
Evaluation of the Age Latency of a Real-Time
Communicating System Using the LET Paradigm
Alix Munier Kordon
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Alix.Munier@lip6.fr

Ning Tang
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
Ning.Tang@lip6.fr

Abstract
Automotive and avionics embedded systems are usually composed of several tasks that are subject
to complex timing constraints. In this context, the LET paradigm was introduced to improve the
determinism of a system of tasks that communicate data through shared variables. The age latency
corresponds to the maximum time for the propagation of data in these systems. Its precise evaluation
is an important and challenging question for the design of these systems.

We consider in this paper a set of multi-periodic tasks that communicate data following the LET
paradigm. Our main contribution is the development of mathematical and algorithmic tools to model
precisely the dependency between tasks executions to experiment with an original methodology
for computing the age latency of the system. These tools allow to handle the whole graph instead
of particular chains and to extract automatically the critical parts of the graph. Experiments on
randomly generated graphs indicate that systems with up to 90 periodic tasks and a hyperperiod
bounded by 100 can be handled within a reasonable amount of time.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Real-Time Systems, Logical Execution Time, Age Latency

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.20

1 Introduction

A real-time system is a system that responds in a timely fashion to external events created
by its environment [18]. In various contexts such as avionics or automotive, these systems
must verify hard timing constraints. Their design and analysis are usually complex processes
that require efficient methods.

We consider in this paper a set T of periodic tasks with different periods that are executed
following the model of Liu and Layland [19]. A directed acyclic graph G = (T , E) defines
communication links between task executions. Each arc (ti, tj) ∈ E between the two tasks
ti and tj is associated to a shared memory variable that is modified by ti and read by tj .
We assume that each execution of ti updates the variable at its completion time, while each
execution of tj reads it at its starting time. This communication scheme, usually known as
“implicit communication” follows the AUTOSAR requirements [1] and is commonly used for
the design of automotive real-time systems.

However, the instants of the exchanges between tasks depend on the successive starting
and completion times of the tasks, and are thus not predictable. The Logical Execution
Time (LET) paradigm [15] delays writes to the periodic deadlines of the tasks and advances
reads to their periodic release dates. The communication instants are then fixed before the
execution of the tasks and the system is deterministic. This communication scheme was
implemented by the time-triggered language Giotto [12]. This timing predictability makes
it particularly suitable for safety-critical applications. This model was thus considered in

© Alix Munier Kordon and Ning Tang;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0002-2170-6366
mailto:Alix.Munier@lip6.fr
https://orcid.org/0000-0002-1388-8788
mailto:Ning.Tang@lip6.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2020.20
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Evaluation of the Age Latency

industrial domains like automotive [4, 10] and avionics [13, 23]. We suppose in this paper
that tasks are periodic with different periods and that all communications follow the LET
paradigm.

A real-time system usually communicates with its environment through sensors that
detect events and actuators that transduce its reactions. Paths from a sensor to an actuator
are usually referred to as event chains (see, for example, [10]). The time needed to propagate
data from a sensor to an actuator is closely related to the reaction delay of the system. Several
measures can be defined to capture these delays, as presented by Feiertag et al. [8]. We limit
our study to the age latency, also called the end-to-end latency, which is the maximum time
interval from a specific input value on a sensor to the last corresponding output value. It
can be interpreted as the maximum delay that a specific data element spends in the system.
This value measures the freshness of data producing a response of the system, and ensures
that the actions of actuators are not too old.

The main contribution of the paper is to develop a general framework to model com-
munications on successive task executions using LET communications for a general task
dependency graph. The computation of the age latency of the application can then be seen
as an example of a concrete application. This value cannot be defined in the presence of
cycles in the dependency graph, thus graphs are assumed to be cycle-free. However, the
transformations presented in this paper can be considered for general graphs. Observe that
most of authors limit their methods to a single event chain [2, 8, 20].

Indeed, we first prove that dependencies induced by a LET communication e = (ti, tj) ∈ E
between the successive executions of ti and tj can be modelled by an original simple inequality
involving parameters of the tasks ti and tj and the execution numbers considered.

Then, it can be observed that, if Ti denotes the period of task ti, these dependency
relations between task executions are repeated within the hyperperiod T = lcmti∈T (Ti). An
expanded valued graph PN (G) can then be built by duplicating each task Ni = T

Ti
times.

We prove in this paper that setting any vector K with Ki ∈ N − {0} for any ti ∈ T , a
partial expanded graph PK(G) can be built by duplicating each task Ki times. Each arc
of this graph includes the modelling of the dependency relation between the corresponding
executions of its adjacent task duplicates. This partial expanded graph is inspired from
Bodin et al. [5] and de Groote [7] for Synchronous DataFlow Graphs [17], for which the
initial inequality modelling dependency is slightly different.

Subsequently, we show that upper bounds on the latency between adjacent duplicates of
PK(G) can be derived and considered as a valuation of the arcs. The longest paths of PK(G)
then provide an upper bound on the latency. However, the computation of these paths has a
time complexity proportional to

∑
e=(ti,tj)∈E Ki ×Kj . The main problem is then to find the

value of K that minimises this function with an exact evaluation of the age latency.
We first prove that our study can be limited to vectors K such that, for any task ti, Ki

divides Ni. We then develop a greedy algorithm that converges to a vector K? that provides
the exact value of the age latency. This algorithm can be seen as an adaptation of the K-iter
algorithm [6] for the determination of the maximum throughput of a Synchonous DataFlow
Graph, which is up to now one of the best algorithms to solve this latter problem. Our
algorithm was experimentally tested on randomly generated graphs with periods inspired
from automotive real-life benchmarks [11, 16].

Our paper is organised as follows. Section 2 presents related work. The problem and our
characterisation of the dependencies between tasks executions are presented in Section 3.
Section 4 is devoted to the construction of the partial expanded graph PK(G) for any fixed
vector K. It is shown in Section 5 that exploration can be limited to K vectors such that,

A.M. Kordon and N. Tang 20:3

for any task ti ∈ T , Ki is a divisor of Ni. Section 6 presents our greedy algorithm for the
computation of a vector K? leading to the exact value of the age latency. In section 7, we
experiment with this algorithm on the ROSACE case study. Section 8 presents experiments
on randomly generated graphs. Section 9 is our conclusion.

2 Related work

The evaluation of the age latency of an event chain is a challenging question tackled by
several authors. Feiertag et al. [8] first introduced the definition of dependency between
tasks of an event chain and four metrics to evaluate the delay between a sensor and an
actuator. Becker et al. [2] developed a general framework to evaluate the age latency of
an event chain using feasible intervals. They built an expanded graph by evaluating the
possible propagation of input data by the successive executions of tasks. They tested in [3]
their approach against the evaluation of the latency of a fixed schedule or under the LET
hypothesis. They concluded that if there is no information on the communications or on the
schedule, a pessimistic value of the age latency will be obtained, which is very similar to the
value obtained using the LET paradigm. However, the computation time grows exponentially
with the number of tasks if an enumeration is needed, while it remains constant for the LET
paradigm.

Under the LET assumption, the times of the communications between tasks are known
before the executions of the tasks. This strong assumption allows to characterise the
dependencies between tasks if their parameters are fixed. Martinez et al. [20] gave a formal
characterisation of the dependencies between tasks in an event chain using time instants.
They then derived the age latency by enumerating all the possible paths of the corresponding
expanded graph. They also proved that the release times influence the age latency and they
developed a heuristic to fix them in order to minimise it.

