
Fixed-Priority Memory-Centric Scheduler for
COTS-Based Multiprocessors
Gero Schwäricke
Technical University of Munich, Germany
gero.schwaericke@tum.de

Tomasz Kloda
Technical University of Munich, Germany
tomasz.kloda@tum.de

Giovani Gracioli
Federal University of Santa Catarina, Brazil
giovani@lisha.ufsc.br

Marko Bertogna
Università di Modena e Reggio Emilia, Italy
marko.bertogna@unimore.it

Marco Caccamo
Technical University of Munich, Germany
mcaccamo@tum.de

Abstract
Memory-centric scheduling attempts to guarantee temporal predictability on commercial-off-the-shelf
(COTS) multiprocessor systems to exploit their high performance for real-time applications. Several
solutions proposed in the real-time literature have hardware requirements that are not easily satisfied
by modern COTS platforms, like hardware support for strict memory partitioning or the presence
of scratchpads. However, even without said hardware support, it is possible to design an efficient
memory-centric scheduler.

In this article, we design, implement, and analyze a memory-centric scheduler for deterministic
memory management on COTS multiprocessor platforms without any hardware support. Our
approach uses fixed-priority scheduling and proposes a global “memory preemption” scheme to
boost real-time schedulability. The proposed scheduling protocol is implemented in the Jailhouse
hypervisor and Erika real-time kernel. Measurements of the scheduler overhead demonstrate the
applicability of the proposed approach, and schedulability experiments show a 20% gain in terms of
schedulability when compared to contention-based and static fair-share approaches.

2012 ACM Subject Classification Computer systems organization → Embedded systems; Com-
puter systems organization → Multicore architectures; Software and its engineering → Real-time
schedulability; Security and privacy → Virtualization and security

Keywords and phrases Schedulability Analysis, Scheduler Implementation, memory-centric Schedul-
ing, Virtualization, Multiprocessor

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2020.1

Funding Marco Caccamo: Marco Caccamo was supported by an Alexander von Humboldt Profes-
sorship endowed by the German Federal Ministry of Education and Research.

1 Introduction

In commercial-off-the-shelf (COTS) multiprocessor systems, a task’s execution time can
increase by an order of magnitude due to shared main memory interference, generated by tasks
running simultaneously on other cores [25]. Bounding or even eliminating this interference is
highly desirable in real-time systems. The PRedictable Execution Model (PREM) [40,41] and

© Gero Schwäricke, Tomasz Kloda, Giovani Gracioli, Marko Bertogna, and Marco Caccamo;
licensed under Creative Commons License CC-BY

32nd Euromicro Conference on Real-Time Systems (ECRTS 2020).
Editor: Marcus Völp; Article No. 1; pp. 1:1–1:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-5874-7877
mailto:gero.schwaericke@tum.de
https://orcid.org/0000-0003-0822-4976
mailto:tomasz.kloda@tum.de
https://orcid.org/0000-0001-9747-2386
mailto:giovani@lisha.ufsc.br
mailto:marko.bertogna@unimore.it
mailto:mcaccamo@tum.de
https://doi.org/10.4230/LIPIcs.ECRTS.2020.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

its extensions [6, 8, 15,57] attempt to mitigate the memory contention problem by splitting
a task’s execution into separate phases for memory transactions and pure computation.
During a memory phase, task data is fetched from the shared main memory to a fast
local memory (private cache partition or scratchpad). During a computation phase, a task
performs the computation on the prefetched data without the need to access the shared
main memory. A memory-centric scheduler ensures that memory phases of tasks running on
different processors are scheduled in non-overlapping time slots.

Many successful implementations of memory-centric schedulers [19, 41, 52, 53, 57] have
adopted time-division multiplexing (TDM) as the underlying principle. TDM-based arbitra-
tion distributes the resource main memory in a very predictable way. One known downside
of this approach is the underutilization of the resource: if a processor has a reserved time slot
but does not use it, the slot cannot be offered to another processor [23, 49]. A priority-based
memory scheduler may permit to schedule task sets with higher processor utilization due to
its work-conserving nature [5].

The prohibitively high preemption cost of memory transactions favors non-preemptive
scheduling. This is particularly relevant when using Direct Memory Access (DMA) controllers,
which can effectively increase the overall system performance by enabling an overlap of memory
transactions and computation [3, 20, 53, 57]. Unfortunately, most COTS processors use cache
memories without any architectural support for offloading memory operations (e.g., cache
stashing). Nevertheless, the processor can still temporarily suspend and resume its own
prefetch operation. The ability to suspend a processors prefetch operation can be exploited to
enable global memory preemptions in memory-centric scheduling and thus remove blocking
caused by low priority tasks running on other cores.

State-of-the-art approaches for the implementation of memory-centric scheduling rely on
specific hardware support (e.g., cache locking [3,46,60] or the presence of scratchpads [19,53,
57]). Such features may not be present on all modern COTS multiprocessor systems. For
instance, the ARM Cortex A-57 (used in Nvidia Tegra TX1/TX2 and Exynos 7 Octa) and
its more energy-efficient alternative the ARM Cortex A-53 (used in Raspberry Pi 3) have no
scratchpads and no explicit locking support for caches.

This paper. To address these shortcomings and enable a contentionless memory scheduling,
we make the following contributions:

design of a fixed-priority preemptive memory-centric scheduler for modern COTS multipro-
cessor systems that do not feature hardware support for predictable memory management,
implementation of the memory-centric scheduler within a hypervisor and a real-time
operating system kernel that are based entirely on open-source software components,
evaluation of the effectiveness and the limitations of the proposed approach with a set of
microbenchmarks and real-world workloads,
fixed-priority partitioned multiprocessor schedulability analysis for PREM-compliant task
sets backed by schedulability experiments that incorporate the actual memory arbitration
overheads in the analytical model and identify a heuristic for task partitioning.

Paper structure. The remainder of the paper is organized as follows. In Section 2, we
discuss the design decisions, design alternatives, and rationale behind the proposed memory-
centric scheduler. The model of the scheduler, and the system as a whole, are formalized
in Section 3, followed by the schedulability analysis in Section 4. The implementation details
are given in Section 5, and the evaluation is presented in Section 6. Finally, Section 7 reviews
the related work, and Section 8 concludes the paper.

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:3

2 System Design and Assumptions

Figure 1 shows an overview of our system design. A hypervisor provides memory-centric
scheduling and resource partitioning for real-time operating system (RTOS) guests and
controls the communication among RTOSs through interprocessor interrupts (IPIs). The
objective is to rule out interference among the RTOSs due to concurrent main memory accesses.
In the next subsections, we describe the assumptions required by this work considering the
system architecture and briefly discuss our design choices.

H
Y

P

RTOS RTOS RTOS

Memory-Centric Scheduler

CPU0 CPU1 CPU2

DRAM

Shared Cache

Figure 1 System architecture example for N = 3 real-time operating systems.

2.1 Predictable Execution Model

To minimize the amount of main memory interference, the processors service their tasks
according to the PREM. Such tasks are split into a memory phase and a computation phase.
The memory phase prefetches all required task data into a local memory section and is
therefore recognizable by a large number of main memory accesses. The computation phase
uses only data that was prefetched in a prior memory phase and shows almost no main
memory accesses.

2.2 Local Memory

Data that was prefetched during memory phases must be kept in a fast local memory. Two
types of local memories are typically used: last-level caches and scratchpads.

When using scratchpads, memory blocks are moved to/from the main memory explicitly in
software (usually with the help of a DMA controller). The deterministic nature of scratchpads
makes them a suitable choice in real-time systems [43]. However, support for scratchpad
memories is rare in commercially available platforms [19,36].

Last level caches (LLC), as available in most COTS platforms, can store considerable
amounts of data copies of frequently used main memory sections. LLCs are self-managed and
generally perform well on generic workloads, but introduce some degree of non-determinism
because their memory is shared among the processors of a multiprocessor system. The
cached data from one core can be evicted by another core if they are using data in memory
spaces that are mapped to the same cache location (index). A cache partitioning technique
can reduce this interference (see the next subsection). In this work, we consider processor
architectures that have a shared LLC and no scratchpads.

ECRTS 2020

1:4 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

2.3 Cache Partitioning
To protect cached data from eviction, cache partitioning assigns a portion of the cache to a
given task or core for its exclusive use [19]. It can be done using either a hardware feature
(e.g., Intel’s Cache Allocation Technology [51], ARM’s Lockdown by master [4]) or a software
method (e.g., cache coloring [24,31]). Many embedded platforms do not feature hardware
cache partitioning (e.g., platforms based on ARM Cortex-A57 or A72). Thus, in this work,
we use software cache partitioning based on cache coloring.

