
The Difference λ-Calculus:
A Language for Difference Categories
Mario Alvarez-Picallo
University of Oxford, UK
mario.alvarez-picallo@cs.ox.ac.uk

C.-H. Luke Ong
University of Oxford, UK
luke.ong@cs.ox.ac.uk

Abstract
Cartesian difference categories are a recent generalisation of Cartesian differential categories which
introduce a notion of “infinitesimal” arrows satisfying an analogue of the Kock-Lawvere axiom,
with the axioms of a Cartesian differential category being satisfied only “up to an infinitesimal
perturbation”. In this work, we construct a simply-typed calculus in the spirit of the differential
λ-calculus equipped with syntactic “infinitesimals” and show how its models correspond to differ-
ence λ-categories, a family of Cartesian difference categories equipped with suitably well-behaved
exponentials.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Categorical semantics; Theory of computation → Lambda calculus

Keywords and phrases Cartesian difference categories, Cartesian differential categories, Change
actions, Differential lambda-calculus, Difference lambda-calculus

Digital Object Identifier 10.4230/LIPIcs.FSCD.2020.32

1 Introduction

A recent series of works introduced the concept of change actions and differential maps between
them [5, 4] in order to account for settings equipped with derivative-like operations. Although
the motivating example was the eminently practical field of incremental computation, these
structures appear in more abstract settings such as the calculus of finite differences and
Cartesian differential categories.

Of particular interest are Cartesian difference categories [2], a well-behaved class of change
action models [4] that are much closer to the strong axioms of a Cartesian differential category
[8] while remaining general enough for interpreting discrete calculus. A Cartesian difference
category is a left additive category equipped with an “infinitesimal extension”, an operation
that sends an arrow f to an arrow ε(f) which should be understood as f being multiplied
by an “infinitesimal” element – infinitesimal in the sense that it verifies the Kock-Lawvere
axiom from synthetic differential geometry (see [14] for an introduction to SDG).

The interest of Cartesian differential categories is in part motivated by the fact that they
provide models for the differential λ-calculus [13, 11], which extends the λ-calculus with
linear combinations of terms and an operator that differentiates arbitrary λ-abstractions.
The claim that differentiation in the differential λ-calculus corresponds to the standard,
“analytic” notion is then justified by its interpretation in (a well-behaved class of) Cartesian
differential categories [9, 16].

It is reasonable to ask, then, whether there is a similar calculus that captures the behavior
of derivatives in difference categories – especially since, as it has been shown, these subsume
differential categories. The issue is far from trivial, as many of the properties of the differential
λ-calculus crucially hinge on derivatives being linear. Through this work we provide an

© Mario Alvarez-Picallo and C.-H. Luke Ong;
licensed under Creative Commons License CC-BY

5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020).
Editor: Zena M. Ariola; Article No. 32; pp. 32:1–32:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/343692374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-9843-3768
mailto:mario.alvarez-picallo@cs.ox.ac.uk
https://orcid.org/0000-0001-7509-680X
mailto:luke.ong@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.FSCD.2020.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 The Difference λ-Calculus

affirmative answer to this question by defining untyped and simply-typed variants for a
simple calculus which extends the differential λ-calculus with a notion of derivative more
suitable to the Cartesian difference setting.

For brevity most proofs have been omitted. Some of the most important proof sketches
and the auxiliary results involved can be found in the appendices. The full details are
available as part of the first author’s doctoral dissertation [1].

2 Cartesian Difference Categories

The theory of Cartesian difference categories is developed and discussed at length in [2, 3],
but we present here the main definitions and results which we will use throughout the paper,
referring the reader to [3] for the proofs.

I Definition 1. A Cartesian left additive category ([8, Definition 1.1.1.]) C is a Cartesian
category where every hom-set C [A,B] is endowed with the structure of a commutative monoid
(C [A,B] ,+, 0) such that 0 ◦ f = 0, (f + g) ◦ h = (f ◦ h) + (g ◦ h) and 〈f1, f2〉+ 〈g1, g2〉 =
〈f1 + g1, f2 + g2〉.

An infinitesimal extension ([2, Definition 8]) in a Cartesian left additive category C is a
choice of a monoid homomorphism ε : C [A,B]→ C [A,B] for every hom-set in C. That is,
ε(f + g) = ε(f) + ε(g) and ε(0) = 0. Furthermore, we require that ε be compatible with the
Cartesian structure, in the sense that ε(〈f, g〉) = 〈ε(f), ε(g)〉.

I Definition 2. A Cartesian difference category ([2, Definition 9]) is a Cartesian left additive
category with an infinitesimal extension ε which is equipped with a difference combinator
∂ [−] of the form:

f : A→ B

∂ [f] : A×A→ B

satisfying the following coherence conditions (writing ∂2 [f] for ∂ [∂ [f]]):

[C∂.0] f ◦ (x+ ε(u)) = f ◦ x+ ε (∂ [f] ◦ 〈x, u〉)
[C∂.1] ∂ [f + g] = ∂ [f] + ∂ [g], ∂ [0] = 0, and ∂ [ε(f)] = ε(∂ [f])
[C∂.2] ∂ [f] ◦ 〈x, u+ v〉 = ∂ [f] ◦ 〈x, u〉+ ∂ [f] ◦ 〈x+ ε(u), v〉 and ∂ [f] ◦ 〈x, 0〉 = 0
[C∂.3] ∂ [idA] = π2 and ∂ [π1] = π1 ◦ π2 and ∂ [π2] = π2 ◦ π2

[C∂.4] ∂ [〈f, g〉] = 〈∂ [f] , ∂ [g]〉 and ∂ [!A] =!A×A
[C∂.5] ∂ [g ◦ f] = ∂ [g] ◦ 〈f ◦ π1, ∂ [f]〉
[C∂.6] ∂2 [f] ◦ 〈〈x, u〉, 〈0, v〉〉 = ∂ [f] ◦ 〈x+ ε(u), v〉
[C∂.7] ∂2 [f] ◦ 〈〈x, u〉, 〈v, 0〉〉 = ∂2 [f] ◦ 〈〈x, v〉, 〈u, 0〉〉

As noted in [2], the axioms in a Cartesian differential category (see e.g. [C∂.1–7] in [8])
correspond to the analogous axioms of the Cartesian difference operator, modulo certain
“infinitesimal” terms, i.e. terms of the form ε(f). We state here the following two properties,
whose proofs can be found in [3].

I Lemma 3. Given any map f : A→ B in a Cartesian difference category C, its derivative
∂ [f] satisfies the following equations:

i. ∂ [f] ◦ 〈x, ε(u)〉 = ε(∂ [f]) ◦ 〈x, u〉
ii. ε(∂2 [f]) ◦ 〈〈x, u〉, 〈v, 0〉〉 = ε2(∂2 [f]) ◦ 〈〈x, u〉, 〈v, 0〉〉

M. Alvarez-Picallo and C.-H.-L. Ong 32:3

3 Difference λ-Categories

In order to give a semantics for the differential λ-calculus, it does not suffice to ask for a
Cartesian differential category equipped with exponentials – the exponential structure has
to be compatible with both the additive and the differential structure, in the sense of [9,
Definition 4.4]. For difference categories we will require an identical equation, together with
a condition requiring higher-order functions to respect the infinitesimal extension.

I Definition 4. We remind the reader that a Cartesian left additive category is Cartesian
closed left additive ([9, Definition 4.2]) whenever it is Cartesian closed and satisfies Λ(f +g) =
Λ(f) + Λ(g),Λ(0) = 0.