Many practical applications are composed of graphs with no particular assumption on
their structure [16, 22]. None of these previous approaches can be easily extended to these
graphs. Indeed, the number of paths between two vertices is potentially exponential. The
complexity of a method that enumerates all the paths for evaluating their age latency will thus
grow exponentially following the parameters of the graph. Anyway, mainly two frameworks
referenced below are capable of tackling such applications.

Pagetti et al. [21] have developed a language to express the constraints and a multi-
periodic synchronous model to represent the whole system for a general graph. The size of
the description of the communications is then equivalent to the one of the expanded graph
PN (G). Forget et al. [9] showed that this approach supports several metrics.

Khatib et al. [14] proved that constraints between the successive executions of two adjacent
tasks can be modelled using a Synchronous DataFlow Graph [17]. Our equation is slightly
different since for any arc e = (ti, tj), they did not not consider the successive constraints
between two adjacent tasks if Ti > Tj , dealing only with precedence constraints. They then
computed the age latency using the expansion of the Synchronous DataFlow Graph which is
equivalent to PN (G). They also proposed the computation of a polynomial upper bound on
the age latency equivalent to the determination of the longest paths of P1n(G) with n = |T |.
Lastly, they showed that the difference between this bound and the age latency is on average
between 10 and 15 percent. This result motivates the development of efficient methods to
evaluate more precisely the age latency of a graph G.

ECRTS 2020

20:4 Evaluation of the Age Latency

3 Modelling of the system

This section formally presents the problem tackled in this paper. Subsection 3.1 defines the
periodic tasks model considered according to LET restrictions. Subsection 3.2 is dedicated to
the definition of the dependency relation between the successive executions of two adjacent
tasks. Subsection 3.3 formally defines the age latency of a graph. Subsection 3.4 is devoted
to the definition of the problem and the presentation of a small pedagogical example.

3.1 Periodic tasks model considering LET communications

Let us consider a set T = {t1, . . . , tn} of real-time periodic tasks following the model of Liu
and Layland [19]. Each task ti ∈ T is characterised by a quadruple (ri, Ci, Di, Ti) such that:

ri is the release date (the offset) of the first execution of ti;
Ci is the worst-case execution time of ti;
Di is the relative deadline of ti;
Ti is the period of ti.

For any value n ∈ N − {0}, we denote by 〈ti, n〉 the nth execution of ti and by s(ti, n)
its starting time. The execution of 〈ti, n〉 must be scheduled in its time window, that is
ri + (n− 1)× Ti ≤ s(ti, n) and s(ti, n) + Ci ≤ Di + (n− 1)× Ti.

The LET communication model separates task executions from communications. In this
model, data are read at the release dates of reading tasks and written at the deadlines of
writing tasks. Moreover, reading tasks always get the last emitted data. The main advantage
of this model is to define a deterministic communications system even if tasks are delayed
inside their time windows.

In this paper, we only consider LET communications and we limit the characterization of
tasks to their successive time windows. The execution time associated to the nth execution of
ti is then set to its release date, that is, S(ti, n) = ri + (n− 1)×Ti. Similarly, the completion
time is fixed to S(ti, n) +Di. Each task ti is then given by the triple (ri, Di, Ti).

3.2 LET dependencies

Communications are expressed by a directed graph G = (T , E). Each arc e = (ti, tj) ∈ E
induces dependencies between executions of ti and tj , defined as follows:

I Definition 1. Let us suppose that e = (ti, tj) ∈ E and that νi and νj are two positive
integers. There exists a dependency relation from 〈ti, νi〉 to 〈tj , νj〉 if 〈tj , νj〉 receives data
from 〈ti, νi〉 that is if:
1. The execution time of 〈tj , νj〉 is greater than or equal to the completion time of 〈ti, νi〉

and
2. the execution time of 〈ti, νi + 1〉 is greater than the completion time of 〈tj , νj〉 (since the

data element from 〈ti, νi + 1〉 is not available for 〈tj , νj〉).
Figure 1 presents successive time windows of the first executions of two periodic tasks t1 and
t2 with a LET communication e = (t1, t2) ∈ E. Since T1 > T2 a single write from t1 can
be read by several executions of t2. As an example, there is a dependency from 〈t1, 2〉 to
〈t2, 4〉 since 〈t1, 2〉 ends before the beginning of 〈t2, 4〉 and the data written by 〈t1, 3〉 is not
available at the beginning of 〈t2, 4〉.

The next theorem characterises the dependency relation between the executions of two
communicating tasks using the parameters of the executions:

A.M. Kordon and N. Tang 20:5

t1
1 2 3 4 5 6

t2
1 2 3 4 5 6 7 8

0 1 4 7 8 10 12 13 16 19 20 20

Figure 1 Time windows associated to two periodic tasks t1 and t2 with a LET dependency
e = (t1, t2). Parameters of tasks are respectively (r1, D1, T1) = (0, 3, 4) and (r2, D2, T2) = (1, 2, 3).

I Theorem 2. Let e = (ti, tj) ∈ E, gcdeT = gcd(Ti, Tj) and the delay of e, Me = Tj +⌈
ri−rj+Di

gcde
T

⌉
× gcdeT . For any pair (νi, νj) ∈ N − {0} × N − {0}, there exists a dependency

from 〈ti, νi〉 to 〈tj , νj〉 iff Ti ≥Me + Tiνi − Tjνj > 0.

Proof. Following Definition 1, there exists a dependency from 〈ti, νi〉 to 〈tj , νj〉 if:
1. 〈tj , νj〉 begins after the completion of 〈ti, νi〉, thus S(ti, νi) + Di ≤ S(tj , νj). Since
S(ti, νi) = ri + (νi − 1)× Ti and S(tj , νj) = rj + (νj − 1)× Tj , we get

ri + (νi − 1)× Ti +Di ≤ rj + (νj − 1)× Tj ,

thus,

Ti ≥ Tj + (ri − rj +Di) + Tiνi − Tjνj ,

and since in the inequality above only ri − rj +Di cannot be divided by gcdeT , we obtain
that Ti ≥Me + Tiνi − Tjνj .

2. The completion time of 〈ti, νi + 1〉 is strictly greater than the execution time of 〈tj , νj〉,
thus S(ti, νi + 1) +Di > S(tj , νj) and then

ri + νiTi +Di > rj + (νj − 1)× Tj ,

thus,

Tj + (ri − rj +Di) + Tiνi − Tjνj > 0.

Since Me ≥ Tj + (ri − rj +Di), Me + Tiνi − Tjνj > 0.
Merging the two inequalities gives the theorem. J

Let us consider, for example, the two tasks t1 and t2 with the LET communication
e = (t1, t2) presented in Figure 1. We get gcdeT = gcd(3, 4) = 1 and Me = 3 + (0− 1 + 3) = 5.
The inequality of Theorem 2 is 4 ≥ 5 + 4ν1 − 3ν2 ≥ 0. One can observe that the first
executions of t1 and t2 with a dependency relation correspond to the pairs that verify this
inequality. For (ν1, ν2) = (1, 2), we get 5 + 4ν1 − 3ν2 = 5 + 4− 6 = 3 ∈ {1, . . . , 4}. Similarly,
for (ν1, ν2) = (2, 3), we get 5 + 4ν1 − 3ν2 = 5 + 8− 9 = 4 ∈ {1, . . . , 4}. Now, if we consider
(ν1, ν2) = (2, 5), 5 + 4ν1 − 3ν2 = 5 + 8− 15 = −2 6∈ {1, . . . , 4} and there is no dependency
from 〈t1, 2〉 to 〈t2, 5〉.

