
The Safe and Effective Use of Learning-Enabled
Components in Safety-Critical Systems
Kunal Agrawal
Washington University in Saint Louis, MO, USA
kunal@wustl.edu

Sanjoy Baruah
Washington University in Saint Louis, MO, USA
baruah@wustl.edu

Alan Burns
The University of York, UK
alan.burns@york.ac.uk

Abstract
Autonomous systems increasingly use components that incorporate machine learning and other
AI-based techniques in order to achieve improved performance. The problem of assuring correctness
in safety-critical systems that use such components is considered. A model is proposed in which
components are characterized according to both their worst-case and their typical behaviors; it is
argued that while safety must be assured under all circumstances, it is reasonable to be concerned
with providing a high degree of performance for typical behaviors only. The problem of assuring
safety while providing such improved performance is formulated as an optimization problem in
which performance under typical circumstances is the objective function to be optimized while
safety is a hard constraint that must be satisfied. Algorithmic techniques are applied to derive an
optimal solution to this optimization problem. This optimal solution is compared with an alternative
approach that optimizes for performance under worst-case conditions, as well as some common-sense
heuristics, via simulation experiments on synthetically-generated workloads.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Computing methodologies → Machine learning; Software and its engineering → Real-time
schedulability

Keywords and phrases Learning-enabled components (LECs), Safety-critical systems, Typical anal-
ysis, Performance optimization, Run-time monitoring

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.7

Funding Kunal Agrawal: National Science Foundation Grants CCF-1733873 and CCF-1439062.
Sanjoy Baruah: National Science Foundation Grants CNS-1814739 and CPS-1932530.
Alan Burns: EPSRC (UK) grants EP/K011626/1, EP/P003664/1, and EP/N023641/1.

1 Introduction

Many autonomous cyber-physical systems (CPS’s) such as self-driving cars are safety-critical,
and must have their safety properties verified before they can be considered for deployment.
However approaches that have traditionally been used for the purposes of performing safety
assurance in safety-critical systems do not seem directly applicable to modern autonomous
CPS’s due to multiple reasons, including the presence of complex and adaptive functionalities
that are based upon the incorporation of machine learning techniques that are not well
understood in the way that components traditionally used in safety-critical systems are.
The importance, as well as the enormous complexity, of the problem of obtaining assurance
for autonomous CPS’s that incorporate machine learning has been widely recognized, and
approaches for solving this problem are being actively sought – consider the following example
initiatives:

© Kunal Agrawal, Sanjoy Baruah, and Alan Burns;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 7; pp. 7:1–7:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5882-6647
mailto:kunal@wustl.edu
https://orcid.org/0000-0002-4541-3445
mailto:baruah@wustl.edu
https://orcid.org/0000-0001-5621-8816
mailto:alan.burns@york.ac.uk
https://doi.org/10.4230/LIPIcs.ECRTS.2020.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 The Use of Learning-Enabled Components in Safety-Critical Systems

The Assured Autonomy Program [8] of the United States Defense Advanced Research
Projects Agency (DARPA) has a goal of creating technology for establishing assurance of
CPS’s that contain “Learning-Enabled Components” (LECs), which are an abstraction
defined in [8] that generalizes a wide variety of popular machine learning approaches.
In a similar vein, the Assuring Autonomy International Programme [1] is an initiative
funded by the international insurance company Lloyd’s of London at the University of
York (UK), motivated in part by a 2016 study by Lloyd’s identifying assurance and
regulation as being amongst the biggest obstacles to realising the benefits of robotics and
autonomy.
Yet another important example project in this space is the Bounded Behavior Assurance
initiative [6], spearheaded by the major US defense contractor Northrop Grumman
Corporation, which seeks to define processes for establishing assurance (and eventually,
obtaining certification) that the behavior of unmanned aerial vehicles that use machine
learning to make safety-critical and mission-critical decisions will always remain within
pre-specified bounds.

It is widely accepted that predictability of run-time behavior [10] is very important for the
purposes of assuring safety in safety-critical systems. Although most non-trivial safety-critical
systems inevitably encounter some unpredictability in run-time behavior, safety-critical
systems designers have developed a range of advanced and sophisticated techniques for
dealing with inherent run-time unpredictability with regards to extra-functional properties
such as timing (the duration required to complete execution) or energy consumption. However,
safety-critical systems that make use of LECs tend to additionally not be predictable from the
functional perspective: the precise “worth” or value of a computation performed by an LEC
that incorporates deep learning or similar AI-based techniques is often not easily predicted
beforehand. This aspect of run-time unpredictability has not been as widely studied in the
safety-critical systems community: How should one deal with such functional uncertainty in
safety-critical systems? In this paper, we continue our investigations, first reported in [3], of
one possible approach for doing so for a particular form of computation involving LECs, that
possess the following characteristics:

The overall computation can be considered to be a multi-stage one, in which a series
of functional blocks are to be executed in a specified sequence. For an execution of the
computation to be considered correct (and hence safe), a specified minimum level of
service must be obtained cumulatively over all the stages; we assume that this minimum
level of service is quantified as a numerical target value.
We have a choice of different alternative implementations for each stage of the computation,
some or all of which may involve the use of LECs. Each implementation takes some
duration to complete execution, and achieves an associated value – a quantitative measure
of the quality of the computation that was achieved by executing that implementation.1
We perform the complete end-to-end computation by selecting and executing exactly one
of the implementation choices for each stage, in sequence. The total value obtained by
the end-to-end computation is defined to be the sum of the values associated with the
implementations that were selected for the individual stages.
We can monitor the computation – determine certain aspects of system state – after each
stage during run-time.

1 It may be convenient to think of this value as a measure of the progress that will be made towards
achieving the overall objective for the computation, if this implementation were selected for this stage
of the computation.

K. Agrawal, S. Baruah, and A. Burns 7:3

For computations that can be characterized in this manner. we consider different approaches
for scheduling the computation in ways that guarantee safety – i.e., guarantee that the
computation will achieve the specified target value of quality of service – and optimize for
performance – specifically, reduce the overall duration of the computation. We provide
a precise formulation of the scheduling problem that needs to be solved as a constrained
optimization problem (Section 2); explore a number of algorithms, ranging from provably
optimal ones (Section 3) to simple heuristics that are efficiently implementable (Section 4),
for solving this problem; and compare these different algorithms via simulation experiments
on randomly-generated synthetic workloads (Section 4).

Organization. The reminder of this paper is organized in the following manner. In Section 2
we formally specify the problem that is studied in this paper, and present arguments making
the case that this is indeed a relevant problem that merits further exploration by the real-time
computing community. In Section 3 we present algorithms for solving this problem, and derive
properties that demonstrate the correctness and characterize the efficacy of our algorithms.
In Section 4 we explore some heuristic solution techniques: although these heuristics are easily
shown to be non-optimal, some simulation-based experiments on synthetically generated
workloads indicates that carefully chosen heuristics may be adequate for solving some specific
classes of the problem in a near-optimal manner. We discuss some directions in which the
problem we are studying here could be generalized in Section 5, and conclude in Section 6 by
placing this work within a larger persepctive on the design and analysis of highly complex
safety-critical cyber-physical systems.

2 Model and Problem Statement

In this section we motivate and formally define the model of LEC-enabled computations
that we are considering in this paper. We highlight, via illustrative examples, some of the
challenges that arise in the pre-runtime safety analysis of such systems that we seek to solve,
and formally define the problem that is studied in the remaining sections of this paper.