A Cartesian difference category C is a difference λ-category if it Cartesian closed left
additive and satisfies the following additional axioms:

[∂λ.1] ∂ [Λ(f)] = Λ (∂ [f] ◦ 〈(π1 × id), (π2 × 0)〉)
[∂λ.2] Λ(ε(f)) = ε (Λ(f))

Equivalently, let sw denote the map 〈〈π11, π2〉, π21〉 : (A×B)×C → (A×C)×B. Then
the condition [∂λ.1] can be written in terms of sw as:

∂ [Λ(f)] := Λ (∂ [f] ◦ (id × 〈id, 0〉) ◦ sw)

Axiom [∂λ.1] is identical to its differential analogue [9, Definition 4.4], and it follows the
same broad intuition. Given a map f : A×B → C, we usually understand the composite
∂ [f] ◦ (idA×B × (idA × 0B)) : (A×B)×A→ C as a partial derivative of f with respect to
its first argument. Hence, just as it was with differential λ-categories, axiom [∂λ.1] states
that the derivative of a curried function is precisely the derivative of the uncurried function
with respect to its first argument.

I Example 5. Let C be a differential λ-category. Then the trivial Cartesian difference
category obtained by setting ε(f) = 0 (as in [2, Proposition 1]) is a difference λ-category.
Furthermore, the Kleisli category CT induced by its tangent bundle monad (as in [2,
Proposition 6]) is also a difference λ-category.

I Example 6. The category Ab ([2, Section 5.2]), which has Abelian groups as objects and
arbitrary functions between their carrier sets as morphisms, is a difference λ-category with
infinitesimal extension ε(f) = f and difference combinator ∂ [f] (x, u) = f(x + u) − f(x).
Given groups G,H, the exponential G⇒ H is the set of (set-theoretic) functions from G into
H, endowed with the group structure of H lifted pointwise (that is, (f +g)(x) = f(x) +g(x)).
Evidently the exponential respects the monoidal structure and the infinitesimal extension.
We check that it also verifies axiom [∂λ.1]:

∂ [Λ(f)] (x, u)(y) = Λ(f)(x+ u)(y)− Λ(f)(x)(y)
= f(x+ u, y)− f(x, y)
= Λ(∂ [f] ◦ (id × 〈id, 0〉) ◦ sw)(x, u)(y)

A central property of differential λ-categories is a deep correspondence between dif-
ferentiation and the evaluation map. As one would expect, the partial derivative of the
evaluation map gives one a first-class derivative operator (see, for example, [9, Lemma 4.5],
which provides an interpretation for the differential substitution operator in the differential
λ-calculus). This property still holds in difference categories, although its formulation is
somewhat more involved.

FSCD 2020

32:4 The Difference λ-Calculus

I Lemma 7. For any C-morphisms Λ(f) : A→ (B ⇒ C), e : A→ B, the following identities
hold:

i. ∂ [ev ◦ 〈Λ(f), e〉] = ev ◦ 〈∂ [Λ(f)], e ◦ π1〉+ ∂ [f] ◦ 〈〈π1 + ε(π2), e ◦ π1〉, 〈0, ∂ [e]〉〉
ii. ∂ [ev ◦ 〈Λ(f), e〉] = ev ◦ 〈∂ [Λ(f)], e ◦ π1 + ε(∂ [e])〉+ ∂ [f] ◦ 〈〈π1, e ◦ π1〉, 〈0, ∂ [e]〉〉

A number of additional auxiliary results from the differential setting also hold for difference
λ-categories, possibly with the introduction of some extra “infinitesimal” terms. Some of
these will be stated in Appendix C.

4 The Difference λ-Calculus

We now set out to define λε, a calculus in the vein of the differential λ-calculus which adds
infinitesimal extensions and relaxes the linearity requirement. We proceed in a manner
similar to Vaux [17, 18] in his treatment of the algebraic λ-calculus; that is, we will first
define a set of “unrestricted” terms Λε which we will later consider up to an equivalence
relation arising from the theory of difference categories.

I Definition 8. The set Λε of unrestricted terms of the λε-calculus is given by the following
inductive definition:

Terms: s, t, e := x | λx.t | (s t) | D(s) · t | εt | s+ t | 0

assuming a countably infinite set of variables x, y, z, . . . is given. In what follows, we will
speak of terms only up to α-equivalence, and assume by convention that all bound variables
appearing in any term t ∈ Λε are different from its free variables.

Further to α-equivalence, we introduce here the notion of differential equivalence of terms.
The role of this relation is, as in [18], to enforce the elementary algebraic properties of sums
and actions. For example, we wish to treat the terms λx.(0 + ε(s+ t)) and (λx.εt) + (λx.εs)
as if they were equivalent (as it will be the case in the models). This equivalence relation
also has the role of ensuring that the axioms of a Cartesian difference category are satisfied.

I Definition 9. A binary relation ∼ ⊆ Λε × Λε is contextual whenever t ∼ t′ and s ∼ s′

implies

λx.t ∼ λx.t′ εt ∼ εt′ s t ∼ s′ t′ D(s) · t ∼ D(s′) · t′ s+ t ∼ s′ + t′

I Definition 10. Differential equivalence ∼ε ⊆ Λε × Λε is the least equivalence relation
which is contextual and contains the relation ∼1

ε in Figure 1 below.

The above conditions can be separated in a number of conceptually distinct groups
corresponding to their purpose. These are as follows:

The first block of equations states that + and 0 define a commutative monoid and that ε
is a monoid homomorphism.
The second block of equations amounts to stating that the monoid and infinitesimal
extension structure on functions is pointwise.
The third block of equations implies (and is equivalent to stating) that addition and
infinitesimal extension are “linear”, in the sense that they coincide with their own
derivatives (that is, ∂ [+] = + ◦ π2 and ∂ [ε] = ε).

M. Alvarez-Picallo and C.-H.-L. Ong 32:5

(s+ t) + e ∼1
ε s+ (t+ e)

s+ 0 ∼1
ε s

s+ t ∼1
ε t+ s

ε0 ∼1
ε 0

ε(s+ t) ∼1
ε εs+ εt

λx.0 ∼1
ε 0

λx.(s+ t) ∼1
ε (λx.s) + (λx.t)

λx.εt ∼1
ε ε(λx.t)

0 s ∼1
ε 0

(s+ t) e ∼1
ε (s e) + (t e)

(εs) t ∼1
ε ε(s t)

D(0) · e ∼1
ε 0

D(s+ t) · e ∼1
ε (D(s) · e) + (D(t) · e)

D(εt) · e ∼1
ε ε(D(t) · e)

D(s) · 0 ∼1
ε 0

D(s) · (t+ e) ∼1
ε D(s) · t+ D(s) · e+ ε(D(D(s) · t) · e)

D(s) · (εt) ∼1
ε ε(D(s) · t)

D(D(s) · t) · e ∼1
ε D(D(s) · e) · t

ε2D(D(s) · t) · e ∼1
ε εD(D(s) · t) · e

s (t+ εe) ∼1
ε (s t) + ε((D(s) · e) t)

Figure 1 Differential equivalence on unrestricted Λε-terms.

The fourth block of equations states structural properties of the derivative, such as the
derivative conditions and the commutativity of second derivatives. Similar equations are
also present in the differential λ-calculus, where they state instead that the derivative is
additive.

Most of these equations correspond directly to properties of Cartesian difference categories,
with the only exception being the requirement that D(s) · (εt) ∼ε ε(D(s) · t) and the
“duplication of infinitesimals” in εD(D(s) · t) · e = ε2D(D(s) · t) · e, which should be read
as a syntactic formulation of the equations in Lemma 3. It would be possible to give an
alternative presentation of the calculus where these equivalences are oriented and understood
as reduction rules, and thus part of the operational semantics (as in e.g. Arrighi et al.’s
treatment of the linear λ-calculus [7, 6]). While such a formulation would better reflect how
a real machine might evaluate these expressions, it would make the study of confluence and
termination harder.

I Definition 11. The set λε of well-formed terms, or simply terms, of the λε-calculus is
defined as the quotient set λε := Λε/∼ε. Whenever t is an unrestricted term, we write t to
refer to the well-formed term represented by t, that is to say, the ∼ε-equivalence class of t.