ECRTS 2020

20:6 Evaluation of the Age Latency

3.3 Age latency
Let us suppose that e = (ti, tj) ∈ E and let R(e) be the set of pairs (νi, νj) ∈ (N − {0})2

such that e induces a dependency from 〈ti, νi〉 to 〈tj , νj〉. Then, for any pair (νi, νj) ∈ R(e),
we define the latency of e between the executions 〈ti, νi〉 and 〈tj , νj〉 as

Lνi,νj (e) = S(tj , νj)− S(ti, νi) = rj − ri + Ti − Tj − (Tiνi − Tjνj). (1)

Now, for any path p = t1t2 . . . tk of G, we set e` = (t`, t`+1) for the corresponding arcs
with ` ∈ {1, . . . , k − 1}. We define R(p) as the set of k-tuples (ν1, . . . , νk) ∈ (N− {0})k such
that ∀` ∈ {1, . . . , k − 1}, (ν`, ν`+1) ∈ R(e`). Then, for any k-tuple (ν1, . . . , νk) ∈ R(p), we
have

Lν1,...,νk
(p) =

k−1∑
`=1
Lν`,ν`+1(e`) +Dk.

The age latency of a path p of G is then defined as the maximum time interval from a specific
input value 〈t1, ν1〉 to the end of the output value 〈t1, ν1〉, thus

L?(p) = max{Lν1,...,νk
(p), (ν1, . . . , νk) ∈ R(p)}

and the maximum latency of a directed graph G corresponds to

L?(G) = max{L?(p), p path of G}.

Let us observe that, if the initial graph G contains cycles, its latency may not be bounded.
Indeed, infinite paths p can be built in this case by looping in the cycles and the latency
cannot be defined. So, we suppose in the following that G is acyclic. Moreover, since the
latency between two executions is positive, L?(G) is reached for a path p such that t1 has no
predecessor and tk no successor.

If G contains cycles, other definitions of the latency could be considered as “last-to-first” or
“first-to-first”, following Feiertag et al.’s definition [8]. The methodology and the algorithms
presented in this paper can clearly be extended to tackle these cases and the existence of
cycles does not complicate most of the reasoning.

3.4 Problem definition and example
The problem tackled in this paper can be formalised as follows: let us consider a directed
acyclic graph G = (T , E), each arc modelling a LET communication. Each periodic task
ti ∈ T is associated to a triple (ri, Di, Ti). The problem is to compute the maximal age
latency L?(G).

Figure 2 presents an instance of our problem comprising four periodic tasks and the
associated directed acyclic graph G. Dependency relations between the first executions of tasks
t1, t2 and t4 are shown in Figure 3, following the path p = t1t2t4 of G. The latency of the path
from 〈t1, 1〉 to 〈t4, 1〉 is L1,2,1(p) = S(t4, 1)−S(t1, 1)+3 = 3−0+3 = 6. In the same way, the
latency of the path p from 〈t1, 3〉 to 〈t4, 2〉 is L3,5,2(p) = S(t4, 2)−S(t1, 3)+3 = 6−4+3 = 5.
We deduce that L?(p) = 6.

4 Construction of a partial expanded graph

The aim of this section is to detail and prove the construction of a partial expanded graph
PK(G) associated to a fixed vector K ∈ (N− {0})n. The main idea is to duplicate each task
ti, Ki times and to express the dependencies directly on duplicates.

A.M. Kordon and N. Tang 20:7

t1

t2

t3

t4

ti t1 t2 t3 t4

ri 0 1 2 3
Di 1 0.5 4 3
Ti 2 1 6 3

Figure 2 An instance of four periodic tasks and the associated DAG G.

t1
1 2 3 4 5 6 7

t2
1 2 3 4 5 6 7 8 9 10 11 12

t4
1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3 A path p = t1t2t4 from the graph G shown in Figure 2. Time windows are colored
following blocks of K1 = 2 executions of t1, K2 = 4 executions of t2 and K4 = 2 executions of t4.

Subsection 4.1 is devoted to the proof of Theorem 5 that characterises the dependency
relations between the duplicates of two adjacent tasks. An upper bound on the latency
between two duplicates corresponding to dependant executions is then evaluated in Subsection
4.2. Subsection 4.3 formally defines the partial expanded graph PK(G) associated with a
vector K, while subsection 4.4 evaluates the complexity of its computation.

4.1 Characterisation of the dependencies between duplicates of the
partial expanded graph

Let us suppose that for any task ti, a number of duplicates Ki ∈ N − {0} is fixed. Then,
for any ai ∈ {1, . . . ,Ki}, the aith duplicate of ti is simply associated to the executions
ai + pKi for p ∈ N. For example, let us suppose that the task t2 has a fixed number
of duplicates K2 = 4. For any value a2 ∈ {1, 2, 3, 4}, we merge into a unique duplicate
all the executions 〈t2, a2 + pK2〉 for p ∈ N. For a2 = 1, it corresponds to executions
〈t2, 1〉, 〈t2, 5〉, 〈t2, 9〉 . . . 〈t2, 1 + 4p〉.

Now, suppose that K2 = 4, K4 = 2. We aim to characterize the dependencies from
duplicates of t2 to duplicates of t4 due to the LET communication e = (t2, t4). We observe
in Figure 3 that there exists a dependency from 〈t2, 11〉 to 〈t4, 4〉. Moreover, 11 = 3 + 2× 4
and 4 = 2 + 1× 2. So, we set a2 = 3, a4 = 2 and we look to characterize dependencies from
executions ν2 = a2 + p2K2 = 3 + 4p2 of t2 to executions ν4 = a4 + p4K4 = 2 + 2p4 of t4.

Following Theorem 2, the delay associated to e is Me = 3 +
⌈ 1−3+0.5

1
⌉

= 2. Moreover,
there exists a dependency from 〈t2, ν2〉 to 〈t4, ν4〉 if and only if T2 ≥Me + T2ν2 − T4ν4 > 0.

Now, with these previous assumptions, T2ν2−T4ν4 = (3+4p2)−3(2+2p4) = (4p2−6p4)−3.
This difference is composed by a linear function of p2 and p4 and a constant term equal to 3.

ECRTS 2020

20:8 Evaluation of the Age Latency

These two terms are characterized in next lemma. Moreover, since T2 = 1 we observe that,
Me + T2ν2 − T4 = (4p2 − 6p4)− 1 = 1, and thus 4p2 − 6p4 = 2.

The conclusion is that there exists a dependency from 〈t2, 3 + 4p2〉 to 〈t4, 2 + 2p4〉 if and
only if 4p2−6p4 = 2. Theorem 5 generalizes this characterization to any LET communication
between two communicating tasks.

I Lemma 3. Consider e = (ti, tj) ∈ E and let gcdeT (resp., gcdeK) be the greatest common
divisor between Ti and Tj (resp., KiTi and KjTj). Let νi = ai + piKi and νj = aj + pjKj

with (ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj} and (pi, pj) ∈ N× N. Let us define the four values

αe(ai, aj) = Tiai − Tjaj
gcdeT

,

πe(pi, pj) = TipiKi − TjpjKj

gcdeK
,

πmaxe (ai, aj) =
⌊
−Me + Ti − αe(ai, aj) · gcdeT

gcdeK

⌋
and

πmine (ai, aj) =
⌈
−Me + gcdeT − αe(ai, aj)gcdeT

gcdeK

⌉
.

If e induces a dependency from 〈ti, νi〉 to 〈tj , νj〉, then

Tiνi − Tjνj = πe(pi, pj) · gcdeK + α(ai, aj) · gcdeT

with πe(pi, pj) ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}.

