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Abstract
Similarity relations are reflexive, symmetric, and transitive fuzzy relations. They help to make
approximate inferences, replacing the notion of equality. Similarity-based unification has been quite
intensively investigated, as a core computational method for approximate reasoning and declarative
programming. In this paper we consider solving constraints over several similarity relations, instead
of a single one. Multiple similarities pose challenges to constraint solving, since we can not rely on
the transitivity property anymore. Existing methods for unification with fuzzy proximity relations
(reflexive, symmetric, non-transitive relations) do not provide a solution that would adequately
reflect particularities of dealing with multiple similarities. To address this problem, we develop a
constraint solving algorithm for multiple similarity relations, prove its termination, soundness, and
completeness properties, and discuss applications.
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1 Introduction

Reasoning with incomplete, imperfect information is very common in human communication.
Its modeling is a highly nontrivial task, and remains an important issue in applications
of artificial intelligence. There are various notions associated to such information (e.g.,
uncertainty, imprecision, vagueness, fuzziness) and different methodologies have been proposed
to deal with them (e.g., approaches based on default logic, probability, fuzzy sets, etc.)

For many problems in this area, exact equality is replaced by its approximation. Several
approaches use similarity relations to express the approximation, modeling the corresponding
imprecise information. Similarity relations are fuzzy binary relations, specifying to which
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30:2 Constraint Solving over Multiple Similarity Relations

degree two objects are similar to each other. They satisfy reflexivity, symmetry, and fuzzy
min-transitivity properties, and can be characterized by “level-wise” equivalence. Once the
level λ > 0 of similarity is fixed, the set of all object-pairs, which have the similarity degree
at least λ, form a classical equivalence relation.

Reasoning with similarity relations requires approximate inference techniques. Solving
similarity-based constraints is the central computational mechanism for such inferences.
Several approaches to unification modulo similarity have been proposed, see, e.g., [1, 2, 5–
9, 14, 16, 17, 20, 21]. Recently, unification was studied also for proximity relations, which
generalize similarity in the sense they are reflexive and symmetric but non-transitive fuzzy
relations [10,12,15]. The techniques studied in these papers usually assume a single fuzzy
(similarity or proximity) relation. However, in many practical situations, one needs to deal
with several similarities between the objects from the same set, see, e.g. [18, 19], where
examples about building online fashion compatibility representation and understanding
visual similarities are considered in the context of learning image embeddings.

Multiple similarities pose challenges to constraint solving, since we can not rely on
the transitivity property anymore. Note that proximity relations are not transitive either,
but their unification methods have some limitations in dealing with multiple similarities
simultaneously.

We address this problem, proposing an algorithm for solving constraints over multiple
similarity relations. A simple example below illustrates the problem together with the results
of different approaches, and motivates the development of a dedicated technique for it.

I Example 1. Let white-circle,white-ellipse, gray-circle and gray-ellipse be four symbols
and R1 and R2 be two similarity relations, where R1 stands for “similar color, same shape”
and R2 denotes “same color, similar shape”. They are defined as
R1(white-circle, gray-circle) = R1(white-ellipse, gray-ellipse) = 0.5, and
R2(white-circle,white-ellipse) = R2(gray-circle, gray-ellipse) = 0.7.

Assume we want to find an objectX such that from the color point of view, it is at least 0.4-
similar to white-circle and from the shape point of view, it is at least 0.5-similar to gray-ellipse.
The corresponding constraint is X 'R1,0.4 white-circle and X 'R2,0.5 gray-ellipse. The
expected answer is X = gray-circle. But it is problematic to compute it by the existing
fuzzy unification techniques. The direct approach, trying to solve each equation separately
by the weak unification algorithm from [17] leads to no solution in this case, because
white-circle and gray-ellipse are not similar to each other by any of the given relations.
An alternative way could be to consider the constraint over the relation R1 ∪ R2, which
is a proximity, not a similarity, since transitivity is not satisfied. However, the proximity
unification algorithm from [12] gives no solution. We can try to use the algorithm for solving
proximity constraints from [15], but it would give two answers instead of one: X = gray-circle
and X = white-ellipse. On the other hand, the algorithm proposed in this paper computes
the right solution X = gray-circle. Its similarity degrees are 0.5 for the relation R1 and 0.7
for R2. J

It should be mentioned that the multi-adjoint framework [14, 16] is flexible enough to
accommodate multiple similarities. It is a logic programming-based approach, where one
needs to extend programs by fuzzy similarity axioms for each alphabet symbol and use
classical unification. The authors show how to encode Sessa’s algorithm [17] in this framework.

Our approach is different. We develop the solving algorithm directly, without being
dependent on the implementation or application preferences. It can be incorporated in
a modular way in the constraint logic programming schema, can be used for constrained
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rewriting, querying, or similar purposes. It combines three parts: solving syntactic equations,
solving similarity problems for one relation, and solving mixed problems. Except variables
for terms, we permit also variables for function symbols, since they are necessary in the
process of finding an “intermediate object” between terms in different similarity relations.

The paper is organized as follows: In Section 2 we introduce the basic notions, define
constraints and their solutions. Section 3 is the main section of the paper: it describes
all three parts of our algorithm and presents its termination, soundness, and completeness
results. In Section 4 we show how to include the computation of approximation degrees in
the algorithm. Concluding discussion can be found in Section 5.

2 Preliminaries

Similarity relations

We define basic notions about similarity relations following [9,17]. A binary fuzzy relation
on a set S is a mapping from S × S to the real interval [0, 1]. If R is a fuzzy relation on S
and λ is a number 0 < λ ≤ 1 (called cut value), then the λ-cut of R on S, denoted Rλ, is an
ordinary (crisp) relation on S defined as Rλ := {(s1, s2) | R(s1, s2) ≥ λ}.

A fuzzy relation R on a set S is called a proximity relation, if it is reflexive and symmetric:

Reflexivity: R(s, s) = 1 for all s ∈ S;
Symmetry: R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S.

Let ∧ be a T-norm: an associative, commutative, non-decreasing binary operation on
[0, 1] with 1 as the unit element. A proximity relation (on S) is called a similarity relation
(on S) iff it is transitive:

Transitivity R(s1, s2) ≥ R(s1, s) ∧R(s, s2) for any s1, s2, s ∈ S.

In this paper, in the role of T-norm we take the minimum of two numbers, and write
min instead of ∧. In the role of S we take a syntactic domain, defined in the next section.

Terms, atoms, substitutions

Our alphabet A consists of the following pairwise disjoint sets of symbols:
VT: term variables, denoted by X,Y, Z,
VF: function variables, denoted by F,G,H,
CF: function constants, denoted by f, g, h,

By V we denote the set of variables V = VT ∪VF, and V is used for its elements.
A function symbol is a function variable or a function constant, i.e., an element of the set

F = CF ∪VF. We use the letters f, g, h to denote function symbols. Each function symbol
has a fixed arity.

Terms over A are defined by the grammar t := X | f(t1, . . . , tn), where f is an n-ary
function symbol. For terms we use the letters t, s, r. The set of terms over A is denoted by
Terms(A).

For a term f(t1, . . . , tn), if n = 0, we write just f instead of f(). Usually, from the context
it is clear whether we are talking about a symbol or about a term.