Cache coloring uses virtual memory to take control over the placement of virtually
addressed memory in a physically-indexed cache. Memory pages mapped to the same cache
sets are said to share the same color. Thus pages with different colors have different locations
within the cache. The cache is partitioned by assigning distinct colors to different tasks or
cores. The maximal number of distinct colors depends on the cache geometry (size, number
of ways, cache line size) and the size of physical pages.

We assume that the hypervisor provides cache coloring to guest OSs, which overcomes
many practical problems related to the modification of memory allocators in the OSs.
Hardware-assisted virtualization features an additional address translation stage at which
intermediate physical addresses (IPA), used by the guests, are translated into actual physical
addresses (PA). The page tables at this translation stage are controlled by the hypervisor
and can be configured to assign only pages of specific colors to a guest OS [20].

All tasks on a processor can inherit the same set of assigned colors [26], or each task
can be assigned a subset of the processor’s color set [60]. The latter approach requires
a coloring-aware OS to distribute the colors among the tasks [26]. Apart from several
academic implementations [19, 31, 62, 64], such a technique is not common. We assume a
coloring-unaware OS. The model presented in this paper is also valid for hardware cache
partitioning.

Figure 2 illustrates cache coloring implemented in a virtualized environment hosting two
guests such that the first guest (CPU0) is allocated to the upper two and the second guest
(CPU1) to the lower two sets of a 4-way set-associative L2 cache.

Se
ts

Ways

1

0

2

3

PA

L2 Cache

0 1

0 1

IPA

CPU0

CPU1

HYP

Figure 2 Cache coloring at the hypervisor level for a 4-way set-associative L2 cache.

2.4 Memory Prefetching
Several scheduling frameworks [20,48,53] take advantage of DMA offloading to parallelize
memory prefetching of newly released tasks alongside ongoing computation. Writing directly
to cache with a DMA controller (e.g., ARM’s cache stashing) is featured on certain embedded
platforms (e.g., Freescale P4080, ARM Cortex-A9, new Cortex-A75, and A55). However,

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:5

this mechanism is not widely available [60] (as is the case for Cortex-A57). Without this
“passive prefetching”, the cache partition must be loaded actively by the processor executing
prefetch instructions (such as the prfm assembly instruction in ARM architectures).

When prefetching data into cache-based local memory, the cache replacement policy must
be taken into account to avoid the problem of self-eviction [40,41]. Since congruent addresses
contend for the cache lines of the same set, the cache replacement policy decides in which
cache way of the set the data is placed.

A popular replacement policy, pseudo-random (as in Cortex-A57), works as follows: if
there is at least one way in the target set whose cache line is empty (invalid) then the new data
is simply copied into that empty cache line; otherwise, the controller randomly selects a way
and unloads its cache line to make space for the new data. To prevent self-evictions during
prefetching, a sufficient number of unused cache lines must be invalidated before [28,36].

2.5 Multiprocessor Scheduler and Preemptions
Global non-preemptive multiprocessor scheduling has recently received increasing attention [3,
33,39,58]. On top of that, cache-aware scheduling algorithms were designed, guaranteeing
that two running tasks’ cache spaces do not overlap at any time [21]. These works assume
that either all tasks can fit into the cache or cache partitions can be reassigned arbitrarily at
runtime. Yet, efficiently implementing dynamic cache partition reallocation can have very
high overheads [42, 63]. Also, in direct-mapped and set-associative physically indexed caches,
the memory of two different tasks can be mapped to the same cache sets. Without full
control of way-placement (e.g., ARM’s Lockdown by way, as in [34]), the concurrent execution
of such tasks can cause mutual interference. Because of the mentioned limitations, lower
runtime overheads, static isolation, and easier extension to heterogeneous platforms [7,13],
we opt for partitioned multiprocessor scheduling.

Tasks assigned to the same processor use the same cache partition. In non-preemptive
task scheduling, each task can use the entire partition. In preemptive task scheduling, the
partition must be divided among the tasks, leading to less local memory for each task. To
maximize the task data footprint, we consider a non-preemptive scheduler. If some degree of
preemption is required, limited preemption [9], stack-sharing techniques, or cache-cognizant
scheduling [54] can be used to increase memory efficiency.

Since the processors have non-overlapping cache partitions, tasks running on one processor
cannot evict the prefetched data of the other processors. Processors can also stop their
ongoing cache prefetching operation at any time. Therefore, a processor can preempt another
processor during its memory phases using interprocessor interrupts (as will be shown in
Section 6.1).

2.6 Priority-based Scheduling
We consider fixed-priority scheduling due to its widespread usage in real-time operating
systems (e.g., VxWorks, FreeRTOS, Erika). As stated before, tasks follow the PREM.
However, we performed a slight modification to the original model: we allow global memory
preemptions during the memory phases (a task can be preempted during its memory phase
by tasks running on another processor, but cannot be preempted by tasks running on the
same processor). This modification helps to reduce the blocking time caused by low priority
tasks [9].

Global memory preemptions during memory phases may lead to uncontrolled priority
inversion [44, 50]. For instance, consider the case illustrated in Figure 3. A high priority
task τH is waiting for a low priority task τL scheduled on the same processor P1 due to local

ECRTS 2020

1:6 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

non-preemptive scheduling. Task τM , with medium priority, running on processor P2, can
preempt the low priority task τL during its memory phase and increase the blocking time of
task τH . Priority inversion can be countered by adopting a synchronization protocol [44, 50],
where each protocol comes with a different implementation complexity and inversion bound.

τH

τL

τM

P1

P2

blocked by τM

memory phase computation phase

Figure 3 Priority inversion in fixed-priority inter-processor preemptive and intra-processor
non-preemptive memory-centric scheduling.

To avoid this problem, our design enforces a strict priority order between the tasks
allocated to two different processors. Each processor has a statically assigned unique memory
access priority that is inherited by all tasks allocated to it. Our approach comes with the
advantage of low runtime overhead compared to a priority inheritance protocol: a registered
memory access request does not have to be updated if a new task is released on the same
processor. The main drawback lies in additional complexity in the task-to-processor allocation,
which we will discuss in Section 6.3.

3 System Model

We consider a multiprocessor platform with shared last level cache and shared main memory
on which a partitioned scheduler executes a set of sporadic tasks on each processor. The
tasks are composed of a single memory and a single computation phase.

Locally, the scheduler uses a fixed-priority non-preemptive policy. As an exception,
memory phases can be preempted by tasks running on processors of higher priority, as
described in Section 2.6.

3.1 Processors
The main memory is shared among N processors. Each processor is assigned a unique static
priority. The priorities govern the contentionless access to the main memory. Processors are
indexed in priority order with P1 having the highest priority and PN the lowest priority. We
say that Ph > Pl if processor Ph has a higher priority than processor Pl.

3.2 Tasks
We consider a partitioned system in which each task is statically assigned to a single processor.
We say that τi ∈ P if τi is allocated to the processor P , and we denote by P (i) the processor
to which task τi is allocated. Each task τi gives rise to a potentially infinite sequence of jobs.
Task τi releases jobs sporadically after the minimum inter-arrival time Ti (period), and each
job of τi must be completed within a fixed time interval from its release given by a relative
deadline Di. We assume that tasks have constrained deadlines, i.e., Di ≤ Ti.

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:7

Each task is composed of two phases: a memory phase and a computation phase. During
its memory phase, task τi fetches data from the main memory to the local cache partition.
The prefetch operation is supposed to fully occupy the processor that is unavailable to
perform other work during that time. In its computation phase, the task performs the
computation on the prefetched data. Thus the task does not access the main memory. The
maximal time to complete the memory phase, with exclusive memory access, is mi (no
memory interference from the other processors), and the maximal time to complete the
computation phase, executed in isolation from the other tasks, is ci (no other tasks running
on the same processor). The total worst-case execution time of task τi is given as ei = mi+ci.
All the above parameters are positive integers. The total memory utilization of all the
tasks allocated to processor P is given as Um(P) =

∑
τj∈P

mj

Tj
and the total utilization

as U(P) =
∑
τj∈P

ej

Tj
.