Proof. By definition of νi and νj ,

Tiνi − Tjνj = Ti × (ai +Kipi)− Tj × (aj +Kjpj) = (TiKipi − TjKjpj) + (Tiai − Tjaj)
= πe(pi, pj) · gcdeK + αe(ai, aj) · gcdeT .

By Theorem 2, Ti −Me ≥ Ti νi − Tjνj > −Me. Thus, since all the terms of this inequality
are divisible by gcdeT , it is equivalent to Ti −Me ≥ Ti νi − Tjνj ≥ −Me + gcdeT and we get

Ti −Me ≥ πe(pi, pj) · gcdeK + αe(ai, aj) · gcdeT ≥ −Me + gcdeT .

From the right part of the inequality,

πe(pi, pj) ≥
−Me + gcdeT − αe(ai, aj) · gcdeT

gcdeK
.

Since πe(pi, pj) is an integer, we can tighten the lower bound of πe(pi, pj) by

πe(pi, pj) ≥
⌈
−Me + gcdeT − αe(ai, aj) · gcdeT

gcdeK

⌉
= πmine (ai, aj).

In the same way, the left part of the previous inequality is

Ti −Me − αe(ai, aj) · gcdeT
gcdeK

≥ πe(pi, pj).

Since πe(pi, pj) is an integer, we can tighten the upper bound on πe(pi, pj) by⌊
Ti −Me − αe(ai, aj) · gcdeT

gcdeK

⌋
≥ πe(pi, pj)

So we get πmaxe (ai, aj) ≥ πe(pi, pj) and the lemma is proved. J

A.M. Kordon and N. Tang 20:9

Table 1 Values αe(a2, a4), πmax
e (a2, a4) and πmin

e (a2, a4) for a2 ∈ {1, 2, 3, 4} and a4 ∈ {1, 2}.

a2
a4 1 2

1 −2 −5
2 −1 −4
3 0 −3
4 1 −2

αe(a2, a4)

a2
a4 1 2

1 0 2
2 0 1
3 −1 1
4 −1 0

πmaxe (a2, a4)

a2
a4 1 2

1 1 2
2 0 2
3 0 1
4 −1 1

πmine (a2, a4)

Consider as an example, the arc e = (t2, t4) of the example shown in Figure 2 with fixed
values K2 = 4 and K4 = 2. We get gcdeT = gcd(1, 3) = 1, gcdeK = gcd(4, 6) = 2 and Me = 2.
The corresponding values of αe(ai, aj), πmaxe (ai, aj) and πmine (ai, aj) are shown in Table 1.

For the pair (a2, a4) = (3, 2), suppose that there exists a dependency from 〈t2, ν2〉 to
〈t4, ν4〉 with ν2 = a2 + p2K2 = 3 + 4p2 and ν4 = a4 + p4K4 = 2 + 2p4.

T2ν2−T4ν4 = ν2−3ν4 = (3+4p2)−3(2+2p4) = 2(2p2−3p4)−3 = gcdeK ·πe(p2, p4)−αe(3, 2).

As πmaxe (3, 2) = πmine (3, 2) = 1, the only possible value for πe(p2, p4) is 1, thus πe(p2, p4) =
2p2 − 3p4 = 1.

Consider now the pair (a2, a4) = (1, 1). Then, since πmaxe (1, 1) < πmine (1, 1), such a
decomposition of the difference T2ν2 − T4ν4 with ν2 = 1 + p2K2 and ν4 = 1 + p4K4 is not
possible; a simple consequence of Lemma 3 is that there is no dependency relation between
executions 〈t2, 1 + p2K2〉 and 〈t4, 1 + p4K4〉.

We observe in Figure 3 that there exist dependencies 〈t2, 2〉 → 〈t4, 1〉, 〈t2, 5〉 → 〈t4, 2〉,
〈t2, 8〉 → 〈t4, 3〉 and 〈t2, 11〉 → 〈t4, 4〉. They correspond respectively to the pairs (a2, a4) =
(2, 1), (a2, a4) = (1, 2), (a2, a4) = (4, 1) and (a2, a4) = (3, 2). For all these pairs, one can
check that πmaxe (a2, a4) ≥ πmine (a2, a4).

For the general case, a consequence of Lemma 3 is that there is no dependency between
executions 〈ti, ai + piKi〉 and 〈tj , aj + pjKj〉 if πmaxe (ai, aj) < πmine (ai, aj). Thus, let us
define

A(e) =
{

(ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj} | πmaxe (ai, aj) ≥ πmine (ai, aj)
}
.

For our particular case, A(e) = {(2, 1), (1, 2), (4, 1), (3, 2)}.
The next lemma is the converse of Lemma 3.

I Lemma 4. Let e = (ti, tj) ∈ E and (ai, aj) ∈ A(e). For any integer value π ∈
{πmine (ai, aj), . . . , πmaxe (ai, aj)}, there exists an infinite number of pairs (pi, pj) ∈ N2 such
that π = πe(pi, pj). Moreover, setting νi = ai + piKi and νj = aj + pjKj, e induces a
dependency from 〈ti, νi〉 to 〈tj , νj〉.

Proof. By Bezout’s identity, there exists (x, y) ∈ Z2 such that xKiTi + yKjTj = gcdeK and
thus πxKiTi + πyKjTj = π · gcdeK .

For z ∈ N, let us define pi = πx + zKjTj and pj = −πy + zKiTi. Let us also consider
values νi and νj such that νi = ai+Kipi and νj = aj +Kjpj . For z sufficiently large (z ≥ z0),
pi ≥ 1 and pj ≥ 1, and thus νi and νj are both greater than 1. Then,

TipiKi − TjpjKj = KiTi(πx+ zKjTj)−KjTj(−πy + zKiTi)
= xπKiTi + yπKjTj = π · gcdeK ,

ECRTS 2020

20:10 Evaluation of the Age Latency

thus π = πe(pi, pj). Now,

Tiνi − Tjνj = aiTi − ajTj +KiTipi −KjZjpj = aiTi − ajTj + π · gcdeK

and thus, by definition of αe, Tiνi − Tjνj = αe(ai, aj) · gcdeT + π · gcdeK . Recall now that
π ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}, thus

Tiνi − Tjνj ≤ αe(ai, aj) · gcdeT + πmaxe (ai, aj) · gcdeK ,

and, since πmaxe (ai, aj) · gcdeK ≤ −Me + Ti − αe(ai, aj) · gcdeT ,

Tiνi − Tjνj ≤ −Me + Ti. (2)

Similarly, since πmine (ai, aj) · gcdeK ≥ −Me + gcdeT − αe(ai, aj) · gcdeT ,

Tiνi − Tjνj ≥ πmine (ai, aj)gcdeK + αe(ai, aj)gcdeT
≥ −Me + gcdeT > −Me. (3)

From equations (2) and (3), we have Ti ≥Me + Tiνi − Tjνj > 0 and by Theorem 2 there is
a dependency from 〈ti, νi〉 to 〈tj , νj〉. The lemma is proved. J

From Lemmas 3 and 4, we deduce the following main theorem:

I Theorem 5. Let ti and tj be two tasks such that ti (resp.tj) is duplicated Ki (resp.Kj)
times. Let e = (ti, tj) ∈ E and (ai, aj) ∈ {1, . . . ,Ki}×{1, . . . ,Kj}. There exists a dependency
relation from 〈ti, ai + piKi〉 to 〈tj , aj + pjKj〉 for (pi, pj) ∈ N2 iff πmine (ai, aj) ≤ πe(pi, pj) ≤
πmaxe (ai, aj).