The notion of differential equivalence allows us to ensure that our calculus reflects the
laws of the underlying models, but has the unintended consequence that our λε-terms are
equivalence classes, rather than purely syntactic objects. We will proceed by defining a notion
of canonical form of a term and a canonicalization algorithm which explicitly constructs the
canonical form of any given term, thus proving that ∼ε is decidable.

I Definition 12. We define the sets Bε ⊂ B+
ε ⊂ B∗ε ⊂ C+

ε ⊂ Cε(⊂ Λε) of basic, positive,
additive, positive canonical and canonical terms according to the following grammar:

Basic terms: sb, tb, eb ∈ Bε := x | λx.tb | (sb t∗) | D(sb) · tb
Positive terms: s+, t+, e+ ∈ B+

ε := sb | sb + (t+)
Additive terms: s∗, t∗, e∗ ∈ B∗ε := 0 | s+

Positive canonical terms: S+, T+ ∈ Cε := εksb | εksb + (S+)
Canonical terms: S, T ∈ Cε := 0 | S+

We will sometimes abuse the notation and write t∗ or tb to denote well-formed terms whose
canonical form is an additive or basic term respectively.

Since every syntactic construct is additive except for application, basic terms may only
contain additive terms as the arguments to a function application. As infinitesimal extensions

FSCD 2020

32:6 The Difference λ-Calculus

are themselves additive, we also want to disallow terms such as ε(s+ t), instead factoring
out the extension into εs+ εt. A general canonical term T ∈ Cε then has the form:

T = εk1tb1 + (εk2tb2 + (· · ·+ εkntbn) · · ·)

That is to say, a canonical term is similar to a polynomial with coefficients in the set of
basic terms and a variable ε (but note that canonical terms are always written in their “fully
distributed” form, that is, we write εs+ (εt+ ε2e) rather than ε((s+ t) + εe)).

We will freely abuse notation and write
∑n
i=1 ε

kitbi to denote a general canonical term,
as this form is easier to manipulate in many cases. In particular, the canonical term 0 is
precisely the sum of zero terms. We will also write S + T to refer to the obvious canonical
term obtained by adding S and T and associating all the additions to the right.

I Definition 13. Given an unrestricted λε-term t ∈ Λε, we define its canonical form can (t)
by structural induction on t as follows:

can (0) := 0
can (x) := x

can (s+ t) := can (s) + can (t)
can (εt) := ε∗can (t), where:

ε∗T :=

T if T = εkD(D(e) · u) · v
εk+1tb if T = εktb 6= εkD(D(e) · u) · v∑n
i=1 ε

∗Ti if T =
∑n
i=1 Ti

If can (t) =
∑n
i=1 ε

kitbi then:

can (λx.t) :=
n∑
i=1

εki(λx.tbi)

If can (s) =
∑n
i=1 ε

kisb
i and can (t) = T then:

can (D(s) · t) :=
n∑
i=1

((ε∗)kireg
(
sb
i , T

)
)

where the regularization reg (s, T) is defined by structural induction on T :

reg (s, 0) := 0

reg
(
s, εktb + T ′

)
:=
[
(ε∗)k D (s) · tb

]
+ [reg (s, T ′)] +

[
(ε∗)k+1 D∗ (reg (s, T ′)) · tb

]
and D∗ denotes the extension of D by additivity in its first argument, that is to say:

D∗
(

n∑
i=1

εkisb
i

)
· tb :=

n∑
i=1

εki
(
D
(
sb
i

)
· tb
)

Observe that, whenever S is canonical and tb is basic, the term D∗(S) · tb is also canonical.
Therefore, by induction, the regularization reg

(
sb, T

)
is indeed a canonical term, since

canonicity is preserved by ε∗,+.

M. Alvarez-Picallo and C.-H.-L. Ong 32:7

If can (s) =
∑n
i=1 ε

kisb
i and can (t) = T , then:

can (s t) :=
[

n∑
i=1

εki
(
sb
i pri(T)

)]
+
[
ε∗

(
n∑
i=1

ap(reg
(
sb
i , tan(T)

)
,pri(T))

)]

where ap is the additive extension of application: ap
(∑n

i=1 ε
kisb

i , t
b) :=

∑n
i=1 ε

ki(sb
i t

b)
and the primal pri and tangent tan components of a canonical term T correspond
respectively to the basic terms with zero and non-zero ε coefficients:

pri (0) := 0 tan (0) := 0
pri

(
εk+1tb + T ′

)
:= pri (T ′) tan

(
εk+1tb + T ′

)
:= εktb + tan (T ′)

pri
(
ε0tb + T ′

)
:= tb + pri (T ′) tan

(
ε0tb + T ′

)
:= tan (T ′)

I Theorem 14. Every unrestricted λε-term is differentially equivalent to its canonical form
can (t). That is to say, for all t ∈ Λε we have t ∼ε can (t).

This canonicalization procedure is the result of orienting the equivalences in Definition 10.
Note, however, that while most of these equivalences have a “natural” orientation to them, two
of them are entirely symmetrical: those being commutativity of the sum and the derivative.
Barring the imposition of some arbitrary total ordering on terms which would allow us to
prefer the term x+ y over y+x (or vice versa), we settle for our canonical forms to be unique
“up to” these commutativity conditions.

I Definition 15. Permutative equivalence ∼+ ⊆ Λε × Λε is the least equivalence relation
which is contextual and satisfies the following properties:

s+ (t+ e) ∼+ (s+ t) + e

s+ t ∼+ t+ s

D(D(s) · t) · e ∼+ D(D(s) · e) · t

I Theorem 16. Given unrestricted terms s, t ∈ Λε, they are differentially equivalent if and
only if their canonical forms are permutatively equivalent. More succinctly, s ∼ε t if and
only if can (s) ∼+ can (t)

I Corollary 17. The set λε of well-formed terms corresponds precisely to the set of canonical
terms up to permutative equivalence Cε/∼+.

4.1 Substitution
As is usual, our calculus features two different kinds of application: standard function
application, represented as (s t); and differential application, represented as D(s) · t. These
two give rise to two different notions of substitution. The first is, of course, the usual capture-
avoiding substitution. The second, differential substitution, is similar to the equivalent notion
in the differential λ-calculus, as it arises from the same chain rule that is satisfied in both
Cartesian differential categories and change action models.

I Definition 18. Given terms s, t ∈ Λε and a variable x, the capture-avoiding substitution
of s for x in t (which we write as t [s/x]) is defined by induction on the structure of t:

x [s/x] := s

y [s/x] := y if x 6= y

(λy.t) [s/x] := λy.(t [s/x]) if y 6∈ FV(s)
(t e) [s/x] := (t [s/x])(e [s/x])

(D(t) · e) [s/x] := D(t [s/x]) · (e [s/x])
(εt) [s/x] := ε(t [s/x])

(t+ e) [s/x] := (t [s/x]) + (e [s/x])
0 [s/x] := 0

FSCD 2020

32:8 The Difference λ-Calculus

I Proposition 19. Capture-avoiding substitution respects differential equivalence. That is
to say, whenever s ∼ε s′ and t ∼ε t′, it is the case that t [s/x] ∼ε t′ [s′/x].

I Definition 20. Given terms s, t ∈ Λε and a variable x which is not free in s the differential
substitution of s for x in t, which we write as ∂t

∂x (s), is defined by induction on the structure
of t:

∂x
∂x (s) := s

∂y
∂x (s) := 0 if x 6= y

∂(λy.t)
∂x (s) := λy.

(
∂t
∂x (s)

)
if y 6∈ FV(s)

∂(t e)
∂x (s) :=

[
D(t) ·

(
∂e
∂x (s)

)
e
]

+
[
∂t
∂x (s) (e [(x+ εs)/x])

]
∂(D(t)·e)

∂x (s) := D(t) ·
(
∂e
∂x (s)

)
+ D

(
∂t
∂x (s)

)
· (e [(x+ εs)/x])

+ εD(D(t) · e) ·
(
∂e
∂x (s)

)
∂(εt)
∂x (s) := ε

(
∂t
∂x (s)

)
∂(t+e)
∂x (s) :=

(
∂t
∂x (s)

)
+
(
∂e
∂x (s)

)
∂0
∂x (s) := 0

We write ∂kt
∂(x1,...,xk) (u1, . . . , uk) to denote a sequence of nested differential substitutions.

