ HRc(i) + HW c(i) (4)

Rc(i) + Ro(i) ≤ HR(i) (5)
W c(i) + W o(i) ≤ HW (i) (6)
Rc(i) + Ro(i) + W c(i) + W o(i) ≤ H(i) (7)

Equations 5-7 bound the number of reads, writes and all requests, respectively; based on
our assumptions, they are always valid. Equations 1-4 bound the number of open and
close requests, and instead depend on the platform features. If the platform employs write
batching, then we make no assumption on the number of open or close requests: write
requests produced by other PEs can change the time and order in which batches are issued,
which in turn can change the type of any request. If part = PartCr or NoPart, then PEi

shares banks with some other PE. In this case, bank conflicts can turn requests that were
open in isolation into close requests. Hence, in this case we cannot consider the bounds on
close requests (Equations 2-4), while the bound on open requests (Equation 1) still holds.
Finally, we discuss how to bound the number of requests for an interfering PEp with p 6= i.
If PEp is a core executing a known task set, then the same approach in Equation 1-7 can be
employed, where H(p) and related terms express the maximum number of requests produced
by the task set in any interval of length t. In particular, related work [20] shows how to
compute H(p) assuming a partitioned, fixed priority scheduling scheme. Other work assumes
memory regulation [38], where PEp is assigned a memory budget Qp, and cannot issue more
than Qp requests in a regulation interval of length P . In this case, assuming that the window
of time t starts synchronously with the regulation interval, we simply compute the value in
Equation 8. Note that for an out-of-order PE, term PR is added to account for requests
that might be queued at the memory controller before the beginning of the first regulation
period.

H(p) = dt/P e ·Qp +
{

0 if IO or (p is cr and IOCr)
PR otherwise

(8)

ECRTS 2020



23:8 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

4 Memory Delay Analysis

In this section, we show how to compute a cumulative WCD bound ∆ for the requests of
critical core under analysis PEi. In details, we consider the delay due to additional timing
constraints, as well as bus conflicts, caused by either interfering requests of other PEs, or
previous requests of PEi itself. For wb = 0, the WCD bound includes the delay suffered
by both reads and writes requests of PEi, which we call the critical requests. For wb = 1,
we only consider delay suffered by read requests, as under write batching write requests of
PEi itself are queued so that they do not delay program execution; however, in this case
we consider the delay caused by writes of PEi on the critical read requests of PEi. To
facilitate accounting for the various timing constraints, we will obtain ∆ by determining
which delay is caused by each request (either conflict, PRE, ACT or CAS), and then adding
together three corresponding delay terms: LConf represents the cumulative delay due to
conflict constraints; while LACT and LCAS represent the cumulative ACT and CAS delays.
Note that we do not define a delay term for PRE because, as we prove in Section 4.4, in
the worst-case interference pattern such delay is zero. We first categorize the effect of the
interfering requests of other PEi in Section 4.1, and then discuss the effect of self-interference
caused by previous requests of PEi in Section 4.2. Finally, Sections 4.3 and Sections 4.4
detail how to compute the delay terms.

4.1 Interfering Requests
We start with a set of observations, based on the timing constraints in Section 2.1, to help
classifying interfering requests based on which type of delay they cause.

I Observation 1. Consider two requests targeting different bank. If both requests are close,
then the first one can cause PRE, ACT and CAS delay to the second one; otherwise, it can
only cause CAS delay.

Note that Observation 1 holds because in order to suffer PRE or ACT delay, both the
delaying and the delayed request must issue a PRE/ACT command.

I Observation 2. Consider two requests targeting the same bank. If the second request is
close, then the first one can cause conflict delay to it; otherwise, it can only cause CAS delay.
The conflict delay is larger than the CAS delay.

I Observation 3. Conflict constraints are larger than PRE, ACT and CAS constraints.
Hence, when two consecutive requests can target either the same or different banks, the delay
suffered by the second request is larger or equal if they target the same bank compared to
different banks (specifically, equal if the request is open, and larger if close).

We next discuss how to determine the number of interfering requests for each delay term.
Based on Observation 3, we can maximize ∆ by assuming that all interfering requests that
can target the same bank as a request of PEi do so. Therefore, when counting interfering
requests, we classify them between intra-bank requests, which can delay each other and critical
requests of PEi on the same bank based on Observation 2, and inter-bank requests, which
can delay intra-bank requests based on Observation 1; specifically, we next discuss how to
systematically divide the interfering requests into several interference components.

(1) Intra-bank conflict requests: RConf,c, W Conf,c are the number of read and write in-
terfering requests targeting the same bank as any one request of PEi, and which are
serviced ahead of that request because they arrived before it. As noted in Section 3, in



M. Hassan and R. Pellizzoni 23:9

this case we can make no assumption on the type of the requests. Hence, we assume the
worst case where all such requests, as well as the request of PEi, are close 2.

(2) Intra-bank reorder requests: RReorder,o, W Reorder,o are the numbers of interfering re-
quests of other PEs targeting the same bank as any one request of PEi, and which arrived
after that request but are reordered ahead of it due to first-ready arbitration. Since the
interfering requests are ready, they must be open requests, while the request of PEi must
be close.

(3) Inter-bank-close requests: RInterB,c
c , RInterB,o

c , W InterB,c
c , W InterB,o

c are interfering
requests (read/write and open/close, based on the superscript) that target a different
bank than any one request of PEi, and delay close requests targeting the same bank as
PEi: the Rc(i) + W c(i) close requests of PEi itself, and the RConf,c/W Conf,c conflict
requests. By Observation 1, the open requests RInterB,o

c and W InterB,o
c contribute CAS

delay, while the close requests RInterB,c
c and W InterB,c

c contribute to PRE, ACT and
CAS delay.

(4) Inter-bank-open requests: RInterB
o , W InterB

o are interfering requests (R and W) that
target a different bank than any one request of PEi, and delay open requests targeting
the same bank as PEi: the Ro(i) + W o(i) open requests of PEi itself, and the RReorder,o,
W Reorder,o reorder requests. By Observation 1, these RInterB

o + W InterB
o requests can

only contribute CAS delay.
Note that for instances with wb = 1, the intra- and inter-bank components only include
read requests, while write requests are considered in the write batching component. Hence
we impose:

if wb : W Conf,c = W Reorder,o = W InterB,c
c = W InterB,o

c = W InterB
o = 0 (9)

(5) Write batching requests: For instances with wb = 1, W W B represents the total number
of write requests; contrarily to the previous components, W W B includes both interfering
write requests, as well as write requests of PEi itself, since write requests of all PEs are
reordered and issued in write batches. As again noted in Section 3, when wb = 1 we
can make no assumption on the type (open or close) of write requests executed in write
batches, hence we consider a worst case situation where all requests are close and target
the same bank, thus contributing to LConf .

The described interference components depend on the total number of requests produced
by each interfering PE, as well as on the platform instance. We detail how to bound the
interference components in Section 5; while in the rest of this section we focus on computing
the latency terms assuming that the values of the interference components are known. Finally,
Section 5.6 shows that we can compute a bound on ∆ by solving a Linear Programming (LP)
problem. To facilitate the reader, Table 3 summarizes all variables used in the optimization
problem 3.