The tasks are assumed to be independent and do not share resources other than the
processor and the local memory partition. The worst-case execution time includes preemption,
context switch, and scheduler overheads. Once a task starts, it will not voluntarily suspend
its execution. Tasks are scheduled on each processor by a fixed-priority non-preemptive
scheduler and are indexed in priority order with τ1 having the highest priority and τn the
lowest priority where n is the number of tasks allocated to the processor under study. Each
task has a unique priority. We introduce the notation hp(i) and lp(i) for the set of tasks
with priorities, respectively, higher than and lower than the priority of task τi, which are
running on the same processor (hp(i) ⊆ {τj | τj ∈ P (i)} and lp(i) ⊆ {τj | τj ∈ P (i)}). The
global fixed-priority preemptive scheduler schedules the accesses to the main memory: a task
running in its memory phase can be preempted by the memory phase of a task running on
a processor with higher priority. Only one task can access the main memory at a time. If
Ph > Pl, then all tasks allocated to processor Ph have higher memory access priority than
all tasks allocated to processor Pl.

3.3 Memory
Memory is a globally shared resource and can be accessed by all processors incurring the
same memory access latencies for each processor. We assume that the processor waits
synchronously for every prefetch instruction caused either by a cache miss or an explicit
prefetch instruction. We assume the order in which the memory controller serves memory
requests issued simultaneously from different processors to be unknown. We assume that the
local cache memory has much higher bandwidth and lower latency than the main memory.
Each processor has a dedicated cache partition of a fixed size. The largest memory footprint
of any real-time task allocated to a processor can fit entirely into the processor’s local memory
partition. The partitions are non-overlapping.

4 Schedulability Analysis

In the following, we give details of the schedulability analysis for two-phase PREM -compliant
tasks running under the fixed-priority memory-centric scheduler described in the previous
sections. We first identify the different sources of interference and show how the interference
can be upper bounded. We then integrate the obtained factors into the response time
analysis.

Figure 4 shows a sample execution of a task set on two processors. Processor P1 has
higher priority than processor P2. Tasks are indexed in decreasing priority order and execute
non-preemptively. Tasks may experience blocking from low priority tasks allocated to the

ECRTS 2020

1:8 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

same processor (e.g., task τ2 blocked by task τ4 at t = 0). However, their memory phases can
be preempted by the memory phases of tasks running on the other processors (e.g., task τ2
preempted by task τ1 at t = 4).

P1

P2

smem3,1

scmp3,1

R3,1

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 4 Sample schedule for two processors. P1 has a higher priority than P2. Task running
on P1: τ1 : (m1 = 1.0, c1 = 1.5, T1 = 4). Tasks running on P2: τ2 : (m2 = 0.5, c2 = 2.4, T2 = 12),
τ3 : (m3 = 1.0, c3 = 2.0, T3 = 12), and τ4 : (m4 = 0.5, c4 = 2.3, T4 = 24).

Sources of interference. The worst-case response time Ri of task τi is composed of the
following factors:

Blocking due to a lower priority task on the same processor that starts its execution just
before the release of task τi.
Intra-processor interference due to the tasks with higher priority than task τi scheduled
on the same processor. This interference can delay the start of a task running on P (i).
(Inter-processor) memory interference due to the memory phases of tasks scheduled on
higher priority processors. This interference can only delay the execution of memory
phases running on the processor under analysis.

4.1 Interference Calculation
We characterize the interference that task τi running on processor P (i) can experience during
an interval of length ∆ > 0 due to blocking, intra-processor interference, and inter-processor
memory interference.

Formulas for blocking and intra-processor interference can be obtained straightforwardly.
The blocking factor Bi is the longest worst-case execution time among all tasks with priority
lower than τi allocated to the same processor. The maximum of an empty set is assumed to
be zero.

Bi = max
τj∈lp(i)

ej (1)

Intra-processor interference Ii(∆) is the sum of the worst-case execution times of all higher
priority task instances that can be released on the same processor within the time interval ∆:

Ii(∆) =
∑

τj∈hp(i)

⌈
∆
Tj

⌉
ej (2)

The problem of estimating the inter-processor memory interference cannot be solved
with the above formula and requires additional analysis. This is due to the fact that i) the

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:9

memory interference of the two-phase model can exhibit a jitter behavior, and ii) within the
processor busy period preemption from the other processors can occur only during memory
phases, which are interleaved with the non-preemptive computation phases.

The jitter behavior is evidenced by the fact that the time between the start of the memory
phases of two consecutive instances of the same task can be shorter than its period. Consider
the example from Figure 5. We try to characterize the memory interference generated by
the memory phases of task τ1. The first instance of task τ1 is blocked by the lower priority
task τ2. The first memory phase of τ1 starts at time instant 2. Every following memory phase
of τ1 does not start earlier than at its next release, that is, at time instants 4, 8, 12, The
time distance between the start times of the first and the second memory phase is shorter
than between the second and the third memory phase.

P1

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 5 Inter-processor memory interference from a single processor. Tasks running on proces-
sor P1: τ1 : (m1 = 1.0, c1 = 0.5, T1 = 4) and τ2 : (m2 = 0.5, c2 = 1.5, T2 = 12).

This is equivalent to the problem of inherited release jitter [55]. When estimating memory
interference generated by a task from another processor, we may assume that its release
jitter is equal to its latest start time. The latter can be safely upper bounded by Ri − ei as
proposed in [11] for remote blocking. According to the above approach, the inter-processor
memory interference from tasks running on processors with a higher priority than processor
P (i) on which τi is running can be expressed as:

αi(∆) =
∑

Ph>P (i)

∑
τj∈Ph

⌈
∆ +Rj − ej

Tj

⌉
mj (3)

Not every external memory phase within the busy period of the processor under analysis
can interfere with the memory phases that this particular processor runs. Consider the
example shown in Figure 6. In time interval [0, 9], task τ1 running on processor P1 can release
up to 3 memory phases. However, not all of these memory phases can interfere with the
execution of a task running on processor P2. Indeed, processor P2 is running a computation
for a long time (from time instant 2 to 9), which is not affected by the memory interference
from processor P1.

Evaluating the number of times the processor is exposed to the memory interference from
the higher priority processors can reduce the pessimism stemming from the assumption that
every external memory phase is interfering. For instance, in the example from Figure 6,
processor P2 executes only one memory phase in the interval [0, 9]. Therefore it can be
assumed that it does not experience the memory interference from processor P1 more than
once.

The number of memory phases released on processor P (i) during the busy-period of
task τi with length ∆ > 0, such that there is a pending instance of τi, can be calculated as
(we consider higher priority tasks, previous instances of task τi and one lower priority task
that may block τi if τi is not the lowest priority task):

Ni(∆) =
∑

τj∈hp(i)

⌈
∆
Tj

⌉
+
⌊

∆
Ti

⌋
+ [lp(i) 6= ∅] (4)

ECRTS 2020

1:10 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

P2

P1

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 6 Exposure to inter-processor memory interference in a two processor system. Proces-
sor P1 has a higher priority than processor P2. Task running on P1: τ1 : (m1 = 1.0, c1 = 1.0, T1 = 3).
Tasks running on P2: τ2 : (m2 = 0.5, c2 = 0.5, T2 = 24), τ3 : (m3 = 0.5, c3 = 0.5, T3 = 24), and
τ4 : (m4 = 1.0, c4 = 8.0, T4 = 24).

where [·] is the Iverson bracket evaluating to one for a true expression and to zero otherwise.
The maximum interference that can affect one of these memory phases released on proces-
sor P (i) is not greater than the least positive fixed-point of the following recurrent equation:

εP (i) = αi(εP (i) + m̂P (i)) where m̂P (i) = max {mj | τj ∈ P (i)} (5)

The term m̂P (i) designates the longest memory phase among all the memory phases
of tasks running on processor P (i). The fixed-point iteration converges if and only if∑
Ph>P (i) U

m(Ph) < 1. All in all, the total memory interference from the higher priority
processors within interval ∆ > 0 is not greater than the number of memory phases released
during the busy period times the maximum interference from the higher priority processors
that can affect one of these memory phases:

βi(∆) = Ni(∆) · εP (i) (6)

This approach can overapproximate the actual memory interference as well. It can happen
when memory phases on the processor under analysis are scheduled more frequently than
the memory phases of the higher priority processors (e.g., in Figure 6 from time instant 10
to 11.5). If that is the case, an approach in which each external memory phase is considered
to be interfering can give a less pessimistic estimation.

Based on these two approaches, we can now formulate a safe upper bound on the
inter-processor memory interference from the tasks scheduled on higher priority processors:

min {αi(∆), βi(∆)} (7)

4.2 Response Time Analysis
The worst-case response time of task τi running on processor P (i) can be determined by
combining the expressions for interference presented above with the analysis for single
processor non-preemptive scheduling [9, 14].