Most of the cases of differential substitution are identical to those in the differential
λ-calculus – our definition in fact coincides exactly with the original notion of differential
substitution in e.g [12], provided that one assumes the identity εt = 0 for all terms. This
reflects the fact that every Cartesian differential category is in fact a Cartesian difference
category with trivial infinitesimal extension.

All the differences in this definition stem from the failure of derivatives to be additive in
the setting of Cartesian difference categories. Consider the case for ∂D(t)·s

∂x (e), and remember
that the “essence” of a derivative in the setting of difference categories lies in [C∂.0], that is
to say, if t(x) is a term with a free variable x, we seek our notion of differential substitution
to satisfy a condition akin to Taylor’s formula:

t(x+ εy) ∼ε t(x) + ε
∂t

∂x
(y)

When the term t is a differential application, and assuming the above “Taylor’s formula”
holds for all of its subterms (which we will show later), this leads us to the following informal
argument:

D(t(x+ εy)) · (s(x+ εy)) ∼ε D
(
t(x) + ε ∂t∂x (y)

)
· (s(x+ εy))

∼ε D(t(x)) · (s(x)) + εD(t(x)) ·
(
∂s
∂x (y)

)
+ εD

(
∂t
∂x (y)

)
· (s(x+ εy))

+ε2D(D(t(x)) · (s(x))) ·
(
∂s
∂x (y)

)
From this calculation, the differential substitution for this case arises naturally as it

results from factoring out the ε and noticing that the resulting expression has precisely
the correct shape to be Taylor’s formula for the case of differential application. The case
for standard application can be derived similarly, although the involved terms are simpler.
Differential substitution verifies some useful properties, which we state below (mechanised
proofs are available as part of the author’s doctoral dissertation [1], although the details are
more cumbersome than enlightening).

M. Alvarez-Picallo and C.-H.-L. Ong 32:9

I Proposition 21. Differential substitution respects differential equivalence. That is to say,
whenever s ∼ε s′ and t ∼ε t′, it is the case that ∂t

∂x (s) ∼ε ∂t′

∂x (s′).

I Proposition 22. Whenever x is not free in t, then ∂t
∂x (u) ∼ε 0.

I Proposition 23. Whenever x is not free in u, v, then:

∂2t

∂x2 (u, v) ∼ε
∂2t

∂x2 (v, u)

As we have previously mentioned, the rationale behind our specific definition of differential
substitution is that it should satisfy some sort of “Taylor’s formula” (or rather, Kock-Lawvere
formula), in the following sense:

I Theorem 24. For any unrestricted terms s, t, e and any variable x which does not appear
free in e, we have

s [(t+ εe)/x] ∼ε s [t/x] + ε

((
∂s

∂x
(e)
)

[t/x]
)

We will often refer to the right-hand side of the above equivalence as the Taylor expansion of
the corresponding term in the left-hand side.

One consequence of this “syntactic Taylor’s formula” is that derivatives in the difference
λ-calculus can be computed by a sort of quasi-automatic-differentiation algorithm: given
an expression of the form λx.s, its derivative at point t along u can be computed by
reducing the differential application (D(λx.s) · (u)) t which, as we shall see later, reduces
(by definition) to

(
∂s
∂x (u)

)
[t/x]. Alternatively, we can simply evaluate (λx.s) (t+ ε(u)) to

compute s [t+ ε(u)/x] which, by Theorem 24 is equivalent to s [t/x] + ε
((

∂s
∂x (u)

)
[t/x]

)
. In

an appropriate setting (i.e. one where subtraction of terms is allowed and ε admits an
inverse) the derivative can then be extracted from this result by extracting the term under
the ε. This process is remarkably similar to forward-mode automatic differentiation, where
derivatives are computed by adding “perturbations” to the program input.

I Theorem 25. Differential substitution is regular, that is, for any unrestricted terms s, u, v
where x does not appear free in either u or v, we have:

∂s

∂x
(0) ∼ε 0

∂s

∂x
(u+ v) ∼ε

∂s

∂x
(u) +

(
∂s

∂x
(v)
)

[x+ εu/x]

4.2 The Operational Semantics of λε
With the substitution operations we have introduced so far, we can now proceed to give a
small-step operational semantics as a reduction system.

I Definition 26. The one-step reduction relation 1 ⊆ Λε × Λε is the least contextual
relation that contains the following reduction rules:

(λx.t) s β t [s/x]
D(λx.t) · s ∂ λx.

(
∂t
∂x (s)

)
1 While the one-step reduction rules for λε may seem identical to those in the differential λ-calculus
(compare [12, Section 3]), they are in fact not equivalent, as our notions of differential substitution and
term equivalence differ substantially.

FSCD 2020

32:10 The Difference λ-Calculus

We write + to denote the transitive closure of , and ∗ to denote its transitive,
reflexive closure.

The previous one-step reduction is defined as a relation from unrestricted terms to
unrestricted terms, but it is not compatible with differential equivalence. That is to say, there
may be differentially equivalent terms t ∼ε t′ such that t′ can be reduced but t cannot. For
example, consider the term (λx.x+ 0) 0, which contains no β-redexes that can be reduced.
This term is, however, equivalent to (λx.x) 0, which clearly reduces to 0. Fortunately the
canonical form of a term t gives us a representative of t which is “maximally reducible”, that
is to say, whenever any representative of t can be reduced to a representative of some t′, then
any canonical form can (t) for t can be reduced to a representative of the same t′, possibly
in zero reduction steps.

I Theorem 27. Reduction is compatible with canonicalization. That is to say, if s s′,
then can (s) ∗ s′′ for some s′′ ∼ε s′.

This result then legitimises our proposed “existential” definition of reduction of well-
formed terms, as it shows that, in order to reduce a given term, it suffices to reduce its
canonical form. It also gets rid of the “reducing zero” problem, as canonical forms do not
contain “spurious” representations of zero.

I Definition 28. Given well-formed terms s, s′, we say that s reduces to s′ in one step, and
write s t, whenever can (s) s′′ and s′′ ∼ε s′, for some canonical form can (s) of s.

I Proposition 29. Whenever s s′ then for any term t we have s+ t s′ + t.
If t = t∗ is an additive term, then additionally s t∗ + s′ t∗.
Furthermore, when t = tb is a basic term (in particular tb is not differentially equivalent

to zero), we also have D(s) · t + D(s′) · t.
Conversely, whenever s is not differentially equivalent to zero and t t′, then s t + s t′

and D(s) · t + D(s) · t′.

A proof of confluence for λε is sketched in Appendix A This proof follows the standard
Tait/Martin-Löf method by introducing a notion of parallel reduction on terms which is
shown to have the diamond property although, due to the nature of our setting, the diamond
property only holds up to differential equivalence.

I Corollary 30. The reduction relation is confluent.

4.3 Encoding the Differential λ-Calculus
It is immediately clear, from simply inspecting the operational semantics for λε, that it is
closely related to the differential λ-calculus – indeed, every Cartesian differential category is
a Cartesian difference category, and this connection should also be reflected in the syntax.

As it turns out, there is a clean translation that embeds λε into the differential λ-calculus,
which proceeds by deleting every term that contains an ε. The intuition behind this scheme
should be apparent: every single differential substitution rule in λε is identical to the
corresponding case for the differential λ-calculus, once all the ε terms are cancelled out.

I Definition 31. Given an unrestricted λε term t, its ε-erasure is the differential λ-term dte
defined according to the rules in Figure 2.

I Proposition 32. The erasure dte is invariant under equivalence. That is to say, whenever
t ∼ε t′, it is the case that dte = dt′e.

M. Alvarez-Picallo and C.-H.-L. Ong 32:11

dxe := x dεte := 0
d0e := 0 ds te := dse dte

ds+ te := dse+ dte dD(s) · te := D(dse) · dte

Figure 2 ε-erasure of a term t.