It remains to summarize the impact of the intra- and inter-bank interfering requests
on the delay terms. For intra-bank interfering requests, based on Observation 2 let xConf

to denote the number of conflict delays triggered by the interfering requests, and xCAS to

2 Note that if P Ei shares a bank with another interfering PE, then Equations 2, 3 do not apply; hence the
optimization problem can set Ro(i) = W o(i) = 0 and maximize the number of close request Rc(i), W c(i)
based on Equations 5, 6.

3 Note that H(i), HR(i), HW (i), HRc(i), HRo(i), HW c(i), HRo(i) for all cores, as introduced in Section 3,
do not appear in the table because they are inputs to the analysis, hence constants in the LP problem.

ECRTS 2020



23:10 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Table 3 Optimization problem variables. We use L to denote a delay term; N to denote number
of requests; R/W to denote number of read/write requests; and x to denote number of constraints. If
a variable has the (p) index, then it refers to a specific P Ep. Otherwise, the variable indicates values
over all PEs. For superscripts, c/o denotes the type (open or close) of the requests; for inter-bank
requests, the subscript c/o denotes the type of the following intra-bank request.

Symbol Interfering
Direc-
tion

Interfering
Request
Type

Interfered Re-
quest Type (or
P E ID)

Description Delay

Ro(i) (W o(i)) R (W ) Open P Ei Total number of open reads from P Ei

Rc(i) (W c(i)) R (W ) Close P Ei Total number of close reads from P Ei

Self Interference Component
ROtC(i) (W OtC(i)) R (W ) - P Ei Requests that were open and became close due to interference.

LSelf

RCAS(i) (W CAS(i)) R (W ) - P Ei Requests that cause self CAS delay
RConf (i) (W Conf (i)) R (W ) - P Ei Requests that cause extra self conflict delay.
NNone(i) R or W - P Ei Requests that cause no extra self conflict delay.
NACT (i) R or W - P Ei Close requests targeting different banks.
NACT,a(i) R or W - P Ei Requests from NACT (i) that were originally close.
NACT,b(i) R or W - P Ei Requests from NACT (i) that were originally open.

Intra-Bank Conflict Requests
RConf,c[(p)] (W Conf,c[(p)]) R (W ) Close Close Requests causing conflict interference.

LConf

xConf R or W Close Close Total number of triggered conflict delays.
Intra-Bank Reorder Requests

RReorder,o[(p)] (W Reorder,o[(p)]) R (W ) Open Close Number of requests causing intra-bank reorder interference.
LCAS

xCAS R or W Open or
Close

Open or Close Total number of triggered CAS delays.

Inter-Bank-Close Requests
Nreqs,c R or W – Close Number of interfered requests for inter-bank-close component.

LACT ,

LCAS

RInterB,c
c [(p)] (W InterB,c

c [(p)]) R (W ) Close Close Number of requests that cause inter-bank interference on P Ei’s close
requests or any of the Nreqs,c requests. They interfere either on
ACT (NInterB

ACT ), CAS read (RInterB
CAS,c ), or CAS write (W InterB

CAS,c ) commands.

RInterB,o
c [(p)] (W InterB,o

c [(p)]) R (W ) Open Close
NInterB,c

ACT,c
R or W Close Close

RInterB
CAS,c (W InterB

CAS,c ) R (W ) Close or
Open

Close

Inter-Bank-Open Requests
Nreqs,o R or W – Open Number of interfered requests for inter-bank-open component.

LCAS

RInterB
o [(p)] (W InterB

o [(p)] ) R (W ) Close or Open Open Number of interfering requests that cause inter-bank interference on
P Ei’s open requests or any of the Nreqs,o requests .

Auxiliary CAS Delay Variables
RInterB

CAS (W InterB
CAS ) R (W ) Open or

Close
Open or Close Requests from other PEs targeting other banks and causing inter-bank CAS delays.

LCAS

xCAS,RW (xCAS,W R) R (W ) Open or
Close

Open or Close Total number of requests causing a R-to-W (W-to-R) CAS delays.

Write Batching Requests
W btch[(p)] W Close or

Open
– Number of interfering write requests that arrive while no critical request is active.

LW B

W before[(p)] W Close or
Open

– Number of interfering write requests that arrive while a critical request is active,

W after[(p)] W Close or
Open

– and are executed before (after) the critical request

denote the number of triggered CAS delays. We can then bound the total number of delays
xConf + xCAS based on the total number of intra-bank interfering requests, and we can
bound xConf based on the number of close requests targeting a same bank as PEi: the
conflict requests, and the close critical requests of PEi:

xConf + xCAS ≤ RConf,c + W Conf,c + RReorder,o + W Reorder,o (10)
xConf ≤ RConf,c + W Conf,c + Rc(i) + (1− wb) ·W c(i). (11)

Note that we multiply the write requests of PEi by (1− wb) since they are not critical if
wb = 1. Instead, in the wb = 1 case, the conflict delays caused by the W W B requests in
write batches will be directly accounted for in the LConf term in Section 4.3.

For inter-bank interfering requests, RInterB,o
c , W InterB,o

c , RInterB
o and W InterB

o only
induce CAS delays, as previously explained. To bound the cumulative delay induced by the
RInterB,c

c and W InterB,c
c requests, we employ the following pipeline theorem from [37]:

I Theorem 1 (Theorem 1 in [37]). The delay caused by an interfering request to a request
under analysis, where the two requests target different banks, is upper bounded by the delay
caused by one interfering command on the same command of the request under analysis, i.e.,
either the PRE delay, or the ACT delay, or the CAS delay.

Note that in Section 4.4 we will prove that the PRE delay is always less than the ACT
delay. Hence, to maximize the bound on ∆, it suffices to assume that based on Theorem 1,
each request in RInterB,c

c and W InterB,c
c can cause either ACT or CAS delay. We thus

introduce terms N InterB,c
ACT,c , RInterB,c

CAS,c , W InterB,c
CAS,c to denote the number of requests (possibly



M. Hassan and R. Pellizzoni 23:11

R R
tCCD

Original schedule

R R
tRTW

Interference schedule

W
DATAtWL
tB

tWTR

Figure 2 Self interference example.

distinguishing between R and W direction) that cause ACT and CAS delay, respectively,
obtaining the following constraints:

N InterB,c
ACT,c + RInterB,c

CAS,c + W InterB,c
CAS,c ≤ RInterB,c

c + W InterB,c
c , (12)

N InterB,c
ACT,c + RInterB,c

CAS,c ≤ RInterB,c
c , (13)

N InterB,c
ACT,c + W InterB,c

CAS,c ≤W InterB,c
c . (14)

Finally, we use RInterB
CAS (W InterB

CAS ) to denote the total number of reads (writes) from
other PEs targeting other banks and causing inter-bank CAS delays. Hence, we get:

RInterB
CAS = RInterB,c

CAS,c + RInterB
o + RInterB,o

c , (15)

W InterB
CAS = W InterB,c

CAS,c + W InterB
o + W InterB,o

c . (16)