As discussed in Section 1 above, we consider multi-stage computations in which a series
of functional blocks are to be executed in a specified sequence, and we have a choice of
several different implementations for each stage. Let n denote the number of stages, and m
the maximum number of available alternative implementations for any stage. (An example
multi-stage computation with n = 2 and m = 3 is depicted in Figure 1.) Let V ∈ N denote a
target value that must be obtained cumulatively across all stages of the computation. We will
use the notation Ii,j to denote the j’th implementation choice for the i’th stage, 0 ≤ i < n and
0 ≤ j < m. Let Vi,j ∈ N denote the value that is obtained by executing the implementation
Ii,j , and let Ci,j ∈ N denote the duration of this execution – we do not assume that the
numerical values of these parameters are known prior to executing Ii,j (and indeed allow
for the possibility that they may be different on different executions of Ii,j). Consider some
execution of the end-to-end computation, and let φ(i) denote the implementation of the i’th
stage that is chosen (i.e., Ii,φ(i) is the executed implementation) for each i, 0 ≤ i < n. Note
that the function φ(·) thus specifies the schedule for the computation – we will henceforth
often refer to it as the scheduling function, or simply the schedule, for the computation. It is
required that the scheduling function φ(·) satisfy the constraint that

∑
i Vi,φ(i) ≥ V; from

amongst all the functions φ that do so, we seek one that minimizes
∑
i Ci,φ(i). That is, our

correctness constraint is that the sum of the values returned across all n stages should
equal (or exceed) the specified threshold value V, while the performance objective is
that the cumulative duration of the computation be minimized.

ECRTS 2020

7:4 The Use of Learning-Enabled Components in Safety-Critical Systems

0

1

V = 10

I0,0: (6, 30) I0,1: (4, 10)

I1,0: (7, 50) I1,1: (4, 20) I1,2: (3, 10)

Figure 1 An instance discussed in Example 1: a 2-stage computation with a choice of two possible
implementations for the first stage and three for the second, that must achieve a value of at least 10
(V = 10). The ordered pairs represent the (vi,j , ci,j) parameters of the implementations.

As stated above, the Cij , Vij values are unknown prior to actually executing Ii,j , and
will in general take on different values each time Ii,j is executed. In order to be able to do
pre-run-time verification, it is necessary that worst-case bounds be known on the values that
these quantities may take. Let ci,j and vi,j denote safe worst-case bounds on the values of
Ci,j and Vi,j respectively, that can be determined beforehand; by “safe,” we mean that it is
guaranteed that Ci,j ≤ ci,j and Vi,j ≥ vi,j for all executions of Ii,j .

The value of ci,j is what is commonly referred to in the real-time computing literature as
the worst-case execution time (WCET) of the implementation Ii,j , and may be determined
using the wide range of tools, techniques, and methodologies for WCET-determination [11]
that have been developed within the real-time computing community.2
We require that similar tools, techniques, and methodologies be developed that enable us
to determine lower bounds on the value of the computation that is performed by an LEC.
While we recognize that this is a major “ask” that will require a large concerted effort on
the part of the safety-critical systems community, we believe it is unavoidable – we don’t
really see any other path to enabling the safe and effective use of LECs in safety-critical
systems.

If we are to be able to verify correctness of a given computation prior to run-time, it is
evident that there should exist some implementation of each stage such that the worst-case
value bounds of these implementations sum to at least the target value – this correctness
requirement is formalized later (in Expression 1) as a feasibility test, and computations
passing the feasibility test are said to be feasible. If a computation is deemed feasible, our
approach, as briefly described in Section 1, will generate a schedule prior to run-time that can
be verified for correctness, and shown to always have an acceptably small duration. What
properties must such a schedule satisfy? Let us try to understand some of the issues involved
via a simple example.

I Example 1. Consider a 2-stage computation (n = 2) with a choice of 2 implementations
per stage (m = 2), for which correctness requires that a cumulative value of at least 10
be obtained (V = 10) – see Figure 1. (As explained in the caption to the figure, each
implementation is labeled here with an ordered pair denoting the minimum value that is

2 Note: in much of the remainder of this paper we will make the simplifying assumption that the actual
run-time of implementations does not vary much from their specified WCET’s: Ci,j ≈ ci,j for all
(i, j). This simplifying assumption allows us to highlight the primary focus of this paper, which is
that of dealing with the uncertainty that is inherent in a priori characterizing the value obtained from
many LEC’s. (This is also a reasonable assumption for the many Deep-Learning based LECs that are
implemented as a known number of “layers” of matrix computations and therefore known to have very
predictable and deterministic running times.) In Section 5 we briefly discuss how our work may be
generalized by removing this simplifying assumption, and incorporating considerations of uncertainty
along both the value and the timing dimensions.

K. Agrawal, S. Baruah, and A. Burns 7:5

guaranteed to be obtained by choosing to execute the implementation, and the maximum
duration that the implementation may take to execute.) We note that since we have a choice
of two implementations for the first stage and a choice of three implementations for the
second stage, there is a total of 2× 3 = 6 possible distinct schedules:

No. Schedule Min. cumulative value Guaranteed Correct? Max. delay
1. 〈I0,0; I1,0〉 6 + 7 = 13 Y 30 + 50 = 80
2. 〈I0,0; I1,1〉 6 + 4 = 10 Y 30 + 20 = 50
3. 〈I0,0; I1,2〉 6 + 3 = 9 N —
4. 〈I0,1; I1,0〉 4 + 7 = 11 Y 10 + 50 = 60
5. 〈I0,1; I1,1〉 4 + 4 = 8 N —
6. 〈I0,1; I1,2〉 4 + 3 = 7 N —

Of these six, three can assure a value of at least 10 are are thus guaranteed correct; from
amongst these correct schedules, the schedule 〈I0,0; I1,1〉 has the lowest associated delay
bound of 50.

If a static schedule –one in which the choice of implementations is finalized prior to
run-time– is desired then it is reasonable to choose the schedule 〈I0,0; I1,1〉 since it is the
correct schedule that guarantees the best (smallest) maximum delay. Such a static schedule
has the benefit of not requiring any run-time monitoring: under the assumption that the
worst-case characterizations (of both the value obtained and the duration required) of the
implementations is correct, this schedule is guaranteed to obtain the required value of V = 10
and is hence correct; additionally, from among all such static schedules the selected one is,
informally speaking, clearly the “best” choice.

Suppose now that the schedules are permitted to be adaptive: they may be changed
between stages in response to additional information that is revealed during run-time by
monitoring the actual behavior (recall that the cij and vij values represent conservative
worst-case estimates: the actual behavior experienced during run-time may well turn out to
be superior to these worst-case estimates). Consider the following possible scenarios.
1. If while proceeding to execute the chosen schedule, 〈I0,0; I1,1〉, upon completing the first

stage it is discovered that this stage actually returns a value ≥ 7. Now since the value
remaining to be acquired is ≤ 3, it is safe to switch to the implementation I1,2 for the
second stage; doing so further reduces the maximum delay bound to 30 + 10 = 40.

2. If we had instead initially chosen the schedule 〈I0,1; I1,0〉 (which is also guaranteed to
be correct, albeit with a larger maximum delay bound of 60) and upon executing the
first stage discovered that the value returned is ≥ 6, it then becomes safe to switch to
the implementation I1,1 for the second stage, and doing so results in a maximum delay
bound of 10 + 20 = 30.