A substitution σ is a mapping from V to F ∪ Terms(A) such that
σ(X) ∈ Terms(A) for all X ∈ VT,
σ(F ) ∈ F for all F ∈ VF,
σ(V ) = V for all but finitely many variables V ∈ V.

FSCD 2020



30:4 Constraint Solving over Multiple Similarity Relations

Substitutions are denoted by Greek letters σ, ϑ, ϕ. The identity substitution is denoted
by Id. The domain of a substitution σ is the set dom(σ) = {V | V ∈ V, σ(V ) 6= V }. The
restriction of σ to a set of variables V is the substitution σ|V defined as σ|V(V ) = σ(V ) if
V ∈ V and σ|V(V ) = V otherwise. We will use the usual set representation of substitutions,
writing σ as {V 7→ σ(V ) | V ∈ dom(σ)}.

Substitution application to variables, constants, and terms is defined as follows: cσ = c

for all c ∈ CF, V σ = σ(V ) for all V ∈ V, and f(t1, . . . , tn)σ = (fσ)(t1σ, . . . , tnσ).

Similarity relations on syntactic domains

Our similarity relations are defined on the set of constants CF. Any such relation R should
satisfy the restriction: R(f, g) = 0, if f and g have different arity.

Given an R defined on CF, we extend it to F ∪ Terms(A):
For variables: R(V, V ) = 1.
For nonvar. terms: R(f(t1, . . . , tn), g(s1, . . . , sn)) = min(R(f, g),R(t1, s1), . . . ,R(tn, sn)),
when f and g are both n-ary.
In all other cases, R(τ1, τ2) = 0 for τ1, τ2 ∈ F ∪ Terms(A).

Given a similarity relation R and the cut value λ ∈ (0, 1], we define (R, λ)-neighborhood
of τ as N(τ,R, λ) := {τ′ | R(τ, τ′) ≥ λ}, where τ, τ′ ∈ F∪Terms(A). Based on the definition
of similarity relations above, it is obvious that neighborhoods of function constants (resp.
variables) contain only function constants (resp. variables) of the same arity. Neighborhoods
of terms contain only terms. All terms in the same neighborhood have the same structure
(same set of positions). We require for each f ∈ CF, R, and λ, the set N(f,R, λ) to be finite.
It implies that term neighborhoods are finite as well.

Constraints

In our constraint language, the elements of F∪Terms(A) are the basic objects. In the rest of
the paper, the letter τ is used to denote its elements. Besides, we have the equality predicate
constant .= (interpreted as syntactic equality), one or more similarity predicate constants
'1, '2, . . . , (interpreted as similarity relations on F ∪ Terms(A)), propositional constants
true and false, connectives ∧,∨, and the quantifier ∃.

Primitive constraints P are defined by the grammar

P ::= true | false | t .= s | t ' s | f .= g | f ' g,

where ' ∈ {'1,'2 . . .}. Primitive .=- and '-constraints are called primitive equality
constraints and primitive similarity constraints, respectively. A literal L is an atom or a
primitive constraint. A (positive) constraint C over A is defined as C ::= P | C∧C | C∨C | ∃x.C.
In this paper we consider only positive constraints.

The domain of the intended interpretation of our constraint language is its Herbrand
universe (the set of ground terms). The predicate constant .= is interpreted as syntactic
equality. Each similarity predicate constant ' is interpreted as a similarity relation on the
domain as defined in the previous section. When a predicate constant ' is to be interpreted
by a relation R with the cut value λ ∈ (0, 1], we write 'R,λ instead of '.

A variable-predicate pair (VP-pair) is either 〈V,'R,λ〉 or 〈V,
.=〉. We say that a substitution

σ is more general than ϑ on a set of VP-pairs W iff there exists a substitution ϕ such that
R(V σϕ, V ϑ) ≥ λ for all 〈V,'R,λ〉 ∈ W and V σϕ = V ϑ for all 〈V, .=〉 ∈ W. In this case we
write σ �W ϑ.
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I Example 2. Let R1(a, b) = 0.7, R1(b, c) = 0.7, R1(a, c) = 0.8, R2(b, c) = 0.9, and
W = {〈X,'R1,0.5〉, 〈Y,'R1,0.6〉, 〈Y,'R2,0.7〉}.

Let σ = {X 7→ Y } and ϑ = {X 7→ a, Y 7→ b}. Then σ �W ϑ, because for ϕ = {X 7→ b,

Y 7→ b} we have Xσϕ = b 'R1,0.5 a = Xϑ, Y σϕ = b 'R1,0.6 b = Y ϑ, and Y σϕ =
b 'R2,0.7 b = Y ϑ.
Let σ = {X 7→ Y } and ϑ = {X 7→ a, Y 7→ c}. Then σ �W ϑ, because for ϕ = {X 7→ b,

Y 7→ b} we have Xσϕ = b 'R1,0.5 a = Xϑ, Y σϕ = b 'R1,0.6 c = Y ϑ, and Y σϕ =
b 'R2,0.7 c = Y ϑ.
Let σ = {X 7→ f(Y ), Y 7→ Z} and ϑ = {X 7→ f(Z), Y 7→ a, Z 7→ X}. Then σ �W ϑ,
because for ϕ = {Y 7→ Z,Z 7→ a} we have Xσϕ = f(Z) 'R1,0.5 f(Z) = Xϑ, Y σϕ =
a 'R1,0.6 a = Y ϑ, and Y σϕ = a 'R2,0.7 a = Y ϑ.

I Theorem 3. �W is a quasi-ordering for all W.

Proof. Reflexivity is obvious. For transitivity, assume σ1 �W σ2 and σ2 �W σ3. We will
show σ1 �W σ3. Take 〈V,'R,λ〉 ∈ W . Then for some ϕ1 and ϕ2 we have R(V σ1ϕ1, V σ2) ≥ λ
and R(V σ2ϕ2, V σ3) ≥ λ. Since similarity is stable for substitutions [17, Proposition 3.1],
we have R(V σ1ϕ1ϕ2, V σ2ϕ2) ≥ λ. By transitivity of similarity, we get R(V σ1ϕ1ϕ2, V σ3) ≥
min(R(V σ1ϕ1ϕ2, V σ2ϕ2),R(V σ2ϕ2, V σ3)) ≥ λ, which implies that σ1 �W σ3. J

We denote the equivalence relation induced by �W by ∼=.
The notation K .= denotes a conjunction of primitive equality constraints. By KR,λ we

denote a conjunction of primitive similarity constraints, all with the same relation R and the
same λ-cut: KR,λ = τ1 'R,λ τ′1 ∧ · · · ∧ τn 'R,λ τ′n.

Given a constraint K = K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm
, we denote by W(K) the set of

VP-pairs W(K) := {〈V, .=〉 | V ∈ var(K .=)} ∪ {〈V,'Ri,λi
〉 | V ∈ var(KRi,λi

), 1 ≤ i ≤ m}.

I Definition 4 (Solution). A substitution σ is called a solution of a primitive constraint P, if
P = τ1

.= τ2 and τ1σ = τ2σ, or
P = τ1 'R,λ τ2 and R(τ1σ, τ2σ) ≥ λ.