4.2 Self-Interference
Section 4.1 summarized the delay caused by interfering requests in terms of the timing
constraints and bus conflicts induced by such requests. However, when two critical requests
of PEi are executed back-to-back in the original schedule, the first request of PEi can
induce further delays on any request that interferes with the second request of PEi itself;
ignoring such self-interference effects leads to an unsafe bound. Consider the example in
Figure 2. Originally, PEi issued two consecutive open R requests to the same bank; the
minimum distance between the two requests, based on their CAS commands, is equal to the
CAS-to-CAS constraint tCCD. In the interfered schedule, one W request of another core is
interleaved between the two requests of PEi; as a consequence, the distance between the two
requests becomes equal to tRTW + tWL + tB + tWTR. Hence, the added delay is tRTW +
tWL + tB + tWTR− tCCD, which is larger than the maximum delay tWL + tB + tWTR

of a single CAS.
To produce a safe delay bound, we thus proceed as follows: we carefully analyze each

scenario (Cases (1a)-(3) below) involving two consecutive critical requests of PEi, and
whenever we found that the effect of self-interference is non-zero, we handle it by adding an
additional delay term to the analysis (in the case of the example in Figure 2, to LCAS), and
subtracting the minimum distance between the requests in the original schedule (tCCD in
the example). When analyzing the scenarios, it is important to keep in mind, as discussed
in Section 3, that requests of PEi that were open in the original schedule can become
close in the interfered schedule if write batching is enabled or PEi shares banks with some
other PE. Let ROtC(i) and W OtC(i) be upper bounds on the number of such R and W
open-to-close requests; since HRo(i), HW o(i) represent open requests in the original schedule,
and Ro(i), W o(i) in the interfered schedule, it must hold:

ROtC(i) ≤ HRo(i)−Ro(i), (17)
W OtC(i) ≤ HW o(i)−W o(i), (18)
if PartAll and wb = 0 : ROtC(i) = W OtC(i) = 0. (19)

ECRTS 2020



23:12 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Case (1a) and (1b): the two requests of PEi target the same bank, and the second one
is close in the interfered schedule. In this case, the second request could be delayed by
other close conflict requests in the interfered schedule, which could be in turn delayed by
a conflict delay due to the first request of PEi. However, if the second request of PEi

was also close in the original schedule (Case (1a)), then the minimum distance between
the two requests in the original schedule is equal to the same conflict delay; hence, in
this case self-interference does not add any extra delay. If instead the second request
was open in the original schedule (Case (1b), meaning it is an open-to-close request),
then the minimum distance in the original schedule could be tCCD; hence, to produce a
safe bound, in this case we add one conflict delay to Lconf , and subtract tCCD from the
WCD ∆. We let RConf (i), W Conf (i) to denote the number of R and W requests for Case
(1b), and NNone(i) to denote requests that do not add any extra delay as per Case (1a).
Case (2a) and (2b): assume that Case (1a), (1b) do not apply (that is, the requests
target different banks and/or the second request is open in the interfered schedule). Then,
it can still be possible for the first request of PEi to cause either PRE, CAS or ACT
delay on one or more interfering requests, which in turn cause the same type of delay
to the second request of PEi. Case (3), which we represented in Figure 2, covers the
CAS delay; Case (2a) and (2b) cover the PRE and ACT delay. Since only close requests
can cause or suffer PRE/ACT delay, it follows that for Case (2a), (2b) the two requests
of PEi must be close in the interfered schedule. Therefore, by assumption they must
target different banks. The minimum distance between them is either the ACT-to-ACT
constraint tRRD if both were close in the original schedule (Case (2a)), or tCCD if at
least one was open (Case (2b), the request is open-to-close). As Section 4.1 mentions and
Section 4.4 proves, the ACT delay is larger than the PRE delay; hence, for these cases
we add an ACT term to LACT and subtract either tRRD (2a) or tCCD (2b). We use
NACT,a(i) and NACT,b(i) for the number of requests added to LACT in Case (2a) and
(2b), respectively, and NACT (i) for their sum.

We can then bound the self-interference terms for Cases (1a), (1b), (2a), (2b) based on the
number and type of requests of PEi as follows:

RConf (i) + W Conf (i) ≤ ROtC(i) + (1− wb) ·W OtC(i) (20)
ifNBi = 1 : NNone(i) = Rc(i)−ROtC(i) + (1− wb) · (W c(i)−W OtC(i)) (21)
NACT (i) = NACT,a(i) + NACT,b(i) (22)
NACT,b(i) ≤ ROtC(i) + (1− wb) ·W OtC(i) (23)
NACT,a(i) + NACT,b(i) ≤ Rc(i) + (1− wb) ·W c(i) (24)
ifNBi = 1 : NACT (i) = 0 (25)

Note that again we multiply write requests of PEi by (1− wb) since if wb = 1 such requests
are not critical, and thus do not contribute to self-interference. If NBi = 1, all requests
of PEi target the same bank; hence, Case (2a) and (2b) cannot hold (Equation 25), and
instead all critical requests that were close in the original schedule (Rc(i)−ROtC(i) for reads
and W c(i)−W OtC(i) for writes) must be included in Case (1a) (Equation 21).

Case (3): finally, we cover the CAS delay case. For each of the RCAS(i), W CAS(i) R
and W requests of PEi that add extra CAS delay, we add a CAS term to LCAS and
substract tCCD from the WCD bound ∆. Next, consider again the example in Figure 2.
Note that to cause extra delay, the interfering request must have the opposite direction
compared to the first request of PEi: otherwise, the delay would be equal to the minimum
CAS separation of tCCD, and no extra delay would be added. Hence, we can bound



M. Hassan and R. Pellizzoni 23:13

RCAS(i), W CAS(i) based on the total number of W and R interfering requests that can
cause CAS delay, respectively:

RCAS(i) ≤W Conf,c + W Reorder,o + W InterB
CAS (26)

W CAS(i) ≤ RConf,c + RReorder,o + RInterB
CAS (27)

The cumulative number of self-interfering requests (either R only, W only, or either R or W)
can then be bounded based on the number of critical requests of PEi:

RConf (i) + W Conf (i) + NACT (i) + RCAS(i) + W CAS(i) + NNone(i)
≤ Rc(i) + Ro(i) + (1− wb) · (W c(i) + W o(i))− 1 (28)
RConf (i) + RCAS(i) ≤ Rc(i) + Ro(i) (29)
W Conf (i) + W CAS(i) ≤ (1− wb) ·W c(i) + (1− wb) ·W o(i) (30)

Note that we subtract 1 in Equation 28 because the last request of PEi cannot cause
self-interference to another request of PEi.