In the second scenario above, we started out with a sub-optimal schedule (from the static
perspective), but run-time monitoring enabled the adaptive schedule to achieve a smaller
delay than was achieved in the first scenario by starting out with the optimal static schedule.
So when adaptive scheduling is permitted, which schedule should we start out with? In
the absence of additional information (for instance, in our example above how likely is it
that the value returned by I0,1 will actually exceed 6?), we cannot think of any reason to
go with an initial schedule other than the one with the best worst-case static guarantee
(in our example, the schedule 〈I0,0; I1,1〉). However, it may be the case that additional
information (over and above the worst-case bounds ci,j and vi,j) regarding run-time behavior
is available prior to run-time; if so, it may be possible to use such additional information to

ECRTS 2020

7:6 The Use of Learning-Enabled Components in Safety-Critical Systems

0

1

V = 10

I0,0: (6, 7, 30) I0,1: (4, 6, 10)

I1,0: (7, 8, 50) I1,1: (4, 4, 20) I1,2: (3, 6, 10)

Figure 2 The example instance of Figure 1, with the typical values obtained by implementations
also specified. The 3-tuples pairs represent the (vi,j , vT

i,j , ci,j) parameters of the implementations.

further optimize the initial schedule provided we are able to do so without compromising the
correctness guarantee. An example of such additional information that may be available, that
we consider to be particularly interesting and useful, is suggested by Quinton et al. [9] via
the concept of typical analysis. The idea behind typical analysis is that while a worst-case
characterization of a system must encompass all possible behaviors of the system, a “typical”
characterization excludes pathological behaviors that are extremely unlikely to occur in
practice.3 Let us suppose that our multi-stage computation is subjected to such typical-case
analysis, and let the parameter vT

i,j denote the typical value obtained by the implementation
Ii,j ; the interpretation being that implementation Ii,j will obtain a value no smaller than
vT
i,j (Vi,j ≥ vT

i,j) in all non-pathological executions of the computation.
With this notion of typical-case analysis in mind, let us revisit the scenarios introduced

above. We can now state that if vT
0,1 ≥ 6 (in Figure 2, the example instance of Figure 1

is updated with the typical value parameters, the vT
i,j ’s, also specified), then choosing

implementation I0,1 rather than I0,0 for the first stage
1. Assures correctness under all circumstances, and
2. offers superior performance – a smaller maximum delay – under typical circumstances.

Problem statement. We now summarize our workload model, and the problem we seek to
solve. A problem instance is defined by specifying values for

the number of stages n of the multi-stage computation;
the maximum number of alternative implementations m for each stage;
the target value V that is needed for correctness;
the worst-case and typical values vi,j and vT

i,j for the value-obtained parameters for each
implementation Ii,j , 0 ≤ i < n, 0 ≤ j < m; and
the worst-case execution time ci,j of implementation Ii,j , 0 ≤ i < n, 0 ≤ j < m. (As
previously noted –see footnote 2– we could, in principle, have worst-case and typical-case
characterizations of the execution time parameters as well; we have chosen to not do so
here in order to keep things simple. We will revisit and briefly discuss the implications of
this choice in Section 6.)

To summarize, an instance I of our problem is characterized by
1. the n×m implementations Ii,j , (i, j) ∈ {0, 1, . . . , (n− 1)}× {0, 1, . . . , (m− 1}, with each
Ii,j characterized by the 3-tuple (vi,j , vT

i,j , ci,j); and
2. the target value V.

3 E.g., worst-case characterization of the value obtained by an implementation may be obtained by
performing static analysis of the implementation, making worst-case (or pessimistic) assumptions and
rigorously proving the value that will be obtained under these assumptions. In contrast, a typical
characterization of this value may be obtained via extensive experimentation and measurement, executing
the implementation under a wide range of “typical” conditions and using the smallest measured value
that is obtained.

K. Agrawal, S. Baruah, and A. Burns 7:7

A schedule for such an instance is a function φ : [0, 1, . . . n− 1]→ [0, 1, . . . ,m− 1], with φ(i)
denoting the implementation of stage i that is selected for execution in the schedule. An
instance is said to be feasible if it is possible to schedule it in a manner that guarantees that
the cumulative value V is obtained for all possible actual run-time behaviors; it is obvious
that a necessary and sufficient feasibility condition is that(

n−1∑
i=0

(m−1)
max
j=0

{vi,j}

)
≥ V (1)

Given a feasible instance, we seek a scheduling strategy for choosing an implementation
φ(i) for each stage i of the instance. We require that our strategy only make safe choices:
never choose an implementation that could result in an incorrect schedule. If several safe
choices are available, then our choice is governed by our optimization objective of minimizing
execution duration; in this paper we advocate for choosing an implementation that guarantees
the smallest overall delay under all typical circumstances, and derive algorithms that enable
us to do so. In the following example we illustrate some of the issues that arise in choosing
to optimize for the typical case rather than the worst case.

I Example 2. Let us revisit the example of Figure 2. We note that
If we were to choose implementation I0,0 for the first stage we are guaranteed to obtain a
value of at least 6 units, which would leave us requiring the remaining 4 units of value
from the second stage. Either of the implementations I1,0 or I1,1 is able to guarantee
this; hence it is safe to choose implementation I0,0 for the first stage.
If we were to instead choose to execute implementation I0,1 for the first stage, then we
are guaranteed to obtain a value of at least 4 units. This would leave us requiring 6 units
of value from the second stage. Since implementation I1,0 is able to guarantee this, we
conclude that it is safe to choose implementation I0,0 for the first stage.

We have seen that from the perspective of safety we may therefore choose either implementa-
tion I0,0 or implementation I0,1 for the first stage. Let us examine how we would choose
between the two implementations.

Worst-case analysis. We separately consider both choices of implementation for the first
stage:
1. If we choose I0,0, then the lowest value that we would obtain is 6, and will then need

an additional 4 units of value from the second stage. That requires that we choose
I1,0 or I1,1 for the second stage; we prefer I1,1 since it has a lower delay, and hence
end up with a bound of 30 + 20 = 50 on the delay.

2. If, on the other hand, we were to choose I0,1 for the first stage, then the lowest value
that we would obtain is 4. That would leave us 6 units of value short of the target, and
we must choose implementation I1,0 for the second stage. Thus results in a cumulative
bound of 10 + 50 = 60 on the delay under typical circumstances.

Since 50 < 60, we would choose the implementation I0,0 for the first stage, and are
guaranteed a maximum cumulative delay of 50 time units.

Typical-case analysis. We again consider both choices for the first stage:
If we choose I0,0, then the lowest value that we would obtain under typical conditions
is 7. Since we will then need an additional 3 units of value from the second stage, we
may choose implementation I1,2 for the second stage, for a bound of 30 + 10 = 40 on
the delay under typical circumstances.

ECRTS 2020

7:8 The Use of Learning-Enabled Components in Safety-Critical Systems

If, on the other hand, we were to choose I0,1 for the first stage, then the lowest value
that we would obtain under typical conditions is 6. That would leave us 4 units of
value short of the target; since these 4 units of value must be guaranteed to be obtained
in the second stage, we must choose implementation I1,1 for the second stage.4 This
results in a cumulative bound of 10+20 = 30 on the delay under typical circumstances.

Since the delay bound is smaller if we choose I0,1, we would prefer the implementation
I0,1 for the first stage. By so doing, we are able to guarantee a maximum cumulative
delay of 30 time units under typical conditions (as opposed to the 50 time units that
was guaranteed above, when we chose implementation I0,0 based on worst-case analysis).
However if we were to encounter atypical conditions whilst executing implementation
I0,1 and obtain less than vT

0,1 = 6 units of value, we may end up with a shortfall of more
than four units of value and therefore need to execute implementation I1,0 for the second
stage, for a cumulative delay of 10 + 50 = 60 time units.

Example 2 above illustrates the difference in the kinds of performance guarantees that are
made by “traditional” worst-case analysis, and the typical-case analysis that we are proposing:

Typical analysis provides superior performance (in this example, smaller cumulative
delay) under typical conditions, but may provide worse performance under atypical
conditions. However, it does guarantee correctness (in our example, to obtain a
cumulative value of at least 10) under all conditions, typical or atypical.