Any substitution is a solution of true, while false has no solution.
A substitution σ is a solution of a conjunction of primitive constraints K iff it solves each

primitive constraint in K. We denote the set of all solutions of K by Sol(K). For a constraint
C = K1 ∧ · · · ∧ Kn in disjunctive normal form (DNF), we define Sol(C) = ∪ni=1Sol(Ki).

Given similarity relations R1, . . . ,Rn, a conjunction of primitive constraints K, and its
solution σ, we say that σ solves K with approximation degrees D = {〈R1, d1〉, . . . , 〈Rn, dn〉}
if
K = true or K = K .= and d1 = · · · = dn = 1,
K = τ1 'Rj ,λj τ2 for some 1 ≤ j ≤ n, dj = Rj(τ1σ, τ2σ) ≥ λj, and di = 1 for all
1 ≤ i ≤ n, i 6= j,
K = P ∧K′, σ solves P and K′ with approximation degrees {〈R1, d

P
1 〉, . . . , 〈Rn, dPn 〉} and

{〈R1, d
′
1〉, . . . , 〈Rn, d′n〉}, respectively, and di = min{dPi , d′i} for all 1 ≤ i ≤ n.

Such a definition of approximation degrees gives the flexibility to characterize approxima-
tions with respect to each involved relation independently from each other.

FSCD 2020
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I Theorem 5. Let K = K .= ∧KR1,λ1 ∧ · · · ∧ KRm,λm be a constraint. If σ is a solution of K
and σ �W(K) ϑ, then ϑ is a solution of K.

Proof. Let s1 'Ri,λi
s2 ∈ KRi,λi

. From σ �W(K) ϑ, by definition of �W(K), there exists a
ϕ such that R(V σϕ, V ϑ) ≥ λi for each V ∈ var(KRi,λi). It implies that

R(sjσϕ, sjϑ) ≥ λi, j = 1, 2. (1)

On the other hand, for similarity relations R(s1σϕ, s2σϕ) = R(s1σ, s2σ) (see [17]). Since
σ is a solution of K, R(s1σ, s2σ) ≥ λi. Hence, we have R(s1σϕ, s2σϕ) ≥ λi. From this
inequality and (1), by symmetry and transitivity of R, we get R(s1ϑ, s2ϑ) ≥ λi. Hence, ϑ is
a solution of s1 'Ri,λi s2.

It is straightforward that ϑ is a solution of any equation from K .=. Hence, ϑ is a solution
of K. J

IDefinition 6 (Solved form, approximately solved form). A conjunction of primitive constraints
K is in solved form, if K is either true or each primitive constraint in K has a form V

.= τ

or V 'R,λ τ, where V appears only once in K. A constraint in DNF K1 ∨ · · · ∨ Kn is in
solved form, if each Ki is in solved form.

A conjunction of primitive constraints Ksol ∧Kvar is in approximately solved form (appr-
solved form) if Ksol is in solved form, and Kvar is a conjunction of primitive similarity
constraints between variables V1 'R,λ V2 such that neither V1 nor V2 appear in the left hand
side of any primitive constraint in Ksol. A constraint in DNF K1 ∨ · · · ∨ Kn is in appr-solved
form, if each Ki is in appr-solved form.

Appr-solved forms are also solved forms, but not vice versa. Each solved form K induces
a substitution, denoted by σK: if K = true, then σK = Id, otherwise σK = {V 7→ τ | V .=
τ ∈ K or V 'R,λ τ ∈ K}. Obviously, σK is a solution of K. A constraint Ksol ∧ Kvar in
appr-solved form is also solvable, because σKsol solves Ksol and Kvar always has at least
a trivial solution mapping all terms variables to the same term variable and all function
variables to the same function variable.

I Example 7. Let R1 and R2 be defined as in Example 1 and K = KR1,0.4 ∧ KR2,0.5 be a
constraint, where KR1,0.4 = X 'R1,0.4 white-circle ∧X 'R1,0.4 Y and KR2,0.5 = X 'R2,0.5
gray-ellipse ∧ Y 'R2,0.5 white-ellipse.

One can bring KR1,0.4 to its equivalent solved form (e.g., by an algorithm along the lines
of the weak unification algorithm in [17]). KR2,0.5 is already in the solved form. Hence, K is
equivalent to the constraint

X 'R1,0.4 white-circle ∧ Y 'R1,0.4 white-circle ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse,

which is not yet in a solved form. A solved form, equivalent to K, would be X .= gray-circle∧
Y

.= white-circle. It induces the substitution σ = {X 7→ gray-circle, Y 7→ white-circle}.

I Example 8. Let R1 and R2 be two similarity relations defined as

R1 : R1(a1, c1) = R1(b1, c1) = 0.7, R1(a1, b1) = 0.8,
R1(a2, c2) = R1(b2, c2) = 0.6, R1(a2, b2) = 0.7,

R2 : R2(b1, b3) = R2(b2, b3) = 0.6, R2(b1, b2) = 0.7, R2(c1, c2) = 0.8.
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Visually:

a1

b1

c1

0.70.8
0.7 a2

b2

c2

0.6 0.7
0.6

b3

0.7
0.6 0.6

0.8
R1: the solid lines, R2: the dotted lines.

Let K = X 'R1,0.5 f(a1, a2) ∧ X 'R2,0.6 f(Y, Y ). It is equivalent to the disjunction
of two solved forms, e.g., (X .= f(b1, b2) ∧ Y 'R2,0.6 b1) ∨ (X .= f(c1, c2) ∧ Y 'R2,0.6 c1).
The solved forms induce two substitutions: σ1 = {X 7→ f(b1, b2), Y 7→ b1} and σ2 = {X 7→
f(c1, c2), Y 7→ c1}. They are solutions of K. There are other solutions of K that are
∼=-equivalent to σ1 or σ2: ϑ1 = {X 7→ f(b1, b2), Y 7→ b2} ∼= σ1, ϑ2 = {X 7→ f(b1, b2), Y 7→
b3} ∼= σ1, and ϑ3 = {X 7→ f(c1, c2), Y 7→ c2} ∼= σ2.

Now let K = X 'R1,0.8 g(Y ) ∧X 'R2,0.6 g(Z). A solved form Ks = X
.= g(Z) ∧ Y .= Z

implies K, but is not equivalent to it, because K has solutions {X 7→ g(b1), Y 7→ a1, Z 7→ b2}
and {X 7→ g(b1), Y 7→ a1, Z 7→ b3}, which do not solve Ks. On the other hand, if we
take the approximate solved form Kas = X

.= g(X1) ∧X1 'R1,0.8 Y ∧X1 'R2,0.6 Z, then
every solution of Kas solves K, and (∃X1.Kas)σ holds for any solution σ of K. (Substitution
application to a quantified constraint avoids variable capture.) Alternatively, we could have
taken another solved form K′s = X

.= g(X1) ∧ Y 'R1,0.8 X1 ∧ Z 'R2,0.6 X1 which has the
same properties as Kas.