Finally, we shall use Lself to denote the sum of the self-delay in the original schedule
that must be subtracted from the WCD ∆. We obtain:

Lself = (RConf (i) + W Conf (i) + NACT,b(i) + RCAS(i) + W CAS(i)) · tCCD + NACT,a(i) · tRRD.
(31)

4.3 Conflict delay LConf

Based on Sections 4.1, 4.2, the total number of requests causing conflict delay is bounded by
xConf intra-bank requests; plus RConf (i) + W Conf (i) self-interference requests; plus NW B

write requests if wb = 1. Based on Figure 1a, the conflict delay for a pair of successive
requests can either be the larger tRCD+tWL+tB +tWR+tRP or the smaller tRAS +tRP .
Hence, we use variable xConf,W to denote the number of conflicts of the first type, which
require the first request in the pair to be a (open or close) write. We can then bound xConf,W

based on both the number of conflict delays xConf + RConf (i) + W Conf (i) + wb · NW B;
and the number of write requests that can trigger a conflict delay, which includes all write
intra-bank requests W Conf,c + W Reorder,o, the write self-interference requests W Conf (i), and
the write batching requests NW B . This yields the following expressions:

LConf ≤ xConf,W · (tRCD + tWL + tB + tWR + tRP )
+ (xConf + RConf (i) + W Conf (i) + wb ·NW B − xConf,W ) · (tRAS + tRP ) (32)

xConf,W ≤xConf + RConf (i) + W Conf (i) + wb ·NW B (33)
xConf,W ≤W Conf,c + W Reorder,o + W Conf (i) + wb ·NW B (34)

4.4 LACT and LCAS delays
To compute the maximum PRE and ACT delays, we make use of the following observation:

I Observation 4. Since for modern memory devices (e.g. DDR3/4), the value of inter-bank
constraints tRRD and tCCD is at least 4, no more than one ACT and one CAS command
can be issued every 4 cycles. Since furthermore the command priority is CAS > ACT > PRE,
it follows that every PRE command can suffer at most 2 cycles of command bus conflict, and
every ACT command at most 1 cycle. CAS commands do not suffer bus conflicts.

ECRTS 2020



23:14 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Based on Observation 4, a PRE command can delay another PRE command by at most 3
cycles: one for the PRE command itself, and two more due to bus conflicts. For the case of
ACT delay, we need to consider the tRRD and tFAW inter-bank ACT constraints. Note
that tRRD > 3; hence, ACT delay is always greater than PRE delay as previously noticed.
Since the tFAW constraints is applied every 4 consecutive ACT, a valid upper bound to
LACT can be constructed by multiplying the number of ACT delay terms, with is equal to
N InterB,c

ACT,c + NACT (i), by the maximum of tRRD and tFAW/4, then adding 1 to account
for bus conflicts:

LACT ≤ (N InterB,c
ACT,c + NACT (i)) ·

(
max(tRRD, tFAW/4) + 1

)
(35)

Next, we discuss the CAS delay LCAS . Based on Sections 4.1, 4.2, the total number of
requests that cause CAS delay is xCAS + RCAS(i) + W CAS(i) + RInterB

CAS + W InterB
CAS . The

inter-bank CAS constraint between a pair of requests depends on the direction of the requests
themselves: for a W followed by a R, tWL + tB + tWTR; for a R followed by a W, tRTW ;
and for two requests of the same direction, tCCD. Therefore, let variables xCAS,W R and
xCAS,RW to indicate the number of W-to-R and R-to-W pairs. We then have:

LCAS ≤ xCAS,W R · (tWL + tB + tWTR) + xCAS,RW · tRTW

+ (xCAS + RCAS(i) + W CAS(i) + RInterB
CAS + W InterB

CAS − xCAS,W R − xCAS,RW ) · tCCD

(36)

To bound xCAS,W R and xCAS,RW , we determine the maximum number of R and W requests
for the first and second request in each pair. We note that interfering requests can be either;
interfered critical requests of PEi can only be the latter; and self-interfering requests of PEi

can only be the former. This yields:

RCAS,first = RCAS(i) + RConf,c + RReorder,o + RInterB
CAS (37)

RCAS,second = Rc(i) + Ro(i) + RConf,c + RReorder,o + RInterB
CAS (38)

W CAS,first = W CAS(i) + W Conf,c + W Reorder,o + W InterB
CAS (39)

W CAS,second = (1− wb) · (W c(i) + W o(i)) + W Conf,c + W Reorder,o + W InterB
CAS (40)

xCAS,W R ≤W CAS,first ∧ xCAS,W R ≤ RCAS,second (41)
xCAS,RW ≤ RCAS,first ∧ xCAS,RW ≤W CAS,second (42)
xCAS,W R + xCAS,RW ≤ xCAS + RCAS(i) + W CAS(i) + RInterB

CAS + W InterB
CAS (43)

Total Cumulative Delay Bound. Finally, ∆ is simply computed based on the sum of all
terms computed so far:

∆ = LConf + LACT + LCAS − Lself (44)

5 Interference Computation

Based on Equation 44, in Section 4 we have determined a bound ∆ on the cumulative WCD
suffered by requests of PEi, assuming that the total number of requests per interfering
component is known. We now seek to determine how many requests of each interfering
PE contribute to each component. To this end, as shown in Table 3, for each interfering
component we define a new set of variables with index (p) to represent the number of
requests for that component that belong to PEp. The total number of requests for each intra-



M. Hassan and R. Pellizzoni 23:15

and inter-component is then equal to the sum over all cores: V =
∑

∀p 6=i V(p), where V is
either RConf,c, W Conf,c, RReorder,o, W Reorder,o, RInterB,c

c , RInterB,o
c , W InterB,c

c , W InterB,o
c ,

RInterB
o , or W InterB

o .
We now proceed as follows. In Section 5.1, we first bound the number of per-PE

interfering requests based on the total number of requests generated by each PEp (job-driven
bound). In Sections 5.2 – 5.5, we then bound the per-PE interfering requests based on the
platform instance (request-driven bound). Note that for the write batching component, in
Section 5.5 we will need to distinguish among three sets of requests for each PE, based
on when the requests are generated: W btch(p), W before(p) and W after(p). Furthermore,
the write batching component includes requests of PEi itself. Hence, the write batching
component is bounded as follows:

W W B =
∑
∀p

(
W btch(p) + W before(p) + W after(p)

)
(45)

Finally, we show how to compute the WCD bound by solving a LP problem in Section 5.6.

5.1 Job-Driven Bounds
Recall from Section 3 that Ro(p), Rc(p), W o(p), W c(p) denote the total number of R/W
open/close requests for PEp. We thus have:

RConf,c(p) + RInterB,c
c (p) ≤ Rc(p) (46)

W Conf,c(p) + W InterB,c
c (p) ≤W c(p) (47)

RInterB,o
c (p) + RReorder,o(p) ≤ Ro(p) (48)

W InterB,o
c (p) + W Reorder,o(p) ≤W o(p) (49)

RConf,c(p) + RInterB,c
c (p) + RInterB,o

c (p) + RReorder,o(p) + RInterB
o (p) ≤ Rc(p) + Ro(p) (50)

W Conf,c(p) + W InterB,c
c (p) + W InterB,o

c (p) + W Reorder,o(p) + W InterB
o (p) ≤W c(p) + W o(p)

(51)

W btch(p) + W before(p) + W after(p) ≤W c(p) (52)

Equations 46-49 bound the number of requests of each type (open/close) and direction
(R/W). Equations 50 bounds the number of read requests over all components; note that
read inter-bank-open requests RInterB

o can be either open or close. Similarly, Equation 51
bounds the write requests used in delay components when wb = 0; while Equation 52 bounds
the write requests used in the write-batching delay for wb = 1.