3 Scheduling Algorithms and Analysis

In this section we will develop algorithms that solve the problem described in Section 2
above. We derive two separate algorithms: one for solving the (preëxisting) problem of
optimizing performance for the worst case and the other, for the novel problem that is the
major focus of this paper, of optimizing performance for the typical case (while assuring
correctness under all cases, typical or not). It turns out (see Section 3.1 below) that both
these optimization problems are NP-hard; hence, we should not expect to be able to find
polynomial-time algorithms for solving them. We will however show that both our algorithms
have pseudo-polynomial running time.

The remainder of this section is organized in the following manner. We show that our
problems are unlikely to be solvable using polynomial-time algorithms in Section 3.1, develop
pseudo-polynomial time algorithms for solving them in Sections 3.2–3.3, and formally specify
their optimality properties in Section 3.4.

3.1 Computational Complexity
The problem we seek to solve is easily seen to be computationally intractable – NP-hard, by
reduction from the Multiple-choice Knapsack Problem (MCKP) [7], a well-known NP-hard
problem. The Multiple-choice Knapsack Problem (MCKP) may be defined in the following
manner:

Given k classes N1 . . . , Nk of items, and a knapsack of capacity c. Each item j ∈ Ni
has a profit pij and a weight wij , and the problem is to choose one item from each
class such that the profit sum exceeds p without having the weight sum exceed w.

4 We could also have chosen I1,0, but that has a larger delay bound, and hence offers inferior performance.

K. Agrawal, S. Baruah, and A. Burns 7:9

To determine whether a given instance of the form described above ∈ MCKP, we could reduce
it to an instance of our problem that comprises k stages with a choice of |Ni| implementations
for the i’th stage for each i, 1 ≤ i ≤ k. The implementation Ii,j is assigned the parameters
vij = pij , vT

ij = pij , and cij = wij ; the desired target value V = p. It is evident that this
instance of our problem can guarantee a delay not exceeding w if and only if the given
instance ∈ MCKP. Since determining whether an instance ∈ MCKP is NP-hard, it follows
that determining a schedule that optimizes for performance under typical conditions, while
concurrently assuring correctness, is also NP-hard.

Observe that the instance of our problem obtained in the above reduction from MCKP
has vij = vT

ij for all (i, j); hence, its optimal solution would be exactly the same regardless of
whether one were optimizing for performance under worst-case assumptions or typical-case
ones. This establishes that the problem of optimizing for the worst case while assuring
correctness is also an NP-hard problem.

3.2 Algorithm Description
As stated earlier, our objective is to obtain a schedule that optimizes for performance
(i.e., minimizes the duration of computation) while assuring correctness – i.e., obtaining a
cumulative value no smaller than the specified target V. Our approach toward achieving
this is to construct, prior to run-time, a lookup table that will subsequently be used during
run-time in a manner that is elaborated upon in Section 3.3.

Let us suppose that we have completed execution of the first (i− 1) stages during some
execution of the computation, having obtained a cumulative value V̂ by so doing, and wish to
determine which implementation Ii,j of the i’th stage we should choose in order to optimize
for performance whilst continuing to assure correctness (i.e., guaranteeing that we will be
able to obtain a cumulative value V ′ def= (V − V̂) under all circumstances, typical or not).
Below, we first describe how one can identify, for each stage i and each possible value for V ′,
which implementations are safe to execute (in the sense of not compromising correctness)
in Section 3.2.1. Once we have figured out how to identify the safe implementations, we
separately discuss, in Section 3.2.2 how to choose amongst them in order to optimize for the
two different performance criteria – optimizing for the worst case and for the typical case.

3.2.1 Identifying safe implementations
For each i, 0 ≤ i ≤ n, let ∆i denote the largest value that we can guarantee to obtain over
the remaining stages – stages i, (i+ 1), · · · , (n− 1) – of the computation, based upon the
characterizations of the implementations that are available to us. It is evident that

∆n = 0 (Since there is no stage n)

and ∆i = ∆i+1 + m−1max
j=0

{
vij

}
(2)

This computation is represented in pseudo-code form in Figure 3; since it comprises two
nested loops, it is easily seen to take running time Θ(nm). (Notice that the feasibility
condition of Expression 1 can be rewritten as V ≥ ∆0; i.e., the target value V needed for
correctness is no smaller than the largest value that we can guarantee to obtain over [all] the
stages 0, 1, . . . , n− 1.)

Suppose now that that we are in the midst of executing the computation during some
run – we have completed the stages 0, · · · , (i− 1) in a safe manner, and have an amount V ′
remaining of the target value to be acquired (implying that the stages 0, · · · , (i− 1) together

ECRTS 2020

7:10 The Use of Learning-Enabled Components in Safety-Critical Systems

ComputeDeltas(I)
1 ∆n = 0
2 for i = n− 1 downto 0
3 tmp = 0
4 for j = 0 to m− 1
5 if (vi,j > tmp) then tmp = vi,j
6 ∆i = ∆i+1 + tmp

Figure 3 Pseudo-code for computing the ∆i values – the maximum value that can be guaranteed
over the stages i, i + 1, · · · , (n− 1) of the computation.

must have yielded a cumulative value V − V ′). If we were to now choose the implementation
Ii,j for the i’th stage and were to discover, upon having completed its execution, that doing
so yielded the lowest (i.e., worst-case) value of vi,j , we will need to obtain an additional
amount (V ′ − vi,j) of value over the remaining stages (i+ 1), · · · , (n− 1). Hence for it to be
safe for us to choose the implementation Ii,j for the i’th stage, it is necessary (and sufficient)
that(

vi,j + ∆i+1
)
≥ V ′ (3)

Expression 3 above can be thought of as constituting a run-time safety check: it is safe to
use the implementation Ii,j in order to obtain a remaining cumulative value V ′ if and only if
Expression 3 evaluates to true.

3.2.2 Choosing an implementation to execute
Based upon the cumulative value that has been obtained over the first (i− 1) stages, we saw
above how one can identify which of the provided implementations of the i’th stage are safe
to execute. We now describe how we should choose from amongst these safe implementations
in order to optimize for performance. We first consider, in Section 3.2.2.1, the case when
we seek to optimize for performance in the worst case; subsequently in Section 3.2.2.2 we
consider optimizing for the typical case.

3.2.2.1 Optimizing for the worst case

Conceptually speaking, we will build a table W with (n+ 1) rows and (V + 1) columns with
the following interpretation. For any i ∈ {0, i, . . . , n} and any v ∈ {0, 1, 2, . . . ,V}, W [i,v]
denotes the smallest delay bound that we can guarantee if we are required to obtain a target
value of at least v over the stages i, (i+ 1), . . . , (n− 1). The following recurrence defines the
values for W [i,v]:

W [n, 0] = 0 (Doing nothing, we trivially obtain a value 0)

W [n,v] = ∞ for all v > 0 (No positive value can be obtained over the non-existent n’th stage)

W [i,v] = min
{j | vij+∆i+1≥v}

{
cij +W [i+ 1,v − vij]

}
(4)

The third –recursive– equation above asserts that if we were to execute the j’th implemen-
tation, we would spend a duration cij and obtain a value vij in the worst case, thereby
requiring an additional value (v − vij) in the following stages. And the worst-case duration
for this is, by definition, given by W [i+ 1,v − vij].