4.2 Upper bound on the latency
For any arc e = (ti, tj) ∈ E and any pair (ai, aj) ∈ A(e), Theorem 5 gives the existence of a
dependency from some executions 〈ti, νi〉 to 〈tj , νj〉 with νi = ai + piKi and νj = aj + pjKi.
In order to evaluate the age latency of the whole graph G, the next theorem evaluates the
maximum latency associated to these executions of ti and tj .

I Theorem 6 (Upper bound on the latency between two tasks). Let ti and tj be two tasks such
that ti (resp.tj) is duplicated Ki (resp.Kj) times. Let also e = (ti, tj) ∈ E and (ai, aj) ∈ A(e).
Then

Lmax(ai,aj)(e) = rj − ri + Ti − Tj − (πmine (ai, aj) · gcdeK + αe(ai, aj) · gcdeT)

is the maximal value of the latency Lνi,νj
(e) for (νi, νj) ∈ R(e) with νi = ai mod Ki and

νj = aj mod Kj.

Proof. By Equation (1), the latency between executions 〈ti, νi〉 and 〈tj , νj〉 for (νi, νj) ∈ R(e)
is Lνi,νj (e) = rj−ri+Ti−Tj−(Tiνi−Tjνj). Assuming that νi = ai+piKi and νj = aj+pjKj

with (pi, pj) ∈ N2 we have by Lemma 3 that

Lνi,νj
(e) = rj − ri + Ti − Tj − (πe(pi, pj) · gcdbK + αb(ai, aj) · gcdbT) (4)

By Theorem 5, πe(pi, pj) ∈ {πmine (ai, aj), . . . , πmaxe (ai, aj)}. We conclude that Lνi,νj (e) is
maximum for πe(pi, pj) = πmine (ai, aj) and the theorem is proved. J

A.M. Kordon and N. Tang 20:11

4.3 Definition of the partial expanded graph
We suppose that the vector K ∈ (N − {0})n is fixed. The associated expanded graph
PK(G) = (V,B,Lmax) is a valued directed acyclic graph defined as follows:
1. Each task ti is duplicated Ki times. For any value a ∈ {1, . . . ,Ki}, the ath duplicate of

ti is denoted by tai and is associated to the executions 〈ti, a+ pKi〉 for p ∈ N.
2. For any arc e = (ti, tj) ∈ E, we build an arc (tai , tbj) for every pair (a, b) ∈ {1, . . . ,Ki} ×
{1, . . . ,Kj} if πmaxe (a, b) ≥ πmine (a, b).

3. For every arc β = (tai , tbj) ∈ B, Lmax(β) = Lmax(a,b)(e) following Theorem 6.
4. Lastly, two additional fictitious tasks s and f are considered with the arcs defined as:

For any duplicate tai with no predecessors, add the arc β = (s, tai) with Lmax(β) = 0;
For any duplicate tai with no successors, add the arc β = (tai , f) with Lmax(β) = Di.

Let us denote by LPmax(PK(G)) the length of the longest path of the associated partial
expanded graph PK(G) considering the arcs values Lmax(β), β ∈ B. By Theorem 6, values
on the arcs of PK(G) are upper bounds of the age latency, thus LPmax(PK(G)) is an upper
bound of the maximum latency of G.

Figure 4 presents the expanded graph PK(G) associated with the vector K = (2, 4, 1, 2)
for the instance shown in Figure 2. A longest path is given by p = s, t11, t

1
3, t

1
4, f with a

corresponding length equal to 12, i.e., LPmax(PK(G)) = 12. We conclude that L?(G) ≤
LPmax(PK(G)) = 12.

s

t11

t21

t12

t22

t32

t42

t13

t14

t24

f

0

0

1

2

1

2

2

2

1

1

1

1

1

1

4

7
3

3

Figure 4 Expanded graph PK(G) = (V,B,Lmax) for the instance shown in Figure 2 associated
with the vector K = (2, 4, 1, 2). Arcs β ∈ B are weighted by Lmax(β) in gray.

ECRTS 2020

20:12 Evaluation of the Age Latency

4.4 Complexity of the computation of PK(G) and its longest paths
PK(G) is a graph without cycles. Thus, the computation of the longest paths can be done in
time complexity Θ(|V | + |B|) by simply sorting the vertices following a topological order
used in the next step to explore the vertices.

Note that the total number of vertices of PK(G) is |V | =
∑n
i=1 Ki + 2, while the number

of arcs |B| is bounded by O(
∑
e=(ti,tj)∈E Ki ×Kj). These two values may be huge for large

values of K. The main problem consists then in the determination of the vector K of small
values such that the bound LPmax(PK(G)) is as close as possible to the age latency L?(G).

5 Dominant set for the expansion vector K

This section is devoted to the study of dominance properties on K w.r.t the age latency to
reduce the set of vectors K. In Subsection 5.1 we prove that the value of the longest paths of
the expanded graph PN (G) associated with the hyperperiod N of G is the age latency L?(G).
We prove in Subsection 5.2 that we can reduce our study to the set of the partial expansions
PK(G) such that each component Ki divises Ni and we provide a partial order relation
between these vectors that will be exploited in the following section for the computation of
the age latency of G.

5.1 Maximal value of the age latency for K = N

Consider T = lcmti∈T (Ti) and the repetition vector N ∈ N∗n defined as Ni = T

Ti
for any

task ti ∈ T . For our example shown in Figure 2, we get T = lcm(2, 1, 6, 3) = 6 and thus
N = (3, 6, 1, 2). Lemma 7 is a simple technical lemma.

I Lemma 7. Let PN (G) = (V,B,Lmax) be the expanded graph with K = N , e = (ti, tj) be
an arc of G. For any arc β = (tai

i , t
aj

j) ∈ B associated with e and any pair (qi, qj) ∈ N2,
πe(qi, qj) = qi − qj.

Proof. By definition of πe, πe(qi, qj) = TiqiKi − TjqjKj

gcdeK
. As TiKi = TjKj = T = gcdeK , we

have πe(qi, qj) = qi − qj and the lemma is proved. J

We prove formally in the following that the value of the longest path of the expanded
graph PN (G) is the age latency of G, i.e., L?(G):

I Theorem 8. For any acyclic directed graph G, LPmax(PN (G)) = L?(G).

Proof. By Theorem 6 and the definition of the partial expanded graphs, LPmax(PN (G)) ≥
L?(G). We prove that LPmax(PN (G)) ≤ L?(G).

Consider a path pN = ta1
1 , ta2

2 . . . tak

k of PN (G) and the corresponding path p = t1, t2 . . . tk
of G. We also set e` = (t`, t`+1) for ` ∈ {1, . . . , k − 1}. By Lemma 7, we have for any
vector (q1, . . . , qk) ∈ Nk and ` ∈ {1, . . . , k− 1}, πe`

(q`, q`+1) = q` − q`+1. Let us consider the
sequence of integers q̃1, . . . , q̃k defined as follows:

q̃`+1 = q̃` + πmaxe`
(a`, a`+1)

q̃1 is fixed sufficiently large such that, ∀` ∈ {1, . . . , k}, q̃` ≥ 0.
This sequence satisfies ∀` ∈ {1, . . . , k − 1}, πe`

(q̃`, q̃`+1) = πmaxe`
(a`, a`+1), thus by Theorem

5, there is a dependency relation from 〈t`, a` + q̃`K`〉 to 〈t`+1, a`+1 + q̃`+1K`+1〉. Moreover,
by the definition of the sequence of arcs β`, Lmax(β`) = Lq̃`,q̃`+1(e`) and then Lq̃1,...,q̃k

(p) =
LPmax(pN). If pN is the longest path PN (G), LPmax(PN (G)) = LPmax(pN) = Lq̃1,...,q̃k

(p) ≤
L?(G), which proves the theorem. J

A.M. Kordon and N. Tang 20:13

5.2 Order relation between the divisors of the repetition vector N

The next theorem introduces an order relation between vectors K ∈ (N− {0})n.