The latest start time smemi,k of the memory phase of the k-th instance of task τi is bounded
by the least positive fixed-point of the following recurrent equation:

smemi,k = Bi + Ii(smemi,k) + (k − 1) · ei + min
{
αi(smemi,k), βi(smemi,k)

}
(8)

Now we compute the latest start time of its computation phase. At smemi,k , task τi starts its
memory phase. It cannot be delayed by the tasks from the same processor (non-preemptive

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:11

local scheduling). From that point on, a further delay can only be caused by the memory
interference from tasks running on processors with higher priority (preemption in memory
phase):

scmpi,k = Bi+Ii(smemi,k)+mi+(k−1) ·ei+min
{
αi(scmpi,k), βi(smemi,k) + αi(scmpi,k − s

mem
i,k)

}
(9)

Proof. Let smemi,k and scmpi,k be respectively, the start and the end of the memory phase of
the k-th instance of task τi. To ease the notation, we replace smemi,k with ts and scmpi,k with te.
At ts, the memory phase of task τi starts and cannot be delayed by the tasks running on the
same processor due to the non-preemptive scheduling. The interference from higher priority
processors within the interval [0, te] is upper bounded by αi(te).

First, suppose that αi(ts) > βi(ts). The interference from the higher priority processors
within the interval [0, ts] is upper bounded by βi(ts) and within the interval [ts, te] by αi(te−ts).
Consequently, within the interval [0, te], it cannot be greater than min{αi(te), βi(ts)+αi(te−
ts)}. Now suppose that αi(ts) ≤ βi(ts). It must be that αi(te) ≤ βi(ts) + αi(te − ts) since
αi(te) ≤ αi(ts) +αi(te− ts) ≤ βi(ts) +αi(te− ts). Consequently, min{αi(te), βi(ts) +αi(te−
ts)} = αi(te). J

Once started, the computation phase executes non-preemptively and is not subject to any
type of interference. The worst-case response time of the k-th instance of task τi is:

Ri,k = scmpi,k + ci − (k − 1) · Ti (10)

To determine the worst-case response time of task τi it is necessary to calculate the response
time of each instance within the i-level busy period, i.e., the longest time processor P (i) can
be busy executing the jobs of tasks with a priority higher than or equal to the priority of
task τi [30]:

Li = Bi + Ii−1(Li) + min
{
αi(Li), βi(Li) + m̂P (i)

}
(11)

Note that Ii−1(Li) includes the jobs hp(i) as well as the jobs of τi. Moreover, m̂P (i) must
be added to βi(Li) to account for the last instance of τi. The fixed-point iteration can be
solved for all the tasks of processor P (i) if and only if:

U(P (i)) + min

 ∑
Ph>P (i)

Um(Ph),
∑

τj∈P (i)

εP (i)

Tj

 < 1 (12)

The largest Ri,k calculated for the instances of τi released within interval Li gives the
worst-case response time:

Ri = max
k

Ri,k where k ∈
[
1,
⌈
Li
Ti

⌉]
(13)

Figure 4 shows the scenario corresponding to the worst-case response time of task τ3.

4.3 Schedulability Test
The task set is said schedulable if all jobs of every task meet their deadlines, i.e., ∀i : Ri ≤ Di.
Before computing the worst-case response time of task τi, the worst-case response times
of all higher priority tasks running on the other processors must be calculated first. This
is necessary to account for their memory interference in Equation (3). Also note that the
factor εP (i) from Equation (5) can be computed only once, before starting the response time
analysis of the first task on processor P (i). Moreover, the values of the external memory
interference given by Equation (7) can be stored and reused to speed up the computation for
all the tasks allocated to the same processor.

ECRTS 2020

1:12 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

5 System Implementation

In this section, we describe the implementation of the proposed fixed-priority memory-centric
scheduling approach. According to the system design presented in Section 2, the full system
has three parts: application tasks, one or more RTOSs, and a hypervisor containing the
memory access scheduler. The structure of this section follows these three parts, beginning
with a description of requirements for application tasks, followed by implementation details
for the support in an RTOS (i.e., Erika), and the implementation of the memory-centric
scheduling in a hypervisor (i.e., Jailhouse). At last, we depict the interaction between an
RTOS and the hypervisor and describe the concrete implementation that we used for the
evaluation.

5.1 Application Task Requirements
Tasks must follow the two-phase PREM as specified in Section 3. The code structure of a suit-
able PREM task is typically formed by i) a call to a function to prefetch data (memory phase),
ii) a call to a function signaling the end of the memory phase (here: end_memory_phase()),
and iii) the code using the prefetched data (computation phase). All tasks on all RTOSs in
the system need to follow this structure to ensure proper guarding of all memory accesses.

Data prefetching is performed using assembly instructions (prfm for the ARM architecture).
On platforms with random replacement policy, a sufficient number of data cache lines need
to be cleaned and invalidated before the data prefetching (cisw for the ARM architecture).

5.2 Real-Time Operating System Support
The RTOS provides typical task states (ready, running, waiting) with the addition of a state
for tasks that were suspended by the memory arbitration (suspended). When a task enters
the ready state, and no prior task is in the suspended state, the RTOS performs a hypercall
(trap to hypervisor mode, here: enable_request) to request memory access permission from
the memory-centric scheduler implemented in the hypervisor. If the memory access is not
granted or suspended tasks exist, the task is suspended. Otherwise, it runs the task (begin
of the memory phase). At the end of the memory phase (call to end_memory_phase()), the
RTOS revokes its memory access permission through a hypercall (here: disable_request)
and disables all interrupts to run the subsequent computation phase without interference.
When a task’s computation phase ends, the RTOS enables the interrupts again and performs
an enable_request hypercall for the highest priority task in the suspended state (if any).

The hypervisor can pause and resume a task’s memory phase at any point in time due to
the preemptive property of the memory-centric scheduling. Pausing and resuming is signaled
to the RTOS by interprocessor interrupts (IPIs). When receiving an IPI to pause the memory
access, the RTOS suspends the running task. Since tasks in the suspended state are also
non-preemptive, the prefetched data will still be in the cache partition when the task is
resumed by another IPI.

Figure 7 shows the task states and their transitions in the RTOS: the memory phase
can only be accessed once the permission to access the main memory was acquired, either
through a hypercall (from the ready state) or an interrupt (from the suspended state). The
hypervisor is notified through a hypercall to revoke the access request once the memory
phase is completed.

To reclaim execution time when the memory arbitration suspends a task, the RTOS
can optionally implement an aperiodic server running preemptively at the lowest priority.

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:13

The server’s tasks should access only very little memory or work entirely on non-cacheable
memory. The effect of the server’s memory accesses should be added in the inter-processor
memory interference computation for the other processors.

5.3 Hypervisor Support
The hypervisor implements the memory-centric scheduler. The implementation is based on
a kind of token passing algorithm. There exists one token in the system, which permits
the RTOS possessing it to freely access the main memory. Each RTOS can register (and
deregister) one request for the token. Requests have a priority, which is equal to the requesting
processor’s priority.

The scheduling occurs when one of the hypercalls enable_request and disable_request
is executed. The first registers and the second revokes a token request. The first hypercall’s
return value informs the calling RTOS if the token was acquired. When registering a request,
the hypervisor reclaims the token if it is assigned to a core of lower priority than the request
priority by sending an IPI (see Listing 1). When revoking a request, the hypervisor finds the
highest priority pending request and passes the token to the associated processor by sending
an IPI (see Listing 2).

Listing 1 Enable memory request hypercall.

1 bool enable_request (int request_prio ,
2 int request_proc):
3 spin_lock (& mem_arbiter)
4 memory_requests [request_proc] ←
5 request_prio
6 if request_prio > token_prio :
7 if token_owner is not undefined :
8 notify_pause (token_owner)
9 endif

10 token_owner ← request_proc
11 token_prio ← request_prio
12 endif
13 bool token_acquired = (token_owner ==
14 request_proc)
15 spin_unlock (& mem_arbiter)
16 return token_acquired

Listing 2 Disable memory request hypercall.

1 void disable_request (int request_proc):
2 spin_lock (& mem_arbiter)
3 memory_requests [request_proc] ←
4 undefined
5 token_owner ← undefined
6 token_prio ← undefined
7 foreach pending_prio in memory_requests :
8 if pending_prio is not undefined and
9 (token_prio is undefined or

10 pending_prio > token_prio):
11 token_owner ← index (pending_prio)
12 token_prio ← pending_prio
13 endif
14 endforeach
15 if token_owner is not undefined :
16 notify_resume (token_owner)
17 endif
18 spin_unlock (& mem_arbiter)
19 return

A spinlock is used to control the access to shared scheduler data structures used from
the different cores in the arbitration hypercalls. Consequentially, a processor calling the
hypercall enable_request may have to wait. The proposed implementation assumes Linux’s
ticket lock (first in first out queue-based mechanism). Thus, the spinning processor cannot
be bypassed twice by another processor. The worst-case time to register the memory request
can therefore be bounded by wcet(hypercall) + N · wcet(arbitration). After winning the
arbitration, the token may need to be reclaimed from a different processor. This event may
induce a delay ∆IPI needed for the interprocessor interrupt propagation. The maximal time
to acquire exclusive memory access is therefore upper bounded by:

wcet(hypercall) +N · wcet(arbitration) + ∆IPI (14)

To enable the usage of an OS that does not provide the required support for the model,
the hypervisor can optionally suspend all processors of the said OS when the token is assigned
and resume the processors otherwise.