K. Agrawal, S. Baruah, and A. Burns 7:11

ComputeT-Table(I)
1 for i = (n− 1) downto 0 by (−1)
2 for v = 1 to V
3 T [i, v] = ∞// Initializing
4 for j = 0 to m− 1
5 if (vi,j + ∆i+1 ≥ v)// I.e., implementation Ii,j is “safe”
6 if (ci,j + T [i + 1, v − vT

i,j] < T [i, v])// Better than current choice?
7 T [i, v] = ci,j + T [i + 1, v − vT

i,j]// Update best response duration
8 IT [i, v] = j // Update choice of implementation

Figure 4 Pseudo-code for computing the tables T [,] and IT [,] – see Section 3.2.2.2.

Observe that in this third equation we are restricting the choice of implementations (the
values that the index j may take) to only those that satisfy the safety/ correctness condition
of Expression 3, thereby ensuring that the choice of implementations in this i’th stage will
not lead to an unsafe state.

For reasons that will become evident in Section 3.3, we concurrently also build a table
IW of the same dimensions as the table W , with entry IW [i,v] storing the index j for which
the RHS in the third equation in Recurrence 4 is minimized (i.e., choice of implementations
for the i’th stage that minimizes the response time while guaranteeing a cumulative value v

over the stages i, . . . , n− 1).

3.2.2.2 Optimizing for the typical case

The approach is very similar to the one shown in Section 3.2.2.1 above. Here we build a
table T ; for any i ∈ {0, i, . . . , n} and any v ∈ {0, 1, 2, . . . ,V}, T [i,v] denotes the smallest
delay bound that we can guarantee under all typical circumstances, if we are to obtain a
target value of at least v over the stages i, (i+ 1), . . . , (n− 1). We have

T [n, 0] = 0
T [n,v] = ∞ for all v > 0

T [i,v] = min
{j | vij+∆i+1≥v}

{
cij + T [i+ 1,v − vT

ij]
}

(5)

The only difference from Expression 4, the recurrence relation for worst-case analysis, arises
in the third (recursive) equation, in specifying the value that remains to be obtained in the
stages (i+ 1), . . . , (n− 1). While in Expression 4 this is the worst-case value guaranteed by
Ii,j (i.e., vi,j), it is instead the lowest value guaranteed under typical circumstances (i.e.,
vT
i,j) in Expression 5.

Analogous to the table IW in Section 3.2.2.1 above, we also build a table IT that stores,
in IT [i,v], the index j for which the RHS in the third equation in Recurrence 5 is minimized.

Implementation Details, and Running time

Tables W and IW for worst-case analysis, and tables T and IT for typical-case analysis, are
constructed similarly in a bottom-up fashion. The procedure for computing the T and IT
tables is depicted in pseudo-code form in Figure 4 (the pseudo-code for computing the W and
IW tables is analogous and hence omitted). The bottom-most row of the table (i == n) is not
explicitly stored, but rather implicitly assumed initialized to all zeros. Row i is filled in once

ECRTS 2020

7:12 The Use of Learning-Enabled Components in Safety-Critical Systems

all the rows (i+ 1), . . . , n− 1 have been filled. To compute each entry in row i of the table,
we may need to examine each of the m alternative implementations Ii,0, Ii,1, . . . , Ii,m−1 (this
is done in the for loop of lines 4–8); hence computing each entry in the table takes Θ(m)
time. Since there are (n + 1) × (V + 1) entries in the table, the entire table can be fill in
with an overall running time of Θ(mnV).

(Note that in order to compute the entries in the table it is necessary that the values
∆0,∆1, . . . ,∆n be known. Hence the pseudo-code of Figure 3 must be executed prior to
calling this procedure. It was previously argued, in Section 3.2.1, that the pseudo-code
of Figure 3 has a running time Θ(nm); the overall computational complexity is therefore
dominated by the cost of computing the tables W and/ or T , and remains Θ(mnV).)

3.3 Run-time algorithms

We now explain how the tables W or T , constructed as described in Section 3.2 above, are
used during run-time. Section 3.3.1 discusses how the tables W and IW may be used to
optimize for performance in the worst case, and Section 3.3.2 discusses how the tables T
and IT may be used to optimize for performance in the typical case (while guaranteeing
correctness in all cases, typical or not).

3.3.1 Optimizing for the worst case

Let us first suppose that we are optimizing for the worst case, and consider some actual exe-
cution of the system during run-time. A static schedule would pre-select an implementation
for each stage prior to commencing execution of the first stage, and not change this decision
during run-time, regardless of the actual values obtained at each stage. Such a schedule is
readily determined using the tables W and IW that were computed as discussed above, in
Section 3.2:

1 Let j = IW [0,V]
2 choose implementation I0,j for stage 0
3 sumVal = v0,j
4 for i = 1 to n− 1
5 Let j = IW [i,V − sumVal]
6 choose implementation Ii,j for stage j
7 sumVal = sumVal + vi,j

Such a static schedule has the advantage of not requiring run-time monitoring: since the
scheduling choices are not changed regardless of how much value is actually obtained at each
stage, there is really no reason to determine this via run-time monitoring.

An adaptive schedule, in contrast, would, at each stage, only select which implementation
of that stage should be executed in order to optimize for worst-case running time subject
to the constraint that the remaining value needed for assuring safety be obtainable. For
stage 0, the choice is identical to the one selected by the static schedule above. However, the
choice of implementations for future stages would depend upon the actual values obtained,
as determined by run-time monitoring, by the chosen implementations of already-executed
stages:

K. Agrawal, S. Baruah, and A. Burns 7:13

1 Let j = IW [0,V]
2 execute implementation I0,j for stage 0. Let v̂0 denote the value so obtained
3 sumVal = v̂0
4 for i = 1 to n− 1
5 Let j = IW [i,V − sumVal]
6 execute implementation Ii,j for stage j. Let v̂i denote the value so obtained.
7 sumVal = sumVal + v̂i

Since v̂i may be larger than vij for each i (recall that the vij values are assumed to be
very conservative lower bounds), an adaptive schedule will, in general, tend to be different
from the static one; additionally, different executions of the instance may result in different
schedules (since the v̂i values may be different on different executions).

3.3.2 Optimizing for the typical case
It is not generally possible to synthesize a completely static schedule that optimizes for
the typical case, since run-time monitoring may reveal that typical-case assumptions are
violated upon executing some stage and when that happens, it is essential that correctness
be preserved at the cost of abandoning the pre-computed schedule. A form of “semi-static”
schedule could be conceived of, which would
(a) Precompute a static schedule assuming typical behavior, in a manner analogous to the

manner in which the static schedule optimizing for the worst case was synthesized.
(b) Corresponding to each i, 0 ≤ i < n− 1, pre-synthesize an alternative schedule for the

stages i + 1, · · · , n − 1 in the event that typical conditions are observed to have been
violated while executing the selected implementation for the i’th stage. This alternative
schedule would only seek to assure correctness without regard for performance; hence, it
may simply execute at each stage the implementation characterized by largest worst-case
value (the vij parameter).

However since such a semi-static schedule does not obviate the need for run-time monitoring
(unlike static schedules optimizing for the worst case), there is no significant advantage to
not going fully adaptive, as is done by the following run-time algorithm:

1 Let j = IT [0,V]
2 execute implementation I0,j for stage 0. Let v̂0 denote the value so obtained
3 sumVal = v̂0
4 for i = 1 to n− 1
5 Let j = IT [i,V − sumVal]
6 execute implementation Ii,j for stage j. Let v̂i denote the value so obtained.
7 sumVal = sumVal + v̂i

3.4 Characterization of Optimality
As stated in Sections 1 and 2, our objective has been to optimize for performance, measured
as the duration of the computation, whilst assuring correctness: guaranteeing that the target
value V will be obtained under all circumstances. We had pointed out that (at least) two
distinct interpretations of the optimization objective seem reasonable – one optimizing for
performance under all possible conditions and the other, optimizing for performance under
all typical conditions– and had advocated in favor of adopting the latter interpretation (while
accepting that the former may be more appropriate for certain systems). In Sections 3.2-3.3

ECRTS 2020

7:14 The Use of Learning-Enabled Components in Safety-Critical Systems

above we defined a pair of pseudo-polynomial time algorithms that compute optimal solutions
according to these two different objectives; in this section we will precisely state in what
manner these solutions are optimal.