5.2 Request-Driven Bounds: Conflict Requests
We introduce a constant nConf

p to denote the maximum number of conflict requests of
PEp that can interfere with one critical request of PEi. Since conflict requests target the
same bank as the critical request, nConf

p is zero if PEp does not share any bank with PEi.
Otherwise, since conflict requests arrive before a critical request, we can set nConf

p equal to
the maximum number of outstanding requests of PEp, which is 1 if PEp is in-order, and
PR if out-of-order. Hence:

nConf
p =



if cr:


0 if PartAll or PartCr

1 if NoPart and (IOCr or IO)
PR if NoPart and OOO

if ncr:


0 if PartAll

1 if pr or ((NoPart or PartCr) and IO)
PR if (NoPart or PartCr) and (OOO or IOCr)

(53)

ECRTS 2020



23:16 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

Since conflict interfered requests must be close, the number of requests from core under
analysis is bounded by Rc(i) + (1− wb) ·W c(i), which yields the following constraint:

∀p 6= i : RConf,c(p) + W Conf,c(p) ≤ nconf
p · (Rc(i) + (1− wb) ·W c(i)) (54)

Finally, if pr = 1, at most one outstanding request of non-critical PEs can interfere with a
critical request; hence we also obtain:

if pr:
∑

∀p 6=i,p ncr

(
RConf,c(p) + W Conf,c(p)

)
≤ (Rc(i) + (1− wb) ·W c(i)) (55)

5.3 Request-Driven Bounds: Reorder Requests
Reorder requests target the same bank as requests of PEi. Hence, if PEp and PEi do not
share any bank, the number of reorder requests of PEp is zero. Similarly, if pr = 1, requests
of non-critical PEs cannot be reordered ahead of critical requests, since PEp has higher
priority. Accordingly:

if PartAll or PartCr,∀p 6= i, p cr : RReorder,o(p) = W Reorder,o(p) = 0 (56)

if PartAll or pr,∀p 6= i, p ncr : RReorder,o(p) = W Reorder,o(p) = 0 (57)

Furthermore, if thr = 1, by definition no more than Nthr requests can be reordered ahead of
each close request of PEi. Hence it also holds:

if thr : RReorder,o + W Reorder,o ≤ Nthr ·
(
Rc(i) + (1− wb) ·W c(i)

)
(58)

5.4 Request-driven bounds: inter-bank requests
Let Nreqs,c, Nreqs,o be the number of requests that can be delayed by inter-bank-close and
inter-bank-open requests, as introduced in Section 4.1:

Nreqs,c = Rc(i) + (1− wb) ·W c(i) + RConf,c + W Conf,c (59)
Nreqs,o = Ro(i) + (1− wb) ·W o(i) + RReorder,o + W Reorder,o (60)

We first bound the number of requests generated by PEp that can interfere on each of the
Nreqs,c close requests. Due to the assumption of RR arbitration among banks, the number
of interfering inter-bank requests is limited by the number of banks in case where inter-bank
reordering is not allowed (breorder = 0) or write batching is deployed (wb = 1), since it
cancels the effects of inter-bank reordering [14]. Since PEp can only access NBp banks by
definition, it must hold:

if (wb = 1 or breorder = 0):

∀p 6= i : RInterB,o
c (p) + RInterB,c

c (p) + W InterB,o
c (p) + W InterB,c

c (p) ≤ NBp ·Nreqs,c (61)

Similarly, we can bound the interference caused by all critical (other than PEi) and non-
critical PEs based on the total number of banks they can access. Note that by definition,
inter-bank interfering requests target a different bank than the request they interfere upon.
Hence, inter-bank requests of critical PEs can target Ncr− 1 banks, while inter-bank requests
of any PEs can target NB − 1 banks:

if (wb = 1 or breorder = 0):∑
∀p6=i,p cr

(
RInterB,o

c (p) + RInterB,c
c (p) + W InterB,o

c (p) + W InterB,c
c (p)

)
≤ (Ncr − 1) ·Nreqs,c

(62)



M. Hassan and R. Pellizzoni 23:17

if (wb=1 or breorder =0):
(

RInterB,o
c +RInterB,c

c +W InterB,o
c +W InterB,c

c

)
≤(NB − 1) ·Nreqs,c

(63)

Finally, similarly to the constraint for conflict requests in Equation 55, if the MC uses
a priority scheme, then the number of interfering requests from all non-critical PEs is in
worst-case one for each of the Nreqs interfered requests:

if pr and (wb = 1 or breorder = 0):∑
∀p 6=i,p ncr

(
RInterB,o

c (p) + RInterB,c
c (p) + W InterB,o

c (p) + W InterB,c
c (p)

)
≤ Nreqs,c (64)

We now consider inter-bank-open requests. All derived constraints depend on the RR
arbitration and bank assignment; hence, Equations 61-64 also apply to the number of
interfering inter-bank-open requests RInterB

o (p)+W InterB
o (p), except that we consider Nreqs,o

in place of Nreqs,c.

5.5 Request-driven bounds: write-batching requests
If wb = 1, the Ro(i) + Rc(i) critical read requests of PEi can suffer interference from write
batches created by writes of either PEi or other PEs. Since the MC gives priority to read
requests over write batches, in the worst case a critical R request can be delayed by a single
batch of Wbtch write requests started before the R arrives. Hence, if we let W btch(p) to
denote the number of interfering write requests of PEp that arrive while no critical request
is active (arrived but not completed), we have:∑

∀p

W btch(p) ≤Wbtch · (Ro(i) + Rc(i)) (65)

However, after a critical request arrives but before it completes, further writes that arrive in
the system may fill the write buffer, forcing additional batches to be processed. Therefore, we
next consider the number of interfering write requests that arrive while a critical request is
active. Recall that the system has a write-back write-allocate last-level cache. Accordingly, a
write request can only be generated in conjunction with a read request; hence, we will reason
about the maximum number of read requests that can be generated while a critical request
is active. In particular, we use W after to denote the number of write requests corresponding
to reads that arrive while a critical request is active, and are executed after the critical
request (but their corresponding writes can be executed before that critical request due to
the batching scheme); and W before to denote the number of write requests corresponding to
read requests that arrive while a critical request is active, and are executed before it. We
start by bounding W after. Similar to the conflict interference in Section 5.2, we introduce a
constant nafter

p to denote the maximum number of requests that can arrive while the critical
request is active and are executed after it. Hence, it can be computed by Equation 66, and
W after(p) can be accordingly computed by Equation 67.

nafter
p =

{
1 if IO or (IOCr and p cr)
PR if OOO or (IOCr and p ncr)

(66)

∀p 6= i : W after(p) ≤ nafter
p · (Ro(i) + Rc(i)) (67)

ECRTS 2020



23:18 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

We now consider the W before requests. First, if pr = 1, each critical request can suffer
interference from a maximum of one W before request from all the non-critical PEs, therefore:

if pr:
∑

∀p,p ncr
W before(p) ≤ Ro(i) + Rc(i) (68)

Second, if interfering PEp does not share banks with PEi, then W before(p) can be only due
to the inter-bank RR arbitration among banks. Recall that PEp is assigned NBp banks, the
total number of banks assigned to critical cores other than the bank targeted by the request
under analysis is Ncr − 1, and the total number of banks assigned to all cores other than
the bank targeted by the request under analysis is NB − 1. As a result, the following three
conditions hold from the RR arbitration:

∀p 6= i : if (PartAll) or (PartCr and p is cr): W before(p) ≤ NBp · (Ro(i) + Rc(i)) (69)

if PartAll or PartCr:
∑

∀p 6=i∧p cr
W before(p) ≤ (Ncr − 1) · (Ro(i) + Rc(i)) (70)

if PartAll:
∑
∀p 6=i

W before(p) ≤ (NB − 1) · (Ro(i) + Rc(i)) (71)