I Example 9. Let R1(a, b1) = R1(b1, b2) = R1(a, b2) = 0.8, R2(c, b1) = R2(b1, b2) =
R2(b2, c) = 0.7 and consider a constraint K = X 'R1,0.6 f(Y, Y ) ∧X 'R2,0.5 f(Z,Z). The
straightforward solved form X

.= f(Z,Z) ∧ Y .= Z, as in the previous example, has fewer
solutions thanK, e.g., {X 7→ f(b1, b2), Y 7→ a, Z 7→ c} would be lost. If we take an appr-solved
form Kas = X

.= f(X1, X2) ∧X1 'R1,0.6 Y ∧X1 'R2,0.5 Z ∧X2 'R1,0.6 Y ∧X2 'R2,0.5 Z,
then all solutions of Kas solve K and for each solution σ of K, we have (∃X1, X2.Kas)σ.
Unlike the previous example, we can not turn this appr-solved form into a solved from by
swapping sides of variables-only equations.

3 Constraint solving

The constraint solving algorithm Solve presented in this section works on constraints in DNF.
Its rules are divided into three groups: for equalities, for similarities, and for mixed problems.
They are applied modulo associativity, commutativity, and idempotence of ∧ and ∨, treating
false as the unit element of ∨. We first introduce the rules and then show how Solve is defined
using them.

In the rules, the superscript ? indicates that the constraints are supposed to be solved.
The sides of an equation V .=?

τ belong to the same syntactic category, i.e., it stands either
for X .=?

t or for F .=? f. The same holds for V '?
R,λ τ.

Equality rules
In this subsection we describe the rules that solve equality constraints. Essentially, these are
first-order unification rules with a slight modification, which concerns dealing with function
and predicate variables. The rules have the form K K′, which defines the transformation
K ∨ C  K′ ∨ C. Note that C does not change.

FSCD 2020



30:8 Constraint Solving over Multiple Similarity Relations

The rules are Del-eq (deletion), Dec-eq (decomposition), Ori-eq (orientation), Elim-eq
(variable elimination), Confl-eq (conflict), Mism-eq (arity mismatch), Occ-eq (occurrence
check), all formulated for the equality relation .=.

Del-eq : τ
.=?

τ ∧ K K, where τ ∈ CF ∪VF ∪VT.

Dec-eq : f(t1, . . . , tn) .=? g(s1, . . . , sn) ∧ K f .=? g ∧ t1
.=?
s1 ∧ · · · ∧ tn

.=?
sn ∧ K,

where n > 0.

Ori-eq : τ
.=?

V ∧ K V
.=?

τ ∧ K, if τ /∈ V.

Elim-eq : V
.=?

τ ∧ K V
.=?

τ ∧ K{V 7→ τ}, if V /∈ var(τ) and V ∈ var(K).

Confl-eq : f
.=?
g ∧ K false, where f 6= g.

Mism-eq : f(t1, . . . , tn) .=? g(s1, . . . , sm) ∧ K false, if n 6= m.

Occ-eq : X
.=?
t ∧ K false, if X ∈ var(t) and X 6= t.

Note that the Elim-eq rule replaces occurrences of a variable in the whole K, i.e., the
variable gets replaced both in equality and similarity constraints.

We define the algorithm Unif, which applies the equality rules as long as possible. When
there are more than one applicable rule, the algorithm may choose one arbitrarily.

I Theorem 10. Unif is terminating.

Proof. Similar to the proof of termination of the unification algorithm in [3]. J

I Lemma 11 (Soundness lemma for Unif). If K K′ is a step performed by a rule in Unif,
then Sol(K) = Sol(K′).

Proof. When K consists of equational constraints only, then so is K′ and the lemma can be
proved as the analogous property of the unification algorithm in [3]. If K contains similarity
constraints as well, the only nontrivial case to consider is the Elim-eq rule. We will need the
fact that for any σ and ϑ, ϑσ ∈ Sol(K) iff σ ∈ Sol(Kϑ) (which is straightforward to show).

Let K = {V .=?
τ} ∧ K0 and ϑ = {V 7→ τ}. Then K′ = {V .=?

τ} ∧ K0ϑ and we have

σ ∈Sol(K)iff σ ∈ Sol({V .=?
τ} ∧ K0) iff

V σ = τσ ∧ σ ∈ Sol(K0) iff (because V σ = τσ implies σ = ϑσ)
V σ = τσ ∧ ϑσ ∈ Sol(K0) iff
V σ = τσ ∧ σ ∈ Sol(K0ϑ) iff

σ ∈ Sol({V .=?
τ} ∧ K0ϑ) iff

σ ∈Sol(K′). J

Similarity rules
The rules in this section are designed for similarity relations. They resemble weak unification
rules [9, 17], with the difference that function variables and multiple similarity relations are
permitted, and aims at computing the answer in solved form, instead of a substitution.
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In the Elim-sim rule, the variable V is replaced by τ only in the constraints for the same
similarity relation. This is justified by the fact that although a λ-cut of each similarity
relation is transitive, from t 'R1,λ1 s, s 'R2,λ2 r we can not conclude anything about
similarity between t and r.

The similarity rules have the same form as the equality rules: K K′, which defines the
transformation K ∨ C  K′ ∨ C. The names are also similar to those for equalities, using sim
instead of eq.

Del-sim : τ1 '?
R,λ τ2 ∧ K K, where τ1, τ2 ∈ CF ∪VF ∪VT and R(τ1, τ2) ≥ λ.

Dec-sim : f(t1, . . . , tn) '?
R,λ g(s1, . . . , sn) ∧ K 

f '?
R,λ g ∧ t1 '?

R,λ s1 ∧ · · · ∧ tn '?
R,λ sn ∧ K, where n > 0.

Ori-sim : τ '?
R,λ V ∧ K V '?

R,λ τ ∧ K, where τ /∈ V.

Elim-sim : V '?
R,λ τ ∧ KR,λ ∧ K V '?

R,λ τ ∧ KR,λ{V 7→ τ} ∧ K
where K does not contain primitive '?

R,λ-constraints, V /∈ var(τ), and
V ∈ KR,λ.

Confl-sim : τ1 '?
R,λ τ2 ∧ K false, where τ1, τ2 ∈ CF ∪VF ∪VT, and R(τ1, τ2) < λ.

Mism-sim : f(t1, . . . , tn) '?
R,λ g(s1, . . . , sm) ∧ K false, if n 6= m.

Occ-sim : X '?
R,λ t ∧ K false, if X ∈ var(t) and X 6= t.

The algorithm Sim applies the similarity rules as long as possible. When there are more
than one applicable rule, the algorithm may choose one nondeterministically.

Termination of Sim can be proved as termination of Unif:

I Theorem 12. Sim is terminating.

I Lemma 13 (Soundness lemma for Sim). If K K′ is a step performed by a rule in Sim,
then Sol(K) = Sol(K′).

Proof. When we have only one similarity relation, soundness follows from soundness of
weak unification algorithm [17]. For the extension to multiple similarity relations, the only
nontrivial rule is Elim-sim. (For the others, Sol(K) = Sol(K′) holds directly.) It is important
to notice that in this rule, {V 7→ τ} applies only to KR,λ. Then for V '?

R,λ τ ∧ KR,λ we
have Sol(V '?