I Proposition 33. Erasure is compatible with standard and differential substitution. That
is to say, for any terms s, t and a variable x, we have ds [t/x]e = dse [dte/x] and

⌈
∂s
∂x (t)

⌉
=

∂dse
∂x (dte)

I Corollary 34. Whenever s s′, then dse ∗ ds′e.

These results form the syntactic obverse to the purely semantic correspondence between
differential and difference categories [2, Proposition 1]: the former exhibits the differential
λ-calculus as an instance of λε where the ε operator is “degenerate”, whereas the later shows
that every Cartesian differential category can be understood as a “degenerate” Cartesian
difference category, in the same sense that the corresponding infinitesimal extension is just
the zero map.

5 Simple Types for λε

Much like the differential λ-calculus, λε can be endowed with a system of simple types, built
from a set of basic types using the usual function type constructor.

I Definition 35. The set of types and contexts of the λε-calculus is given by the following
inductive definition:

Types: σ, τ := t | σ ⇒ τ

Contexts: Γ := ∅ | Γ, x : τ

assuming a countably infinite set of basic types t, s . . . is given.

The typing rules for the λε-calculus are given in Figure 3 below, and should not be in
the least surprising, as they are identical to the typing rules for the differential λ-calculus,
with the addition of a typing rule for the infinitesimal extension of a term. As one would
expect, our type system enjoys all the “usual” structural properties and their proofs follow by
straightforward induction on the typing derivation. Note, however, that all of these typing
rules operate on unrestricted terms, rather than on well-formed terms, for reasons that we
will clarify later.

Γ, x : τ ` x : τ
Γ ` s : τ ⇒ σ Γ ` t : τ

Γ ` (s t) : σ
Γ, x : τ ` t : σ

Γ ` λx.t : σ ⇒ τ

Γ ` 0 : τ
Γ ` s : τ Γ ` t : τ

Γ ` s+ t : τ
Γ ` t : τ
Γ ` εt : τ

Γ ` s : τ ⇒ σ Γ ` t : τ
Γ ` D(s) · t : τ ⇒ σ

Figure 3 Simple types for λε.

FSCD 2020

32:12 The Difference λ-Calculus

One property that fails to hold is uniqueness of typings: indeed the term 0 admits any
type, as do terms such as 0+0 or (λx.0) y. Typing judgements are nonetheless invertible. The
following “standard” properties also hold, and can be proven by straightforward induction
on the relevant typing derivation.

I Proposition 36 (Weakening). Whenever Γ ` t : τ , then for any context Σ which is disjoint
with Γ it is also the case that Γ,Σ ` t : τ .

I Proposition 37 (Substitution). Whenever Γ, x : τ ` s : σ and Γ ` t : τ , we have:

(i) Γ ` s [t/x] : σ
(ii) Γ, x : τ ` ∂s

∂x (t) : σ

I Theorem 38 (Subject reduction). Whenever Γ ` t : τ and t t′ then Γ ` t′ : τ .

Since we have defined well-formed terms as equivalence classes of unrestricted terms, we
might ask if typing is compatible with this equivalence relation. The answer is unfortunately
no, that is to say, there are ill-typed terms that are differentially equivalent to well-typed
terms. In particular, the term (0 t) is differentially equivalent to the term 0, but while the
later is trivially well-typed, the former will not be typable for many choices of t (for example,
whenever t = (x x)). A weaker version of this property does hold, however, that makes use
of canonicity.

I Proposition 39. Whenever Γ ` t : τ , then Γ ` can (t) : τ , and furthermore whenever
Γ ` can (t) : τ then every canonical form of t admits the same type.

Before stating a progress theorem for λε, we must point out one small subtlety, as the
definition of reduction of unrestricted terms depends on the particular representation chosen
for the term. For example, the terms ((λx.x) + 0) 0 and (λx.x) 0 are equivalent, but the
first one contains no β-redexes, whereas the second one reduces to 0 in one step. We can
prove that progress holds for canonical terms, however, as those are “maximally reducible”.

I Definition 40. A canonical term T is a canonical value whenever it is of the form

T =
i∑
i=1

εki(λxi.ti)

I Theorem 41 (Progress). Whenever a canonical term T admits a typing derivation ` T : τ ,
then either T is a canonical value or there is some term t′ with T t′.

I Definition 42. We extend typing judgements to well-formed terms by setting Γ ` t : τ
whenever Γ ` can (t) : τ .

I Corollary 43 (Subject reduction for well-formed terms). Whenever Γ ` t : τ and t t′, then
Γ ` t′ : τ .

I Corollary 44 (Progress for well-formed terms). Whenever Γ ` t : τ then either t t′ or
every canonical form can (t) is a canonical value.

Finally, strong normalisation can be shown by a proof similar to Ehrhard and Regnier’s
[12] and Vaux’s [17], which themselves proceed by an argument similar to the standard
reducibility candidates method. We defer the details to Appendix B.

I Theorem 45 (Strong normalisation). Whenever a closed well-formed term is typable with
type ` t : τ , it is strongly normalising.

M. Alvarez-Picallo and C.-H.-L. Ong 32:13

6 Semantics

It is a well-known result that the simply-typed differential λ-calculus can be soundly inter-
preted in any differential λ-category, that is to say, any Cartesian differential category where
differentiation “commutes with” abstraction (in the sense of [9, Definition 4.4]).

The exact same result holds for the difference λ-calculus and difference λ-categories.
In what follows we will consider a fixed difference λ-category C, and proceed to define
interpretations for the types, contexts and terms of the simply-typed λε-calculus.

I Definition 46. Given a t-indexed family of objects Ot, we define the interpretation JτK of
a type τ by induction on its structure by setting JtK := Ot, Jσ ⇒ τK := JσK⇒ JτK. We lift
the interpretation of types to contexts in the usual way. Or, more formally, we have: J·K := 1,
JΓ, x : τK := JΓK× JτK.

As is the case in differential λ-categories, we can define a “differential substitution”
operator on the semantic side. This operator is akin to post-composition with a partial
derivative, and can be defined as follows.

I Definition 47. Given morphisms s : A× B → C, u : A→ B, we define their differential
composition s ? u : A×B → C by s ? u := ∂ [s] ◦ 〈idA×B , 〈0A, u ◦ π1〉〉

IDefinition 48. Given a well-typed unrestricted λε-term Γ ` t : τ , we define its interpretation
JtK : JΓK → JτK inductively as in Figure 4 below. When Γ and τ are irrelevant or can be
inferred from the context, we will simply write JtK.

J(xi : τi)ni=1 ` xk : τkK := π2 ◦ πn−k1 :
∏n
i=1 JτiK→ JτkK

JΓ ` 0 : τK := 0 : JΓK→ JτK
JΓ ` s+ t : τK := JsK + JtK : JΓK→ JτK

JΓ ` εt : τK := ε JtK : JΓK→ JτK
JΓ ` λx.t : σ ⇒ τK := Λ JtK : JΓK→ JσK⇒ JτK

JΓ ` (s t) : τK := ev ◦ 〈JsK, JtK〉 : JΓK→ JτK
JΓ ` D(s) · t : σ ⇒ τK := Λ (Λ−(JsK) ? JtK) : JΓK→ JτK

Figure 4 Interpreting λε in C.

I Theorem 49. Whenever s ∼ε t are equivalent unrestricted terms that admit typing
derivations Γ ` s : τ and Γ ` t : τ , then their interpretations are identical, that is to say:

JΓ ` s : τK = JΓ ` t : τK

I Definition 50. Given well-formed terms s, s′, we define the equivalence relation ∼β∂ as
the least contextual equivalence relation that contains the one-step reduction relation .

I Theorem 51. The interpretation J·K is sound, that is to say, whenever s ∼β∂ s′ then
JsK = Js′K, independently of the choice of representatives s, s′.