Finally, if no partitioning is deployed, we also have the FR-FCFS reordering. Thus, each
request from the core under analysis can be interfered by Nthr (if threshold is deployed)
due to intra-bank FR-FCFS reordering, while each of these requests can also be delayed by
NB − 1 requests from RR inter-bank arbitration. Additional NB − 1 requests can interfere
with the request under analysis itself. This gives a total of (Nthr + 1) · (NB − 1):

if thr = 1:
∑
∀p 6=i

W before(p) ≤ (Nthr + 1) · (NB − 1) · (Ro(i) + Rc(i)) (72)

5.6 Optimization Problem
Consider the variables in Table 3; by definition, numbers of requests and constraints are
positive integers, and the same holds for delay terms since we measure them in clock cycles.
Furthermore, all constraints introduced in Sections 3-5 are linear in such variables. Hence, we
could compute an upper bound on ∆ by solving an integer LP problem, with the optimization
objective of maximizing Equation 44. In practice, we consider a linear relaxation of the same
problem, where all variables are treated as reals; by construction, the resulting LP problem
still yields a valid bound on ∆. The number of variables and constraints is proportional to
P ; hence the complexity of solving the linear programming problem is polynomial in the
number of PEs.

6 Evaluation

Simulation Environment. We use MacSim [19], a heterogeneous multi-processor simulator
integrated with DRAMSim2 [32]. MacSim models x86 architecture and supports IO and
OOO PEs. It also allows the configuration of the maximum number of pending requests
through managing the number of entries in MSHR registers. MacSim has a frontend that
includes the virtual-to-physical mapping. This enables us to implement partitioning without
running a complete OS. We implement the three partitioning schemes discussed in Section 3.
DRAMSim2 [28] is a cycle-accurate DRAM simulator, which we extend to also support
priority assignment amongst PEs as well as write batching. We implement the optimization
framework in Matlab and it finishes within few seconds for all experiments using a machine
with a quad-core i7 processor and 8GB DRAM and is running Linux.



M. Hassan and R. Pellizzoni 23:19

Table 4 Evaluation Setup.

(a) Benchmarks.
High Low

BM #Reads #Writes total BM #Reads #Writes total
matrix 280000 38428 318428 rspeed 2000 482 2479
a2time 166000 21751 187751 pntrch 2000 479 2478
aifftr 101000 77234 178234 basefp 2000 478 2478

(b) Configuration parameters.
P 4 Pcr 2 Pncr 2

Nthr 8 Wbtch 16 PR 4
NB 8
NBp 8 (noPart), 2 (PartAll), or 4/8 (PartCr and p is cr/ncr)
NBcr 8 (noPart or PartCr), 4 (PartAll)
NBncr 8 (noPart or PartCr), 4 (PartAll)

LOW LOW

0.0
0.2
0.4
0.6

noPart partCr partAll

0.6
3.1
5.6

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(a) Low-Low.

LOW HIGH

0.0

0.3

0.6

noPart partCr partAll

0.6
3.6
6.6
6.6

21.6
36.6

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(b) Low-High.
HIGH LOW

0.0

0.2

0.3

noPart partCr partAll

0.3
6.3

12.3
12.3

512.3
1012.3

M
em

or
y 

D
el

ay
 

[C
yc

 in
 m

ill
io

ns
]

Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

(c) High-Low.

HIGH HIGH

0
10
20
30
40

noPart partCr partAll
Experimental Proposed CMU-JobDr Hassan-ReqDr CMU-ReqDr

40
440
840

M
em

or
y 

D
el

ay
 

[C
yc

 in
 m

ill
io

ns
]

(d) High-High.

Figure 3 Results for configurations that are considered by CMU [20].

Benchmarks. We use benchmarks from the EEMBC-auto suite [29], which include repres-
entative applications from the embedded automotive domain. Recall from Section 5 that the
maximum number of interfering requests, and thus the memory delay incurred by the PE
under analysis, depend both on the number of memory requests initiated by this PE as well
as the number of requests issued by the competing PEs. Therefore, we construct experiments
that capture different scenarios. Towards doing so, we classify the used benchmarks into two
categories: High and Low as shown in Table 4a. The High (Low) benchmarks are those that
issue a large (a small) number of memory requests.

Experiments Setup. We compare the proposed analysis with five state-of-the-art approaches;
two of them are job-driven analyses: CMU-JobDr [20] and YUN-JobDr [37]; and three are
request-driven analyses: CMU-ReqDr [20], YUN-ReqDr [37], and Hassan-ReqDr [14]. We also
compare against the experimental WCD observed from the simulator, denoted as Experimental.
We use a system composed of four cores: two in-order critical and the other are OOO non-
critical ones. Table 4b lists all values of used parameters. Since both CMU and YUN do
not support mixed criticalities, for their analysis all tasks are considered to have the same
criticality. In addition, since they also cover only certain system configurations, we compare
against these solutions under all configurations they support. To evaluate each analysis
under different interference scenarios, we run different experiments using different mix of
the benchmarks in Table 4a. Namely, we evaluate with four different scenarios: Low-Low,
Low-High, High-Low, and High-High, where the first term refers to the task under analysis
and the second term refers to interfering tasks. For instance, in a Low-High scenario, the
interfered task is chosen to be the rspeed benchmark, which is in the Low category in Table 4a,
while the interfering tasks are matrix, a2time, and aifftr from the High category.

1) System Configurations Supported By CMU. Both job- and request-driven CMU’s
analyses [20] can be applied to platform instances with in-order pipelines, all cores have same
priority, and the memory controller deploys a FR-FCFS threshold but does not deploy write

ECRTS 2020



23:20 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs
LOW LOW

0.00
0.05
0.10
0.15
0.20

IO IOCr OOO

0.20
2.20
4.20

M
em

or
y 

D
el

ay
 

[C
yc

 in
 m

ill
io

ns
]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(a) Low-Low.

LOW HIGH

0.00
0.01
0.02
0.03
0.04
0.05

IO IOCr OOO

0.05

5.05

10.05

M
em

or
y 

D
el

ay
 

[C
yc

 in
 m

ill
io

ns
]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(b) Low-High.
HIGH LOW

0

5

10

IO IOCr OOO

10
210
410
610

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Experimental Proposed YUN-JobDr YUN-ReqDrHassan-ReqDr

(c) High-Low.

HIGH HIGH

0
5

10
15
20

IO IOCr OOO

Experimental Proposed YUN-JobDr YUN-ReqDr

20
220
420
620

M
em

or
y 

De
la

y 
[C

yc
 in

 m
ill

io
ns

]

Hassan-ReqDr

(d) High-High.