R,λ τ ∧ KR,λ) = Sol(V '?
R,λ τ ∧ KR,λ{V 7→ τ}). (It follows from soundness

of weak unification algorithm [17], since the constraint is over a single similarity relation.)
Constraints for all other relations remain unchanged. It implies that the solution sets for
constraints in both sides of the Elim-sim rule are the same. J

I Example 14. let KR1,0.4 = X 'R1,0.4 white-circle∧X 'R1,0.4 Y and KR2,0.5 = X 'R2,0.5
gray-ellipse ∧ Y 'R2,0.5 white-ellipse be the constraints from Example 7. The reduction
mentioned in that example is modeled by performing the Elim-sim step and replacing X by
white-circle in KR1,0.4:

X 'R1,0.4 white-circle ∧X 'R1,0.4 Y ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse  Elim-sim

X 'R1,0.4 white-circle ∧ white-circle 'R1,0.4 Y ∧
X 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse.
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If Elim-sim permitted to replace X not only in KR1,0.4, but also in KR2,0.5, we would get

X 'R1,0.4 white-circle ∧ white-circle 'R1,0.4 Y ∧
white-circle 'R2,0.5 gray-ellipse ∧ Y 'R2,0.5 white-ellipse,

but white-circle 'R2,0.5 gray-ellipse is unsolvable. Hence, we would lose a solution.

Mixed rules
The rules in this section apply when there are at least two primitive constraints over different
similarity relations. The notation t[X] below means that the variable X occurs in the term t.

I Definition 15 (Occurrence cycle). An occurrence cycle for a variable X1 is called the
conjunction of primitive constraints X1 '?

R1,λ1
t1[X2]∧X2 '?

R2,λ2
t2[X3]∧ · · · ∧Xn '?

Rn,λn

tn[X1], where n > 1, Ri 6= Ri+1 for all 1 ≤ i ≤ n− 1, Rn 6= R1, and at least one t is not a
variable.

I Remark 16. Note that in the definition of occurrence cycle, if two neighboring primitive
similarity constraints use the same relation, they can be contracted into one constraint
by transitivity, i.e., instead of Xi '?

Ri,λi
ti[Xi+1] ∧ Xi+1 '?

Ri,λi
ti+1[Xi+2] we can have

Xi '?
Ri,λi

ti[ti+1[Xi+2]], getting rid of consecutive identical similarity relations. The same
is true for the last and the first constraints.

I Theorem 17. If a conjunction of primitive constraints contains an occurrence cycle modulo
symmetry of '?

R,λ, then it has no solution.

Proof. In similarity relations, symbols of different arities can not be similar. Therefore,
similar terms have the same set of positions, i.e., as trees they are the same up to renaming
of nodes.

Assume by contradiction that the given occurrence cycle has a solution ϑ. It means that
the following term pairs have the same structure: X1ϑ and t1[X2]ϑ, X2ϑ and t2[X3]ϑ, . . .,
Xnϑ and tn[X1]ϑ. Then X1ϑ and t1[t2[· · · [tn[X1]] · · · ]]ϑ have the same structure. Since at
least one of ti’s is not a variable, X1ϑ is a proper subterm of t1[t2[· · · [tn[X1]] · · · ]]ϑ. But a
term and its proper subterm can not have the same structure. A contradiction.

The phrase “modulo symmetry of '?
R,λ” in the theorem means that the sides of primitive

constraints can be swapped, in order to detect an occurrence cycle. Since side swapping does
not affect solvability of constraints, the theorem remains true if an occurrence cycle is not in
the explicit form in the constraint. J

Below, when we talk about existence of an occurrence cycle in a constraint, we mean
existence modulo symmetry of the similarity predicate.

The rules in the mixed group are rules for occurrence check (Occ-mix), mismatch
(Mism-mix), and elimination of term and function variables (TVE-mix and FVE-mix, re-
spectively). All of them except FVE-mix have the form K K′. As usual, they define the
constraint transformation K ∨ C  K′ ∨ C. As for FVE-mix, its form is K K′1 ∨ · · · ∨ K′n,
defining a transformation K∨ C  K′1 ∨ · · · ∨ K′n ∨ C. Note that in any of these rules, C does
not change.

In all the rules it is assumed that the constraint to be transformed (i.e., the constraint
in the left hand side of  ) has the form K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm

, where K .= and each
KRi,λi , 1 ≤ i ≤ m, are in solved form.
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The TVE-mix rule uses the renaming function ρ. Applied to a term, ρ gives its fresh copy,
obtained by replacing each occurrence of a constant from CF by a new function variable,
each occurrence of a term variable by a fresh term variable, and each occurrence of a function
variable by a fresh function variable. For instance, if the term is f(F (a,X,X, f(a))), we have
ρ(f(F (a,X,X, f(a)))) = G1(G2(G3(), Y1, Y2, G4(G5()))), where G1, G2, G3, G4, G5 ∈ VF are
new function variables and Y1, Y2 ∈ VT are new term variables.

Occ-mix : X '?
R,λ t ∧ K false, if X '?

R,λ t ∧ K contains an occurrence cycle for X.

Mism-mix : X '?
R1,λ1

f(t1, . . . , tn) ∧X '?
R2,λ2

g(s1, . . . , sm) ∧ K false,
if R1 6= R2 and m 6= n.

TVE-mix : X '?
R,λ f(t1, . . . , tn) ∧ K 
X

.= F (t′1, . . . , t′n) ∧ F '?
R,λ f ∧ t′1 '?

R,λ t1 ∧ · · · ∧ t′n '?
R,λ tn ∧ Kϑ,

where X ∈ var(K), X '?
R1,λ1

f(t1, . . . , tn) ∧ K does not contain an oc-
currence cycle for X, F (t′1, . . . , t′n) = ρ(f(t1, . . . , tn)), and ϑ = {X 7→
F (t′1, . . . , t′n)}.

FVE-mix : F '?
R,λ f ∧ K ∨g∈N(f,R,λ)

(
F

.= g ∧ K{F 7→ g}
)
, where F ∈ var(K).

By Mix we denote one application of any of the mixed rules.

I Lemma 18 (Soundness lemma for Mix). If K  C is a step performed by a rule in Mix,
and σ ∈ Sol(C), then σ ∈ Sol(K).

Proof. For failing rules it is trivial as false has no solution. For FVE-mix, the definition of
neighborhood implies it. For TVE-mix we reason as follows: Let K = {X '?

R,λ f(t1, . . . , tn)}∧
K1 and σ be a solution of the right hand side of this rule. Then Xσ = F (t′1, . . . , t′n)σ 'R,λ
f(t1, . . . , tn)σ and σ solves X '?

R,λ f(t1, . . . , tn). As for any other equation eq ∈ K1, we have
eqϑ in the right hand side, where ϑ = {X 7→ F (t′1, . . . , t′n)}. Moreover, σ is a solution of eqϑ
iff ϑσ is a solution of eq. The equality Xσ = F (t′1, . . . , t′n)σ implies ϑσ = σ. Hence, σ is a
solution of eq. J

Our constraint solving algorithm Solve is designed as a strategy of applying Unif, Sim,
and Mix. To solve a conjunction of primitive equality and similarity constraints K =
K .= ∧ KR1,λ1 ∧ · · · ∧ KRm,λm , it performs the following steps:

C := K
while C is not in the appr-solved form do

C := Unif(C), if C = false, return false
C := Sim(C), if C = false, return false
C := Mix(C), if C = false, return false

return C
We write Solve(K) = C, if the algorithm returns C for the input K. Respectively,

Solve(K) = false if false is returned.