Proof. Straightforward consequence of the results in Appendix C. J

I Definition 52. Recall that a simply-typed theory is a collection of equational judgements
of the form Γ ` s = t : σ where Γ ` s : σ and Γ ` t : σ are derivable. We say that a

FSCD 2020

32:14 The Difference λ-Calculus

simply-typed theory is a difference λ-theory if it is closed under all rules in the system
λ×ε βη∂ (comprising the contextual rules for all the constructs of the λε-calculus augmented
by products, ∼ε equivalence, and the surjective pairing, β, η and ∂ laws, and last being the
equational version of ∂).

Given an interpretation J·KM of λε in C, we say thatM = J·KM is a model of a difference
λ-theory T if for every typed equational judgement Γ ` s = t : σ in T , we have that
JΓ ` s : σKM and JΓ ` t : σKM are the same morphism.

A model homomorphism h : M → N is given by isomorphisms ht : JtKM → JtKN for
each basic type t, and hσ×τ := hσ × hτ , and

hσ⇒τ := h−1
σ ⇒ hτ := Λ(hτ ◦ ev ◦ (id × h−1

σ)).

We write ModDifλ(T ,C) for the category whose objects are all models of difference
λ-theory T in a difference λ-category C, and whose morphisms are model homomorphisms.

I Definition 53. Let C and D be difference λ-categories. We say that a functor F : C→ D
is a difference λ-functor if F preserves the following:

additive structure: F (f + g) = F (f) + F (g), and F (0) = 0
infinitesimal extension: F (ε(f)) = ε(F (f))
products via the isomorphism Φ := 〈F (π1), F (π2)〉
exponentials via the isomorphism Ψ := Λ(F (ev) ◦ Φ)
difference combinator: F (∂ [f]) = ∂ [F (f)] ◦ Φ.

We write Difλ-Func(C,D) for the category of difference λ-functors C → D and natural
isomorphisms.

I Definition 54. Given a difference λ-theory T , we say that a category, denoted Cl(T), is
classifying if there is a model of the theory in Cl(T), and this model is “generic”, meaning
that for every differential λ-category D, there is a natural equivalence

Difλ-Func(Cl(T),D) ' ModDifλ(T ,D). (1)

The classifying category (unique up to isomomrphism) is the “smallest” in the sense that
given a model of the theory J·KD in a difference λ-category D, there is a difference λ-functor
F : Cl(T) → D such that the interpretation J·KD can be factored through the canonical
interpretation in the classifying category, i.e., J·KD = F ◦ J·KCl(T).

I Conjecture 6.1 (Completeness). Every difference λ-theory T has a classifying difference
λ-category Cl(T).

7 Future Work

We have defined here the difference λ-calculus, which generalises the differential λ-calculus
in exactly the same manner as Cartesian difference categories generalise their differential
counterpart. While this calculus is of theoretical interest, it lacks most practical features,
such as iteration or conditionals, and it is not immediately obvious how to extend it with
these. It is not clear, for example, precisely when iteration combinators are differentiable in
the difference category sense.

The problem of iteration is closely related to integration, which is itself the focus of
current work on the differential side [10, 15]. Indeed, consider a hypothetical extension of
the difference λ-calculus equipped with a type of natural numbers (with the identity as its

M. Alvarez-Picallo and C.-H.-L. Ong 32:15

corresponding infinitesimal extension, that is to say, εN = idN). How should an iteration
operator iter be defined? The straightforward option would be to give it the usual behavior,
that is to say:

iter Z z s z

iter (S n) z s s (iter n z s)

These reduction rules entail that every object involved must be complete, that is to say, for
every s, t : A, there is some u : A with s + ε(u) = t – such an element is given by the term
((D(λn.iter n s (λx.t)) · (S Z)) Z).

This would rule out a number of interesting models and so it seems unsatisfactory. An
alternative is to define the iteration operator by:

iter Z z s z

iter (S n) z s (iter n z s) + ε(s (iter n z s))

Fixed z, s, and defining the map µ(n) := iter n z s, its derivative D[µ](n,S Z) is precisely
s(µ(n)). Or, in other words, the function µ : N→ A is a “curve” which starts at z and whose
derivative at a given point n is s(µ(n)) – this boils down to stating that the curve µ is an
integral curve for the vector field s satisfying the initial condition µ(Z) = z! Hence it may
be possible to understand iteration as a discrete counterpart of the Picard-Lindelöf theorem,
which states that such integral curves always exist (locally).

It would be of great interest to extend λε with an interation operator and give its
semantics in terms of differential (or difference) equations. Studying recurrence equations
using the language of differential equations is a very useful tool in discrete analysis; for
example, one can treat the recursive definition of the Fibonacci sequence as a discrete ODE
and use differential equation methods to find a closed-form solution. We believe that in a
language which frames iteration in such terms may be amenable to optimisation by similar
analytic methods.

References
1 Mario Alvarez-Picallo. Change actions: from incremental computation to discrete derivatives,

2020. arXiv:2002.05256.
2 Mario Alvarez-Picallo and Jean-Simon P. Lemay. Cartesian difference categories. In Interna-

tional Conference on Foundations of Software Science and Computation Structures, page to
appear. Springer, 2020.

3 Mario Alvarez-Picallo and Jean-Simon Pacaud Lemay. Cartesian difference categories: Exten-
ded report, 2020. arXiv:2002.01091.

4 Mario Alvarez-Picallo and C.-H. Luke Ong. Change actions: models of generalised differen-
tiation. In International Conference on Foundations of Software Science and Computation
Structures, pages 45–61. Springer, 2019.

5 Mario Alvarez-Picallo, Michael Peyton-Jones, Alexander Eyers-Taylor, and C.-H. Luke Ong.
Fixing incremental computation. In European Symposium on Programming. Springer, 2019. in
press.

6 P Arrighi and G Dowek. Linear-algebraic lambda-calculus: higher-order, encodings and
confluence in A. Voronkov, Rewriting techniques and applications. Lecture Notes in Computer
Science, Springer-Verlag, 2008.

7 Pablo Arrighi and Gilles Dowek. A computational definition of the notion of vectorial space.
Electronic Notes in Theoretical Computer Science, 117:249–261, 2005.

8 Richard F. Blute, J. Robin B. Cockett, and Robert A. G. Seely. Cartesian differential categories.
Theory and Applications of Categories, 22(23):622–672, 2009.

FSCD 2020

http://arxiv.org/abs/2002.05256
http://arxiv.org/abs/2002.01091

32:16 The Difference λ-Calculus

9 Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. Categorical models for simply
typed resource calculi. Electronic Notes in Theoretical Computer Science, 265:213–230, 2010.

10 J Robin B Cockett and J-S Lemay. Integral categories and calculus categories. Mathematical
Structures in Computer Science, 29(2):243–308, 2019.

11 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and antide-
rivatives. Mathematical Structures in Computer Science, 28(7):995–1060, 2018.

12 Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Computer
Science, 309(1-3):1–41, 2003. doi:10.1016/S0304-3975(03)00392-X.

13 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theoretical Computer Science, 403(2):347–372, 2008.

14 René Lavendhomme. Basic concepts of synthetic differential geometry, volume 13. Springer
Science & Business Media, 2013.

15 Jean-Simon Pacaud Lemay. Exponential functions in cartesian differential categories. arXiv
preprint arXiv:1911.04790, 2019.

16 Giulio Manzonetto. What is a Categorical Model of the Differential and the Resource λ-Calculi?
Mathematical Structures in Computer Science, 22(03):451–520, 2012.

17 Lionel Vaux. λ-calculus in an algebraic setting. unpublished note, 2006.
18 Lionel Vaux. The algebraic lambda calculus. Mathematical Structures in Computer Science,

19(05):1029–1059, 2009.

A Confluence

The following lemmas relate differential substitution and standard substitution, and will be
of much use later.