ECRTS 2020

1:14 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

Ready Memory Phase

Computation Phase

request memory
access denied⇒ denied

request memory
access granted⇒ denied

pause
ISR

resume
ISR

revoke memory
access request

done

released

Waiting

Suspended

Figure 7 The states and transitions of a
PREM task in the RTOS.

enable
request

disable
request

Erika RTOS

Jailhouse Hypervisor

pause
ISR

Memory Arbitration
Scheduling

Hypercall Interrupts

PREM-task
release

resume
ISR

Mem-phase
end

suspend
PREM-task

resume
PREM-task

Figure 8 Communication of Erika and Jail-
house in the states of a PREM-task.

5.4 Our Implementation
As RTOS, we use Erika Enterprise version 3, which is an OSEK/VDX certified open-
source/commercial RTOS [17]. Erika supports fixed-priority scheduling and runs on several
embedded multicore platforms, such as Xilinx Ultrascale+ and NVIDIA Jetson TX2.

We restrict our implementation to PREM-tasks. We use function calls at task release
and task completion instead of including the memory access arbitration into the scheduler to
reduce implementation complexity. This simplification introduces only a small overhead in
case a task is scheduled and then immediately suspended at the enable_request hypercall.
We added a new task queue to the Erika kernel for tasks suspended by the memory-centric
scheduler, since Erika does not support suspending tasks from an interrupt.

As hypervisor, we use Jailhouse, which is a partitioning hypervisor based on Linux [27]
(required for bootstrapping) that runs on Intel and ARM 64-bit processors featuring hardware-
assisted virtualization. Jailhouse statically splits the system into isolated partitions called
cells. Each cell runs one guest OS and has full control over its statically assigned resources
(e.g., CPUs, memory regions, and PCI devices). We have chosen Jailhouse due to its simplicity
and low overhead that favors real-time applications [20,45].

We implemented the memory-centric scheduler in Jailhouse. Local memory partitions for
the RTOSs are created using cache coloring in Jailhouse [20]. We restrict our implementation
by not coloring the Jailhouse code. The detrimental effect on the cores’ cache partitions can
be assumed as low. Figure 8 summarizes the functions in Erika and Jailhouse and the flow
of calls.

6 Evaluation

In this section, we provide experimental results showing the overheads incurred by the memory-
centric scheduling. We first measure different factors of overheads in microbenchmarks. Then,
with a set of benchmarks, we evaluate the overall performance of the implemented system
under stress. Finally, we conduct experiments with randomly generated workloads to measure
the effectiveness of the schedulability analysis.

The evaluations in Subsection 6.1 and 6.2 are carried out on an Nvidia Tegra TX2 with
4 Cortex-A57 cores, 8GB 128-bit LPDDR4 RAM @ 1866Mhz, 2MB 16-way set-associative
shared L2 cache with a pseudo-random replacement policy. For all measurements, Linux was

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:15

halted to remove interference from Linux itself or its DMAs on the memory subsystem. The
remaining three cores each run Erika RTOS, allowing measurements for low, medium, and
high processor priorities. The L2 cache is partitioned into four equal sizes by Jailhouse.

6.1 Microbenchmarks
We measured the duration of hypercalls, IPIs, and the memory arbitration in the memory-
centric scheduler using a set of benchmarks that we crafted specifically for this purpose. The
benchmarks are implemented as bare-metal applications and Jailhouse patches to measure
the cost of particular operations using the ARM physical counter-timer. The following
benchmarks were executed:

Hypercall The transition from the OS to the hypervisor and back to the OS without any
computation in the hypervisor. It measures the cost of a single hypercall (hvc instruction).

IPI Issuing an interprocessor interrupt from one processor to another at the hypervisor level.
It measures the cost of a single IPI.

Arbitration Arbitration within the hypervisor to find the processor with the highest memory
access priority. Four processors (N = 4) were assumed.

Table 1 presents the results of Hypercall, IPI, and Arbitration microbenchmarks. Similar
evaluations for KVM and Xen are available in [12]. We collected 1 000 000 samples for each
benchmark and extracted the average execution time (AVG), standard deviation (STD),
worst-case execution time (WCET), and best-case execution time (BCET) from these samples.
Given the times from Table 1, the overhead incurred by the memory-centric scheduler (see
Formula (14) with N = 4) is less than 6.028 µs. Compared to the worst-case execution times
of the memory phases in the real-world application benchmarks (in the following section),
the overhead represents less than 6.5%. Moreover, the hypervisor-related overheads have a
small impact on the schedulability, as will be shown in Section 6.3.

Table 1 Jailhouse hypercall, Interprocessor Interrupt (IPI), and arbitration overheads (in ns).

AVG STD WCET BCET
Hypercall 1265.83 191.50 3129 709

IPI 979.65 80.95 1999 935
Arbitration 127.79 8.94 225 64

6.2 Real-World Benchmarks
We performed benchmarks for the full system model in two stages. First, we analyze
the maximum interference of RTOSs on the highest priority RTOS with and without our
approach. After that, we apply our system model and perform response time benchmarks
for two application tasks on each of the cores.

To analyze the interference of parallel prefetching operations, we let two cores prefetch
448 KB of memory (equivalent to the memory size of the benchmarks used below and small
enough to fit into a cache partition, which has 512 KB). The prefetching frequency for the
high priority core is 300 Hz. The low priority core runs an interfering task whose main loop
consists only of prefetching to generate the highest possible interference from a PREM-ized
task set running on an RTOS. The memory prefetching time is measured on the high priority
core using the ARM physical counter-timer. The experiment is run for 90 000 task activations.

Figure 9 shows the worst-case prefetching time on the high priority core. The results are
shown broken down by the enabled (ours) or disabled (legacy) memory-centric scheduler, and

ECRTS 2020

1:16 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

with the low priority core being idle (solo) or generating worst-case interference (stress). With
our approach preventing unpredictable interference, the prefetching time is bounded, and
the performance is not significantly impacted by the memory arbitration related overheads.

0 50 100 150 200 250 300

solo, ours
stress, ours

stress, legacy

solo, legacy
94.52

96.77

289.42

94.26

Prefetching Time [µs]

Figure 9 Comparison of prefetching times for a task running on the highest priority core.

For the second stage of our experiments, we run a task set consisting of two application
benchmarks from TACLeBench [18], which are compliant with the two-phase PREM. The
first task computes an average of integer values and has a high priority (in the task set). It
is released with a frequency of 300 Hz. The second task, with a low priority (in the task set),
computes a SHA-1 hash and is activated with a frequency of 100 Hz. Both tasks are released
synchronously and use 448 kB of data. We run the benchmark on three cores, each with a
different processor priority. The measurement is taken identically to the first experiment
over 90 000 task activations for the high priority task and 30 000 task activations for the low
priority task.

When the response time is measured on the high priority core, the medium priority core
runs the interference task described in the first experiment while the low priority core is idle.
When the measurement is done on the medium priority core, the high priority core runs the
benchmark task set, while the low priority core runs the interference task. The high and
medium priority cores both run the benchmark task set when the response time is measured
on the low priority core.

In Figure 10, the average and worst-case response time for the high and low priority
task is shown. The analytical worst-case response time for the high priority task takes the
synchronous release of the tasks into account and thus does not incorporate the blocking
from the low priority task scheduled on the same processor.

PH PM PL

0

500

1,000

R
es

po
ns

e
T

im
e

[µ
s] avg max

(a) High priority task.

PH PM PL

0

500

1,000

R
es

po
ns

e
T

im
e

[µ
s] avg max

(b) Low priority task.

Figure 10 Response times for the TACLeBench benchmark task set executed on the high (PH),
medium (PM), and low priority (PL) core. The figures show the average (blue), measured (red), and
analytical (light red) worst-case response time.