I Theorem 9. For any acyclic directed graph G, suppose that K and K ′ are two different
vectors such that ∀ti ∈ T , K ′i is a divisor of Ki, then LPmax(PK′(G)) ≥ LPmax(PK(G)).

Proof. Let us consider the arc e = (ti, tj) of G. By the hypothesis, there exists (xi, xj) ∈
(N − {0})2, such that Ki = xiK

′
i and Kj = xjK

′
j . Let β = (tai

i , t
aj

j) be an arc of PK(G)
with (ai, aj) ∈ {1, . . . ,Ki} × {1, . . . ,Kj}. Then, following Theorem 6 and the definition
of the partial expanded graph, there exists (νi, νj) ∈ (N − {0})2 such that νi = ai + piKi,
νj = aj + pjKj and Lνi,νj

(ti, tj) = Lmax(β).
Let us consider now integer values a′i ∈ {1, 2, . . . ,K ′i}, a′j ∈ {1, 2, . . . ,K ′j}, yi and

yj such that ai = a′i + yiK
′
i and aj = a′j + yjK

′
j . Thus, νi = a′i + (yi + xipi)K ′i and

νj = a′j + (yj + xjpj)K ′j . Since there is a dependency relation between 〈ti, νi〉 and 〈tj , νj〉,
β′ = (ta

′
i
i , t

a′
j

j) belongs to PK′(G) and Lνi,νj (ti, tj) ≤ Lmax(β′), thus we get Lmax(β) ≤
Lmax(β′).

For any path p = ta1
1 , ta2

2 , . . . t
aq
q in PK(G), there is a corresponding path p′= ta

′
1

1 , t
a′

2
2 , . . . t

a′
q
q

in PK′(G) that includes all executions represented by path p. Therefore, LPmax(PK′(G))≥
LPmax(PK(G)). J

For any pair of vectors (K,K ′) ∈ (N − {0})n × (N − {0})n, we set K ′ � K if, for any
ti ∈ T , K ′i divides Ki. By Theorem 8, the exact value of the latency is reached for K = N .
The consequence of this last theorem is that we can limit our study to the set K of vectors
K � N . Let us consider the graph H = (K,�). The evaluation of the age latency is
improved following paths from K = 1n to K = N . A vector K ∈ K is said to be optimum if
LPmax(PK(G)) = L?(G).

Figure 5 shows the graph H associated with the example from Figure 2. We observe that
the exact value L?(G) of the age latency can be reached for vectors K smaller than N , i.e.,
there are several optimum vectors. The next section presents an algorithm to compute an
optimum vector.

6 Determination of an optimum vector K?

The problem considered in this section is to compute an optimum vector K?, i.e., such that
LPmax(PK?(G)) = L?(G). Our algorithm computes iteratively a vector K ∈ K until the
optimality test expressed by the next lemma is true.

I Lemma 10 (Optimality test). Consider a vector K ∈ K, a longest path pK of PK(G) and its

corresponding path p of G. If, for every task ti ∈ p, Ki is a multiple of Ni(p) =
lcmtj∈p{Tj}

Ti
,

then LPmax(pK) = L?(G).

Proof. Consider a vector K and the path p of G following the assumptions of the theorem. By
definition of pK , LPmax(PK(G)) = LPmax(pK). We first prove that L?(p) = LPmax(pK).

Since p is a path of G, L?(G) ≥ L?(p). Now, by Theorem 6, LPmax(PK(G)) ≥ L?(G) and
by definition of pK , LPmax(pK) = LPmax(PK(G)), thus L?(p) ≤ LPmax(pK).
Now, since for any task ti of p, Ni(p) is a divisor of Ki, we have by Theorem 9 that
LPmax(PN(p)(p)) ≥ LPmax(pK). Moreover, by Theorem 8, LPmax(PN(p)(p)) = L?(p),
thus L?(p) ≥ LPmax(pK).

ECRTS 2020

20:14 Evaluation of the Age Latency

(1, 1, 1, 1)

(3,1,1,1) (1,2,1,1) (1,3,1,1) (1,1,1,2)

(3,2,1,1) (1,2,1,2) (3,3,1,1) (1,6,1,1) (3,1,1,2) (1,3,1,2)

(3,2,1,2) (3,6,1,1) (3,3,1,2) (1,6,1,2)

(3,6,1,2)

13

13 12 13 13

12 12 13 12 13 13

12 12 13 12

12

Figure 5 Graph H = (K,�) associated with the example shown in Figure 2. Values
LPmax(PK(G)) are given in gray for each vertex K ∈ K.

So, we proved that L?(p) = LPmax(pK) = LPmax(PK(G)). Now, L?(G) ≥ L?(p) =
LPmax(pK). Since K � N , L?(G) ≤ LPmax(PK(G)) = LPmax(pK) by Theorem 9, and thus
LPmax(PK(G)) = L?(G) = LPmax(pK), which completes the proof. J

Algorithm 1 is inspired from the K-iter algorithm [6] which computes an expansion vector
K for the determination of the optimum throughput of a Synchronous DataFlow Graph.
For the initialisation phase, K = 1n. K is simply increased at each step for tasks from the
longest path of PK(G) until the maximality test is met.

Algorithm 1 Compute an optimum vector K? and the age latency L(G).

Require: A DAG G = (T , E), (ri, Di, Ti) for every ti ∈ T
Ensure: An optimum vector K? and the age latency L?(G)
Set K = 1n

repeat
Compute PK(G) and a longest path pK of PK(G)
Set p = s, t1 . . . tk, f to the corresponding path of G
Set T (p)← lcm(T1, . . . , Tk) and ∀i ∈ {1, . . . , k}, Ni(p)← T (p)

Ti

OptPathFound← ∀ti ∈ p,Ni(p)|Ki

if not OptPathFound then
∀i ∈ {1, . . . , k}, Ki ← lcm(Ki, Ni(p))

end if
until OptPathFound

Theorem 11 shows the convergence of the algorithm.

A.M. Kordon and N. Tang 20:15

I Theorem 11. For any directed acyclic graph G, Algorithm 1 converges to a vector K? ∈ K
such that LPmax(PK?(G)) = L?(G).

Proof. For any q > 0, we denote by K(q) the vector K at the end of the qth iteration: q = 0
corresponds to the initialisation phase. We show that for any integer q ≥ 0, K(q) ∈ K and
K(q) � K(q + 1) with K(q) 6= K(q + 1).

At the initialisation step, K(0) = 1n ∈ K.
Now, suppose that at step q, the optimality test is not true and that K(q) ∈ K. Consider
a task ti ∈ T . If ti does not belong to p, Ki(q + 1) = Ki(q). Otherwise, Ki(q + 1) =
lcm(Ki(q), Ni(p)) where Ki(q) and Ni(p) are both divisors of Ni. Thus, Ki(q+ 1) is also
a divisor of Ni, and we get that K(q + 1) ∈ K with K(q) � K(q + 1).
Lastly, we prove by contradiction that K(q) 6= K(q + 1). Indeed, suppose that Ki(q) =
Ki(q + 1) for any task ti ∈ T , then since Ki(q + 1) = lcm(Ki(q), Ni(p)), we deduce that
Ni(p) is a divisor of Ki(q). Thus, the optimality test is true, which is a contradiction.