I Lemma 55. Whenever x, y are (distinct) variables then for any unrestricted terms t, u, v
where x is not free in v we have:(

∂t

∂x
(u)
)

[v/y] = ∂t [v/y]
∂x

(u [v/y])

I Lemma 56. Whenever x, y are (distinct) variables, with y not free in either u, v, we have:

∂t [v/y]
∂x

(u) ∼ε
(
∂t

∂x
(u)
)

[(v [x+ εu/x])/y] +
(
∂t

∂y

(
∂v

∂x
(u)
))

[v/y]

I Definition 57. The parallel reduction relation between (unrestricted) terms is defined
according to the deduction rules in Figure 5.

(x) x x
(0) 0 0

t t′(λ) λx.t λx.t′

t t′(ε) εt εt′
s s′ t t′(+)
s+ t s′ + t′

s s′ t t′(ap)
s t s′ t′

s s′ t t′(D) D(s) · t D(s′) · t′

s λx.s′ t t′(β)
s t s′ [t′/x]

s λx.s′ t t′(∂)
D(s) · t λx.∂s

′

∂x (t′)

Figure 5 Parallel reduction rules for λε.

https://doi.org/10.1016/S0304-3975(03)00392-X

M. Alvarez-Picallo and C.-H.-L. Ong 32:17

The parallel reduction relation can be extended to well-formed terms by setting t t′

whenever can (t) t′′ with t′′ ∼ε t′ for some canonical form of t.

I Remark 58. Our definition of parallel reduction differs slightly from the usual in the rule
(β), which allows reducing a newly-formed λ-abstraction. This is necessary because our
calculus contains terms of the shape (D(λx.s) · u) t, which we need to parallel reduce in a
single step to

(
∂s
∂x (u)

)
[t/x]. The original presentation of the differential λ-calculus opted

instead for adding an extra parallel reduction rule to allow for the case of reducing an
abstraction under a differential application. Similarly, our rule (∂) allows reducing terms
of the form D(D(λx.s) · u) · v in a single step.

One convenient property of the parallel reduction relation lies in its relation to canonical
forms. As we saw in Theorem 27, canonical forms are “maximally reducible”, but don’t
respect the number of reduction steps. This is no longer the case for parallel reduction: the
process of canonicalization only duplicates regexes “in parallel” (that is, by copying them
onto multiple separate summands) or in a “parallelizable series” (i.e. a differential application
may be regularized into a term of the form D(D(. . .) · u) · v, which can be entirely reduced in
a single parallel reduction step).

I Theorem 59. Whenever s s′, then can (s) s′′ for some s′′ ∼ε s′.

We also state the following standard properties of parallel reduction, all of which can be
proven by straightforward induction on the term.

I Lemma 60. Parallel reduction sits between one-step and many-step reduction. That is to
say: ⊆ ⊆ ∗, and furthermore ⊆ ⊆ ∗.

I Lemma 61. The parallel reduction relation is contextual. In particular, every term
parallel-reduces to itself.

I Lemma 62. Parallel reduction cannot introduce free variables. That is to say: whenever
t t′, we have FV(t′) ⊆ FV(t).

I Lemma 63. Whenever λx.t u, it must be the case that u = λx.t′ and t t′.

I Lemma 64. Whenever s s′ and t t′ then s [t/x] s′ [t′/x], and furthermore there is
some w with ∂s

∂x (t) w ∼ε ∂s′

∂x (t′).

We first prove that parallel reduction has the diamond property when applied to canonical
terms, taking care that it holds up to differential equivalence (note that, much like one-step
reduction, the result of parallel-reducing a canonical term need not be canonical). For this,
we introduce the usual notion of a full parallel reduct of a term.

I Definition 65. Given an unrestricted term t, its full parallel reduct t↓ is defined inductively
by:

x↓ := x

(εt)↓ := ε(t↓)

(s+ t)↓ := (s↓) + (t↓)

0↓ := 0

(λx.t)↓ := λx.(t↓)

(s t)↓ :=
{
e [t↓/x] if s↓ = λx.e

(s↓) (t↓) otherwise

(D(s) · t)↓ :=
{
λx. ∂e∂x (t↓) if s↓ = λx.e

D(s↓) · (t↓) otherwise

I Lemma 66. Whenever s λx.v, then s↓ is of the form λx.w, for some term w.

FSCD 2020

32:18 The Difference λ-Calculus

I Theorem 67. For any unrestricted terms s, s′ such that s s′, there is an unrestricted
term w such that s′ w and w ∼ε s↓.

I Corollary 68. Parallel reduction has the diamond property up to differential equivalence.
That is to say, for any unrestricted term t and terms t1, t2 such that t t1 and t t2, there
are terms u, v making the following diagram commute:

Tt1 t2

u v

∼ε

I Lemma 69. Given unrestricted terms s ∼+ s′ which are permutatively equivalent, that is,
which differ only up to a reordering of their additions and differential applications, their full
parallel reducts are differentially equivalent.

I Theorem 70. The reduction relation has the diamond property. That is, whenever
s u and s v there is a term c such that u c and v c.

Proof. Consider a well-formed term s, and suppose that s u and s v. In particular,
this means there are two canonical forms can (s)1 , can (s)2 of s such that can (s)1

 u and
can (s)2

 v. These canonical forms can (s)1 , can (s)2 are equivalent up to permutative
equivalence, and so their full parallel reducts are differentially equivalent as per Lemma 69.
Denote their ∼ε-equivalence class by c. Therefore since can (s)1

 can (s)1↓ ∼ε c and
can (s)2

 can (s)2↓ ∼ε c it follows that u c and v c. J

B Strong Normalisation

With our typing rules in place, we set out to show that λε is strongly normalising. Our proof
follows the structure of Ehrhard and Regnier’s [12] and Vaux’s[17], which use an adaptation
of the well-known argument by reducibility candidates. Our proof will be somewhat simpler,
however, due to two main reasons: first, we are not concerning ourselves with terms with
coefficients on some general rig; and second, we have defined unrestricted and canonical
terms as inductive types, and so we can freely use induction on the syntax of our terms. We
will need some auxiliary results, which we prove now.

I Lemma 71. A term s+ t is strongly normalising if and only if s, t are strongly normalising.
A term εs is strongly normalising if and only if s is.

I Definition 72. For every type τ we define inductively a set Rτ of well-formed terms of
type τ .

Whenever τ = t is a primitive type, s ∈ Rt if and only if s is strongly normalising.
Whenever τ = σ1 ⇒ σ2, s ∈ Rσ1⇒σ2 if and only if for any additive term t∗ ∈ Rσ1

and for any sequence vb
1 , . . . , v

b
n of basic terms vb

i ∈ Rσ1 of length n ≥ 0 we have(
Dn(s) · (vb

1 , . . . , v
b
i)
)
t∗ ∈ Rσ2

If t ∈ Rτ we will often just say that t is reducible if the choice of τ is clear from the
context.

I Lemma 73. Whenever t ∈ Rτ , then for any two distinct variables x, y the renaming t [y/x]
is also in Rτ .

M. Alvarez-Picallo and C.-H.-L. Ong 32:19

I Lemma 74. Whenever t ∈ Rτ , then t is strongly normalising.

I Lemma 75. Whenever s, t ∈ Rτ , then both s+ t, εs are in Rτ . Conversely, whenever
s+ t is in Rτ then so are s, t.

I Lemma 76. Whenever s ∈ Rσ⇒τ and t ∈ Rσ then D(s) · t ∈ Rσ⇒τ .

I Corollary 77. A well-formed term t is in Rτ if and only if some canonical form T = can (t)
is of the form

∑n
i=1 ε

kitbi with tbi ∈ Rτ for each 1 ≤ i ≤ n.

I Lemma 78. Whenever t ∈ Rτ , t + t′, then t′ ∈ Rτ .

I Definition 79. A basic term tb is neutral whenever it is not a λ-abstraction. In other
words, a basic term is neutral whenever it is of the form x, (s t) or D(s) · u. A canonical
term T is neutral whenever it is of the form

∑n
i=1 ε

kisb
i , where each of the sb

i are neutral. In
particular, 0 is a neutral term. A well-formed term t is neutral whenever some (equivalently,
all) canonical form is neutral.