I Example 19. Let R1 and R2 be the relations defined in Example 8 and illustrate the
steps Solve would make to solve X '?

R1,0.5 f(a1, a2) ∧X '?
R2,0.6 f(Y, Y ). We will explicitly

distinguish between function variables and terms made of a function variable only, i.e.,
between F and F (). For the same reason, we write constant-terms a1 and a2 in their full
form a1() and a2(). Primitive constraints selected to perform a particular step are underlined.
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X '?
R1,0.5 f(a1(), a2()) ∧X '?

R2,0.6 f(Y, Y ) TVE-mix

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1() '?
R1,0.5 a1() ∧G2() '?

R1,0.5 a2() ∧

F (G1(), G2()) '?
R2,0.6 f(Y, Y ) Dec-sim×2

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F (G1(), G2()) '?

R2,0.6 f(Y, Y ) Dec-sim,Ori-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F '?

R2,0.6 f ∧ Y '
?
R2,0.6 G1() ∧G2() '?

R2,0.6 Y  Elim-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧
F '?

R2,0.6 f ∧ Y '
?
R2,0.6 G1() ∧G2() '?

R2,0.6 G1() Dec-sim

X
.= F (G1(), G2()) ∧ F '?

R1,0.5 f ∧G1 '?
R1,0.5 a1 ∧G2 '?

R1,0.5 a2 ∧

F '?
R2,0.6 f ∧ Y '

?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  FVE-mix

X
.= f(G1(), G2()) ∧ F .= f ∧G1 '?

R1,0.5 a1 ∧G2 '?
R1,0.5 a2 ∧

f '?
R2,0.6 f ∧ Y '

?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  Del-sim

X
.= f(G1(), G2()) ∧ F .= f ∧G1 '?

R1,0.5 a1 ∧G2 '?
R1,0.5 a2 ∧

Y '?
R2,0.6 G1() ∧G2 '?

R2,0.6 G1  FVE-mix×2 (showing only successful branches)(
X

.= f(b1(), b2()) ∧ F .= f ∧G1
.= b1 ∧G2

.= b2 ∧
Y '?

R2,0.6 b1() ∧ b2 '?
R2,0.6 b1

)
∨(

X
.= f(c1(), c2()) ∧ F .= f ∧G1

.= c1 ∧G2
.= c2 ∧

Y '?
R2,0.6 c1() ∧ c2 '?

R2,0.6 c1
)
 Del-sim×2(

X
.= f(b1(), b2()) ∧ F .= f ∧G1

.= b1 ∧G2
.= b2 ∧ Y '?

R2,0.6 b1()
)
∨(

X
.= f(c1(), c2()) ∧ F .= f ∧G1

.= c1 ∧G2
.= c2 ∧ Y '?

R2,0.6 c1()
)
.

Restricting the obtained result to the original variables (and writing constant-terms in
the conventional way), we get the solved form

(X .= f(b1, b2) ∧ Y 'R2,0.6 b1) ∨ (X .= f(c1, c2) ∧ Y 'R2,0.6 c1).

I Example 20. Now we show how Solve computes an appr-solved form for the constraint
from Example 9:

X '?
R1,0.6 f(Y, Y ) ∧X '?

R2,0.5 f(Z,Z) TVE-mix

X
.= F (X1, X2) ∧ F '?

R1,0.6 f ∧X1 '?
R1,0.6 Y ∧X2 '?

R1,0.6 Y ∧

F (X1, X2) '?
R2,0.5 g(Z,Z) FVE-mix

X
.= f(X1, X2) ∧ F 'R1,0.6 f ∧X1 '?

R1,0.6 Y ∧X2 '?
R1,0.6 Y ∧

f(X1, X2) '?
R2,0.5 g(Z,Z) Dec

X
.= f(X1, X2) ∧ F '?

R1,0.6 f ∧X1 '?
R1,0.6 Y ∧X2 '?

R1,0.6 Y ∧
X1 '?

R2,0.5 Z ∧X2 '?
R2,0.5 Z.

The result gives an appr-solved form. If we did not generate new copies for each variable
occurrence in the TVE-mix rule, we would end up with X .=?

f(Z,Z) ∧ F .=?
f ∧ Y .=?

Z.
As we saw in Example 9, some solutions would be lost in this case.
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To prove termination of Solve, we will need an ordering on directed acyclic graphs (dags).

I Definition 21 (The relation <dag). We consider dags, which have a finite set of symbols
associated to each vertex. These sets are called the marks of vertices. For a graph G and a
vertex v, we denote the mark of v in G by mark(v,G). The relation <dag is defined on such
graphs, having the same set of vertices.

Let G1 = (Vert, E1) and G2 = (Vert, E2) be two dags with the same set of vertices Vert.
The vertices are marked in G1 and G2. Then G1 <dag G2 iff E1 ⊇ E2 and the following
condition holds:

Let ∅ 6= D ⊆ Vert be the set of all vertices, for which the marks in the graphs differ (i.e.,
D := {v ∈ Vert | mark(v,G1) 6= mark(v,G2)}: same vertex, different markings), and
∅ 6= M ⊆ D be the set of those elements of D, which are not reachable from any of the
elements in D in G1. (Such a subset of D exists, because the graphs are acyclic.) Then
mark(v,G1) ⊂ mark(v,G2) for all v ∈M .

We write G >dag G
′ if G′ <dag G.

I Theorem 22. The relation >dag is a well-founded ordering on dags.

Proof. First, we show that >dag is a strict partial order (irreflexive and transitive relation).
Irreflexivity is obvious. For transitivity, assume G1 >dag G2, G2 >dag G3 and show G1 >dag
G3. Let Gi = (Vert, Ei) for i = 1, 2, 3. By transitivity of set inclusion, we have E1 ⊆ E3.

Let D(Gi, Gj) := {v ∈ Vert | mark(v,Gi) 6= mark(v,Gj)} and M(Gi, Gj) be the set
of all those elements in D(Gi, Gj) that are not reachable in Gj from D(Gi, Gj), 1 ≤ i <

j ≤ 3. Assume first that D(G1, G3) 6= ∅ and take v ∈ M(G1, G3). We want to show that
mark(v,G1) ⊃ mark(v,G3). The possible cases are
i. mark(v,G1) 6= mark(v,G2) and mark(v,G2) = mark(v,G3).
ii. mark(v,G1) = mark(v,G2) and mark(v,G2) 6= mark(v,G3).
iii. mark(v,G1) 6= mark(v,G2) and mark(v,G2) 6= mark(v,G3).