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:17

6.3 Schedulability Analysis Evaluation

We generate a sporadic task set with a given number of tasks and a given utilization. We
randomly generate period values in the range [10 000, 100 000] microseconds with log-uniform
distribution, as suggested in [16]. We also use the Emberson et al. unbiased method [16] to
generate random task-utilization values that sum to the requested total utilization. Based on
the application profiles provided in [61], the ratio between memory and computation phases is
generated randomly with a uniform distribution in the range [0.05, 0.20]. Tasks are assumed
to have implicit deadlines and are assigned priorities based on the Rate-Monotonic priority
assignment policy. We consider platforms with N ∈ {4, 8, 16} processors. We compare
fixed-priority scheduling to contention-based scheduling [59] (i.e., each processor is assigned
1/N of the memory bandwidth) and round-robin scheduling with the quantum size 1 for
each processor (bandwidth is shared equally among all processors having pending memory
requests).

Schedulability and response time. We investigate the impact of the processor priority on
the task’s worst-case response time and the improvement of the task schedulability. Each
processor is assigned 8 tasks with a total utilization of 0.6. The memory utilization is
scaled down proportionally to the processor count (i.e., the bandwidth utilization in the
system is constant). 10 000 task sets were randomly generated. If a task was not schedulable
under a given policy, its worst-case response time was considered double of the worst-case
response time under any other scheduling policy. The results are shown in Figure 11. The
baseline represents contention-based scheduling [59]. Round-robin is omitted in Figure 11: for
schedulability, its improvement is 1%, and for the reduction of worst-case response times 2%.
Additionally, we integrated the scheduler overheads (see Formula 14 and Section 6.1) in the
response time analysis by inflating the generated WCET of memory phases with the overheads
shown in Table 1. The dashed and the plain lines represent the results, respectively, with
and without overheads. As expected, the fixed-priority policy improves the schedulability
and reduces the response times on the high priority processors at the expense of the low
priority processors. The tasks running on the low priority processors suffer more from the
scheduling overheads as their memory phases are preempted more frequently.

0 2 4 6 8 10 12 14 16−40%

−20%

0%

20%

Processor Priority

Sc
he

du
la
bi
lit
y

N = 4
N = 8
N = 16

(a) Schedulability improvement.

0 2 4 6 8 10 12 14 16−80%

−60%

−40%

−20%

0%

20%

40%

Processor Priority

R
es
po

ns
e
T
im

e

N = 4
N = 8
N = 16

(b) Response time reduction.

Figure 11 Percentage improvement in task schedulability and response time with respect to
contention-based scheduling as a function of processor priority. The dashed lines take into account
the measured memory arbitration overheads shown in Table 1.

ECRTS 2020

1:18 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

Memory interference. We measure the impact of the task memory stall (i.e., the ratio
between a task’s memory phase duration and WCET - mi/ei) on the task schedulability for
an N = 4 processor system. For each utilization within the range [0.05, 1], we generate 5
types of sets with 4 tasks each. The types differ in the range of random stall distributions [61]:
[0.00, 0.00] (none), [0.00, 0.05] (light), [0.05, 0.20] (med), [0.20, 0.40] (high) and [0.40, 0.65]
(extr). For instance, a task with a memory stall of 0.2 spends 20% of its WCET in the memory
phase and 80% in the computation phase. Then, we take 4 sets with the same utilization and
the same stall distribution, assign each set to one processor and test the schedulability with
contention-based and fixed-priority memory-centric scheduling. Our test covers more than
550 randomly generated task sets per utilization and memory stall type. The percentage of
schedulable tasks for contention-based scheduling and for fixed-priority scheduling are shown
respectively in Figure 12(a) and Figure 12(b). Both algorithms can schedule only a very
limited number of memory-intensive tasks. In fixed-priority scheduling, the tasks running on
the highest priority processor are isolated from the interference generated by tasks running
on the low priority processors. For this reason, the curves on Figure 12(b) converge to a
higher value than the curves on Figure 12(a). In the next experiment, we show how grouping
and prioritizing of high-rate memory-bound tasks can improve the overall schedulability of
the system.

0 0.2 0.4 0.6 0.8 10%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la
bl
e
Ta

sk
s

none
light
med
high
extr

(a) Contention-based scheduling.

0 0.2 0.4 0.6 0.8 10%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la
bl
e
Ta

sk
s

none
light
med
high
extr

(b) Fixed-priority memory-centric scheduling.

Figure 12 Schedulability ratios for contention-based and fixed-priority memory-centric scheduling.

Heuristics for task assignment. We run our schedulability test for randomly generated task
sets partitioned among the processors using various heuristics. We assume a multiprocessor
system of N = 16 processors and a set of N · 8 = 128 tasks. More than 5000 task sets are
generated for each utilization factor within [0, N] with a step size of 0.1. To partition the
tasks among the processors, we consider many widely used heuristics and propose a new
heuristic matching to our scheduling model. The standard heuristics include First Fit (FF),
Next Fit (NF), and Worst Fit (WF), each combined with an initialization step sorting the
tasks in decreasing or increasing order by utilization factor or period, or without sorting.
The best results among the standard heuristics are obtained for WF with tasks sorted in
decreasing order of utilization. The heuristic that we propose first sorts the tasks in increasing
order of their periods and then allocates the tasks using FF with the processors capacity
reduced to U/N to ensure the proper load balancing (similarly to [63]). This heuristic clusters
the tasks with shorter periods on the processors with higher priorities: the tasks do not
suffer interference in memory phases from the low priority processors, and their blocking
factor (due to the non-preemptive execution on the same processor) is not increased by the
tasks that may have longer periods and longer worst-case execution times. The latter are

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:19

placed on the processors with lower priority since they can potentially accommodate more
interference in their memory phases within the longer deadlines. The intuition is analogous
to Rate Monotonic priority assignment.

0 0.2 0.4 0.6 0.8 1

0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la
bi
lit
y

WF-U-Co
WF-U-FP
ERM-RR
ERM-Co
ERM-FP

(a) Normal task memory stall ([0.05, 0.20]).

0 0.2 0.4 0.6 0.8 1

0%

20%

40%

60%

80%

100%

Utilization

Sc
he

du
la
bi
lit
y

WF-U-Co
WF-U-FP
ERM-RR
ERM-Co
ERM-FP

(b) High task memory stall ([0.20, 0.40]).

Figure 13 Schedulability ratio for different task partitioning heuristics.

In our evaluation, the fixed-priority policy performs best in every case, with the exception
of the case where all policies fail for FF at 1/N due to the overcharge on the first processors.
The results with the normalized utilization are shown in Figure 13. Due to space limitations,
we report only WF with the utilization sorted in decreasing order (WF-U), which is the
best among all the standard heuristics, and our Rate Monotonic like heuristic with equally
distributed load (ERM) for round-robin (RR), contention-based (Co) and Fixed-Priority
(FP) scheduling. The latter shows a maximal gain of 20% in the schedulability compared to
the former two policies.

7 Related Work

Scratchpad-based memory-centric scheduling. Scratchpad-based systems allow overlap-
ping of DMA memory transactions and CPU execution, resulting in better overall schedula-
bility compared to cache-based systems. This approach was combined with partitioned [20,
48, 53, 57] and global scheduling [3]. Melani et al. [37] proposed exact response time analysis
for fixed-priority scheduling on a single core with a fully preemptive DMA engine.

Cache-based memory-centric scheduling. The PREM was first introduced in [40,41] to co-
schedule memory accesses from CPU and I/O on a single core with multi-level caches. In [59],
the PREM was applied for partitioned multiprocessor systems under TDM main memory
accesses. To better utilize the assigned TDM-slot, the scheduling policy of each processor
raises the priority of its pending memory phases above the priority of the computation phases.
The concept of prioritizing the memory phases was also applied in global scheduling [60].

Schedulability analysis of global fixed-priority non-preemptive scheduling was extended
for PREM compliant tasks [2,33]. Non-preemptive execution permits to share the same cache
partition among different tasks, but the scheduling algorithms proposed in the cited works
are unaware of the tasks’ cache footprints. Gaun et al. [21] integrated this constraint into
the schedulability analysis for global scheduling. Nonetheless, without explicit cache locking,
it is not sufficient to check that the tasks’ data footprints are smaller than the available
cache space to guarantee that their cache regions are not overlapping. In the partitioned
scheduling considered in our work, the inter-core cache interference can be avoided by design
with the proposed assignment of tasks to processors.

ECRTS 2020

1:20 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

Matějka et al. [36] generate a static offline schedule for PREM-compliant tasks. The
authors target COTS platforms with very similar characteristics to ours but recognize to
disregard the inter-core eviction in L2 shared cache. The inter-core cache interference can be
accounted for in the analysis proposed by Xiao et al. [58].

The closest related work was presented recently in [46]. The key differences to our work
are that we do not consider hardware cache partitioning, we implement memory arbitration
at the hypervisor-level, and our implementation, as well as schedulability analysis, are not
limited to a single task per processor.