I Lemma 80. Whenever t is neutral and every t′ such that t + t′ is in Rτ , then so is t.

I Lemma 81. If, for all t∗ ∈ Rσ1 where x does not appear free, the term s [t∗/x] is in Rσ2

and, for all ub where x does not appear free, the term
(
∂s
∂x

(
ub)) [t∗/x] is in Rσ2 , then the

term λx.s is in Rσ1⇒σ2 .

I Theorem 82. Consider a well-formed term t which admits a typing of the form x1 :
σ1, . . . , xn : σn ` t : τ and assume given the following data:

A sequence of basic terms db
1 ∈ Rσ1 , . . . , d

b
n ∈ Rσn .

An arbitrary sequence of indices i1, . . . , ik ∈ {1, . . . , n} (possibly with repetitions).
A sequence of additive terms s∗1 ∈ Rσi1 , . . . , s

∗
k ∈ Rσik .

such that none of the variables x1, . . . , xi appear free in the db
i , s
∗
i . Then the term

t′ =
(

∂kt

∂(xi1 , . . . , xik) (db
1 , . . . , d

b
k)
)

[s∗1, . . . , s∗n/x1, . . . , xn]

is in Rτ .

C Soundness

The following result corresponds to well-known properties of differential λ-categories (see
e.g. [9, Lemma 4.8]), the proof being identical to the differential case (unlike some other
lemmas in that work which hinge on derivatives being additive).

I Lemma 83. Let f : A→ B, g : A→ C, h : (A×B)× E → F be arbitrary C-morphisms.
Then the following properties hold:

i. ∂ [sw] = sw ◦ π2
ii. (g ◦ π1) ? f = 0
iii. Λ(h) ? f = Λ(((h ◦ sw) ? (f ◦ π1)) ◦ sw)
iv. Λ− (Λ(h) ? f) = ((h ◦ sw) ? (f ◦ π1)) ◦ sw

The results below also have rough analogues in the theory of Cartesian differential
categories, but the correspondence starts growing a bit more distant as any result that hinges
on derivatives being additive will, in general, only hold up to some second-order term in the
theory of difference categories.

FSCD 2020

32:20 The Difference λ-Calculus

I Lemma 84. Let f : A × B × C → D, g : A → B, g′ : A × B → B, e : A × B → C be
arbitrary C-morphisms. Then the following identities hold:

i. (ev ◦ 〈Λ(f), e〉) ? g = ev ◦ 〈Λ(f ? (e ? g)), e〉+ ev ◦ 〈Λ(f) ? g, e ◦ 〈π1, π2 + ε(g) ◦ π1〉〉
ii. Λ(f ? e) ? g = Λ

[
Λ−(Λ(f) ? g) ? (e ◦ (id + 〈0, ε(g)〉))) + ε(f ? e) ? (e ? g) + (f ? (e ? g))

]
iii. Λ(f ? e) ◦ 〈π1, g

′〉 = Λ(Λ−(Λ(f) ◦ 〈π1, g
′〉) ? (e ◦ 〈π1, g

′〉))

I Lemma 85. Let t be some unrestricted λε-term. The following properties hold:

i. If Γ ` t : τ and x does not appear in Γ then JΓ, x : σ ` t : τK = JΓ ` t : τK ◦ π1
ii. If Γ, x : σ1, y : σ2 ` t : τ then JΓ, y : σ2, x : σ1 ` t : τK = JΓ, x : σ1, y : σ2 ` t : τK ◦ sw

The morphism sw above is the obvious isomorphism between (A×B)×C and (A×C)×B,
which we can define explicitly by sw := 〈〈π11, π2〉, π21〉 : (A×B)× C → (A× C)×B

I Lemma 86. Let Γ, x : τ ` s : σ, with s some unrestricted λε-term. Then:

i. Whenever Γ, x : τ ` t : τ , then Js [t/x]KΓ = JsKΓ,x:τ ◦
〈
π1, JtKΓ,x:τ

〉
ii. Whenever Γ ` t : τ , then

q
∂s
∂x (t)

y
Γ,x:τ = ∂

[
JsKΓ,x:τ

]
◦ 〈id, 〈0, JtKΓ ◦ π1〉〉. Or, using the

notation in Definition 47,
q
∂s
∂x (t)

y
= JsK ? JtK.

D Completeness

We set up the equivalence (1) in the forward direction via modelling functors. Using
the preceding notations, let M = J·KM be a model of a difference λ-theory T in C,
we define a family of modelling functors modM : Difλ-Func(C,D) → ModDifλ(T ,D) by
JtKmodM F := F (JtKM) where F : C → D is a difference λ-functor; and for any natural
isomorphism φ : F → G, modM φ : modMF → modMG is a model homomorphism where
(modM φ)t := φJtKM .

We first build a syntactic difference λ-category using the difference λ-theory T , and then
prove that it is classifying by presenting the “inverse” for the functor

modG : Difλ-Func(Cl(T),D)→ ModDifλ(T ,D),

writing G = J·KG for the canonical “generic” interpretation in Cl(T).
We build the difference λ-category, Cl(T), using a standard construction. Objects are

types of T , and morphisms f : σ → τ are equivalence classes of term-in-context judgements
[x : σ `M : τ], where two terms are equivalent if they are provably equal in T . It remains
to show that Cl(T) is classifying by exhibiting the “inverse” of the modelling functors.

It is straightforward to see that the canonical interpretation G, that sets JtKG := t, is a
model of T in Cl(T). Take a difference λ-category D. We define

mod−1
G : ModDifλ(T ,D)→ Difλ-Func(Cl(T),D)

as follows. Given a modelM of T in D, the functor mod−1
G M : Cl(T)→ D is defined by

σ 7→ JσKM
[x : σ `M : τ] 7→ Jx : σ `M : τKM : JσKM → JτKM

Soundness of the interpretations tells us that mod−1
G M is functorial. Note that Φ and Ψ are

both identity functors, and so, mod−1
G M preserves products and exponentials. It remains to

check that mod−1
G M is a difference λ-functor.

M. Alvarez-Picallo and C.-H.-L. Ong 32:21

Given a model homomorphism h : M → N in ModDifλ(T ,D), we define the natural
isomorphism mod−1

G h : mod−1
G M→ mod−1

G N by setting

(mod−1
G h)σ := ht : JσKM → JσKN .

We can easily check that (mod−1
G h)σ is a natural transformation by induction on the length

of the derivation of the λ×ε -term Γ ` M : τ . Since hσ is an isomorphism for any type σ,
mod−1

G is a natural isomorphism.
We check that (mod−1

G h)σ is a natural transformation by induction on the length of the
derivation of the λ×ε -term-in-context, Γ `M : τ , that the following diagram commutes:

JΓ `M : σKN ◦ hΓ = hτ ◦ JΓ `M : σKM .

Lastly we check that modG and mod−1
G define an equivalence via the natural isomorphisms

µ : modG ◦mod−1
G ' idModDifλ(T ,D)

ν : idModDifλ(T ,D) ' mod−1
G ◦modG

defined as follows. For any modelM of T in D, µM : modG(mod−1
G M)→M is defined by

(µM)t := idJtKM : JtKmodG(mod−1
G M) = JtKM → JtKM

and for any difference λ-functor F : Cl(T)→ D, we define

(νF)σ := idFσ : F σ → (mod−1
G (modG F))σ = F (JσKG) = F σ.

Obviously µ and ν are natural isomorphisms. Thus Cl(T) is a classifying category with the
model G.

FSCD 2020

	Introduction
	Cartesian Difference Categories
	Difference Lambda-Categories
	The Difference Lambda-Calculus
	Substitution
	The Operational Semantics of Lambda-Epsilon
	Encoding the Differential Lambda-Calculus

	Simple Types for Lambda-Epsilon
	Semantics
	Future Work
	Confluence
	Strong Normalisation
	Soundness
	Completeness