In case i, v ∈ D(G1, G2). If v ∈ M(G1, G2), then mark(v,G1) ⊃ mark(v,G2) =
mark(v,G3). Now we show that the case v /∈M(G1, G2) is impossible. Assume by contra-
diction that v /∈M(G1, G2). It means that there exists v′ ∈M(G1, G2) such that v′ →+ v

in G2. But then, since E2 ⊆ E3, we have v′ →+ v in G3. Since v ∈ M(G1, G3), we
should have v′ /∈ D(G1, G3), i.e., mark(v′, G1) = mark(v′, G3). On the other hand, from
G1 >dag G2 and v′ ∈ M(G1, G2), we have mark(v′, G1) ⊃ mark(v′, G2), which implies
mark(v′, G2) ⊂ mark(v′, G3), v′ ∈ D(G2, G3) and v′ /∈M(G2, G3). Then there should exist
v′′ ∈M(G2, G3) such that v′′ →+ v′ in G3. Hence, we get v′′ →+ v′ →+ v in G3. Therefore,
we can not have v′′ ∈ D(G1, G3), because there would be a contradiction: v ∈ M(G1, G3)
and v is reachable in G3 from v′′ ∈ D(G1, G3). Hence, we get mark(v′′, G1) = mark(v′′, G3),
which, together with v′′ ∈ M(G2, G3) implies that mark(v′′, G1) ⊂ mark(v′′, G2). Hence,
v′′ ∈ D(G1, G2) and since G1 >dag G2, there should exist v′′′ ∈ M(G1, G2) such that
mark(v′′′, G1) ⊃ mark(v′′′, G2) and v′′′ →+ v′′ in G2. Then we have also v′′′ →+ v′′ in G3,
since E2 ⊆ E3. Moreover, mark(v′′′, G2) = mark(v′′′, G3), because otherwise we would have
a contradiction with v′′ ∈ M(G2, G3) (there would be v′′′ ∈ D(G2, G3) with v′′′ →+ v′′ in
G3). Hence, mark(v′′′, G1) ⊃ mark(v′′′, G2) = mark(v′′′, G3) and we get v′′′ ∈ D(G1, G3).
But it contradicts our assumption that v ∈ M(G1, G3), because we got v′′′ ∈ D(G1, G3)
with v′′′ →+ v in G3. The obtained contradiction shows that the case v /∈ M(G1, G2) is
impossible. (See also the diagram in Appendix A.)
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The case ii can be proved analogously. In case iii, if we have mark(v,G1) ⊃ mark(v,G2)
and mark(v,G2) ⊃ mark(v,G3), we immediately get mark(v,G1) ⊃ mark(v,G3). The other
cases are not possible. For instance, assuming mark(v,G1) ⊃ mark(v,G2) and mark(v,G2) ⊂
mark(v,G3) will lead to contradiction by the same reasoning as in the proof of case i, where
we reached mark(v′, G1) ⊃ mark(v′, G2) and mark(v′, G2) ⊂ mark(v′, G3).

For the assumption D(G1, G3) = ∅ we get a contradiction analogously.
Well-foundedness follows from well-foundnedness of ⊃, from the facts that the set of

vertices is fixed and the set of edges can not be infinitely increased, and from boundedness of
the length of paths due to acyclicity. J

I Theorem 23 (Termination of Solve). The algorithm Solve terminates and gives either false
or a constraint in appr-solved form.

Proof. Let K0 be a given conjunction of primitive constraints. We build a term variable
dependency graph G = (Vert, E) from K0 and maintain it during the process of solving.
The vertices of G correspond to term variables in K0 so that to each variable a single
vertex is assigned. For instance, if K0 contains three term variables X1, X2, and Y3, then
Vert = {vX1 , vX2 , vX3}. The initial marking is defined as mark(vX , G) = {X} for each
vX ∈ Vert. Next, to define E, we do the following: If K0 contains a solved primitive
constraint X .=?

t or X '?
R,λ t (i.e., if X occurs in K0 once), then (vX , vY ) ∈ E for all

Y ∈ var(t) and mark(vX , G) is updated as mark(vX , G)\{X}. This is how the initial version
of the graph is created. It is denoted by GK0 .

In the process of the application of Solve, the graph gets modified as follows:
a) The applied rule is of the form K K′. Then from the graph GK we obtain the graph

GK′ depending on the rule:
Elim-eq with X .=?

t adds edges and removes X from the marking set of the vertex vX
exactly as described above.
Elim-sim with X '?

R,λ t either keeps the graph unchanged (when X occurs more than
once in the resulting constraint after the application of Elim-sim), or modifies it as
described above (when X occurs exactly once in the resulting constraint after the
application of Elim-sim).
TVE-mix withX '?

R,λ t does the same modification as Elim-eq and, in addition, modifies
marking: Let Y1, . . . , Ym, m ≥ 0, be all the copies of a term variable Y ∈ var(t) created
by the renaming function ρ in the TVE-mix step. Then each Yi is associated with the
vertex vY (i.e., vYi = vY ) and mark(vY , G) gets updated as mark(vY , G)∪{Y1, . . . , Ym}.
No other rule of the form K K′ modifies the graph.

b) The applied rule is of the form K K′1 ∨ · · · ∨ K′n, n > 1. Then GK = GK′
1

= · · · = GK′
n
.

One can see that the set Vert remains unchanged during the process.
Let G1 = (Vert, E1) be the graph before applying a rule, and G2 = (Vert, E2) be the

one after a rule application so that G1 6= G2, i.e., Elim-eq, Elim-sim, or TVE-mix is applied.
Let the chosen primitive constraint be X .=?

t (for Elim-eq) or X '?
R,λ t (for Elim-sim and

TVE-mix). Then E1 ⊆ E2, because new edges from vX to vY for each Y ∈ var(t) is created
and none are removed. Besides, mark(X,G1) ⊃ mark(X,G2) = mark(X,G1) \ {X}, and
markings in G2 are not changed for any of the vertices which is not reachable from X in G2.
Hence, G1 >dag G2.

Let us consider the pair (GK,VF(K)) of such a term variable dependency graph GK
associated to a constraint K and a set of function variables VF(K) occurring in K. These pairs
are ordered lexicographically by >dag and >. By Theorem 22, >dag is well-founded. The
relation > on natural numbers is well-founded. Therefore, their lexicographic combination is
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well-founded. Since Unif and Sim are terminating (Theorems 10 and 12), each iteration of
the while loop in the definition of Solve either stops with false, or reaches the application
of Mix. In this process, measure of the pair (GK,VF(K)) does not increase, because the
Unif and Sim rules, as we have already seen, either decrease or keep unchanged GK, and
do not add new function variables. The application of Mix either fails, or strictly reduces
(GK,VF(K)): TVE-mix strictly decreases GK, and FVE-mix does not change GK but strictly
decreases VF(K). Hence, the while loop in Solve can be executed only finitely many times.

If Solve does not stop with false, the only possible non-solved primitive constraints are
those between variables, whose left hand side has occurrences in at least two different kind of
constraints. For any other case, there is an applicable rule. Hence, the obtained constraint is
in appr-solved form. J

I Theorem 24 (Soundness of Solve). Let K be a conjunction of primitive constraints. Then
every solution of the constraint Solve(K) is a solution of K.

Proof. By induction on the length of a rule application sequence leading from K to Solve(K),
using the soundness lemmas for equality, similarity, and mixed rules (Lemmas 11, 13, 18). J

I Theorem 25 (Completeness of Solve). Let K be a conjunction of primitive constraints, and
ϑ be its solution. Then Solve(K) is a constraint (Ksol ∧ Kvar) ∨ C, where Ksol ∧ Kvar is in
appr-solved form, and σKsolσKvar �W(K) ϑ, where σKsol is the substitution induced by Ksol,
and σKvar is a solution of Kvar.