We conclude that vectors K(q) are strictly increasing while the optimality test is false. By
Lemma 10, the vectorK(q) is optimum when the optimality test is true. Lastly, the optimality
test is true for the repetition vector N ; this insures the convergence of the algorithm. J

The number of iterations of Algorithm 1 is not bounded and can be theoretically propor-
tional to the maximum length of a path of the graph H = (K, E�).

Let us consider the first step of Algorithm 1 for the example of Figure 2. At initialisation,
K = 14. The corresponding partial expanded graph PK(G) is shown by Figure 6. Its longest
path of PK(G) is pK = s, t11, t

1
2, t

1
3, t

1
4, f valued by LPmax(pK) = 13. The optimality test fails,

and we get N(p) = (3, 6, 1, 2) which is the repetition vector and thus K? = K(1) = N .

t11

t12

t13

t14s f

2 1

2 7

10 3

Figure 6 The partial expanded graph for the instance shown in Figure 2 and a unit vector
K = (1, 1, 1, 1). Arcs are weighted by Lmax in gray.

7 ROSACE Case Study

ROSACE is the acronym for Research Open-Source Avionics and Control Engineering. This
case study was developed by Pagetti et al. [22] to illustrate the implementation of a real-time
system on a many-core architecture. Figure 7 presents an instance of the problem extracted
from [9]. We arbitrarily set ri = 0 and Di = Ti for any task ti ∈ T .

Figure 8 presents the partial expansion of the instance of Figure 7 for the unit expansion
vector K = 16. A path of maximum length is pK = s, t11, t

1
2, t

1
3, t

1
4, f with LPmax(PK(G)) =

LPmax(pK) = 260ms.
At the first iteration of Algorithm 1, p = s, t1, t2, t3, t4, f is expanded. We set T (p) =

lcm(60, 40, 30) = 120, N1(p) = N2(p) = 2, N3(p) = 3 and N4(p) = 4. The next iteration, we
set K = (2, 2, 3, 4, 1, 1).

ECRTS 2020

20:16 Evaluation of the Age Latency

t1 t2 t3 t4

t5 t6 ti t1 t2 t3 t4 t5 t6

ri 0 0 0 0 0 0
Di 60 60 40 30 30 30
Ti 60 60 40 30 30 30

Figure 7 An instance of 6 periodic tasks and the associated DAG G extracted from the ROSACE
case study [9].

s ft11 t12 t13 t14

t15 t16

0 60 100 70

50 300

0

30

Figure 8 The partial expanded graph PK(G) for the instance shown in Figure 7 and a unit vector
K = 16. Each arc β is weighted by Lmax(β), shown in gray.

The partial expanded graph PK(G) built at the second iteration is shown in Figure
9. pK = s, t11, t

2
2, t

2
3, t

4
4, f is a longest path of PK(G) with LPmax(pK) = LPmax(PK(G)) =

240ms Moreover, the associated path p = s, t1, t2, t3, t4, f verifies T (p) = lcm(30, 40, 60),
N1(p) = N2(p) = 2, N3(p) = 3 and N4(p) = 4. The optimality test is true and we get
K? = (2, 2, 3, 4, 1, 1). The maximum age latency of G is thus L?(G) = LPmax(pK?) = 240ms.

We observe in this example that all the tasks of the critical path (i.e., the paths p of
G such that L?(p) = L?(G)) were expanded at least following N(p). Moreover, tasks from
other paths are not necessarily duplicated: for example, K?

5 = K?
6 = 1 with N5 = N6 = 4.

Thus, we can identify that paths s, t5, t3, t4, f and s, t6, t4, f are not critical and tasks can
be delayed without influence on the age latency.

s t11 t12

t22

t13

t23

t33

t14

t24

t34

t44

t15

t16

f0

0

0

60

60 80 60

100
30

40

50
30
30
30

30

60

50

40
70

30

30

30

30

Figure 9 The partial expanded graph PK(G) for the instance shown in Figure 7 and the vector
K = (2, 2, 3, 4, 1, 1). Each arc β is weighted by Lmax(β).

A.M. Kordon and N. Tang 20:17

8 Experimental results

Our experiments aim at testing the performance of Algorithm 1. Following the experiments
of Khatib et al. [14], the bound obtained from the longest paths of P1n(G) can be computed
quickly, but its performance is on average between 10 and 15 percent from the maximal value
L?(G). Moreover, their method does not precisely identify the real critical paths w.r.t the
age latency of the initial graph.

Our Benchmarks were randomly generated: they are detailed is Subsection 8.1. The
analysis of the computation time of our algorithm is presented in Subsection 8.2. Subsection
8.3 deals with the analysis of the critical vectors K? obtained by our algorithm.

All our experiments were performed on an Intel(R) Core(TM) i5-8400 CPU (6 cores at
2.80GHz) and 15 GB of RAM. Our codes are written in Python. Functions dealing with
graphs were implemented using the Python package NetworkX.

The goal is to experimentally analyse properties of Algorithm 1, like the number of
iterations, space and time complexity. We used linear regression and curve fitting to map
these properties to the size and density of initial graphs graphs.

8.1 Benchmarks
Random instances of n tasks were generated as follows. Periods of tasks are selected uniformly
in H = {1, 2, 5, 10, 20, 50, 100}. H is a subset of the values presented by Kramer et al. [16] for
the 2015 WATERS challenge and several authors dealing with the age latency for automotive
applications [10, 3].

Release times ri are uniformly selected in {0, 1, 2, 3, 4, 5}, while we fix the relative
deadline Di equal to the period of the task, i.e., Di = Ti for any task ti ∈ T . Graphs are
randomly generated using the Python NetworkX function dense_gnm_random_graph. Nodes
are arbitrary numbered from 1 to n. A directed acyclic graph is then built by replacing each
edge e = {i, j} with i < j by an arc e = (i, j).

For any number n of tasks, we set the number of arcs to m` =
⌊

(n(n−1)
4

⌋
for low density

graphs and mh =
⌈

(n(n−1)
3

⌉
for high density. We start with n = 5 tasks with a step of 5. For

each data point, 150 random instances were generated and an average value of the functions
considered are shown.

8.2 Analysis of the computation time of Algorithm 1
For sufficiently large n, the hyperperiod of an instance is exactly T = lcm{α ∈ H} = 100.
The consequence is that the number of duplicates (resp., the number of arcs) of the expanded
graph PN (G) is bounded by T × n (resp., T 2 × n2).

We measured the running time and the number of iterations of Algorithm 1. We stopped
at n = 90 tasks, since the running time exceeded 15 minutes on average for instances with
higher values of n. Figure 10 reports the average running times and Figure 11 the average
number of iterations following the number of tasks.

We observed that the running time of Algorithm 1 is a quadratic function of the number
of tasks, and thus is linear in the number of arcs of the graph G. Unsurprisingly, these
running times are longer for high-density graphs. This observation seems to contradict the
experimental results of Becker et al. [3]: indeed, they remarked that the average running
time for the computation of the age latency of a chain is linear w.r.t the number of tasks.
In this case, the number of arcs equals n− 1: the running time is then also linear w.r.t the
number of arcs, which is coherent with our result.

ECRTS 2020

20:18 Evaluation of the Age Latency

We also noticed that the whole number of iterations of Algorithm 1 grows logarithmically
on average. Our first experimental conclusion is thus that the convergence of the algorithm
to the exact value seems to be a logarithmic function of the number of tasks. The long
running time is thus due to the time needed to build the successive partial expansions and
not to the increase of the number of iterations of the algorithm.

Figure 10 Average running times w.r.t the
number of nodes. Fitting functions presented are
fh(n) = (2.02×10−3)n2−0.03n+0.29 and f`(n) =
(1.53 × 10−3)n2 − 0.05n + 0.51 for respectively
high-density and low-density graphs.