As stated in Section 3.3, the pair of tables W and IW , and the pair of tables T and IT ,
could each be used in two different ways at runtime. Tables W and IW could be used to
construct a static schedule or an adaptive scheduling strategy, both of which are optimized
for the worst case; Tables T and IT could be used to construct either a semi-static or
an adaptive scheduling strategy, both optimized for the typical case. We now state the
performance guarantees that are made by each of these choices of scheduling strategies.
1. Static schedule, using Tables W and IW : Our run-time schedule guarantees a

correct schedule5 with response time no greater than W (0,V); additionally, no non-
clairvoyant scheduling strategy can guarantee a correct schedule with smaller response
time.

2. Semi-static schedule, using Tables T and IT : Our run-time scheduling strategy
guarantees a correct schedule with response time no greater thanW (0,V) for all executions
in which no implementation’s behavior violates the typical-case assumptions (i.e., each
implementation Iij chosen for execution returns a value ≥ vT

ij); additionally, no non-
clairvoyant scheduling strategy can guarantee a correct schedule with smaller response
time for all typical executions.

3. Adaptive scheduling, using Tables W and IW : Our run-time schedule guarantees
a correct schedule with response time no greater than W (0,V).
Additionally, suppose that a value V̂ has been obtained over the first (i− 1) stages during
some execution of the system. Our scheduling strategy guarantees a correct schedule
with remaining response time no larger than W (i,V − V̂), and no non-clairvoyant correct
scheduling strategy can guarantee a smaller remaining response time.

4. Adaptive scheduling, using Tables T and IT : Our run-time scheduling strategy
guarantees a correct schedule with response time no greater thanW (0,V) for all executions
satisfying the typical-case assumptions.
Additionally, suppose that a value V̂ has been obtained over the first (i− 1) stages during
some execution of the system. Our scheduling strategy guarantees a correct schedule
with remaining response time no larger than T (i,V − V̂) for all executions that satisfy
the typical-case assumptions for the remaining stages, and no non-clairvoyant correct
scheduling strategy can guarantee a smaller remaining response time under all typical-case
executions of the remaining stages.

4 Heuristic Approaches: A Brief Exploration

We have seen (Section 3.1) that for the kinds of computations studied in this paper the
problem of scheduling in a manner that optimizes for performance while assuring correctness
is NP-hard; however we were able to develop (Sections 3.2–3.3) pseudo-polynomial time
algorithms for solving this problem optimally. Our solutions additionally have the desirable
feature that all pseudo-polynomial time processing is performed prior to run-time: during
run-time once the actual computation has commenced, the schedule, defined as the choice of
implementation for each stage, may be determined via rapid (constant-time) table lookup
operations.

5 Recall that a correct schedule guarantees to obtain a cumulative value V over all the stages of the
computation.

K. Agrawal, S. Baruah, and A. Burns 7:15

What are our alternatives if one is does not wish to do pseudo-polynomial processing
even before run-time? In that case a number of greedy heuristics suggest themselves; in this
section, we briefly examine a few such heuristics:
G1: At each stage i, choose the safe implementation (recall that Section 3.2.1 explains how

such safe implementations are identified) with the largest guaranteed value (i.e., largest
value for vij). Stop6 upon having obtained the target value V.

G2: At each stage i, choose the safe implementation with the smallest execution time (i.e.,
smallest value for cij). As above, stop once the target value V has been obtained.

G3: At each stage i, choose the safe implementation with the largest typical value density
per unit of execution time (i.e., largest value of the ratio vT

ij/cij). Once again, stop once
the target value V has been obtained.

For each of these heuristics, it is relatively straightforward to identify circumstances (i.e.,
generate problem instances) upon which the heuristic performed arbitrarily poorly. However,
it often appears to be the case that for randomly-generated instances that are generated
according to some particular stochastic methodology at least one out of these three greedy
heuristics (or out of a few other equally obvious ones, not listed above) does not suffer
too much of a performance degradation in comparison to our pseudo-polynomial optimal
algorithm under typical-case conditions.7 This leads us to conjecture that for any particular
application system for which it is reasonable to assume that the implementation choices are
characterized by parameters drawn from some underlying probabilistic distribution, it may
suffice to test the system’s behavior in the typical case when scheduled using a number of
such greedy heuristics and simply choose the heuristic with which it performs the best: it
is likely (although of course not guaranteed) that this heuristic will provide performance
that is close to that provided by the optimal pseudo-polynomial time algorithmic approach
described in Sections 3.2–3.3.

In the remainder of this section we will provide some evidence to back up our conjecture
that some greedy heuristic seems to perform reasonably well on problem instances whose
parameters are drawn from some underlying probabilistic distributions. We do so via
simulation experiments upon randomly-generated workloads of a particular kind, as detailed
below. We will see that our observations in these experiments reveal that for this kind
of workload, the greedy heuristic G3 offers performance that (with rare exceptions) tends
to lie within 10% or so of the performance offered by the optimal algorithm; hence if we
have good reason to believe that the actual workloads we will encounter are appropriately
modeled by the probabilistic model we are using to generate our workload and we are willing
to pay a ≈ 10% performance penalty, then it is reasonable to use heuristic G3 rather than
the pseudo-polynomial time optimal algorithm. (We emphasize that it remains safe to use
the heuristic even if the probabilistic model turns out to be incorrect: assuming that the
worst-case characterizations of each implementation Iij – its vij parameter – is indeed a
true lower bound on the actual value that will be obtained upon executing Iij , correctness
remains assured even if performance is far from optimali due to a mismatch between the
assumed probabilistic model and reality.)

6 This assumes an interpretation of our computational model that if the required V units of computation
are obtained upon completing i stages of the computation, then the remaining stages do not need to be
executed. An alternative interpretation is to require that all stages be executed: under this interpretation,
we subsequently execute that implementation of each remaining stage that has the smallest execution
duration (cij parameter). Our broad conclusions remain unchanged for both interpretations.

7 Of particular note, the performance of the heuristic tends to be superior to that of the optimal (pseudo-
polynomial time) algorithm optimizing for the worst-case. While this is not particularly surprising – we
are evaluating under typical-case conditions while that algorithm optimizes for the worst case – we felt
that it merits a note.

ECRTS 2020

7:16 The Use of Learning-Enabled Components in Safety-Critical Systems

§1: Workload Generation. We consider workloads in which there is a choice of exactly
two implementations per stage (in the notation introduced in Section 2, m = 2) – one corre-
sponding to “traditional” deterministic implementation and the other, to a learning-enabled
component (LEC) that guarantees a smaller value but is likely to provide a greater value
under typical conditions, than the traditional implementation. The parameters characterizing
the workload generator are as follows:
(1) The number of stages n (n ∈ N).
(2) Two positive integer parameters CL and CH (CL ≤ CH).

The cij parameters of the implementations are drawn uniformly at random as integers
from the range [CL, CH].