Proof. In the proof we use completeness of unification and weak unification algorithms [4,9,17].
First, note that if one of the failure rules is applicable to a constraint, then it has no solution.
For Occ-mix it follows from Theorem 17. For Mism-mix, it is guaranteed by the fact that
symbols with different arities are not similar. For failure rules in Unif and Sim it is known
from their completeness results.

Application of Unif to K leads to a new constraint Cun, which contains a solved from
Kun-sol such that σKun-sol �W(K) ϑ. Application of Sim to Cun gives Csim, which contains
a solved form Ksim-sol (an extension of Kun-sol) such that σKsim-sol �W(K) ϑ. After that, if
TVE-mix is applicable, we have an equation X '?

R,λ f(t1, . . . , tn). TVE-mix extends the
solved form by a new equation X .=?

ρ(f(t1, . . . , tn)), obtaining Ktve-sol. By definition of ρ,
the term ρ(f(t1, . . . , tn)) contains fresh variables for each symbol in f(t1, . . . , tn) and, hence,
σKtve-sol �W(K) ϑ. It is important at this step to record which fresh variable is a copy of
which original variable, maintaining an function original-of (V ′) = V , where V ∈ var(K) and
V ′ is zero or more applications of ρ to it (i.e., V ′ is V , or its copy, or a copy of its copy etc.).
If the rule FVE-mix is applicable, we have an equation F '?

R,λ f . We make a step by this rule,
adding a new equation F .=? original-of (F )ϑ and obtaining a new solved form Kfve-sol. Let ϕ
be the substitution {original-of (F ) 7→ original-of (F )ϑ}. Then we have σKfve-solϕ �W(K) ϑ.
Iterating this process, we do not get false, since K was solvable. By Theorem 23, the process
terminates with an appr-solved form Ksol ∧ Kvar such that σKsolϕ1 · · ·ϕk �W(K) ϑ, where
the ϕ’s are substitutions of the form {original-of (V ) 7→ original-of (V )ϑ}. Let σKvar be the
restriction of ϑ to the variables of Kvar. Then σKvar is a solution of Kvar. And we have
σKsolϕ1 · · ·ϕkσKvar �W(K) ϑ.

For the ϕ’s, composition is commutative, because they are ground substitutions with
disjoint domains. For some of them we have σKsolϕi = σKsol , because at some step we
might have solved an equation with original-of (V ) variable in its left for original-of (V ) ∈
dom(ϕi). We assume that the ϕ’s in the composition are rearranged so that σKsolϕ1 · · ·ϕi =

FSCD 2020
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σKsolϕi+1 · · ·ϕk. These remaining ϕ’s are those for which the algorithm reached a variables-
only equation containing original-of (V ), which occurs in the domain of one of the ϕ’s. But
then ϕi+1 · · ·ϕk is a part of σKvar . Hence, we can get rid of them, obtaining σKsolσKvar .
Hence, we get σKsolσKvar �W(K) ϑ. J

4 Computing approximation degrees

In the algorithm, we have not included the computation of approximation degrees, but it
can be done easily. Instead of constraints in DNF of the form K1 ∨ · · · ∨ Kn, we will be
working with expressions (we call them extended constraints) (K1,D1) ∨ · · · ∨ (Kn,Dn),
where D1, . . . ,Dn are approximation degrees. The rules will carry the degree (“computed
so far”) as an additional parameter, but only two rules would change them: Del-sim and
FVE-mix. Their variants with degree modification would work on constraint-degree pairs (]
stands for disjoint union):

Del-sim-deg :
(
τ1 '?

R,λ τ2 ∧ K, {〈R, d〉} ]D
)
 (K, {〈R,min{d,R(τ1, τ2)}〉} ∪D)

where τ1, τ2 ∈ CF ∪VF ∪VT and R(τ1, τ2) ≥ λ.

FVE-mix-deg :
(
F '?

R,λ f ∧ K, {〈R, d〉} ]D
)
 

∨g∈N(f,R,λ)
(
F

.= g ∧ K{F 7→ g}, {〈R,min{d,R(f, g)}〉} ∪D
)
,

where F ∈ var(K).

For any other rule R of the form K  K1 ∨ · · · ∨ Kn, n ≥ 1, its degree variant R-deg
will have the form (K,D) (K1,D) ∨ · · · ∨ (Kn,D), i.e., D will not change. Let us denote
the corresponding versions of Unif, Sim, and Mix by Unif-deg, Sim-deg, and Mix-deg. The
notions of solved and approx-solved forms generalize directly to extended constraints. Then
we can define Solve-deg along the lines of Solve: To solve a conjunction of primitive equality
and similarity constraints K with respect to similarity relations R1, . . . ,Rm, it performs the
following steps:

C := (K, {〈R1, 1〉, . . . , 〈Rm, 1〉})
while C is not in the appr-solved form do

C := Unif-deg(C), if C = false, return false
C := Sim-deg(C), if C = false, return false
C := Mix-deg(C), if C = false, return false

return C

5 Discussion and summary

The proposed solver can be used in constraint-based formalisms such as, for instance,
constraint logic programming [11] or term rewriting with constraints [13]. We can envisage
an instance of the CLP schema with constraints over multiple similarities. Without going
into much details, a simple constraint logic program below can illustrate this possibility:

I Example 26. The letter P in the program stands for a predicate variable. In constraints,
it is treated as a function variable.

P (X,Y )← P 'R1,λ1 p, X 'R1,λ1 F (Y ), Y 'R2,λ2 c, r(X), r(F (Y )).
r(F (X))← F 'R2,λ2 h, X 'R1,λ1 a.



B. Dundua, T. Kutsia, M. Marin, and C. Pau 30:17

Assume R1(p, q) = 0.9, R1(a, b) = 0.8, R1(f, g) = 0.6, R2(g, h) = 0.5, R2(b, c) = 0.7,
λ1 = λ2 = 0.4. Then by performing the usual CLP inference (i.e., syntactically unifying
the selected query and the head of the corresponding clause) for the query ← q(X,Y ), the
resulting constraint (together with the approximation degrees) will be (X .= g(b) ∧ Y .= b;
{〈R1, 0.8〉, 〈R2, 0.5〉}) ∨ (X .= h(b) ∧ Y .= b; {〈R1, 0.8〉, 〈R2, 0.7〉}).

To summarize, the algorithm Solve presented in the paper solves positive equational
and similarity constraints, where multiple similarity relations are permitted. Given such
a constraint in DNF, it computes disjunction of approximately solved forms, from which
solution substitutions can be read off. It can be easily extended to include the computation of
approximation degrees of the solutions. The algorithm is terminating, sound, and complete.
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G1 G2 G3

v

v′

v′′

v′′′

v

v′

v′′

v′′′

v

v′

v′′

v′′′

⊂ =

⊃ ⊂

⊂ ⊃

⊃ =

mark(v,G1) ⊂ mark(v,G2) = mark(v,G3)

mark(v,G1) ⊃ mark(v,G2) ⊂ mark(v,G3)

mark(v,G1) ⊂ mark(v,G2) ⊃ mark(v,G3)

mark(v,G1) ⊃ mark(v,G2) = mark(v,G3)
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