Figure 4 Results for configurations that are considered by YUN [37].

batching. However, the analysis can cover different bank partitioning scenarios. Accordingly,
these are the instances we used in our experiments when comparing against those approaches.
Figure 3 delineates the total memory delay suffered for different considered approaches under
different interference scenarios. We make the following observations. 1) As aforestated,
the request- and job-driven approaches are incomparable: neither approach is better than
the other under all scenarios. Although CMU-JobDr provides tighter delay bounds than
request-driven ones (both CMU-ReqDr and Hassan-ReqDr) in Figures 3a, 3c, and 3d, the
request driven approaches have better bounds for the Low-High scenario in Figure 3b. Since
request-driven analysis considers only the number of requests from the core under analysis,
when this number is relatively small compared to the total number of competing requests,
this analysis provides tighter bounds. This is the case for the Low-High scenario. For other
scenarios, the number of requests of the core under analysis is relatively large and leads to
the larger delay bounds of the request-driven analyses. 2) The proposed analysis provides
the tightest bounds across all scenarios. For the Low-High scenario, Proposed provides up
to a 34% tighter bound than the second best approach, which is Hassan-ReqDr (PartAll in
Figure 3b). For all other scenarios, Proposed provides at least 24% (noPart in Figure 3a)
and up to 22.6× (PartAll in Figure 3c) tighter bound than CMU-JobDr, which is the second
best approach in all these scenarios.

2) System Configurations Supported By YUN. The platform instances covered in [37]
(for both YUN-JobDr and YUN-ReqDr) are partitioning banks across cores (PartAll), all cores
have same priority, and the memory controller deploys both FR-FCFS threshold and write
batching. Although [37] only evaluates OOO cores, we find that the analysis is extensible
to any core pipeline (by managing maximum number of pending requests from each core).
Therefore, we experiment with different pipelining configurations and show the results in
Figure 4. 1) YUN-JobDr provides tighter bounds than request driven analyses (YUN-ReqDr
and Hassan-ReqDr) for all interference scenarios except for Low-High. 2) The Proposed
approach still provides the tightest bounds across all scenarios. Proposed provides at least
25% (IO in Figure 4d) and up to 42% (OOO in Figure 4c) better bounds compared to
YUN-JobDr (next best approach) in the Low-Low, High-Low, and High-High scenarios. In
the Low-High scenario in Figure 4b, it provides up to 15% better bounds than the second
best option of Hassan-ReqDr.

3) System Configurations Supported By Hassan-ReqDr. We now compare the proposed
analysis with the Hassan-ReqDr analysis for all the supported platform instances discussed
in Section 3. We compared both approaches for all interference scenarios; however, for



M. Hassan and R. Pellizzoni 23:21
LOW HIGH

0
1
2

IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O

noPr pr noPr pr noPr pr noPr pr noPr pr noPr pr

noPart partCr partAll noPart partCr partAll

noWB WB

2
6

10
14

Ex
ec

ut
io

n 
Ti

m
e 

[C
yc

 in
 m

ill
io

ns
]

experimental Proposed Hassan-ReqDr

(a) Low-High.
HIGH LOW

0
20
40
60

IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O IO
IO

Cr
O

O
O IO

IO
Cr

O
O

O

noPr pr noPr pr noPr pr noPr pr noPr pr noPr pr

noPart partCr partAll noPart partCr partAll

noWB WBexperimental Proposed

60
1060
2060

Ex
ec

ut
io

n 
Ti

m
e 

[C
yc

 in
 m

ill
io

ns
]

Hassan-ReqDr

(b) High-Low.

Figure 5 Comparison of the total response time with Hassan-ReqDr [14] for all configurations.

Table 5 Proposed’s WCD (in cycles) for the 63 platform instances that are declared unbounded
under Hassan-ReqDr (satisfying condition in Equation 73). We found WCD to depend only on WB
and paritioning values. Values are for the Low-High interference scenario.

Partitioning noWB WB Partitioning noWB WB Partitioning noWB WB
PartAll 15706330 24540906 PartCr 24560480 24540906 noPart 24560480 24540906

space considerations, in Figure 5, we only show results for the Low-High and High-Low
scenarios, which best illustrate the main lessons we want to highlight. 1) Proposed provides
tighter bound than Hassan-ReqDr for all platform instances. 2) For the Low-High scenario
(Figure 5a), bounds of both solutions are very close. This is because for his scenario, the
number of requests from the core under analysis is relatively small compared to the total
number of competing requests. Therefore, request-driven analysis (Sections 5.2 – 5.5) provides
tighter bounds than job-driven analysis (Section 5.1). However, Proposed still outperforms
Hassan-ReqDr thanks to the leveraged knowledge about the running tasks. As a result, in
Figure 5a, it provides up to 98% (instance WB-noPart-pr-IO) and 24% on average tighter
bounds across all platform instances. 3) For the High-Low scenario (Figure 5b), we observe
a large gap between Proposed and Hassan-ReqDr. In Figure 5b, Proposed provides up to 71×
and 18× on average tighter bound across all configurations. Two main reasons are behind
such significant gap: no partitioning (noPart), and write batching (WB). Both features, if
considered, forces Hassan-ReqDr to consider a pathological worst-case scenario that is overly
pessimistic. For noPart, Hassan-ReqDr considers every request of the core under analysis
to have the worst-case intra-bank (conflict and reorder) interference from competing cores.
Similarly for WB, Hassan-ReqDr assumes that every read request will suffer a worst-case
write batching delay even if there are not enough number of competing requests to cause this
much interference for every single request from the core under analysis. On the other hand,
by leveraging the job-driven analysis and considering the number of competing requests,
Proposed provides tighter bounds.

ECRTS 2020



23:22 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

0
5

10
15
20
25
30
35

0 1 2 3

M
em

or
y 

D
el

ay
 

[c
yc

 in
 M

ill
io

ns
]

Number of Competing PEs with High Memory Demand

Proposed

ReqDriven

CMU-JDr

(a) A comparison for a configuration with no WB,
no partitioning, IO pipeline, and no priority.

0

2

4

6

8

10

0 1 2 3

M
em

or
y 

D
el

ay
 

[c
yc

 in
 M

ill
io

ns
]

Number of Competing PEs with High Memory Demand

Proposed

ReqDriven

YUN-JDr

(b) A comparison for a configuration with WB,
P artAll, OOO pipeline, and no priority.

Figure 6 Varying number of “High” competing cores.

4) Configurations Unbounded by Hassan-ReqDr. In [14], the authors considered 144
platform instances. The Hassan-ReqDr analysis bounded 81 of them, while 63 instances were
proven to be unbounded under this analysis. We identify those 63 instances by the following
condition:(

breorder=1 and wb=0
)

or
(

thr=0 and
(
part=noP art or (part=P artCr and pr=0)

))
(73)

Leveraging the job-driven analysis, the Proposed approach is able to bound all these cases
using information about memory requests of competing tasks (Section 5.1). Table 5 shows
the obtained bounds for the Low-High scenario.

5) Hybrid Analysis under different Interference Severity. To further show the benefit
of the proposed hybrid analysis compared to the state-of-the-art request- and job-driven
analyses, we investigate with different number of competing tasks with high memory demand
(High from Table 4a). In this set of experiments, we use rspeed (Low) benchmark as the one
under analysis and vary the number of high competing cores. The total number of cores in
the experiment is four. For instance, 2 in the x-axis of Figure 6 indicates that in addition to
the core under analysis, two cores are running benchmarks from the High category, while
one core is running a benchmark from the Low category. From Figure 6, it is clear that
the effectiveness of the request- vs job-driven analysis is dependent on the relative ratio
between the number of requests of the core under analysis and the number of requests from
competing cores. On the other hand, the proposed hybrid analysis is able to achieve better
bound compared to both approaches for all cases.