Figure 11 Average number of iterations w.r.t
the number of nodes. Fitting functions presen-
ted are gh(n) = 1.34 ln(0.62(n + 5.89)) − 0.64
and g`(n) = 1.96 ln(1.59(n + 13.42)) − 4.81 for
respectively high-density and low-density graphs.

8.3 Analysis of the partial expanded graph obtained

Figure 12 presents the evolution of the ratio r(n) =
∑n
i=1 K

?
i∑n

i=1 Ni
following the number of tasks

and the density of the graph. We observed that it is roughly a linear function that remains
bounded by 0.8 for high-density graphs and 0.65 for low-density ones. The consequence is
that in many cases we clearly do not need to completely expand the graph to get the exact
value of the age latency and that good algorithms should be sought to identify the critical
paths of a graph.

9 Conclusion

In this paper, we present a new definition of the dependency between the successive executions
of two tasks that communicate following the LET paradigm. This definition was exploited
to build a partial expanded graph PK(G) associated to any vector K ∈ (N− {0})n for the
computation of an upper bound of the age latency. A greedy algorithm to compute an
accurate value K? leading to the exact value of the age latency was developed and tested on
random instances. This optimal partial expansion allows to identify the critical paths of the
graph G.

Many extensions of our study may be considered. The performance of our algorithm
should be improved by building the successive partial expended graphs incrementally and
optimizing data structures for graphs. Our methodology can surely be applied to evaluate
accurate lower bounds of the age latency. Coupling the upper and the lower bounds will
allow then to precisely measure the error between the longest paths of PK(G) and L?(G).

A.M. Kordon and N. Tang 20:19

Figure 12 Average ratio r(n) =
∑n

i=1
K?

i∑n

i=1
Ni

for the partial expanded graph computed by Algorithm 1.

Fitting functions presented are rh(n) = 8.67 × 10−4n + 0.69 and r`(n) = 9.1 × 10−4n + 0.52 for
respectively high-density and low-density graphs.

Our general framework should also be extended to tackle other possible latencies [8]. Lastly,
an implicit communication between two tasks of same period (which corresponds to two
tasks in the same runnable for an AUTOSAR compatible system) could easily be considered
in our model.

References
1 Autosar. URL: https://www.autosar.org.
2 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Syn-

thesizing job-level dependencies for automotive multi-rate effect chains. In 2016 IEEE 22nd
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 159–169, August 2016. doi:10.1109/RTCSA.2016.41.

3 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. End-
to-end timing analysis of cause-effect chains in automotive embedded systems. Journal of
Systems Architecture, 80:104–113, 2017.

4 Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of auto-
motive applications using the LET paradigm. In IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2018, 11-13 April 2018, Porto, Portugal, pages 240–250,
2018. doi:10.1109/RTAS.2018.00032.

5 Bruno Bodin, Alix Munier Kordon, and Benoît Dupont de Dinechin. K-periodic schedules for
evaluating the maximum throughput of a synchronous dataflow graph. In 2012 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS
XII, Samos, Greece, July 16-19, 2012, pages 152–159, 2012.

6 Bruno Bodin, Alix Munier Kordon, and Benoît Dupont de Dinechin. Optimal and fast
throughput evaluation of CSDF. In Proceedings of the 53rd Annual Design Automation
Conference, DAC 2016, Austin, TX, USA, June 5-9, 2016, pages 160:1–160:6, 2016.

7 Robert de Groote. On the analysis of synchronous dataflow graphs: a system-theoretic
perspective. PhD thesis, University of Twente, 2016.

8 Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A compositional framework
for end-to-end path delay calculation of automotive systems under different path semantics.
In IEEE Real-Time Systems Symposium, November 30-December 3. IEEE Communications
Society, 2009.

ECRTS 2020

https://www.autosar.org
https://doi.org/10.1109/RTCSA.2016.41
https://doi.org/10.1109/RTAS.2018.00032

20:20 Evaluation of the Age Latency

9 Julien Forget, Frédéric Boniol, and Claire Pagetti. Verifying end-to-end real-time constraints
on multi-periodic models. In 22nd IEEE International Conference on Emerging Technologies
and Factory Automation, ETFA 2017, Limassol, Cyprus, September 12-15, 2017, pages 1–8,
2017.

10 Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Communic-
ation centric design in complex automotive embedded systems. In 29th Euromicro Conference
on Real-Time Systems, ECRTS 2017, June 27-30, 2017, Dubrovnik, Croatia, pages 10:1–10:20,
2017.

11 Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, Falk Wurst, and Dirk Zie-
genbein. Waters industrial challenge 2017. URL: https://waters2017.inria.fr/challenge/
#Challenge17.

12 Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: a time-triggered
language for embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003.

13 Thomas A. Henzinger, Christoph M. Kirsch, Marco A.A Sanvido, and Wolfgang Pree. From
control models to real-time code using Giotto. IEEE Control Systems Magazine, 23(1):50–64,
February 2003.

14 Jad Khatib, Alix Munier Kordon, Enagnon Cédric Klikpo, and Kods Trabelsi-Colibet. Com-
puting latency of a real-time system modeled by synchronous dataflow graph. In Proceedings
of the 24th International Conference on Real-Time Networks and Systems, RTNS 2016, Brest,
France, October 19-21, 2016, pages 87–96, 2016.

15 Christoph M. Kirsch and Ana Sokolova. The logical execution time paradigm. In Samarjit
Chakraborty and Jörg Eberspächer, editors, Advances in Real-Time Systems, pages 103–120.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

16 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free, 2015. URL: https://www.ecrts.org/forum/viewtopic.php?f=20&t=23.

17 Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceeding of the IEEE,
vol. 75(no. 9):pp. 1235–1245, 1987.

18 Qing Li and Caroline Yao. Real-time concepts for embedded systems. Taylor and Francis,
Hoboken, NJ, 2014. URL: http://cds.cern.ch/record/1990357.

19 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

20 Jorge Martinez, Ignacio Sañudo, and Marko Bertogna. Analytical characterization of end-to-
end communication delays with logical execution time. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2244–2254, November 2018.

21 Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens. Multi-task
implementation of multi-periodic synchronous programs. Discrete Event Dynamic Systems,
21(3):307–338, 2011.

22 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE
case study: from simulink specification to multi/many-core execution. In 2014 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 309–318,
April 2014.

23 RémyWyss, Frédéric Boniol, Claire Pagetti, and Julien Forget. End-to-end latency computation
in a multi-periodic design. In 28th Symposium On Applied Computing (SAC’13), pages 1682–
1687, Coimbra, Portugal, April 2013.

https://waters2017.inria.fr/challenge/#Challenge17
https://waters2017.inria.fr/challenge/#Challenge17
https://www.ecrts.org/forum/viewtopic.php?f=20&t=23
http://cds.cern.ch/record/1990357
https://doi.org/10.1145/321738.321743

	Introduction
	Related work
	Modelling of the system
	Periodic tasks model considering LET communications
	LET dependencies
	Age latency
	Problem definition and example

	Construction of a partial expanded graph
	Characterisation of the dependencies between duplicates of the partial expanded graph
	Upper bound on the latency
	Definition of the partial expanded graph
	Complexity of the computation of P_K(G) and its longest paths

	Dominant set for the expansion vector K
	Maximal value of the age latency for K=N
	Order relation between the divisors of the repetition vector N

	Determination of an optimum vector K*
	ROSACE Case Study
	Experimental results
	Benchmarks
	Analysis of the computation time of Algorithm 1
	Analysis of the partial expanded graph obtained

	Conclusion