(3) Two positive integer parameters VL and VH (VL ≤ VH).
The vij parameters of the implementations are drawn uniformly at random as integers
from the range [VL, VH]. For each stage, two numbers are so drawn: the smaller becomes
the vij for the LEC and the larger, for the traditional (deterministic) component.

(4) Two positive integer parameters VTL and VTH (VTL ≤ VTH).
The vT

ij parameters of the LEC implementations are obtained by multiplying their vij
parameters by an integer drawn uniformly at random from the range [VTL,VTH].
The vT

ij parameters of the traditional (deterministic) components are set equal to their
vij values.

(5) A real number Slack (0 < Slack ≤ 1).
This is used to assign a value to the target parameter V; this assigned value is Slack
times the largest value that can be guaranteed across all the stages.

§2: The Experiments Performed. An assignment of values to each of the eight parameters
〈n,CL, CH , VL, VH ,VTL,VTH ,Slack〉 constitutes a single configuration for our experiment.
The precise configurations we examined are enumerated below; for each such examined
configuration, we generated one hundred instances and determined the durations of the
schedules that would be generated by the following five algorithm/ heuristics:
1. tOpt: The adaptive algorithm that optimizes for performance in the typical case.
2. wOpt: The adaptive algorithm that optimizes for performance in the worst case.
3. G1: The adaptive greedy heuristic in which we choose, for each state, that safe imple-

mentation that guarantees the largest value.
4. G2: The adaptive greedy heuristic in which we choose, for each state, that safe imple-

mentation that has the smallest execution duration.
5. G3: The adaptive greedy heuristic in which we choose, for each state, that safe im-

plementation that returns, in the typical case, the largest value per unit of execution
time.

in a run-time scenario in which each chosen implementation Iij executes for a duration
exactly equal to cij and returns a value exactly equal to vT

ij . Note that tOpt, by design,
generates the optimal schedule under these circumstances; hence for each configuration our
experimental setup reports the average, over all hundred instances, of duration taken by each
of the five algorithms normalized by the duration taken by tOpt. Here is one example of
the kind of data reported by our experimental setup:

n= 5; CL=10; CH=50; VL=1; VH=5; VTL=2; VTH=10; Slack=0.5

W-OPT: 1.34
G1: 4.44
G2: 6.26
G3: 1.14

K. Agrawal, S. Baruah, and A. Burns 7:17

Table 1 Reported average of the durations of the schedules generated by Algorithm
wOpt and the heuristics G1, G2, and G3, relative to the duration of the schedule gen-
erated by Algorithm tOpt, across 100 instances generated according to the configuration
〈n = 5, CL = 10, CH = 50, VL = 1, VH = 5,VTL = 2,VTH = 10, Slack〉, for the different values of
Slack listed in the first column.

Slack wOpt G1 G2 G3

0.2 1.17 2.24 6.41 1.04
0.3 1.39 3.10 6.31 1.04
0.4 1.59 3.73 6.37 1.05
0.5 1.34 4.44 6.26 1.14
0.6 1.36 4.17 5.34 1.08
0.7 1.48 4.47 4.79 1.04
0.8 1.78 5.08 5.42 1.02
0.9 1.72 5.14 4.98 1.06

These data report that, across one hundred instances generated with the configuration

〈n = 5, CL = 10, CH = 50, VL = 1, VH = 5,VTL = 2,VTH = 10,Slack = 0.5〉 ,

the duration taken by Algorithm wOpt was 1.34 times that taken by tOpt on average, the
duration taken by heuristic G1 was 4.44 times that taken by tOpt on average, the duration
taken by heuristic G2 was 6.26 times that taken by tOpt on average, and the duration
taken by heuristic G3 was 1.14 times that taken by tOpt on average.

§3: Observations. We examined a wide range of configurations, and the effect of changing
one or a few parameters (while keeping the other unchanged) in order to explore the
performance of the two optimal algorithms and the three heuristics upon workloads that are
compliant with the modeling assumptions stated in §1 above. A typical set of observations is
reported in Table 1: this reports on the outcomes upon eight closely-related configurations
in which only the Slack parameter is changed. As can be seen from the numbers in Table 1,
heuristic G3 consistently offers performance close to the optimal algorithm, with the poorest
relative performance for Slack = 0.5 where it is a mere 14% poorer than the optimal. The
other heuristics, in contrast, may be sub-optimal by factors exceeding five and six; even the
pseudo-polynomial time optimal algorithm that optimizes for the worst case is off by as much
as 78% (for Slack = 0.8).

Another set of results is depicted in Table 2 – here, the parameter Slack is fixed (at 0.8),
while the number of stages n is varied. It may be seen that once again it is heuristic G3 that
performs well with a maximum performance degradation of 10% (for n = 9), while wOpt
may be off by up to 74% and the heuristics G1 and G2 by more than a factor of six. It is
also noteworthy that the performance of heuristic G3 does not appear to drop off steeply as
the number of stages increases: this is significant since the setup of our experiments means
that the target value V tends to increase linearly with the number of stages, meaning that
the running time of the optimal algorithms, which are polynomial in the value of V, will
increase with increasing n. Hence, for large values of n (multistage computations with a
large number of stages) the run-time savings of using the efficient greedy heuristic G3 may
be particularly worth our while.

Another useful lesson learned from our experimental evaluation relates to the performance
of wOpt relative to tOpt under typical-case conditions. The numbers in the columns
labeled wOpt in Tables 1 and 2 indicate that one pays a significant performance penalty

ECRTS 2020

7:18 The Use of Learning-Enabled Components in Safety-Critical Systems

Table 2 Reported average of the durations of the schedules generated by Algorithm
wOpt and the heuristics G1, G2, and G3, relative to the duration of the schedule gen-
erated by Algorithm tOpt, across 100 instances generated according to the configuration
〈n, CL = 10, CH = 50, VL = 1, VH = 5,VTL = 2,VTH = 10, Slack = 0.8〉, for the different values of
n listed in the first column.

n wOpt G1 G2 G3

5 1.53 4.56 4.89 1.01
6 1.51 4.84 5.21 1.04
7 1.74 5.41 5.77 1.03
8 1.41 6.15 6.46 1.07
9 1.38 6.01 6.40 1.10
10 1.50 5.99 6.52 1.02
15 1.50 5.13 5.67 1.04
20 1.54 5.44 6.11 1.05
30 1.52 5.55 6.31 1.05
40 1.42 5.37 6.14 1.10
50 1.49 5.47 6.26 1.08
100 1.51 5.64 6.49 1.08

(at least 17%, more typically in the 35% − 60% range and as high as 78%) under typical
conditions by optimizing for the worst case; this provides further support for our advocating
for explicitly optimizing for the typical case (while assuring safety in all cases, typical or
not).

Limitations of our evaluation. Our experimental evaluation has been brief and somewhat
cursory: we are not suggesting that these experiments are exhaustive enough, or have
examined enough combinations of parameter values, to be able to draw authoritative or
general conclusions. All that can be said is that these particular experiments do provide
some support for our conjecture that perhaps efficient greedy heuristics are adequate for
finding near-optimal solutions for workloads that are characterized by parameters drawn
from certain well-behaved distributions. Hence our experimental evaluation is, at best, very
preliminary: we plan to conduct a far more thorough evaluation in the future, considering a
wider range of probabilistic models that are inspired by the observed characteristics of actual
LECs and basing inferences upon more rigorous statistical methods (confidence intervals;
refutable null hypotheses; etc.) than just the simple means (and standard deviations – not
reported here) that we have collected and looked at thus far.