Cache coloring. Cache-coloring-based cache management frameworks for multiprocessor
systems leverage virtualization [26,32,35,38]. Our approach for cache partitioning is based
on cache coloring implemented in Jailhouse hypervisor [20,28]. Coloring can also be used for
controlling DRAM bank allocation [64]. However, on platforms with address randomization
(e.g., Nvidia TX1), this solution may be impracticable [36].

Time division multiplexing. Wandeler and Thiele [56] find an optimal TDM time slot
and cycle assignment for systems characterized by arrival and service curves. Our model
could be plugged into their framework by providing such curves. Hamann and Ernst [22]
apply an evolutionary algorithm to optimize the time slot assignments of tasks mapped to
TDM-scheduled resources. Worst-case execution time analysis can be extended to take the
TDM parameters into account [47]. Several dynamic arbitration schemes based on TDM
were recently proposed to avoid or reduce the resource contention in multiprocessor [1,23]
and network-on-chip [29] systems.

8 Conclusions, Limitations, Future Work

Conclusions. In this work, we proposed a memory-centric fixed-priority scheduler. Our
solution does not rely on hardware features for predictable memory management of any kind,
which is the case for many COTS multiprocessor platforms today. Furthermore, we were
able to go beyond the static allocation of bus mastership as in the classical TDM approach,
reducing the worst-case response time for high priority tasks. Our implementation shows that
it is possible to achieve dynamic memory arbitration at the hypervisor level with relatively
small overheads. Moreover, to the best of our knowledge, we are the first to propose a
task-to-processor assignment algorithm integrated with the PREM.

Limitations. We have ignored any interference effects due to I/O devices using the shared
memory hierarchy. This may not be of concern on COTS-based platforms that feature a
dedicated I/O bus (e.g., MPC5777M, MPC5746M). Otherwise, the I/O interference should be
taken into account into the worst-case memory phase time or other approaches for isolating
I/O (e.g., [41]) or accelerators (e.g., GPU [10]) should be integrated. Since the OS and
its tasks share the same cache partition, a minimal degree of cache pollution can occur.
Additionally, the memory region of the hypervisor is not colored. We made the assumption
that task data cannot exceed the size of the cache partition. Prior works [33,37,53,57,60] made
a similar assumption. While the proposed implementation can already support multi-segment
tasks, the schedulability analysis should be revisited.

Future work. As part of our ongoing work, we are investigating limited preemption for
tasks assigned to the same processor and extending our model for three-phase PREM tasks.

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:21

References
1 A. Agrawal, G. Fohler, J. Freitag, J. Nowotsch, S. Uhrig, and M. Paulitsch. Contention-Aware

Dynamic Memory Bandwidth Isolation with Predictability in COTS Multicores: An Avionics
Case Study. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017), pages
2:1–2:22, 2017.

2 A. Alhammad and R. Pellizzoni. Schedulability Analysis of Global Memory-predictable
Scheduling. In 2014 Inter. Conference on Embedded Software (EMSOFT), pages 1–10, October
2014.

3 A. Alhammad, S. Wasly, and R. Pellizzoni. Memory Efficient Global Scheduling of Real-Time
Tasks. In 21st IEEE Real-Time and Embedded Technology and Applications Symposium, pages
285–296, April 2015.

4 ARM. Primecell Level 2 Cache Controller (PL310) - Technical Reference Manual, Revision:
r2p0. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0246c/index.
html. Accessed: 2019-10-07.

5 S. Bak, G. Yao, R. Pellizzoni, and M. Caccamo. Memory-Aware Scheduling of Multicore
Task Sets for Real-Time Systems. In 2012 IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 300–309, August 2012.

6 M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis, and T. Nolte. Contention-Free
Execution of Automotive Applications on a Clustered Many-Core Platform. In 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS), pages 14–24, July 2016.

7 B. B. Brandenburg and M. Gül. Global Scheduling Not Required: Simple, Near-Optimal
Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations. In 2016 IEEE
Real-Time Systems Symposium (RTSS), pages 99–110, November 2016.

8 P. Burgio, A. Marongiu, P. Valente, and M. Bertogna. A memory-centric approach to enable
timing-predictability within embedded many-core accelerators. In 2015 CSI Symposium on
Real-Time and Embedded Systems and Technologies (RTEST), pages 1–8, October 2015.

9 G. C. Buttazzo, M. Bertogna, and G. Yao. Limited Preemptive Scheduling for Real-Time
Systems. A Survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, February 2013.

10 N. Capodieci, R. Cavicchioli, P. Valente, and M. Bertogna. SiGAMMA: Server Based Integrated
GPU Arbitration Mechanism for Memory Accesses. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems (RTNS), pages 48–57, 2017.

11 J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard,
F. Ridouard, N. Audsley, R. Rajkumar, D. de Niz, and G. von der Brüggen. Many Suspensions,
Many Problems: A Review of Self-Suspending Tasks in Real-Time Systems. Real-Time
Systems, 55(1):144–207, January 2019.

12 C. Dall, S.W. Li, J. T. Lim, and J. Nieh. ARM Virtualization: Performance and Architectural
Implications. SIGOPS Oper. Syst. Rev., 52(1):45–56, August 2018.

13 R. I. Davis and A. Burns. A Survey of Hard Real-time Scheduling for Multiprocessor Systems.
ACM Comput. Surv., 43(4):35:1–35:44, October 2011.

14 R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller Area Network (CAN)
schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3):239–272,
April 2007.

15 G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and W. Puffitsch. Predictable
Flight Management System Implementation on a Multicore Processor. In Embedded Real Time
Software (ERTS), February 2014.

16 P. Emberson, R. Stafford, and R.I. Davis. Techniques For The Synthesis Of Multiprocessor
Tasksets. In WATERS at the Euromicro Conference on Real-Time Systems, pages 6–11, July
2010.

17 Evidence. Erika Enterprise RTOS v3, October 2018. Accessed: 2019-10-16. URL: http:
//www.erika-enterprise.com/.

18 H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange, M. Schoeberl,
R.B. Sørensen, P. Wägemann, and S. Wegener. TACLeBench: A Benchmark Collection to

ECRTS 2020

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0246c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0246c/index.html
http://www.erika-enterprise.com/
http://www.erika-enterprise.com/

1:22 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

Support Worst-Case Execution Time Research. In 16th International Workshop on Worst-Case
Execution Time Analysis (WCET), pages 2:1–2:10, 2016.

19 G. Gracioli, A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni. A Survey on
Cache Management Mechanisms for Real-Time Embedded Systems. ACM Comput. Surv.,
48(2):32:1–32:36, November 2015.

20 G. Gracioli, R. Tabish, R. Mancuso, R. Mirosanlou, R. Pellizzoni, and M. Caccamo. Designing
Mixed Criticality Applications on Modern Heterogeneous MPSoC Platforms. In 31st Euromicro
Conference on Real-Time Systems (ECRTS), pages 27:1–27:25, 2019.

21 N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware Scheduling and Analysis for Multicores.
In Proceedings of the Seventh ACM International Conference on Embedded Software, pages
245–254, 2009.

22 A. Hamann and R. Ernst. TDMA Time Slot and Turn Optimization with Evolutionary Search
Techniques. In Design, Automation and Test in Europe, pages 312–317, March 2005.

23 F. Hebbache, M. Jan, F. Brandner, and L. Pautet. Shedding the Shackles of Time-Division
Multiplexing. In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 456–468, December
2018.

24 R. E. Kessler and M. D. Hill. Page Placement Algorithms for Large Real-indexed Caches.
ACM Trans. Comput. Syst., 10(4):338–359, November 1992.

25 H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding Memory
Interference Delay in COTS-based Multi-Core Systems. In 2014 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 145–154, April 2014.

26 H. Kim and R. Rajkumar. Real-Time Cache Management for Multi-Core Virtualization. In
2016 International Conference on Embedded Software (EMSOFT), pages 1–10, October 2016.

27 J. Kiszka, V. Sinitsyn, H. Schild, and contributors. Jailhouse Hypervisor. Siemens AG on
GitHub, https://github.com/siemens/jailhouse, 2018. Accessed: 2019-10-10.

28 T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and M. Bertogna. Deterministic
Memory Hierarchy and Virtualization for Modern Multi-Core Embedded Systems. In IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–14, April
2019.

29 A. Kostrzewa, S. Saidi, L. Ecco, and R. Ernst. Flexible TDM-Based Resource Management in
on-Chip Networks. In Proceedings of the 23rd International Conference on Real Time and
Networks Systems (RTNS), page 151–160, 2015.