7 Conclusions

We propose a novel approach to bound interference delays due to contention upon accessing
off-chip DRAMs in heterogeneous COTS MPSoCs. The proposed hybrid framework blends
both request- and job-driven analyses to provide tighter bounds than those determined by
each analysis separately and then taking the minimum of both. The framework also leverages
information about the memory behavior of running task such as number of read and write
requests, which are usually available from statically analyzing each task in isolation. We
evaluate the proposed approach across a wide set of COTS platform instances, where it
outperforms existing state-of-the-art analyses (both request- and job-driven).



M. Hassan and R. Pellizzoni 23:23

References
1 Ankit Agrawal, Gerhard Fohler, Johannes Freitag, Jan Nowotsch, Sascha Uhrig, and Michael

Paulitsch. Contention-aware dynamic memory bandwidth isolation with predictability in
COTS multicores: An avionics case study. In Euromicro Conference on Real-Time Systems
(ECRTS), 2017.

2 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of dynamic
memory bandwidth regulation in multi-core real-time systems. In IEEE Real-Time Systems
Symposium (RTSS), 2018.

3 Balasubramanya Bhat and Frank Mueller. Making DRAM refresh predictable. In Euromicro
Conference on Real-Time Systems (ECRTS), 2010.

4 Vamsi Boppana, Sagheer Ahmad, Ilya Ganusov, Vinod Kathail, Vidya Rajagopalan, and
Ralph Wittig. UltraScale+ MPSoC and FPGA families. In IEEE Hot Chips Symposium
(HCS), 2015.

5 Roman Bourgade, Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat.
Accurate analysis of memory latencies for WCET estimation. In International Conference on
Real-Time and Network Systems (RTNS), 2008.

6 Mauricio Calle and Ravi Ramaswami. Multi-bank scheduling to improve performance on
tree accesses in a DRAM based random access memory subsystem, January 2005. US Patent
6,839,797.

7 Leonardo Ecco, Sebastian Tobuschat, Selma Saidi, and Rolf Ernst. A Mixed Critical Memory
Controller Using Bank Privatization and Fixed Priority Scheduling. In Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2014.

8 Georgia Giannopoulou, Nikolay Stoimenov, Pengcheng Huang, and Lothar Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems. In ACM International
Conference on Embedded Software (EMSOFT), 2013.

9 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A Comparative Study of
Predictable DRAM Controllers. ACM Transaction on Embedded Computer Systems (TECS),
2018.

10 Danlu Guo and Rodolfo Pellizzoni. A request bundling dram controller for mixed-criticality
systems. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2017.

11 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In International conference on real-time networks and systems (RTNS), 2016.

12 Mohamed Hassan. Heterogeneous MPSoCs for Mixed Criticality Systems: Challenges and
Opportunities. IEEE Design & Test, 2017.

13 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A Framework for Scheduling DRAM
Memory Accesses for Multi-Core Mixed-time Critical Systems. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015.

14 Mohamed Hassan and Rodolfo Pellizzoni. Bounding DRAM interference in COTS heterogen-
eous MPSoCs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2018.

15 Intel. External memory interface handbook volume 2: Design guidelines, 2017.
16 Bruce Jacob, Spencer Ng, and David Wang. Memory systems: cache, DRAM, disk. Morgan

Kaufmann, 2010.
17 Javier Jalle, Eduardo Quinones, Jaume Abella, Luca Fossati, Marco Zulianello, and Francisco J

Cazorla. A dual-criticality memory controller (DCmc): Proposal and evaluation of a space
case study. In IEEE Real-Time Systems Symposium (RTSS), 2014.

18 DDR3 SDRAM JEDEC. JEDEC jesd79-3b, 2008.
19 H Kim, J Lee, N Lakshminarayana, J Lim, and T Pho. Macsim: Simulator for heterogeneous

architecture, 2012.
20 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ra-

gunathan Raj Rajkumar. Bounding memory interference delay in COTS-based multi-core

ECRTS 2020



23:24 Analysis of Memory-Contention in Heterogeneous COTS MPSoCs

systems. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2014.

21 N. Kim, B. Ward, M. Chisholm, J. Anderson, and F.D. Smith. Attacking the one-out-of-m
multicore problem by combining hardware management with mixed-criticality provisioning.
Real-Time Systems, 2017.

22 Haohan Li and Sanjoy Baruah. Global mixed-criticality scheduling on multiprocessors. In
Euromicro Conference on Real-Time Systems (ECRTS), 2012.

23 Yonghui Li, Benny Akesson, and Kees Goossens. Dynamic Command Scheduling for Real-Time
Memory Controllers. In Euromicro Conference on Real-Time Systems (ECRTS), 2014.

24 Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for chip
multiprocessors. In 40th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 2007), pages 146–160. IEEE, 2007.

25 Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity
enforcement. In Euromicro Conference on Real-Time Systems (ECRTS), 2014.

26 Xing Pan, Yasaswini Gownivaripalli, and Frank Mueller. Tintmalloc: Reducing memory access
divergence via controller-aware coloring. In International Parallel and Distributed Processing
Symposium (IPDPS), 2016.

27 Risat Mahmud Pathan. Schedulability analysis of mixed-criticality systems on multiprocessors.
In Euromicro Conference on Real-Time Systems (ECRTS), 2012.

28 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In IEEE Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010.

29 Jason Poovey. Characterization of the EEMBC benchmark suite. North Carolina State
University, 2007.

30 Qualcomm. Qualcomm snapdragon 600e processor apq8064e recommended memory controller
and device settings application note, 2016.

31 Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and John D Owens. Memory
access scheduling. ACM SIGARCH Computer Architecture News, 28(2):128–138, 2000.

32 Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. DRAMSim2: A cycle accurate memory
system simulator. IEEE Computer Architecture Letters (CAL), 2011.

33 Jeffrey Stuecheli, Dimitris Kaseridis, Hillery C Hunter, and Lizy K John. Elastic refresh:
Techniques to mitigate refresh penalties in high density memory. In IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2010.

34 Prathap Kumar Valsan and Heechul Yun. MEDUSA: a predictable and high-performance
DRAM controller for multicore based embedded systems. In IEEE International Conference
on Cyber-Physical Systems, Networks, and Applications (CPSNA), 2015.

35 Zheng Pei Wu, Rodolfo Pellizzoni, and Danlu Guo. A Composable Worst Case Latency
Analysis for Multi-Rank DRAM Devices under Open Row Policy. Real-Time Systems, 2016.

36 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore platforms. In IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014.

37 Heechul Yun, Rodolfo Pellizzon, and Prathap Kumar Valsan. Parallelism-aware memory
interference delay analysis for COTS multicore systems. In Euromicro Conference on Real-
Time Systems (ECRTS), 2015.

38 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
2013.

39 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory bandwidth
management for efficient performance isolation in multicore platforms. IEEE Transactions on
Computers (TC), 2016.


	Introduction
	Related Work and Motivation

	Background
	Background on DRAM
	System Model and Platform Instances

	Preliminaries
	Memory Delay Analysis
	Interfering Requests
	Self-Interference
	Conflict delay L^{Conf}
	L^{ACT} and L^{CAS} delays

	Interference Computation
	Job-Driven Bounds
	Request-Driven Bounds: Conflict Requests
	Request-Driven Bounds: Reorder Requests
	Request-driven bounds: inter-bank requests
	Request-driven bounds: write-batching requests
	Optimization Problem

	Evaluation
	Conclusions