5 Generalizations

In this paper we have restricted our consideration of LEC-enabled computations (i.e.,
computations incorporating Learning-Enabled Components) to those that can be modeled
as multi-stage computations with a choice of implementations per stage, and with each
implementation Iij characterized by a single worst-case execution time parameter cij and a
pair of parameters vij and vT

ij denoting the minimum value the implementation is guaranteed
to yield under all and typical conditions respectively. We believe that analysis of this simple
basic model is a necessary first step towards enabling the safe use of LECs in safety-critical
systems. We now discuss several extensions to this basic model that would generalize it
significantly in several directions and extend its applicability; we have been working on
extending our analysis techniques to deal with these generalizations.

K. Agrawal, S. Baruah, and A. Burns 7:19

Typical and worst-case characterization of running time. The model used in this paper
characterizes the running time of an implementation Iij with a single worst-case execution
time parameter cij . There is no reason why worst-case execution time could also not
be determined by both worst-case and typical-case analysis – indeed, the idea of typical-
case analysis was first proposed [9] in the context of estimating worst-case execution time.
Although many currently-popular LECs tend to be relatively deterministic with regard to
their timing behavior (see footnote 2), we could in principle have a model in which each
implementation Iij is characterized by both a cij and a cT

ij denoting execution-time bounds
under worst-case and typical-case circumstances. All the techniques developed in earlier
sections of this paper generalized in a straight-forward manner to this situation.

State. It is possible for some state to be generated by each stage of a multi-stage computation
and communicated to subsequent stages, with the behavior of these subsequent stages
dependent upon the communicated state. For instance, the typical value that is obtained by
an implementation at a particular stage may be dependent upon the particular computational
operations performed by the implementations that were chosen for execution at previous stages.
Consider for example a stage of an image progressing algorithm tasked with determining
how many people there are in an image. The next stage may consist of classifiers, some of
which are sensitive to this number. Knowing the value achieved at the previous stage is one
method of capturing influence, but in general it is likely that further state information will
be required.

The introduction of value-influencing state does not effect the framework developed in
this paper. We retain the notions of worst-case value and duration, and hence retain the
same definition of feasibility. However, the optimization problem becomes more difficult if
there is a significant quantity of state with this influencing role; there may be more typical
values to accommodate.

Modes. Some implementations of LECs may have multiple modes in which they are capable
of operating: they offer a number of “(value, computation-time)” profiles, that are mutually
incomparable. If the number of such modes is small then this is essentially equivalent to
having more actual implementations (that happen to share the same worst-case behavior).
However if the number of modes is high, or any one of a continuum of profiles is possible
(as is the case with some anytime algorithms), then it is not immediately evident whether
our proposed algorithms would scale appropriately with the number of modes that need to
be considered. As future work we will attempt to classify the problem space into domains
that are amenable to optimal solutions and those that will need to fall back on the use of
heuristics.

6 Conclusions

Learning-Enabled Components (LECs) based upon deep learning and similar AI-based
principles are poised to play a very significant role in safety-critical autonomous CPS’s; it is
therefore highly desirable that the safety-critical systems research community come up with
techniques that enable the analysis of such systems to both assure safety (which is essential)
and optimize performance (which, for cost and related reasons, is highly desirable). This
paper reports on some of our ongoing efforts in this direction. Building off recent work on
typical-case analysis pioneered in [9] and continued in [4, 2, 5], we have argued that safety-
critical systems whose run-time behavior incorporates a great deal of uncertainty should be

ECRTS 2020

7:20 The Use of Learning-Enabled Components in Safety-Critical Systems

designed to optimize for performance in the typical case (while guaranteeing safety in all
cases, typical or not). We have further refined and expanded on a formal model that we had
first proposed in [3], for representing the functional as well as the timing properties of some
kinds of LECs that exhibit such uncertainties in a quantitative manner. We have formulated
the problem of synthesizing computations that can be modeled as chains of functional blocks
using LECs and that need to achieve a minimum cumulative value to assure safety, and for
which performance is quantified by the total duration of the computation, as an optimization
problem. We have developed an optimal algorithm for solving this problem – i.e., scheduling
the computation in a manner that is safe under all circumstances and guarantees optimal
performance (in our case, the duration taken to complete the computation) under all typical
circumstances. We have also proposed three greedy heuristics that are sub-optimal but
can be implemented to execute very efficiently with polynomial running time. We have
compared our algorithm with these heuristics (and another algorithm – one that optimizes
for performance in the worst, rather than typical, case) via simulation experiments upon
synthetically generated workloads. As ongoing and future work we are evaluating, and will
continue to evaluate, specific LECs (such as ones based on deep learning) to determine
whether they are amenable to representation using our model and if not, how our model may
be generalized to accommodate them (see, e.g., the discussion in Section 5 that has come
out of our efforts in this direction).

References
1 Assuring autonomy international programme. https://www.york.ac.uk/

assuring-autonomy/. Accessed: 2020-01-17.
2 Kunal Agrawal and Sanjoy Baruah. Adaptive real-time routing in polynomial time. In

Real-Time Systems Symposium (RTSS), 2019 IEEE, December 2019.
3 Kunal Agrawal, Sanjoy Baruah, Alan Burns, and Abhishek Singh. Minimizing execution

duration in the presence of learning-enabled components. In Proceedings of the Second
International Workshop on Autonomous Systems Design (ASD 2020), 2020.

4 Sanjoy Baruah. Rapid routing with guaranteed delay bounds. In Real-Time Systems Symposium
(RTSS), 2018 IEEE, December 2018.

5 Sanjoy Baruah and Nathan Fisher. Choosing preemption points to minimize typical running
times. In Proceedings of the Twenty-Fourth International Conference on Real-Time and
Network Systems, RTNS ’19, New York, NY, USA, 2019. ACM.

6 J. Lee, A. Prajogi, E. Rafalovsky, and P. Sarathy. Assuring behavior of autonomous UxV
systems. In S5: The Air Force Research Laboratory (AFRL) Safe and Secure Systems and
Software Symposium, July 2016.

7 Robert M. Nauss. The 0-1 knapsack problem with multiple choice constraints. European
Journal of Operational Research, 2(2):125–131, 1978. doi:10.1016/0377-2217(78)90108-X.

8 Dr. Sandeep Neema. Assurance for Autonomous Systems is Hard. https://www.darpa.mil/
attachments/AssuredAutonomyProposersDay_ProgramBrief.pdf. Accessed: 2019-03-07.

9 Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal analysis of sporadic overload
in real-time systems. In Proceedings of the Conference on Design, Automation and Test
in Europe, DATE ’12, pages 515–520, San Jose, CA, USA, 2012. EDA Consortium. URL:
http://dl.acm.org/citation.cfm?id=2492708.2492836.

10 John A. Stankovic and Krithi Ramamritham. What is predictability for real-time systems?
Real-Time Syst., 2(4):247–254, October 1990. doi:10.1007/BF01995673.

11 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem – overview of methods and survey of tools. ACM Transactions on
Embedded Computing Systems, 7(3):36:1–36:53, May 2008.

https://www.york.ac.uk/assuring-autonomy/
https://www.york.ac.uk/assuring-autonomy/
https://doi.org/10.1016/0377-2217(78)90108-X
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program Brief.pdf
https://www.darpa.mil/attachments/AssuredAutonomyProposersDay_Program Brief.pdf
http://dl.acm.org/citation.cfm?id=2492708.2492836
https://doi.org/10.1007/BF01995673

	Introduction
	Model and Problem Statement
	Scheduling Algorithms and Analysis
	Computational Complexity
	Algorithm Description
	Identifying safe implementations
	Choosing an implementation to execute

	Run-time algorithms
	Optimizing for the worst case
	Optimizing for the typical case

	Characterization of Optimality

	Heuristic Approaches: A Brief Exploration
	Generalizations
	Conclusions