30 J. P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines. In
Proceedings of the 11th Real-Time Systems Symposium, pages 201–209, December 1990.

31 J. Liedtke, H. Haertig, and M. Hohmuth. OS-Controlled Cache Predictability for Real-Time
Systems. In Proceedings of the 3rd IEEE Real-Time Technology and Applications Symposium
(RTAS), pages 213–, 1997.

32 R. Ma, W. Ye, A. Liang, H. Guan, and J. Li. Cache Isolation for Virtualization of Mixed
General-purpose and Real-time Systems. J. Syst. Archit., 59(10):1405–1413, November 2013.

33 C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, and D. G. Pérez. Schedulability Analysis
for Global Fixed-Priority Scheduling of the 3-Phase Task Model. In IEEE 23rd International
Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pages
1–10, August 2017.

34 R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni. Real-Time Cache
Management Framework for Multi-core Architectures. In 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 45–54, April 2013.

35 J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto. Bao: A Lightweight Static
Partitioning Hypervisor for Modern Multi-Core Embedded Systems. In Workshop on Next
Generation Real-Time Embedded Systems (NG-RES 2020), pages 3:1–3:14, 2020.

36 J. Matějka, B. Forsberg, M. Sojka, Z. Hanzálek, L. Benini, and A. Marongiu. Combining PREM
Compilation and ILP Scheduling for High-performance and Predictable MPSoC Execution. In

https://github.com/siemens/jailhouse

G. Schwäricke, T. Kloda, G. Gracioli, M. Bertogna, and M. Caccamo 1:23

Proc. of the 9th Inter. Workshop on Programming Models and Applications for Multicores and
Manycores (PMAM), pages 11–20, 2018.

37 A. Melani, M. Bertogna, R. I. Davis, V. Bonifaci, A. Marchetti-Spaccamela, and G. Buttazzo.
Exact Response Time Analysis for Fixed Priority Memory-Processor Co-Scheduling. IEEE
Transactions on Computers, 66(4):631–646, April 2017.

38 P. Modica, A. Biondi, G. Buttazzo, and A. Patel. Supporting Temporal and Spatial Isolation
in a Hypervisor for ARM Multicore Platforms. In 2018 IEEE International Conference on
Industrial Technology (ICIT), pages 1651–1657, February 2018.

39 M. Nasri, G. Nelissen, and B. B. Brandenburg. A Response-Time Analysis for Non-Preemptive
Job Sets under Global Scheduling. In 30th Euromicro Conference on Real-Time Systems
(ECRTS 2018), pages 9:1–9:23, 2018.

40 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, and M. Caccamo. Predictable Execution
Model: Concept and Implementation. Technical report, University of Illinois at Urbana-
Champaign, June 2010. URL: http://hdl.handle.net/2142/16605.

41 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A Predictable
Execution Model for COTS-Based Embedded Systems. In 2011 17th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 269–279, April 2011.

42 L. T. X. Phan, M. Xu, and I. Lee. Cache-aware Interfaces for Compositional Real-time
Systems: Invited Paper. SIGBED Rev., 13(3):52–55, August 2016.

43 I. Puaut and C. Pais. Scratchpad memories vs locked caches in hard real-time systems: a
quantitative comparison. In Design, Automation and Test in Europe Conference and Exposition
(DATE), pages 1484–1489, 2007.

44 R. Rajkumar. Real-Time Synchronization Protocols for Shared Memory Multiprocessors. In
Proceedings.,10th International Conference on Distributed Computing Systems, pages 116–123,
May 1990.

45 R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look Mum, no VM Exits! (Almost).
Proceedings of the 13th Workshop on Operating Systems Platforms for Embedded Real-Time
Applications (OSPERT), May 2017.

46 J. M. Rivas, J. Goossens, X. Poczekajlo, and A. Paolillo. Implementation of Memory Centric
Scheduling for COTS Multi-Core Real-Time Systems. In 31st Euromicro Conference on
Real-Time Systems (ECRTS), pages 7:1–7:23, 2019.

47 J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus Access Optimization for Predictable Im-
plementation of Real-Time Applications on Multiprocessor Systems-on-Chip. In 28th IEEE
International Real-Time Systems Symposium (RTSS), pages 49–60, December 2007.

48 B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut. Hiding Communication Delays in Contention-
Free Execution for SPM-Based Multi-Core Architectures. In 31st Euromicro Conference on
Real-Time Systems (ECRTS), pages 25:1–25:24, 2019.

49 M. Schoeberl, L. Pezzarossa, and J. Sparsø. A Multicore Processor for Time-Critical Applica-
tions. IEEE Design Test, 35(2):38–47, April 2018.

50 L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to
Real-Time Synchronization. IEEE Transactions on Computers, 39(9):1175–1185, September
1990.

51 V. Shivappa. x86: Intel Cache Allocation Technology support. https://lwn.net/Articles/
622893/. Accessed: 2019-10-07.

52 M. R. Soliman, G. Gracioli, R. Tabish, R. Pellizzoni, and M. Caccamo. Segment Streaming for
the Three-Phase Execution Model: Design and Implementation. In IEEE Real-Time Systems
Symposium (RTSS), December 2019.

53 R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S. Phatak, R. Pellizzoni, and M. Caccamo.
A Real-Time Scratchpad-Centric OS for Multi-Core Embedded Systems. In 2016 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 1–11, April
2016.

ECRTS 2020

http://hdl.handle.net/2142/16605
https://lwn.net/Articles/622893/
https://lwn.net/Articles/622893/

1:24 Fixed-Priority Memory-Centric Scheduler for COTS-Based Multiprocessors

54 C. Tessler and N. Fisher. BUNDLE: Real-Time Multi-threaded Scheduling to Reduce Cache
Contention. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 279–290, November
2016.

55 K. Tindell and J. Clark. Holistic Schedulability Analysis for Distributed Hard Real-time
Systems. Microprocess. Microprogram., 40(2-3):117–134, April 1994.

56 E. Wandeler and L. Thiele. Optimal TDMA Time Slot and Cycle Length Allocation for Hard
Real-Time Systems. In Asia and South Pacific Conference on Design Automation, 2006.,
pages 6 pp.–, January 2006.

57 S. Wasly and R. Pellizzoni. Hiding Memory Latency Using Fixed Priority Scheduling. In 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
75–86, April 2014.

58 J. Xiao, S. Altmeyer, and A. Pimentel. Schedulability Analysis of Non-preemptive Real-Time
Scheduling for Multicore Processors with Shared Caches. In 2017 IEEE Real-Time Systems
Symposium (RTSS), pages 199–208, December 2017.

59 G. Yao, R. Pellizzoni, S. Bak, E. Betti, and M. Caccamo. Memory-centric scheduling for
multicore hard real-time systems. Real-Time Systems, 48(6):681–715, November 2012.

60 G. Yao, R. Pellizzoni, S. Bak, H. Yun, and M. Caccamo. Global Real-Time Memory-Centric
Scheduling for Multicore Systems. IEEE Trans. on Computers, 65(9):2739–2751, September
2016.

61 G. Yao, H. Yun, Z. P. Wu, R. Pellizzoni, M. Caccamo, and L. Sha. Schedulability Analysis
for Memory Bandwidth Regulated Multicore Real-Time Systems. IEEE Transactions on
Computers, 65(2):601–614, February 2016.

62 Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: A Dynamic Cache Partitioning System
Using Page Coloring. In 2014 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT), pages 381–392, August 2014.

63 Y. Ye, R. West, J. Zhang, and Z. Cheng. MARACAS: A Real-Time Multicore VCPU Scheduling
Framework. In 2016 IEEE Real-Time Systems Symposium (RTSS), pages 179–190, November
2016.

64 H. Yun, R. Mancuso, Z.P. Wu, and R. Pellizzoni. PALLOC: DRAM Bank-Aware Memory
Allocator for Performance Isolation on Multicore Platforms. In 2014 IEEE 19th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 155–166, April 2014.

	Introduction
	System Design and Assumptions
	Predictable Execution Model
	Local Memory
	Cache Partitioning
	Memory Prefetching
	Multiprocessor Scheduler and Preemptions
	Priority-based Scheduling

	System Model
	Processors
	Tasks
	Memory

	Schedulability Analysis
	Interference Calculation
	Response Time Analysis
	Schedulability Test

	System Implementation
	Application Task Requirements
	Real-Time Operating System Support
	Hypervisor Support
	Our Implementation

	Evaluation
	Microbenchmarks
	Real-World Benchmarks
	Schedulability Analysis Evaluation

	Related Work
	Conclusions, Limitations, Future Work

